
Thermal Analysis in Railway Electrification

Systems
by

Alejandro Gancedo Montes

Submitted to the Department of Electrical Engineering and
Electronics Systems

in partial fulfillment of the requirements for the degree of

Electrical Energy Conversion and Power Systems Master’s Degree

at the

UNIVERSIDAD DE OVIEDO

July 2019

© Universidad de Oviedo 2019. All rights reserved.

Author .

Certified by. .
Peru Bidaguren Sarricolea

Engineering Division - CAF TE
Thesis Supervisor

Certified by. .
Pablo Arboleya Arboleya

Associate Professor
Thesis Supervisor

2

Thermal Analysis in Railway Electrification Systems

by

Alejandro Gancedo Montes

Submitted to the Department of Electrical Engineering and Electronics Systems
on July 22, 2019, in partial fulfillment of the

requirements for the degree of
Electrical Energy Conversion and Power Systems Master’s Degree

Abstract

In this Master’s Thesis, a tool to calculate the thermal behavior of railway electrifi-
cation systems has been developed by means of iterative calculations based on heat
transfer and energy conversion equations. This application is called RailThermal app.
The calculation method is implemented in Matlab, allowing to study the thermal ca-
pacity of the system. The aim of this tool is to size the section of the conductors
(catenary, feeder) and calculate the recovery time of the system against unexpected
contingencies.

With the results supplied by the program, a thermal map of the system is created.
For lines, a evolution of the temperature against time and distance is plotted.

The input data is obtained from RailNeos 2.0, a simulator of railway electrification
systems which is able to calculate the total energy consumption of the system, taking
into account the implementation of accumulation devices. This tool was developed by
Lemur Research Group of the University of Oviedo and CAF Tunrkey & Engineering.

Thesis Supervisor: Peru Bidaguren Sarricolea
Title: Engineering Division - CAF TE

Thesis Supervisor: Pablo Arboleya Arboleya
Title: Associate Professor

3

4

Contents

1 Introduction 15

1.1 Structure of the thesis . 17

2 State of the art 19

2.1 Railway Lines Feeding . 19

2.1.1 Traction power substations (TPSS) 20

2.1.2 Traction circuit . 20

2.1.3 Electrification systems . 22

2.1.4 DC electrified systems . 24

2.1.5 AC electrified systems . 26

2.1.6 Energy storage systems for railway applications [5] 28

2.2 RailNEOS 2.0 . 30

3 Thermal model of overhead lines 33

3.1 Electric losses . 35

3.1.1 Joule’s losses . 35

3.1.2 Skin effect . 36

3.1.3 Proximity effect . 36

3.1.4 Dielectric losses . 37

3.1.5 Electrical Resistance . 37

4 Heat Transfer 39

4.1 Conduction . 39

5

4.2 Convection . 40

4.3 Radiation . 41

4.4 Energy conservation . 42

5 Temperature calculation method 45

5.1 Temperature calculations varying weather and current 47

5.2 Convective heat loss . 48

5.2.1 Forced convection . 48

5.2.2 Natural convection . 49

5.3 Radiated heat loss . 50

5.4 Solar heat gain . 50

5.5 Conductor heat capacity . 51

5.6 Air characteristics, solar angle and solar heat flux 51

5.6.1 Dynamic viscosity of air . 52

5.6.2 Air density . 52

5.6.3 Thermal conductivity of air 52

5.6.4 Altitude of the sun . 52

5.6.5 Azimuth of the sun . 54

5.6.6 Total heat flux density . 55

5.6.7 Elevation correction factor . 55

5.7 Emissivity and absorptivity of the conductor 57

6 Thermal calculation tool: RailThermal app 59

6.1 Application . 60

6.2 User interface . 61

6.3 Import database . 62

6.4 Exported graphics . 62

6.4.1 Thermal Map . 63

6.4.2 Average temperature of the lines 63

6.4.3 Evolution of the temperature over time 64

6

7 Structure and code of the RailThermal app 67

7.1 Design of RailThermal app . 67

7.2 Main script: Thermal study.m . 68

7.3 Function: contact wire.m . 68

7.4 Function: InitData.m . 70

7.5 Function: InputData.m . 71

7.5.1 Import data of the nodes . 71

7.5.2 Import data of the paths . 71

7.5.3 Import data of the lines . 72

7.5.4 Store data of the sections . 74

7.5.5 Import start time of the simulation 77

7.6 Function: K angle.m . 77

7.7 Function: InputResults.m . 77

7.7.1 Internal function: Convect Heat Loss.m 80

7.7.2 Internal function: Radiated Heat Loss.m 80

7.7.3 Internal function: Solar Heat Gain.m 80

7.8 Function: T max.m . 81

7.9 Graphic representation of the thermal calculation 83

8 Analysis of the results provided by RailThermal app 87

8.1 Analysis of convective, radiated heat loss and solar heat gain 87

8.1.1 Convective Heat Loss . 87

8.1.2 Radiated Heat Loss . 89

8.1.3 Solar Heat Gain . 90

8.2 Influence of the sectioning length in the simulation time and the error

incurred . 94

8.3 Case Study: Liège network . 98

9 Conclusions 109

7

A Code of RailThemal app 111

A.1 Thermal study.m . 111

A.2 contact wire.m . 113

A.3 InitData . 114

A.4 InputData.m . 116

A.5 K angle.m . 134

A.6 InputResults.m . 137

A.7 T max.m . 140

A.8 Code implemented in the interface . 143

8

List of Figures

1-1 EU 27 share of CO2 from fuel combustion. Note: emissions from avia-

tion and navigation (maritime) international bunkers and electric rail

traction system are considered in transport sector. 16

2-1 Configuration of traction systems in a 2x25 kV topology 21

2-2 DC power feeding topologies: a) Single-end feed b) Double-end fed . . 25

2-3 1x25 kV scheme with booster transformer supply 27

2-4 Autotransformer power supply scheme or 2x25 kV topology 28

2-5 Power flow through the systems without on-board ESS 29

2-6 Power flow through the systems with on-board ESS 30

3-1 Thermal model of an overhead line 34

3-2 Skin effect of conductor at different frequencies. Blues tones represent

the currents . 36

3-3 Single conductor in free space and two conductors closely spaced, ap-

pearing the proximity effect . 37

5-1 Representation of the hour angle (ω) during the day 53

5-2 Representation of the main parameters for calculating solar heat gain 54

6-1 Cover of RailThermal app . 60

6-2 Icon of RailThermal app . 60

6-3 User interface of RailThermal app . 62

6-4 Thermal Map of the Lieja’s project 63

6-5 Thermal Map of the Lieja’s project, using data cursor tool 64

9

6-6 Average temperature of line 24 during the simulation 65

6-7 Evolution of temperature of line 24 along the simulation 65

7-1 Flowchart of the functions implemented 69

7-2 Conduct Types structure and its fields 70

7-3 OutNode structure and its fields . 71

7-4 OutLine structure and its fields . 72

7-5 Graphical representation of the paths of a simulation, distinguishing

the routes by colors . 74

7-6 Structure and nomenclature of a line in order to arrange the power

losses by sections . 76

7-7 Flowchart of the code to obtain the power losses by sections 78

7-8 Variation of wind direction factor respect the angle between the con-

ductor and wind direction . 79

7-9 Tcat max structure and its fields . 82

7-10 Criterion used for calculating the direction angle, showing the possible

directions of the lines and the equations 85

8-1 Evolution of the qc with the wind speed and changing the section of

the conductor . 88

8-2 Evolution of the qc with the wind speed and changing the elevation of

the location . 89

8-3 Evolution of the qc with the wind speed and changing Kangle 89

8-4 Evolution of the qr with emissivity and changing the section of the

conductor . 90

8-5 Evolution of the qs with respect the latitude. The day of the simulation

is 21-July-2019 (summer solstice in the northern hemisphere) 91

8-6 Evolution of the qs with respect the latitude. The day of the simulation

is 22-December-2019 (summer solstice in the southern hemisphere) . . 92

8-7 Evolution of the qs with respect day of simulation 92

8-8 Evolution of the qs with respect elevation of the location 93

10

8-9 Evolution of the qs with respect absorptivity 93

8-10 Evolution of the qs with respect section of the conductor 94

8-11 Average temperature of L2 for different values of sectioning length . . 95

8-12 Relative error of average temperature along the line 96

8-13 Evolution of temperature, at 0.025 km of L2 96

8-14 Relative error of temperature at 0.025 km of L2, during the simulation 97

8-15 Comparison between average error of Fig.8-11 and simulation time . . 97

8-16 Comparison between average error of Fig.8-13 and simulation time . . 98

8-17 Thermal of map of Liège’s network with Vw=0 m/s 99

8-18 Evolution of temperature for line 16, at point 6.338 km 100

8-19 Evolution of temperature for line 17, at point 6.388 km 100

8-20 Evolution of temperature for line 17, at point 8.736 km 100

8-21 Thermal map of Liège’s network with Vw=5 m/s 101

8-22 Thermal map of Liège’s network with Vw=0 m/s and a Cu-ETP con-

ductor with a section of 150 mm2 . 102

8-23 Evolution of temperature for line 17, at point 6.388 km 103

8-24 Thermal map of Liège’s network with Vw=0 m/s and a CuAg0.1 con-

ductor with a section of 150 mm2 . 103

8-25 Evolution of temperature for line 16, at point 6.338 km 104

8-26 Average temperature of L16 . 104

8-27 Evolution of temperature for line 17, at point 6.388 km 105

8-28 Average temperature of L17 . 105

8-29 Evolution of temperature for line 24, at point 8.736 km 106

8-30 Average temperature of L24 . 106

11

12

List of Tables

1.1 EU transport modal share, 2011 [35] 16

2.1 Standardized voltage ranges . 22

2.2 Nomenclature used in Tab.2.1 . 22

2.3 Traction system in Europe [10] . 23

5.1 Valid range for forced convection equations [1] 49

5.2 Specific heat of typical conductor metal wire 51

5.3 Values of solar azimuth constant (C) in degrees, taken into account

hour angle (ω) and solar azimuth variable (χ) 55

5.4 Value of coefficients for the total heat flux depending on the state of

the atmosphere . 56

5.5 Value of coefficients of Eq. 5.22 . 56

7.1 Extract data from the simulation Lieja BAFO.m 72

7.2 Extract data from the simulation demo compleja.m 73

7.3 OutSect matrix of a specific line with the initial data 75

7.4 OutSect matrix of a line with the thermal results 79

7.5 Maximum temperature of the conductors in ◦C [34] 83

8.1 Relationship between Kangle and φ . 90

8.2 Add caption . 95

13

14

Chapter 1

Introduction

The current transport system shows sustainable limitations in terms of pollution

and congestion. Electrical railway is a means of transport that solves some of these

problems, being an efficient, safe and clean system. The railway system allows the

massive transport of goods and passengers in urban and suburban areas.

Within EU28, the transport sector is responsible for 24% of greenhouse gases

(GHG) emissions, being the only sector in which emissions have increased since 1990.

From 1990 to 2012, GHG increased by 14%. However from the same period, European

railway system reduced the total CO2 emissions by 39 %. In Fig 1-1, the percentages

of emissions by sectors is shown. Direct emissions from the railway sector by using

diesel as fuel are 0.6%. The emissions of railway electrified system from electricity

production reached 1.5%. CO2 emissions from the road sector is 70.9%, as well as

aviation and shipping 12.6% and 14.4%, respectively [35].

Therefore, a change to a new transportation model is necessary. In railway system

that change has already begun. Since electrical systems show clear advantages over

diesel propulsion systems. The electrical traction systems provide a better power

to weight ratio than diesel, allowing a faster acceleration and bigger tractive effort

on sections with pronounced slopes. In negatives gradients the locomotives operate

as generators injecting power to the grid and improving the global efficiency of the

system. It is also considered a low emissions means of transport, specially, in places

where the majority of electric generation comes from renewable sources. Further-

15

more, it is a silent means of transport that requires a lower degree of maintenance

than diesel traction units. The suburban railway systems are the most attractive for

implementing, since the density traffic is high and the distance between stations is

relatively short (CAPEX in civil works are lower in comparison with long distances

trains) [16].

Residential 10.1 %
Other 6 %

Transport 31 %

Manufacturing
14.3 %

Electricity and Heat
38.6 %

Road
 70.9 %

Navigation
14.4 %

Aviation
12.6 %

Rail 1.5 %

Other 0.6 %

Figure 1-1: EU 27 share of CO2 from fuel combustion. Note: emissions from aviation
and navigation (maritime) international bunkers and electric rail traction system are
considered in transport sector.

Table 1.1: EU transport modal share, 2011 [35]

Passenger Freight Total (TU)
(pass-km) (tonne-km)

ROAD 83.60% 46.90% 70.30%
AVIATION 8.80% 0.10% 5.70%
NAVIGATION 0.60% 41.90% 15.50%
RAIL 7.00% 11.10% 8.50%

Currently, in the electric generation and distribution system, the trend of smart

electric networks predominate, where renewable energies and storage systems play

a crucial role. At the same time, the requirements to increase the power capacity

in railway systems and the tendency to carry out an active power control between

utility, railway grid and energy storage systems, highlight the inconveniences of the

conventional systems in order to maintain good power quality ratios. Therefore, the

16

future railway feeding system must be an adaptable infrastructure, which must be

capable to deal with the new generation sources and fulfilling the requirements of

reliability, efficiency and economic viability.

The need to consolidate a transport system that was capable of moving large

masses of passengers and goods, reducing the environmental impact is evident. The

road-map foresees that the length of high-speed networks will triple in 2030, thus

covering most of the passengers in middle distance. For transport of goods by road,

the 30% will be done by train or ship, in distances greater than 300 km, and more

than 50% in 2050 [35].

In Tab.1.1, it is presented the European Union transport modal share. In future

years, this panorama is expected to change significantly. The EU plans that electricity

be the central energy axis of the future, using low emission generation systems. This

new energetic model must supply the transport sector, replacing the use of fossil

fuels. In this situation, the railway system is the main means of transport capable of

adapting to this new energy model. Currently, more than half of the rail network in

Europe is electrified. In order to become the first means of transport with zero-carbon

emissions, a push must be necessary, allowing favorable policy and investments in the

infrastructure [35].

Foreseeing this encouraging scenario, the stage of design and study of new net-

works takes a great importance. Either, power flows and thermal studies allow taking

the correct direction of the new network design. A detailed prior study is the first

solution to future problems in the grid, in order to take the correct direction in terms

of reliability and profitability for a new project

1.1 Structure of the thesis

This master thesis is split into 9 chapters. Below, a brief description of each of them

is shown

� Chapter 1: A brief description of the current situation in the energy world is

presented.

17

� Chapter 2: In this chapter a review of the main railways feeding systems and

a presentation of RailNeos are carried out.

� Chapter 3: The thermal model of overhead lines and the main effects that can

appear on the conductor are described.

� Chapter 4: Along this chapter, the main heat transfer procedures are defined.

� Chapter 5: The temperature calculation method implemented in RailThermal

app is explained in this chapter.

� Chapter 6: The thermal calculation tool is presented, showing the interface

and its functionalities.

� Chapter 7: A description of the code is carried out in this chapter, explaining

the flowchart of the software.

� Chapter 8: Along this chapter, an analysis of the main variables of the calcu-

lation method and a case study are performed.

� Chapter 9: Finally, the conclusions extracted from the thesis are presented.

In addition, future development paths are shown.

18

Chapter 2

State of the art

2.1 Railway Lines Feeding

The energy feeding system is the combination of elements necessaries for supplying,

distributing and transforming the electric energy of the grid, into energy able to allow

the reliable and interruptible circulation of rolling stock. The main components of

the railway feeding system are:

� Traction power substations (TPSS).

� Railway electrification systems composed by contact lines, feeders and return

conductors.

The utility grid supplies power to TPSS in which the voltage level is transformed

and rectified (in case of DC systems), allowing to feed the rolling stock. The feeding

is carried out through medium voltage grids. Then, the power is supplied to the

catenary by feeders. The circuit is closed via the rails which are connected to a return

circuit towards the substation. The return circuit is isolated from earth. There are

protection devices in the return cell of the substation, that are checking the voltage

between rail and earth. If voltage value exceeds the limit, rails will be connected to

earth, until the current through the rails is dissipated. [33]

The railways lines are split into sections electrically isolated. Short stretches

without feeding separate sections. They are called neutral zones. Along these zones

19

the rolling stocks are moving without voltage. The sections with voltage are fed

from the high voltage network through TPSS. Usually, the same substation feeds

two consecutive sections. For those vehicles that are moving with more than one

pantograph connected, the distance between the farthest pantograph must be lower

than the length of the neutral zone, otherwise different phases could be connected

leading to a short-circuit. For high speed trains, the length of the neutral zone could

be around 400 meters [19].

2.1.1 Traction power substations (TPSS)

The power traction substation connects the railway electrified lines and the hight-

voltage network. This installation transforms voltages from the three phase grid level

to the feeder levels. In DC systems, it is necessary a rectification stage [19]. There

are different topologies for feeding TPSS:

� Direct feeding from the utility network: the supplier company is in charge

of feeding each TPSS. Usually, TPSS presents a topology of single busbar. This

configuration leads to a lower cost than the other options. In case that it was

necessary to feed several lines from a TPSS, other topologies as ring or double

busbar are more advisable.

� Medium voltage ring: all TPSS are connected to the feed ring. This topology

increases the availability of the substations.

TPSS are supervised from the control center by means of a remote control. This

allows a coordinate operation of TPSS, adapting the topology of the grid according

to the needs.

2.1.2 Traction circuit

The traction circuit is the installation composed by the conductors in charge of dis-

tributing the electric energy. In Fig. 2-1, the main components of the traction circuit

are shown.

20

The conductors with positive voltage are known as catenary. Below, the main

parts are presented [19]:

� Contact wire is the conductor in which the pantograph gets in contact. This

wire is in parallel with the ground in order to facilitate the caption of power.

Usually, the conductors are made of Cu-ETP or CuAg0.1.

� Suspension wire is the conductor in charge of supporting the weight of the

contact wire by means of suspension cables. Commonly, they are copper con-

ductors.

� Feeder is an additional conductor added in case that the impedance must be

reduced and the permissible current limit must be increased. The most common

is to use aluminum conductor with steel core.

Positive feeder Negative feeder

HangerSuspension
wire Contact wire

Longitudinal section

Positive
feeder

+ 25 kV

- 25 kV

Negative
feeder

Contact wire

Suspension
wire

Return wire

0 kV

Transverssal section

Figure 2-1: Configuration of traction systems in a 2x25 kV topology

Neutral conductors are:

� From the electrical point of view, rails works as return conductors and they are

made of steel.

� Return conductors serve to return currents. Due to its lower impedance,

they drive most part of the return current. In that way, the perturbations

21

of the currents will be reduced, avoiding problems with the signaling systems.

Commonly, aluminum conductor with steel core are used.

In some topologies of dual AC conductor, as 2x25 kV, an additional wire is added,

called negative feeder. The purpose of this conductor is to configure the return circuit.

This wire allows to reduce the electromagnetic perturbations. Usually, aluminum

conductor with steel core are used.

2.1.3 Electrification systems

The electrical railway system can be split depending on the feeding voltage. The

voltages standardized are established by BS EN 50163 and IEC 60850, in which it

is considered number of trains circulating and longitudes to substations [16]. In the

table 2.1, the standardized voltage range are specified.

Table 2.1: Standardized voltage ranges

System VLNP VL VN VHP VHNP

600 V DC 400 V 400 V 600 V 720 V 800 V
750 V DC 500 V 500 V 750 V 900 V 1000 V
1500 V DC 1000 V 1000 V 1500 V 1800 V 1950 V
3 kV DC 2 kV 2 kV 3 kV 3.6 kV 3.9 kV

15 kV AC
(16.7 Hz)

11 kV 12 kV 15 kV 17.25 kV 18 kV

25 kV AC
(50 Hz)

17.5 kV 19 kV 25 kV 27.5 kV 29 kV

Table 2.2: Nomenclature used in Tab.2.1

VLNP Lowest non-permanent voltage
VL Lowest permanent voltage
VN Nominal voltage
VHP Highest permanent voltage
VHNP Highest non-permanent voltage

At the beginning of the development of railway electrified systems, DC systems

with low voltages were the most common. Primarily, because the speed of the motors

22

could be controlled in a easy way through switches and rheostats. However, these

low voltages leads to high currents circulating through the lines, going against the

fundamental principles of the distribution lines. Coupled to this, in DC networks

with high voltages and high currents, it is difficult to dissipate fault currents due to

the energy stored in the inductances of the system. Technically, recent studies show

that the maximum voltage in DC is 12 kV. Nowadays, the on-board control of torque,

i.e, tractive effort, is no limited, therefore the use of topologies at 25 kV (50 Hz/ 60

Hz) is the most predominant option for covering long distances railways. However,

for installed conductors with the same characteristics, the impedance in AC systems

is higher than in DC. This is due to the flux between output and return overhead

conductors and because of the skin effect in the returns rails which makes grow the

apparent resistance up to 40 % with 50 Hz. This increase in resistance is more evident

for low voltages. Therefore, from the economic point of view it is more beneficial to

install DC systems with low voltages and high currents, such as in case of metros or

trams [30].

In the table 2.3, it is presented the main topologies of traction systems taking into

account the feeding voltage level.

Table 2.3: Traction system in Europe [10]

Rated Voltage Km %

600 V DC
3310 1.4750 V DC

1.5 kV DC 15318 6.4

3.0 kV DC 72104 30.3

15 kV (16.7 Hz) 32392 13.6

25 kV(50 Hz, 60 Hz) 106437 44.8

Others AC 8039 3.4

23

2.1.4 DC electrified systems

The direct current (DC) is an simple electrification system used due to it allows

an connection to the utility system without introducing unbalance voltages into the

railway system [26]. This system requires a short distances between stations because

of the resistive losses. The desired distance between two station at 750 V DC is 2.5

km and at 3 kV is 25 km.

Rolling stock in DC has the ability to exchange energy with the train network

through power converters. The locomotives operates as generators, at the moment of

braking. Thus, this process allows an improvement in the efficiency. Note that the

regenerative breaking increases the voltage in DC part what it can lead to blocks in

the non-reversible substations [24].

Usually, the trams are fed at 600 V DC or 750 V DC (most popular nowadays).

Normally for feeding the trams, overhead lines or storage systems are used, either

on-board and off-board. There are cases in which the trams can be powered by a

third rail, as in Brussels, but it is not common, since the costs in the security and

isolation systems are high. In Brussels the third rail is energized as the tram moves.

The solution of a third rail is widely used in subways because of the reduction of

capital costs, allowing to minimize the section of the tunnels and due to it is able

to transport 41 % of additional power than an AC systems with an identical peak

voltage [16]. Other solutions can be used as in the case of the London Underground,

with a third rail at 420 V and a quarter rail at -210 V (taking as reference the rails

of the subway). 1400 V and 1500 V DC are the widely extended solutions for metro

due to economical terms. In the range of 3000 V DC, suburbans and trains are found

with overhead lines [30]

DC power supplies

As previously mentioned, traction systems in DC are used mainly in urban, suburban

and regional systems. The conversion traction power substations connect the utility

grid, of medium or high voltage grid with the railway electric system. The rectifier

24

bridges are the responsible of transform from AC to DC.

S1 S2 S3 S4 S1 S2 S3 S4

sectioning station

b)a)

Station
insulator

Normally
open isolator

Normally
closed isolator

Circuit
breaker

Figure 2-2: DC power feeding topologies: a) Single-end feed b) Double-end fed

Below, the components of a substation are presented [30]:

� Input transformer to transform the voltage from the AC side

� AC circuit breakers

� AC switches and isolators are used in emergency situations to reconnect with

other feeders and in maintenance work

� Silicon diode bridges. At 750 V two 6-pulse bridges are connected in parallel

and at 1500 V in series, achieving 12-pulse output ripple.

� DC switches to isolate a part of the line

� High speed DC circuit breakers are costly due to the difficulty of breaking a

high DC current in an inductive circuit. Another types of this breakers are im-

plemented on-board in order to reduce interruptions, disconnecting regenerative

braking systems from nearby trains that may be feeding faults.

25

The electric traction system is split in sections where each one can be isolated from

the others in case of any contingency or failure. The aim is to avoid adjacent sections

being fed at different voltages. The electric power supply must operate without an

isolated section, with no problems. Sections can be interconnected through track

sectioning stations (section insulators), insulated overlapping sections or paralleling

stations to connect with other lines [29].

Heeding figure 2-2, it is shown the two main topologies of DC power supplies

in railways. Both circuits have a double feeder line and a returning circuit (rails).

In this figure, two substations and four sections have been performed. Fig.2-2.a

shows a single-end feed diagram where each traction line of a section is connected to

an incoming supply. In this example, all the sections are electrically isolated from

others. For this scheme the power flow is unidirectional. In Fig2-2.b, a double-end

feed is represented. Unlike the previous case, all sections are electrically dependent,

being all connected. Both traction lines of section 1 and 2 have been cross-coupled

in substation on the left. The same occurs with tractions lines of section 3 and 4 in

substation on the right. Besides, a longitudinal coupling is carried out between section

2 and 3 through a sectioning station. In this case, the power flow is bidirectional.

The double-end feed results in a more stable voltage profile along the line, being

applicable if both substations are powered at the same voltage [29].

2.1.5 AC electrified systems

The alternating current systems are fed through overhead lines which are supplied at

higher voltage levels and leads to lower losses. At the beginning of the 20th century,

railway electrification systems were developed in AC, in Germany and Switzerland,

using 15 kV and 16.7 Hz. This was due to the switching limitations for the variable

speed machines fed in AC. Originally, the machines used for 16.7 Hz systems were

DC machines fed with AC. The inductance of the windings of the firsts models of

big motors make impossible to operate at industrial frequencies. The eddy currents

produced in the iron lead to overheating and to reduction on the efficiency [30] [26].

In the AC electrification systems the 25 kV 50/60 Hz is the most common solution

26

used for railway lines and suburban. 50 kV 50/60 Hz characteristics is implemented

for heavy-haul railways.

AC power supplies

The electric traction networks of the railways are connected to distribution networks

with nominal voltage as high as possible. This is due to the fact that the traction

network itself introduces unbalanced, flicker and harmonic loads into the system.

In remote areas, the power consumption of a locomotive can represent 1-2% of the

short-circuit capacity, which can cause problems for the distribution network. The

implementation of on-board PWM converters causes a reduction of the harmonic

components and regulates the variations of the power factor. But it is unable to

counteract flicker and unbalance problems [30].

In AC traction systems, ground leakage current is considered a major problem.

When the current drifts to earth, it is distributed at great depths. This results

in a considerable magnetic field between and around the drivers. The two main

consequences are [30]:

� The self inductance reaches high values, around 2 mH/km, resulting in increases

in voltage drop and reduces the distance between substations.

� This field may cause interference in telecommunication lines and dangerous

voltages in fault conditions.

I

I
I

Return
wire

Contact
wire

Rails

Vin

Figure 2-3: 1x25 kV scheme with booster transformer supply

27

The most common way to reduce the ground leakage current is implementing a

return wire connected in series with a booster transformer (see Fig.2-3), where the

consecutive transformers can be installed around 3 km.

The autotransformer power supply diagram also known as 2x25 kV, is presented

in figure 2-4. The main advantages to use this topology is because of it reduces the

dealing current, as well as rail potentials, losses and increase the feeding distance. The

voltage between ground feeder (rails) and positive feeder is 25 kV and the voltage

between the negative feeder and the ground feeder is -25 kV, leading to 50 kV between

positive and negative feeder.

Vin

Zin Positive feeder

Ground feeder

Negative feeder
Cell

I
I1 I2

25 kV

25 kV

Figure 2-4: Autotransformer power supply scheme or 2x25 kV topology

2.1.6 Energy storage systems for railway applications [5]

Speed and mass are the two main parameters that affect to the energy consump-

tion of rail vehicles. On one hand, speed depends on driving schedule and service

requirements. On the other hand, mass is dependent on vehicle structure, number of

people transported and devices installed on-board. It is estimated that the energy

consumption supposed 30% of the lifetime cost. Thus, the reduction in weight must

be one of marked goals when designing rolling stock in order to reduce the energy

consumed. The main variables that determine the final weight of the vehicle are:

� Multiple units operation.

� Comfort requirements, either for passenger or driver.

28

� Power of air conditioning.

� Acceleration levels of the vehicles.

� Amount of passenger seats.

� Number of on-board energy storage systems.

One approach to reduce the energy consumption through the catenary and not

wasting electrical energy is to use, this energy developed, during braking by means

of ESS. As it is known, the electric motors operate as generators when the vehicle is

braking, the kinetic energy is transformed into electric energy, being able to be used

in accelerating periods. This leads to an improvement in the global efficiency of the

system and a reduction of the flowing currents through catenary.

Traction instant Braking instant

TPSS

Energy flow from other vehicle

Energy flow from TPSS

Braking losses

Braking resistors

Figure 2-5: Power flow through the systems without on-board ESS

Heeding Fig2-5, it is shown the power flow through the catenary when there is no

on-board energy storage systems. In this situation, a percentage of the regenerative

power is used for feeding other vehicle, meanwhile other portion is burned into the

braking resistors, meaning an unused energy. This braking resistor are implemented

in order to avoid over-voltages in the catenary.

In periods with higher power generated than consumed, this surplus is sent to the

braking resistors of the vehicles. In order to avoid that, on-board ESS, or trackside

energy storage systems can be implemented. When on-board ESS are installed the

29

flowing current is reduced. The ESS provide energy when a vehicle is accelerating (see

Fig.2-6). Besides, the efficiency of the system increases, being reduced the resistive

losses.

Traction instant Braking instant

TPSS

Energy flow from other vehicle

Energy flow from TPSS

Energy flow to/from on-board ESS

On-board ESS

Figure 2-6: Power flow through the systems with on-board ESS

Thus, the main goals of the ESS in railway electrified systems are:

� Recover excess energy in braking process.

� Provide a portion of the energy in accelerating process.

� Substitute the catenary by ESS.

� Cut the peak power through the catenary, decreasing the flowing current and

resizing of TPSS.

2.2 RailNEOS 2.0

RailNEOS 2.0 is a web tool simulator developed between CAF Turnkey & Engineering

(CAF TE) and the University of Oviedo within the ESTEFI project. This software

simulates any railway electrified system, calculating the power flow of the network,

and taking into account mix-mode substations and ESS, either on-board or track-side

energy storage systems.

30

This web application calculates the energy consumption of the system from sub-

stations point of view, and along the lines, computing the voltage, active power,

reactive power, losses profiles...

The results are shown in an interactive web interface that is able to represent all

the electric variables, with the purpose of understanding the behavior of the network

and permitting to design the most efficient topology of the grid.

RailNEOS 2.0 is a tool that can be used for analyzing the planning operations and

the most convenient schedules for the vehicles. In addition, it can serve as support

tool to reduce the operational cost, by means of evaluating the implementation of

ESS, on-board or off-board and their size.

The results will be exported in a database that will be the data input of the

thermal calculations.

31

32

Chapter 3

Thermal model of overhead lines

In order to evaluate the operation of a conductor submitted to voltage and circulating

current through it, a thermal model will be established, highlighting the most remark-

able parts. In this model, the main stages of heat transmission will be specified, from

its longitudinal axis to external edges. The conductors under study will be bared, so

the insulation layers will not be mentioned.

As consequence of the current flowing through the conductor, losses arise due to

Joule effect. A flow heat will take place from the wire to the atmosphere. A gradient

of temperature will appear, being the main limiting factor of the maximum current

without not damaging the components.

Figure 3-1 represents the thermal model of an overhead line. A section of the

common catenary is presented, specifying the direction of the heat transmission. The

relative aspects of the conductor and the variations in the climatological conditions

have been taken into account to develop this model.

The heat gain is the sum of the heat produced by the electric current flowing

through the wire, Joule heating (Qj) and the solar radiation heating (Qs).

Utr(t) = Qj +Qs (3.1)

The thermal resistance depicts the capacity of the conductor to dissipate heat through

phenomenons of convection (Qc), evaporation (Qw) and radiation (Qr). The cooling

33

Catenary

Heat
Gain

Thermal Resistance

Thermal
Capacitance

Ambient
Temperature

(t)

Conductor temperature (t)c

a

ts t ∞

Ė

Figure 3-1: Thermal model of an overhead line

factor gathers these effects (see Eq. 3.2). For the thermal calculations that are going

to be carried out in Matlab, the evaporation factor has been considered null.

Kcool(t) =
Qc +Qw +Qr

Ts − T∞
(3.2)

Where:

� Ts: conductor surface temperature, [◦C]

� T∞: air temperature, [◦C]

The thermal capacitance (CTr) is a factor dependent on conductor properties and

weather conditions. As can be seen in Eq. 3.3, CTr is function of the conductor

type and of climatological aspects that affects the external edge of the wire. As

consequence of the thermal capacitance, a change in the flowing current leads to a

34

gradual variation of the conductor temperature [36].

CTr(t) = m · Cp(t) (3.3)

3.1 Electric losses

The electric losses along the feeder causes a heat flow, which must be liberated in

order to not perturb the properties of the components.

3.1.1 Joule’s losses

As was commented previously the losses in the conductor are because of the Joule

effect. The electric energy in a conductor is the consequence of the kinetic energy of

the electrons, which are driven by a electric field when the conductor is connected

to voltage. However, not all this kinetic energy is used, since the shocks and friction

between electrons and ions of the crystal lattice of the conductor exist. The losses

due to Joule effect are represented in Eq.3.4

Qc = R · I2 (3.4)

Where:

� R: electric resistance of the conductor, [Ω]

� I: RMS current which flows through the wire, [A]

The electric resistance of a wire shows the non-linearity of the conductor against

the flowing current. The value of this resistance is at the nominal current of the

conductor. The resistance is given by the Eq.3.5

R = ρT ·
l

S
(3.5)

Where:

� ρT : resistivity of the conductor, [Ω ·m]

35

� l: conductor length, [m]

� S: section of the wire, [m2]

Joule’s losses are caused by the non-linearity of the material. But another type of

losses could appear in the case AC current was flowing through the conductor.

3.1.2 Skin effect

The skin effect is related to the frequency of the AC current. With the increasing of

the frequency, the effective section of the wire is reduced, boosting the resistance of

the wire. The variations of the magnetic flow induce that the distribution current was

not uniform. A higher voltage is created insight the wire so current density decreases,

in the external part of the conductor is the opposite. Hence, the density current

increase gradually from the center of the conductor due to the voltage induced blocks

the variations of the current (see Fig. 3-2) [17].

60 Hz
6” (150 mm)

1000 Hz
0.2” (5 mm)

400 kHz
0.030” (0.75 mm)

Figure 3-2: Skin effect of conductor at different frequencies. Blues tones represent
the currents

3.1.3 Proximity effect

The proximity effect takes place when two or more conductors are relatively close, as

well as AC current is flowing through them. In both conductors, magnetics effects

36

appear modifying the distribution of the current density in the transversal section. As

result, the effective area of conduction is decreased leading to a higher resistance [21].

Single conductor
in free space

Two closely spaced
conductors

Magnetic fields

Flowing
current

Figure 3-3: Single conductor in free space and two conductors closely spaced, appear-
ing the proximity effect

3.1.4 Dielectric losses

When a wire is in charge a electric field is generated, consequently leaks appears in

the isolation, in form of heat. For AC system with shield cables, dielectric losses takes

importance due to the current has a new path to circulate. In DC conductors and in

AC wires with low voltage, this effect is neglected.

3.1.5 Electrical Resistance

All the effects previously mentioned are gathered in an equivalent electric resistance.

These figures are tabulated according to type of the conductor. For the thermal study,

the data input will be the Joule’s losses, provided by RailNeos.

37

38

Chapter 4

Heat Transfer

Heat transmissions occur by means of interactions between a systems and its envi-

ronment, when a difference of temperature exists, producing heat and work. The

thermodynamical analysis allows to know the final state of a process, but it is im-

portant to know the origin of this process and the temporary evolution. Below, the

main three heat transmissions mechanism will be described.

4.1 Conduction

The heat transmission, by means of conduction, is produced because of the vibration

in atoms and particles. The highest temperatures are related to high molecular energy

where the areas with higher energy transmit it to zones less energetic. The amount

of energy transferred per time is quantified by Fourier’s law (see Eq. 4.1). The sign

minus indicates that heat flow goes in the direction of decreasing temperature [11].

qc = −S · k · dT
dx

(4.1)

Where:

� qc: heat flow for conduction, in a specific direction, [W]

� S : perpendicular section to the heat transmission direction, [m2]

� k: thermal conductivity of the material, [W/(m ·K)]

39

4.2 Convection

Convection is a specific process of heat transmission where the transfer procedure is

made by the displacement and mix of fluids (liquid or gas) at different temperatures.

Convection is based on two phenomenons complemented between both. On one hand,

due to the random molecular movement of the particles. And on the other hand,

thanks to the macroscopic displacement of a fluid in presence of temperature gradient

[11].

The movement of fluids caused by densities differences due to temperature gradi-

ents, is denominated natural convection. In case of this movement was originated by

external forces (gravity, pumps, compressors...), is called forced convection.

The efficacy of the heat transmission by convection depends on the movement of

the fluid mix, hence, it is important to know the characteristics of the fluid. The

mathematical analysis constitutes a complex field of applied mathematics. In some

cases, a good empirical knowledge is important. The Newton’s law of cooling is the

most common expression to describe this phenomenon (see Eq. 4.2)

qcv = S · h · (Ts − T∞) (4.2)

Where:

� qcv: heat flow by convection, [W].

� S: contact section between body and fluid, [m2]

� h: coefficient of heat transmission by convection, also called film coefficient,

[W/(m2K)]

� Ts: temperature of the solid surface, [K]

� T∞: temperature of the global fluid, [K]

40

4.3 Radiation

The radiation is a process in which the heat flows from a body at high temperatures

to a body at low temperatures, when both are separated for a space, even, it could be

the vacuum. In fact, the heat transmission does not suffer attenuation in vacuum [11].

The term radiation, from the thermal analysis point of view, is applied to phe-

nomenons in which is established an energy transport through transparent means or

the vacuum. The energy transmitted is denominated radiant heat or thermal radia-

tion.

The thermal radiation is emitted by a body in form of electromagnetic waves (or

photons) as results of the changes in the electronics configurations. The displacement

of the radiant heat is similar to the propagation of light in the space and it can be

described by the wave theory. When a thermal radiation falls upon a body, a part

can be reflected by its surface, part transmitted through it (if it is diathermic) and

the rest absorbed by the body, becoming internal energy of it, except in cases where

it is induced photochemical or nuclear reactions [11].

The expression that represents the net radiation, either emitted or received, it

could be quantified for the case of interchanging between two gray surfaces where the

size of one could be neglected against the other (see Eq. 4.3)

qr = S · ε · σ · (T 4
s − T 4

∞) (4.3)

Where:

� qr: heat flow by radiation, [W]

� S: contact section of the body, [m2]

� ε: emissivity of the material, dimensionless

� σ: Stefan-Boltzmann coefficient, 5.67 · 10−8W/(m2 ·K4)

� Ts: temperature of the solid surface, [K]

� T∞: temperature of the global fluid, [K]

41

In this case, the heat is transmitted from the surface to the ambient. The emis-

sivity (0 ≤ ε ≤ 1) describes the non linearity of the real bodies in comparison with

black bodies, which is able to radiate the maximum energy as possible.

4.4 Energy conservation

In the heat transmissions process, it is necessary to recognize the heat transfer mecha-

nisms and to determine if the process is stable or not. When the heat flow is constant

with time, the temperature of each point does not change and the conditions of sta-

tionary state prevail. The heat flow in every point of the system must be equal to

the input flow heat and any change of the internal energy cannot take place.

The heat flow is transitory, instable or not stationary in a system, when the

temperatures in several points change with time. A variation on the temperature

means a change in the internal energy. Therefore, a portion of the energy is stored and

the other constitutes an instable heat flow. These problems becomes more complex

than in stationary conditions.

The knowledge of heat transfer and thermodynamic are joined in order to solve

thermal problems. The method used consists of selecting a control volume, in which

matter and energy exchange can be given. The expression of the energy conservation

applied to a control volume must be fulfilled for every instant, i.e, a balance in the

energy speeds has to exist (see Eq. 4.4) [11].

dEinput

dt︸ ︷︷ ︸
Ėinput

− dEoutput

dt︸ ︷︷ ︸
Ėoutput

+
dEgen

dt︸ ︷︷ ︸
Ėgen

=
dEstored

dt︸ ︷︷ ︸
Ėstored

(4.4)

Ėinput − Ėoutput + Ėgen = ∆Ėstored (4.5)

Eq.4.5 can be applied to any instant of time and also to an interval of time.

Considering an interval of time, the amount of mechanical and thermal energy that

enters in the control volume or the amount of thermal energy generated insight,

increase the energy stored.

42

The terms Ėinput and Ėoutput are surface phenomenons, due to they are associated

to procedures that, exclusively, take place in surface control and their speeds are

proportional to the surface area. Conduction, convection and radiation are examples

of theses surface procedures.

The generation term comes from the conversion of electric to thermal energy

following the principle of Joule.

43

44

Chapter 5

Temperature calculation method

The thermal study applied is based on the method presented in the standard IEEE

Std 738-2012 [4]. In [4], the main studies of calculating heat transfer and heat balance

for bare overhead transmission line conductors are presented. Below, some of them

are enumerated:

� House and Tuttle [12]

� House and Tuttle, as modified by East Central Area Reliability (ECAR) [2]

� Mussen, G. A. [28]

� Pennsylvania-New Jersey-Maryland Interconnection [13] [3]

� Schurig and Frick [31]

� Davis [14]: the heat balance expression is presented as a bi-quadratic equation

which is able to calculate the temperature of the conductor directly.

� Morgan [25]

� Black, Bush, Rehberg, and Byrd [7] [9] [8]: the radiation part is linearized

and the heat balance expression is calculated by means of linear differential

equations.

45

� Foss, Lin, and Fernandez [15]: similar to previous method but allows a faster

calculation, reducing the iterations with a more precise linearized radiation part.

� CIGRE Technical Brochure 207 [6]

The thermal calculation method implemented is the House and Tuttle [12] with

some variations from ECAR [2]. In this study, it is considered that at high density

currents the conductors could not be isothermal, therefore the variations of radial

temperature must be computed. The equations below allow to calculate the variations

of wire temperature knowing the current. Also, they could provide the thermal current

rating that leads to the maximum allowable conductor temperature.

For an accurate calculation method and with the purpose to reduce the error

incurred as far as possible, it is important to know the factors that have influence

in the final result. For the thermal problem, the variables that affect the conductor

temperature are the following:

� Conductor material characteristics, being the electrical conductivity the most

important property.

� Diameter of the conductor.

� Conductor surface properties, i.e, emissivity and absorptivity.

� Climatological states, such as wind speed and direction, solar heating and air

temperature.

� Electrical current flowing through the conductor.

In this thesis, the case under study is a dynamic problem where the input current

is changing over the time. Regarding climatological inputs, wind speed and heat

solar gain are taken into account, considering both constants along the simulation.

Nevertheless, House and Tuttle as modified by ECAR is able to calculated other type

of cases as:

� Steady-State Case: the current, conductor temperature and the climatological

conditions are considered constant in all the simulation

46

� Transient Case: the current suffers an step change and the weather variables

remain constant. The temperature describes a wave similar to an exponential

curve that starts with the variation of the current.

� Dynamic Case: the electrical current and the weather conditions are varying

over the time. The temperature of the conductor is calculated for each period

of time in which the current and the weather conditions hold constant.

5.1 Temperature calculations varying weather and

current

The temperature of the conductor is a variable dependent on electrical current and

climatological conditions, where the temperature is calculated for each period of time.

The simulations have an interval of time equal to 1 second in which the weather

variables (air temperature, wind speed, direction ...) and current remain constant.

The increase or decrease in conductor temperature is calculated for each interval

of time by means of the heat balance expression which is presented in Eq.5.1 and

Eq.5.2. The temperature of the previous period is updated with the temperature

change.

qc + qr +m · Cp ·
dTavg
dt

= qs + I2 ·R(Tavg)︸ ︷︷ ︸
Plosses

(5.1)

dTavg
dt

=
1

m · Cp

[Plosses + qs − qc − qr] (5.2)

Where:

� qc: heat convective loss, [W/m]

� qr: radiated heat loss, [W/m]

� qs: solar heat gain, [W/m]

� m: mass of the conductor, [kg]

47

� Cp: specific heat per length [J/(Kg ·◦ C)]

5.2 Convective heat loss

The convective procedure can be split into two groups, natural and forced convection.

Natural convection happens when air surrounding the conductor is heated and this

mass of air is moved gradually. Forced convection appears when a flow of air is

falling upon the conductor and the mass of air is moved. Natural convection is

equivalent to forced convection for speeds lower than 0.2 m/s. The equation presented

by McAdams [23] for the calculation of convective heat loss for cylinders will be

implemented in this mathematical model.

5.2.1 Forced convection

In order to distinguish laminar and turbulent flow, House and Tuttle [12] uses two

expressions for forced convection. The changing of states is carried out at a Reynolds

number equals to 1000 (value calculated as convenience following conductor ampaci-

ties). This made that the transition between both states was a discontinuity, instead

of a curve as in reality. To avoid the discontinuity, Eq. 5.3 and Eq. 5.4 are used.

The crosspoint of both curves indicates the transition from laminar to turbulent air

flow. Eq. 5.3 is used for calculating the forced convection at low wind speed and Eq.

5.4 is employed for forced convection at high wind speed. What is recommended in

standard [4] is to obtain the convective heat loss by using both equations, and getting

the highest value. The upper limit validity of this equations is at Reynolds number

equal to 50000.

qc1 = Kangle

[
1.01 + 1.35 ·NRe

0.52
]
· kf · (Ts − T∞), [W/m] (5.3)

qc2 = Kangle · 0.754 ·NRe
0.6 · kf · (Ts − T∞), [W/m] (5.4)

Where:

48

� kf : coefficient of thermal conductivity of air.

� Kangle: wind direction factor. Its expression is shown in Eq. 5.5, where φ is the

angle between the conductor and the wind direction

Kangle = 1.194− cos(φ) + 0.194 · cos(2φ) + 0.368 · sin(2φ) (5.5)

The expression to calculate the dimensionless Reynolds number is shown in Eq. 5.6.

NRe =
D0 · ρf · Vw

µf

(5.6)

Where:

� D0: conductor diameter, [m]

� ρf : air density, [kg/m3]

� Vw: air speed, [m/s]

� µf : dynamic viscosity of the air, [Kg/(m · s)]

The range of application of forced convection equations is shown in Tab. 5.1. This

valid range is widely higher than the design range of operation.

Table 5.1: Valid range for forced convection equations [1]
Variable SI units

Diameter 0.01-150 mm
Air speed 0-18.9 m/s

Air temperature 15.6-260 ◦C
Wire temperature 21-1004 ◦C

Air pressure 40.5-405 kPa

5.2.2 Natural convection

As was commented previously, the natural convection is performed at wind speeds

close to zero. In Eq. 5.7 the expression of the natural convection heat loss is presented.

qcn = 3.645 · ρf 0.5 ·D0
0.75 · (Ts − T∞)1.25, [W/m] (5.7)

49

For low wind speeds, Mc Adams [23] recommends obtaining natural and forced

convection heat loss, selecting the most restrictive result. This approach is the one

implemented in Matlab.

5.3 Radiated heat loss

The thermal losses goes from high temperatures to low temperatures, in this case,

the energy is transferred from the conductor to the surrounding air. Eq. 5.8 and Eq.

4.3 represent both the same. For the thermal study of overhead conductors, Eq. 5.8

is used.

qr = 17.8 ·D0 · ε

[(
Ts + 273

100

)4

−
(
T∞ + 273

100

)4
]
, [W/m] (5.8)

5.4 Solar heat gain

The solar heat received for the conductor is calculated with Eq. 5.9. The heat

provided to the conductor leads to an increase on the temperature. The amount

of heat absorbed depend on the properties of the material. For instance, bright

conductors reflect a high amounts of energy, in contrast with black bodies which

absorb big amounts of energy. The solar heat depends on the solar absorptivity (α),

the total solar and sky radiated heat intensity corrected for elevation (Qse), effective

angle of incidence of the sun’s rays (θ) and the projected area of conductor (A′) in

m2/m, (see Eq. 5.9).

qs = α ·Qse · sin(θ) · A′, [W/m] (5.9)

The effective incidence angle of the sun’s rays is introduced in Eq. 5.10.

θ = arccos [cos(Hc) · cos(Zc − Zl)] (5.10)

Where:

50

� Hc: altitude of sun (0 to 90), [deg]

� Zc: azimuth of sun, [deg]

� Zl: azimuth of line, [deg]

5.5 Conductor heat capacity

Conductor heat capacitance results from the product of mass and specific heat per

length. In case that several types of material conform the conductor, the total con-

ductor heat capacitance is obtained as sum of the core and the outer strands as it is

shown in Eq. 5.11.

m · Cp =
∑

mi · Cpi (5.11)

The values of the specific heat for typical conductors wires are introduced in Tab.

5.2

Table 5.2: Specific heat of typical conductor metal wire

Material Cp[J/(kg ·◦ C)]

Aluminum 955
Copper 423
Steel 476

Aluminum-clad steel* 534*

* The heat of aluminum-clad steel depends on the ratio between both. This is a

typical value with a conductivity of 20.3 % I.A.C.S

5.6 Air characteristics, solar angle and solar heat

flux

For Natural and Forced heat convection loss, the coefficient of thermal conductiv-

ity of air (kf), air density (ρf) and air viscosity (µf) are calculated at the average

51

temperature of the boundary layer (Tfilm), see Eq. 5.12.

Tfilm =
Ts + T∞

2
(5.12)

5.6.1 Dynamic viscosity of air

Dynamic viscosity is a measure to compute the internal resistance between the molecules

of a fluid. It relates the stress or local tension in a fluid in motion with the speed of

deformation of the fluid particles [22]. For the calculation of dynamic viscosity of air,

Eq. 5.13 is used.

µf =
1.458 · 10−6 · (Tfilm + 273)1.5

Tfilm + 383.4
, [kg/(m · s)] or [(N · s)/m2] (5.13)

5.6.2 Air density

The air density depends on the elevation of conductor above sea level (He) and air

temperature of the external layer of the conductor (Tfilm). Eq. 5.14 represents the

mathematical expression of the air density.

ρf =
1.293− 1.525 · 10−4 ·He + 6.379 · 10−9 ·He

2

1 + 0.00367 · Tfilm
, [kg/m3] (5.14)

5.6.3 Thermal conductivity of air

The thermal conductivity is a physical property of the materials which measures

the capacity of heat conduction, i.e, the capacity of transferring kinetic energy from

theirs molecules to others adjacent or to substances in contact [20]. The thermal

conductivity of air is calculated taken into account Tfilm (see Eq. 5.15)

kf = 2.424 · 10−2 + 7.477 · 10−5 · Tfilm − 4.407 · 10−9 · Tfilm2, [W/(m ·◦ C)] (5.15)

5.6.4 Altitude of the sun

The expression of the solar altitude of the sun (Hc) in degrees or radians is presented

in Eq. 5.16. The solar altitude is the angle between the sun’s rays and the Earth’s

52

horizon (see Fig. 5-2). The Earth is tilted 23.45 ◦ in relation of the solar system

plane. The value of Hc, changes depending on the time of the day, time of the year

and latitude of the location. Those places that are close to the equator have higher

solar altitude than regions near to the poles [27].

For obtaining Hc, the latitude of the place, hour angle (ω) and solar declination

(δ) must be calculated.

Hc = arcsin [cos(Lat) · cos(δ) · cos(ω) + sin(Lat) · sin(δ)] (5.16)

The hour angle (ω) is the angle considering 0 degrees at noon time and taking 15

degrees for each hour. For instance, 1PM is + 15◦C (see Fig. 5-1).

Midnight Noon
15º

13:00 PM

15º

11:00 PM

180 º = 12 hours

Figure 5-1: Representation of the hour angle (ω) during the day

The solar declination (δ) is the angle between the line Sun-Earth and the plane

of Earth’s equator (see Fig. 5-2). The expression of solar declination in degrees is

shown in Eq. 5.17. This equation is valid, either for northern hemisphere (Lat higher

than 0) and for southern latitudes (Lat lower than 0).

δ = 23.46 · sin
[

284 +N

365
· 360

]
(5.17)

53

Where N is the day of the year, for instance, January 8 is equal to 8. The solstices

are on 172 and 355, days in which the sun reaches the maximum north declination

(+23.45◦) or south (-23.45 ◦) with respect to equator.

5.6.5 Azimuth of the sun

The azimuth of the sun (Zc) is the angle measured between the cardinal North of the

Earth and the projection on the horizon of the celestial body which is being observed

(see Fig. 5-2). The angle is always measured in a clockwise direction. In Eq. 5.18 is

shown the expression of the azimuth in degrees.

North Pole

Z

Zenith

Nadir

Sun at Local Noon

Equator

Horizon

Location

Latitude

c

Hc

δ

Figure 5-2: Representation of the main parameters for calculating solar heat gain

Zc = C + arctan(χ) (5.18)

The solar azimuth variable is presented in Eq. 5.19.

χ =
sin(ω)

sin(Lat) · cos(ω)− cos(Lat) · tan(δ)
(5.19)

54

Where C is the solar azimuth constant which is dependent on the hour angle and

the solar azimuth variable. In the table 5.3, the solar azimuth constant values are

presented.

Table 5.3: Values of solar azimuth constant (C) in degrees, taken into account hour
angle (ω) and solar azimuth variable (χ)

ω in degrees C if χ ≥ 0 degrees C if χ < 0 degrees

-180 ≤ ω < 0 0 180
0 ≤ ω < 180 180 360

5.6.6 Total heat flux density

The expression of the total heat flux density (Qs) is introduced in Eq. 5.20. In

this expression the solar altitude in degrees (Hc) and coefficients of the cleanliness

atmosphere are used.

Qs = A+B ·Hc + C ·Hc
2 +D ·Hc

3 + E ·Hc
4 + F ·Hc

5 +G ·Hc
6, [W/m2](5.20)

In table 5.4 the values of the polynomial coefficients for a clear and an industrial

atmosphere as function of Hc are gathered.

5.6.7 Elevation correction factor

The total solar and sky radiated heat intensity corrected for elevation (Qse) is calcu-

lated with Eq. 5.21.

Qse = Ksolar ·Qs, [W/m
2] (5.21)

Where the solar altitude correction factor (Ksolar) is obtained following Eq. 5.22

Ksolar = A+B ·He + C ·He
2 (5.22)

The value of the coefficients used in Eq. 5.22 are shown in Tab. 5.5

55

Table 5.4: Value of coefficients for the total heat flux depending on the state of the
atmosphere

SI

Clear atmosphere
A –42.2391
B 63.8044
C –1.9220
D 3.46921Ö10–2

E –3.61118Ö10 –4

F 1.94318Ö10–6

G –4.07608Ö10–9

Industrial atmosphere
A 53.1821
B 14.211
C 6.6138Ö10–1

D –3.1658Ö10–2

E 5.4654Ö10–4

F –4.3446Ö10–6

G 1.3236Ö10–8

Table 5.5: Value of coefficients of Eq. 5.22

SI

A 1
B 1.148x10–4

C –1.108x10–8

56

5.7 Emissivity and absorptivity of the conductor

Emissivity (ε) and absorptivity (α) are variables interrelated, both increasing with

time, atmospheric pollution and line operating voltage. The researches [18] and [32]

define ε and α in the range of 0.2 and 0.3 for new conductors. Depending on the line

voltage and the pollution of the air these factor could increase, reaching 0.7 over the

time. Studies from EPRI [4], conclude that values of young conductors are in the range

of 0.2 and 0.4, in some occasions this band could grow up to 0.5 and 0.9, depending

on the line voltage operation and the amount of particles in the atmosphere.

The selection of emissivity and absorptivity has different effect depending on the

operation conductor temperature.

� For temperatures lower than 75 ◦C, the value of α is relevant due to the impor-

tance of heat solar gain

� For temperatures higher than 150 ◦C, the ε has an important impact because

of the radiated heat loss.

� For the rest of temperatures range, the values used for ε and α does not have a

relevant impact on the temperatures calculation.

57

58

Chapter 6

Thermal calculation tool:

RailThermal app

RailThermal app is a thermal simulator, developed in the present thesis that uses

Matlab as a calculation and representation engine. This tool has been designed to

study the temperature of railway electrified systems, allowing to size the catenary

conductors. For the input data, RailThermal app can import data from any railway

system and configuration, simulated with the software RailNeos 2.0.

The amount of raw data that will be managed is high, therefore it is necessary

methods to analyze this data through an easy way. It results very difficult to study

and reach conclusions from rows and columns of data. Thus, a visual representation

is important due to it works as a quick means of communication. For that reason

three methods of representation are implemented, allowing users to analyze and query

data interactively.

This chapter has as purpose to serve as guide for the new user, describing the

functionalities of the program and the steps to follow for a correct importation and

visualization of the data. In the chapter 7, we will go in deep in the code tools

employed for its development.

59

6.1 Application

A standalone application has been created, with the purpose that anyone who does

not have a Matlab’s license can use RailThermal app. In Fig. 6-1 and Fig. 6-2, the

cover and icon of the application are presented.

Figure 6-1: Cover of RailThermal app

Figure 6-2: Icon of RailThermal app

60

6.2 User interface

The user interface consists of six blocks where the initial conditions of the simulation

must be specified. In Fig. 6-3, it is presented the interface window. Below, the parts

of RailThermal app interface will be detailed:

� Initial Temperature: the initial temperature of the conductor and the air

must be specified in order to take them as reference value for the process of

iterative calculations.

� Location Conditions: the elevation of the location and speed of the wind are

necessary to carried out the simulation.

� Inputs for Solar Heat Gain Calculation: the date of the simulation and

the latitude of the location are important factors that affect to the solar heat

gain. With the purpose to search for the latitude of the place under study, a

button linked to a web page (https://www.latlong.net/) is set. Also, a check

box is implemented for enabling or disabling calculations of solar heat gain.

� Type of conductor: this block allows to select the material and section of the

conductor through drop down lists.

� Sectioning of the lines: this parameter define the length of sections, i.e, the

parts in which the line will be split. This is an configurable value that can be

adapted depending on the characteristics of the network studied. Furthermore,

it is a variable that changes directly the time of simulation.

� Select range of temperatures to plot: in this box, it is possible to select

those interval of temperatures that will be plotted.

� State of the simulation: this field shows in which point is the simulation.

� Run button: button to start the simulation.

� Exit button: button to close the interface.

61

Figure 6-3: User interface of RailThermal app

6.3 Import database

The operation of RailThermal app consists of uploading the file res.db exported by

the RailNeos 2.0. This file is a database where characteristics of the systems and the

results of the power flow are gathered.

To start the simulation, the run button must be clicked. The file browser window

opens and the case study is selected. It is advisable to have the database file in a

folder with the name of the simulation, since the name of the folder will be used for

the thermal map header.

6.4 Exported graphics

Once the simulation has finished, a message indicating that the simulation has been

completed successfully will appear. RailThermal app will show different graphs to

analyze the behavior of the network. Each graph studies the temperature of the

system from a different point of view.

62

6.4.1 Thermal Map

In this graph, the grid under study will be drawn, indicating all nodes and lines of

the system. The sections will be represented as points along the lines. These points

will be distinguished by colors. Each of these colors refers to a temperature range.

In the legend, the limit values of each band are shown. Nodes with temperatures

greater than 100 ◦C appear highlighted with a radius higher than the rest (see Fig.

6-4). Using, data cursor tool, it is possible to select the points that compose the grid.

In Fig. 6-5, it is shown the messages when a node is chosen. The index, maximum

temperature reached along the simulation and minutes with temperature higher than

120 ◦C are shown.

Thermal Map of Lieja BAFO 2018 degSS07

 STN
 PFR

 PDM

 VBN

 PGL

 GDG

 EDG

 ABL

 CHA

 PDA

 LON
 OPE

 PSL CAD

 PDD MAR
 PAT

 RAC

 COR

 ALL
 GAB

 SS03

 SS04

 SS05

 SS06

 SS07

 SS08

 SS09

 SS10

 SS11

 SCDM
 CD2 PD2

Tmax 100 ºC
90 ºC Tmax < 100 ºC

80 ºC Tmax < 90 ºC
60 ºC Tmax < 80 ºC

40 ºC Tmax < 60 ºC
20 ºC Tmax < 40 ºC

Tmax < 20 ºC

Figure 6-4: Thermal Map of the Lieja’s project

6.4.2 Average temperature of the lines

This graph is focused on relating the temperature of the lines with respect the distance

in km (see Fig. 6-6). The temperature is shown against the kilometric point of

63

Thermal Map of Lieja BAFO 2018 degSS07

 GDG

 EDG

 ABL

 CHA

 PDA

 LON

 OPE

 PSL CAD

 PDD
 MAR

 PAT

 RAC

 COR

 ALL

 GAB

 SS07

 SS08

 SS09

 SS10

 SS11

 SCDM
 CD2 PD2

Tmax 100 ºC
90 ºC Tmax < 100 ºC

80 ºC Tmax < 90 ºC
60 ºC Tmax < 80 ºC

40 ºC Tmax < 60 ºC
20 ºC Tmax < 40 ºC

Tmax < 20 ºC
Node: 115
Tmax (ºC): 77.5246
Minutes with T > 120 ºC: 0

Figure 6-5: Thermal Map of the Lieja’s project, using data cursor tool

the line, allowing to visualize which points are more affected by high temperatures.

This plot is automatically generated. In the title, the index of the lines, source and

destination node are indicated.

6.4.3 Evolution of the temperature over time

In this type of representation, temperature and time are related. As can be seen in

Fig. 6-7, the evolution of temperature in a line is plotted. Commonly, the wave of

this graph follows a first order system, going from the initial temperature supposed,

to the final temperature reached in steady state. The header of the graph indicates

which line and which kilometric point is being shown. As it happened in the previous

type of graph, the evolution of temperature respect time will only be shown, for those

ranges selected in the interface.

64

8.52 8.54 8.56 8.58 8.6 8.62 8.64 8.66 8.68 8.7 8.72
Distance (km)

82

84

86

88

90

92

94

96

T
em

pe
ra

tu
re

 (
ºC

)

Temperature of the catenary (L24), from PAT to SS10

Figure 6-6: Average temperature of line 24 during the simulation

1000 2000 3000 4000 5000 6000 7000
Time (s)

20

40

60

80

100

120

T
em

pe
ra

tu
re

 (
ºC

)

Temperature of the catenary (L24), at 8.736 km

Figure 6-7: Evolution of temperature of line 24 along the simulation

65

66

Chapter 7

Structure and code of the

RailThermal app

RailThermal app is a program developed with Matlab which consists of a combination

of functions that as result, it performs an iterative calculation where an initial temper-

ature and climatological conditions are supposed. In order to carry out this method,

all the lines have been split in sections. The length of each section is an adaptable

figure that can be changed depending on the amount of data that must be managed.

The program calculates the temperature of each section throughout the simulation.

For each iteration and section, the variation of temperature is obtained and added

to the temperature of the previous instant. Nowadays, the simulator study the tem-

perature of the catenary as a equivalent resistance between feeder and catenary. In

future projects a more detailed grid will be define in RailNeos 2.0. The connection

between feeder and catenary will be specified. Furthermore, both directions of the

catenary will be taken into account.

7.1 Design of RailThermal app

The interface has been designed by means of Matlab’s App Designer. This tool

allows to set the distribution of the different blocks that compose the interface and

their elements, as edit fields, drop down (allowing to select a option for a list), buttons

67

or check box. Furthermore, the graphic properties of the components including color,

size, position, typography or images linked to a button are configurable.

The functions in charge of managing the data and carry out the calculation has

been programed with Matlab by means of scripts. The flowchart of the code im-

plemented is presented in Fig. 7-1. Heeding this figure, it can be seen that Ther-

mal study.m is the main file of the simulation where the calls for the functions are

defined. In the following sections, a breakdown of the files that composed the code is

carried out.

7.2 Main script: Thermal study.m

This script is split into three parts. In the first one, the connection to the SQLite

database file is defined, by means of the function sqlite. A sqlite object is created,

allowing to work directly with the database res.db. In the second part, the calls for

the primaries functions are established. Finally, the third part is used for plotting

the graphs.

7.3 Function: contact wire.m

In order to cover all the types of catenaries, a database (Contact wire.db) with differ-

ent types of wires has been set up. In this database, information of the main electrical

and mechanical characteristics of the wires is recorded. The database is organized

according to the type of conductor and its section. The range of section moves from

80 to 150 mm2. Once, the database has been read, a structure called Conduct Types

is created, where the fields are the types of the cateneries (see Fig. 7-2).

Function contact wire.m has as goal to create the connection to Contact wire.db

database, read and filter the data necessary for the thermal calculations. In this

study, section, specific mass and specific heat of the conductor metal wire are the

parameters needed.

68

T
h
e
r
m
a
l
_
s
t
u
d
y
.
m

c
o
n
t
a
c
t
_
w
i
r
e
.
m

I
n
i
t
D
a
t
a
.
m

I
n
p
u
t
D
a
t
a
.
m

K
_
a
n
g
l
e
.
m

I
n
p
u
t
R
e
s
u
l
t
s
.
m

T
_
m
a
x
.
m

C
o
n
v
e
c
t
_
H
e
a
t
_
L
o
s
s
.
m

C
o
n
t
a
c
t
_
w
i
r
e
.
d
b

r
e
s
.
d
b

C
o
n
d
u
c
t
_
T
y
p
e
s

C
o
n
d
u
c
t
_
T
y
p
e
s

H
e
,

T
s
0
,

T
i
n
f
,

V
w
,

C
p
,

D
o
,

S
p
c
_
m
,

e
m
i
,

a
b
s
o
r
p

O
u
t
L
i
n
e
,

O
u
t
S
e
c
t
,

n
l
i
n
e
s
,

n
S
t
e
p
s
,

P
a
t
h
s
,

L
a
t
,

S
t
a
r
t
_
T
i
m
e
,

d
a
y
_
y
e
a
r
,

O
u
t
N
o
d
e
,

n
n
o
d
e
s
,

T
c
a
t
_
m
a
x

c
o
n
n
R
e
s

R
a
d
i
a
t
e
d
_
H
e
a
t
_
L
o
s
s
.
m

S
o
l
a
r
_
H
e
a
t
_
G
a
i
n
.
m

c
o
n
n
R
e
s

K
a
n
g
l
e
,

C
o
o
r
d
_
n
o
d
e
s

O
u
t
S
e
c
t
,

O
u
t
L
i
n
e
,

S
p
c
_
m
,

D
o
,

C
p
,

T
s
0
,

T
i
n
f
,

n
S
t
e
p
s
,

K
a
n
g
l
e
,

V
w
,

e
m
i
,

n
l
i
n
e
s
,

L
a
t
,

S
t
a
r
t
_
T
i
m
e
,

d
a
y
_
y
e
a
r
,

H
e
,

a
b
s
o
r
p

O
u
t
S
e
c
t

q
c

K
a
n
g
l
e
,

T
s
,

T
i
n
f
,

D
o
,

V
w
,

H
e

q
r

T
s
,

T
i
n
f
,

D
o
,

e
m
i

q
s

n
S
t
e
p
s
,

L
a
t
,

S
t
a
r
t
_
T
i
m
e
,

d
a
y
_
y
e
a
r
,
H
e
,

a
b
s
o
r
p
,

D
o
,

n
l
i
n
e
s
,

n
S
e
c
t

O
u
t
S
e
c
t
,

O
u
t
L
i
n
e
,

n
l
i
n
e
s
,

T
c
a
t
_
m
a
x

F
l
o
w
c
h
a
r
t

o
f

t
h
e

T
h
e
r
m
a
l

S
t
u
d
y

P
r
o
g
r
a
m

T
c
a
t
_
m
a
x

Figure 7-1: Flowchart of the functions implemented

69

Conduct_types

CuAg0.1

CuMg0.5

Cu-ETP

CuMg0.2

CuSn0.1

CuSn0.2

Figure 7-2: Conduct Types structure and its fields

7.4 Function: InitData.m

This function is used to initialize the main data of the simulation. As previously

mentioned, the calculation method used is based on an iterative process in which it

is necessary to take a starting temperature. It is in this function, where the initial

values of the temperature of the catenary (Ts0) and the ambient temperature (Tinf)

are established. Both figures are in Celsius degrees. It is important to note that for

the thermal calculation the Ts0 must be higher than Tinf. Otherwise, in the first

iteration, complex numbers would be obtained.

For the calculation of the heat convection losses, the values of altitude with respect

to sea level of the location (He), in meters, and the wind speed (Vw) estimated during

the simulation, in meters per second, are introduced.

Then, the characteristics of the conductor are specified, as well as, Diameter (Do),

in meters, specific mass (Sp m), in kg/m3, and specific heat of the conductor (Cp),

in J/(kg◦C).

Also, the figures of emissivity for the calculation of the radiated heat loss and

absorptivity for the solar heat gain are established.

70

7.5 Function: InputData.m

Once the input data is already defined and the connection with the results database

is established, it is proceed to the accomplishment of reading and data conditioning

tasks for their later use in the calculation functions. Below the parts that make up

this function are detailed.

7.5.1 Import data of the nodes

The information related to the nodes will be organized as a structure where their main

fields are shown in Fig. 7-3. The field Pos XY gives information of the coordinates

of the nodes. It is important to know that all the nodes belongs to the first quadrant.

This is an relevant factor that affects the location of the sectioning points. When

the different forms of graphic representation are discussed, this topic will be detailed.

The field Name collects the denomination of the nodes established in RailNeos.

The data of the nodes will be used for graphic representation. On one hand, the

information about the location of the nodes will be implemented in the creation of a

thermal map. On the other hand, the names will be used as labels of the nodes in

the thermal map and for the titles of the graphs of mean temperature and evolution

of temperature with respect to time.

OutNode
Name

Pos_XY

Figure 7-3: OutNode structure and its fields

7.5.2 Import data of the paths

Path is understood as a set of lines that make up a route. A structure called Path is

created. Each path will have a field (e.g: P1, P2...). Within each of these fields, a

matrix will be specified, which follows the structure proposed in Tab. 7.1. Where the

first column indicates the lines belonging to that path and the second indicates the

71

direction of the line. (0) points out that the line is traversed in the forward direction,

from the source to destination node, and (1) in the reverse direction, from destination

to source node.

Table 7.1: Extract data from the simulation Lieja BAFO.m

Line Direction

2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

7.5.3 Import data of the lines

In this part, what is done, is to extract the results of the lines from the database.

This data is stored in a structure, called OutLine, where the main fields are shown

in Fig. 7-4. Each of these fields are organized by lines, with the following names, L1,

L2 ...

OutLine

data

LengthReal

LengthGraph

SrcDst

Sect

Colors

Real_PK

PathSlctd

Figure 7-4: OutLine structure and its fields

Within the data field and its respective line name (e.g: OutLine.data.L1), there is

72

information of the instant of the simulation, in seconds, of the power losses of line, in

kW, and the length of the line in km. Table 7.2 shows the structure of this variable.

Heeding Tab. 7.2, it is observed that the instant 28 has two rows. This occurs when

a train is circulating along the line at that moment. When this happens, RailNeos

creates as many dynamic lines as trains plus one is circulating along the line. The

length of these dynamic lines will vary as the vehicle moves. In the field LengthReal,

Table 7.2: Extract data from the simulation demo compleja.m

Instant (s) Plosses (kW) Lenght (km)

26 6.929 4.378
27 6.929 4.378
28 0.005 0.264
28 6.503 4.114

the data of total length of the lines is stored. For the graphic representation of the

thermal map, it is necessary to know the source and destination nodes. For that

reason, SrcDst field has been created, where this data is collected.

For how the calculation model is designed, the lines will be divided into sections,

where the length of each of them will be an input parameter of the application.

Depending on the length of selected sectioning, the amount of data that must be

treated will be greater or lower, having a direct impact on the simulation time. In

the case study section, the impact of this variable on the final temperature results

will be analyzed. The kilometric points of the sections will be collected in the Sect

field, taking as zero, the origin node of the line. The sectioning length is rounded

allowing that all the sections of the same line will be equal.

In order to make the graphical representation of the data, a thermal map will

be plotted, where it is necessary to know the location of the nodes and the distance

between them. Therefore, the distance is calculated from their coordinates. These

lengths are saved in the LengthGraph field.

Each of the lines will be assigned to a color depending on the path. The first six

paths will have a generic color and those lines that are not linked to any path or that

are linked to a seventh path or higher, will be assigned to a random color. There

73

Map of the paths

 FGL

 SCVJ

 SLCB

 SLPR

 LPR MLG

 SPZR

 ALR
 SECH
 SBBD

 OVD

 SDR

 SBIO

 SEAS

 VIT

 SPNA

 LCY SSTN

 SLTN

 LHR SLGW

Figure 7-5: Graphical representation of the paths of a simulation, distinguishing the
routes by colors

are cases in which a line can belong to several paths, for those situations, only one

color is selected. The paths linked to each of the lines are collected in the PathSlctd

field. According to the selected path, a color is set up, being gathered in Color field.

The colors of the lines are recorded as svg format. In Fig. 7-5, a map of the paths is

plotted.

Finally, in the field Real PK, the information of the real kilometric point of the

path is stored, which will be used in the graphical representations. If one of the lines

does not belong to any route, the initial kilometric point is taken as 0.

7.5.4 Store data of the sections

Once the data of the lines, nodes and paths have been imported and stored in their

respective variables, what is going to be done is a reorganization of this data. A new

structure is created, allowing to organize the lines by sections. This new structure

is called OutSect, where the data of the lines are saved in different fields. In Tab.

7.3, the composition of the matrix for a specific line is shown. As can be seen, the

74

first column, refers to the instant of the simulation in seconds. The second column

shows the final kilometric point of the section. And the third column shows the power

losses of the catenary in kW. When the convective heat loss, radiation heat loss and

solar heat gain are obtained, these will be added to the matrix as new columns. In

the section where the InputResults.m function is explained, the matrix with all the

parameters will be shown.

Table 7.3: OutSect matrix of a specific line with the initial data

Instant (s) Sect (km) PLosses (kW)

8 0.0965 1.8677
8 0.1930 1.8677
9 0.0965 1.2755
9 0.1930 1.2755
10 0.0965 0.6070
10 0.1930 0.6070

Method of calculating the losses by sections

As it has been seen previously, in the database exported by RailNeos, the values of

losses in the catenary are related to a length of the line. That length could be the

total length of the line or a stretch of the it. From now on, a portion of the line will

be called segment. Below, the method proposed to associate the power losses to the

sections will be explained.

In order to understand the method of association between power losses and sec-

tions, the structure and nomenclature adopted by the lines must be known. The line

is divided into segments from the database point of view and into sections from the

RailThermal app. The database provides the value of the segments, in kilometers,

and their linked values of the power losses, in kW.

Heeding Fig. 7-6, it is possible to observe the representation of a line in a specific

instant. The segments are split into two parts. The first part is delimited by start

seg and end seg points. Here, the power losses per distance are constant, therefore

the losses in all sections are equal. The second part is related to the section in which

75

the train is allocated, being represented as a blue band. In this section, there will be

a power losses by distance different at both sides of the train.

Vehicle 1

Start seg 1 Start seg 2 Start seg 3End seg 1 End seg 2 End seg 3

Segment 1 Segment 2 Segment 3

Vehicle 2

Section

Figure 7-6: Structure and nomenclature of a line in order to arrange the power losses
by sections

In Fig. 7-7, the flow diagram for the calculation of losses per section is shown.

This method is a process, which goes through all the lines and all the instants, storing

the results into OutSect variable. In order to perform this method, it is necessary to

differentiate between lines with trains circulating and without trains. In case, there

are no trains, the losses per section will be the same for all of them. Note that in

Tab.7.3, sections have the same power losses, i.e, there is no train circulating through

the line. On the contrary if there is, at least, one train circulating, what will be done

is to go through all their segments calculating the losses per section. In each iteration,

the losses of all sections related to a segment will be calculated, including the section

in which the vehicle is located. For this portion, the losses at both side of the train

are obtained, taking into account that power losses per km are different. For the next

iteration the values of start seg, end seg and location of the next train are updated.

The segments are classified into three groups, first segment, intermediate segments

and final segment of the line. For the first segment, the program must distinguish if

there is a train in the first section or not. If there are more than one train, intermediate

segment will exist. In that case, four situations can happen (see Fig. 7-7):

1. There is only one train.

2. There are two trains in non-consecutive sections.

76

3. There are two trains in consecutive sections.

4. There are two or more trains in the same section.

Finally, the last segment make reference to the portion from the last train to the final

point of the line.

Considering these possible states, RailThermal app allows to increase the length

of the sections leading to a more agile process of data losses reorganization. The

impact of the sectioning length will be a factor analysed in the case study part.

7.5.5 Import start time of the simulation

The res.db provides data for the start time of the simulation. This factor is important

to analyze the impact of the solar heat gain at different hours. It is given in seconds

and it will be transformed into hour angle in Solar Heat Gain.m function. A start

time equals to zero means that the simulation started at 00:00:00 with an angle equal

to -180◦.

7.6 Function: K angle.m

As was commented previously, Kangle is the wind direction factor used to calculate

the forced convection. This factor depends on φ, which is the angle between the

conductor and wind direction. Heeding Fig. 7-8, it is clearly see that the highest

factor is obtained with an angle equal to 90 ◦ and the lowest value with 0 ◦. K angle.m

function stores data of wind direction factor for the range of 0 ◦ to 90 ◦.

7.7 Function: InputResults.m

Once, the data of the sections has been structured properly, the thermal calculations

will be carried out in InputResults.m. An initial temperature of the ambient and a

type of conductor are supposed. In order to obtain the catenary temperature per sec-

tion, convective heat loss, radiated heat loss and solar heat gain must be calculated for

77

Method of calculating the Power Losses by sections

Is a train
circulating?

NoYes

For 1 segmentst For intermediate segments For final segment

Is there
a train

in the first
section?

Yes No

Where are
the trains?

Two trains
in consecutive

sections

Two trains
in the same
section

Two trains in
non-consecutive

sections

One train

OutSect

nSect

nLine

nStepnLine: index of line
nStep: second of simulation
nSect: index of section for
 a line

Coefficients of the loops

Figure 7-7: Flowchart of the code to obtain the power losses by sections

78

0 10 20 30 40 50 60 70 80 90

 (º)

0.2

0.4

0.6

0.8

1

K
an

gl
e

 Evolution of K
angle

Figure 7-8: Variation of wind direction factor respect the angle between the conductor
and wind direction

each instant. As is shown in the flow diagram of the code (see Fig. 7-1), three inter-

nal functions are used to perform that, Convect Heat Loss.m, Radiated Heat Loss.m

and Solar Heat Gain.m. In these functions, the temperature of the conductor will

be updated for each second. The value of Kangle, temperature of air, diameter of

conductor, wind speed, elevation of the location, emissivity and absorptivity remain

constants along the simulation.

As a result of the internal functions, the values of heat losses by convection, losses

by radiation and gain by solar incidence in kW per meter, will be obtained. These

values are multiplied by the length of each section and introduced in the energy

balance equation to obtain the temperature variation for each moment. In Tab. 7.4,

the complete matrix of the OutSect variable for a line is presented. As can be seen,

the values of convective heat loss, radiated heat loss, solar heat gain and temperatures

of the sections have been added.

Table 7.4: OutSect matrix of a line with the thermal results

Instant (s) Sect (km) Plosses (kW) C. H. L (kW) R. H. L (kW) S. H. G (kW) Temp (◦C)

8 0.0965 1.8677 0.7589 0.0324 0.2239 26.0538
8 0.1930 1.8677 0.7589 0.0324 0.2239 26.0538
9 0.0965 1.2755 0.7551 0.0327 0.2239 26.0803
9 0.1930 1.2755 0.7551 0.0327 0.2239 26.0803
10 0.0965 0.6070 0.7685 0.0328 0.2239 26.0815
10 0.1930 0.6070 0.7685 0.0328 0.2239 25.0815

79

* C.H.L: convective heat loss, R.H.L: radiated heat loss, S.H.G: solar heat gain

7.7.1 Internal function: Convect Heat Loss.m

The first internal function is in charge of calculating the convective heat loss. The

distinction between natural or forced convection is made, being 0.2 m/s the break-

ing speed between both cases. For forced convection, the most unfavorable case is

adopted. In order to perform that, two considerations are set:

� The angle between line and wind direction is supposed zero for all the cases,

i.e, lowest value of Kangle.

� The convective heat loss is calculated by using, Eq.5.3 and Eq.5.4. The highest

value of both expression is selected.

Note that in natural convection, if the difference of temperatures is negative (see Eq.

5.7), qs will be a complex number. Thus, the temperature of the conductor must be

consider higher than the air temperature for the initial conditions.

7.7.2 Internal function: Radiated Heat Loss.m

For radiated heat loss the Eq. 5.8 is implemented. This term is dependent on the

emissivity, the diameter of the wire, temperature of the air and conductor temperature

of the previous instant.

7.7.3 Internal function: Solar Heat Gain.m

For this function, the latitude, start time, day of the simulation, elevation of the

location, absorptivity and diameter of the conductor are taken as input data (see Fig.

7-1).The equations for calculating solar heat gain are implemented. Since start time,

in seconds, and day of the simulation, it is proceed with the calculation of hour angle

(ω) and solar declination angle (δ).

A start time equal to 0 seconds indicates that the simulation begins at 00:00:00

(midnight) with an angle equal to -180◦. Therefore, 12 hours is equivalent to 43200

80

seconds and 180 degrees. Thus, for 240 seconds the hour angle will vary in 1 degree

(see Fig. 5-1). Following this criterion, the expression of ω is reached (see Eq, 7.1).

The variable n is used to account for the number of hours of the simulation. ω is

increased by 15 degrees for each hour of simulation.

ω =

(
tst
240
− 180 + n · 15

)
(7.1)

Where:

� tst: start time of the simulation.

� n: counter for the number of hours of the simulation.

Furthermore, the variables for calculating total heat flux density are also defined.

Commonly, a clear atmosphere is considered where the sun’s rays affect the temper-

ature increase to a greater extent.

For the calculation of effective incidence angle of the sun’s rays (see Eq. 5.10), it

is considered that the difference between Zc and Zl is 0 degrees, in order to study the

most unfavorable case.

Regarding the area of incidence, it is estimated that the projected area is the

result of the multiplication of the conductor diameter by the length of the line. In

this way, the largest possible area of incidence is used.

7.8 Function: T max.m

Once the thermal calculations are performed, the maximum temperatures of all sec-

tions along the simulation are split into temperature ranges:

� Tmax ≥ 100 ◦C

� 90 ◦C ≤ Tmax < 100 ◦C

� 80 ◦C ≤ Tmax < 90 ◦C

� 60 ◦C ≤ Tmax < 80 ◦C

81

� 40 ◦C ≤ Tmax < 60 ◦C

� 20 ◦C ≤ Tmax < 40 ◦C

� Tmax < 20 ◦C

T max.m function is in charge of this task. A structure called Tcat max is created,

its fields are presented in Fig. 7-9. Tcat max allows to distinguish the temperature

ranges in the creation of the thermal map. This kind of graph is a representation of

the paths, showing the maximum temperatures. What this graphic shows and how

it has been done will be discussed later

Tcat_max

SrcDst

Higher100

fr60to80

fr90to100

fr80to90

fr40to60

Lower20

fr20to40

Figure 7-9: Tcat max structure and its fields

The goal of this function is to look for the maximum temperature of all the points

that composed the paths and compute for how many minutes a temperature has

exceed 120 ◦C. This limit is established following Tab. 7.5, where the maximum

temperatures of the conductors are defined.

In the paths, there are two types of groups where the temperature is computed.

Firstly, the source and destination node of the lines. Its data is stored in the field

SrcDst, saving their maximum temperature and minutes with a temperature higher

than 120 ◦C. This field is structured according to the index of the nodes. Second

group is constituted by the sections. The data of the sections is found in the rest

of the fields (Higher100, fr90to100...). Here, the data is split by lines. Instant with

82

Table 7.5: Maximum temperature of the conductors in ◦C [34]

Material Up to 1 s Up to 30 min Permanent
(Shortcircuit
current)

(pantograph
idle)

(operation con-
ditions)

Cu-ETP 170 120 80
CuAg0.1 200 150 100
CuSn 170 130 100
CuMg0.2 170 130 100
CuMg0.5 200 150 100
ACSR/AACSR 160 - 80

maximum temperature, location of the section, maximum temperature, minutes with

temperature higher than 120 ◦ and the real kilometric point are defined in each line.

7.9 Graphic representation of the thermal calcu-

lation

With the thermal calculations and the maximum temperatures organized by ranges,

it is proceed to create the graphic representation. As was commented, three forms

for plotting the data have been implemented in RailThermal app:

� Thermal Map.

� Average temperature of lines.

� Evolution of the temperature over time.

Thermal Map is implemented as a grid graph of Matlab. This type of plot is

constituted by points and lines. In order to draw it, it necessary to define the source

and destination nodes of the lines and the XY coordinates of them. This data is

already store in the variables OutLine and OutNode. Firstly, the lines of the grid

will be created, defining the names of the nodes and the colors of the lines according

to their paths. Then, the lines will be split into sections. The sections of the lines

are also considered as points. Hence, it will be required to define the positions of

83

these new nodes. For locating the points of the sections, it is required to specified

the direction of the line. Therefore, a new function is created, called getAngle.m,

which is in charge of calculating the direction of the line, since the position of the

source and destination nodes of the line. A four quadrant study will be carried out,

where the expressions of each situations are presented in Fig. 7-10. Note that, all

XY coordinates of the points are considered positive.

The nodes of the grid will be related to quantitative values as maximum tempera-

ture of the simulation, number of minutes with a temperature higher than 120 ◦C, and

to qualitative characteristics as color, size and name. In order to show these features,

the data cursor tool of Matlab is used. A callback function is created, GraphCursor-

Callback.m. Each time a node is clicked, this function is called, locating the node and

displaying the index of the node, its maximum temperature and the minutes with

temperature higher than 120◦C (see Fig.6-5).

Two other types of graphs are also defined. The first one represents the average

temperature of the line respect to the distance. What is done is to calculate the

average temperature of each section throughout the simulation. In order to calculate

the mean value of temperatures, only values of the second half of the simulation are

taken into account. Obviating in this way, initial results of the simulation that are

far from the final values of permanent regime. Furthermore, a graph of temperature

evolution over the time is created. The header of this graph indicates the index of the

line and the kilometer plotted. Some check boxes have been designed in the user’s

interface, so only the graphs selected are going to be displayed.

84

(x1,y1)

(x₂,y₂)

φ

First quadrant

φ = atan ()y₂-y1
x₂-x1

(x1,y1)

(x₂,y₂)

φ

Second quadrant

φ = � + atan ()y₂-y1
x₂-x1

if x₂ ≥ x1 & y₂ ≥ y1 if x₂ < x1 & y₂ > y1 if x₂ < x1 & y₂ ≥ y1

φ = -� + atan ()y₂-y1
x₂-x1

(x1,y1)

(x₂,y₂)

φ

Fourth quadrant

φ = atan ()y₂-y1
x₂-x1

if x₂ > x1 & y₂ < y1

(x1,y1)

(x₂,y₂)

φ

Third quadrant

φ = � + atan ()y₂-y1
x₂-x1

if x₂ < x1 & y₂ < y1 if x₂ ≤ x1 & y₂ < y1

φ = atan ()y₂-y1
x₂-x1

x1 = X coordinate of the source node
y1 = Y coordinate of the source node
x₂ = X coordinate of the destination node
y₂ = Y coordinate of the destination node

Figure 7-10: Criterion used for calculating the direction angle, showing the possible
directions of the lines and the equations

85

86

Chapter 8

Analysis of the results provided by

RailThermal app

This chapter is divided into three parts. In the first one, the main parameters that

affect the variation of temperature will be studied. Their dependence on the inputs

parameters will be analyzed. Second part will be focused on studying the influence

of the sectioning length, both for error incurred and simulation time. Finally, in the

third part a case study will be developed, using RailThermal app.

8.1 Analysis of convective, radiated heat loss and

solar heat gain

In this section, the evolution of convective heat loss, radiated heat loss and solar heat

gain will be analyze. A series of graphs will be used to compare different case studies

and to draw conclusions.

8.1.1 Convective Heat Loss

The convective heat loss (qc) is a parameter that depends on Kangle, temperature

of conductor (Ts), temperature of air (T∞), diameter of conductor (Do), wind speed

(Vw) and elevation of the location (He). In order to study it, qc have been plotted

87

against Vw for different situations. For all graphs a Ts equal to 25 ◦C and T∞ equal

to 20 ◦C have been supposed.

In Fig.8-1, the evolution of qc has been plotted varying the nominal section of the

conductor. As can be seen, the graph can be split into two parts. On the left, qc

remains constant for each case. This part represents the natural convection where

Vw is considered null. For Vw higher than 0.2 m/s, the wave follows a growing curve.

This part refers to the forced convection. At the same time as Vw is increasing the

convective heat dissipated increases. With higher section, qc is greater. For this case,

it is supposed a Kangle=0.39 and He=100 m.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

V
w

 (m/s)

0.5

1

1.5

2

2.5

3

3.5

q c (
kW

/m
)

10-3 Evolution of the C. H. L. with V
w

 varying the section

Section = 80 mm2

Section = 100 mm2

Section = 107 mm2

Section = 120 mm2

Section = 150 mm2

Figure 8-1: Evolution of the qc with the wind speed and changing the section of the
conductor

Heeding Fig 8-2, it is observed that the elevation of the location over sea level alters

qc minimally. It can be said that for locations at sea level, the losses by convection

are slightly greater than in places with higher elevation. For plotting this graph, a

section equal to 80 mm2 has been used.

Fig. 8-3 shows the influence of variable Kangle on qc. This factor affects more than

conductor section and He. Remember that this parameter is related to the angle

between wind and line direction (φ). In Tab. 8.1, the relationships are gathered.

For values of Kangle close to 1, i.e, wind direction is perpendicular to line, the heat

removed by convection will be higher. This study has been carried out using He equal

88

to 100 m and section equal to 80 mm2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
w

 (m/s)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

q c (
kW

/m
)

10-3 Evolution of the C. H. L. with V
w

 varying He

He = 0 m
He = 300 m
He = 600 m
He = 900 m
He = 1200 m

Figure 8-2: Evolution of the qc with the wind speed and changing the elevation of
the location

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
w

 (m/s)

0

1

2

3

4

5

6

q c (
kW

/m
)

10-3 Evolution of the C. H. L. with V
w

 varying K
angle

K
angle

 = 0.39

K
angle

 = 0.74

K
angle

 = 0.92

K
angle

 = 1

Figure 8-3: Evolution of the qc with the wind speed and changing Kangle

8.1.2 Radiated Heat Loss

Radiated heat loss (qr) is a parameter that changes depending on Ts, T∞, Do and

emissivity (ε). In Fig. 8-4, the evolution of qr for different sections and emissivities

are presented. Note that ε is a characteristic of the conductor that increases over the

89

Table 8.1: Relationship between Kangle and φ

Kangle φ (◦)

0.39 0
0.74 30
0.92 60

1 90

time. As can be seen, qr grows with ε and with high sections. The same temperatures

for conductor and air as in convective heat loss study are used.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

q r (
kW

/m
)

10-3 Evolution of R. H. L. with varying the section

Section = 80 mm2

Section = 100 mm2

Section = 107 mm2

Section = 120 mm2

Section = 150 mm2

Figure 8-4: Evolution of the qr with emissivity and changing the section of the con-
ductor

8.1.3 Solar Heat Gain

For studying solar heat gain (qs) several scenarios will be analyzed, taking into ac-

count its input variables. Qs depends on latitude of location (Lat), star time of the

simulation, day of the year, He, absorptivity (α) and Do. For all the graphs shown

below, the evolution of qs along the day will be plotted.

The first study has the goal to compare qs for different latitudes. In Fig. 8-5, the

results of qs at the summer solstice in the northern hemisphere are presented. Qs

reaches the peak value with a Lat equal to 25◦, followed by locations with Lat equal

90

to 0◦ and 50◦. The place in which the conductor will be exposed more time to the

sun is with a Lat equal to 50◦. The locations on southern hemisphere are in winter

solstice, therefore their qs is smaller. The opposite happens when the summer solstice

is in the southern hemisphere. Negatives latitudes and equator will have the highest

values of qs (see Fig. 8-6). For both scenarios, a He of 100 m, a section of 80 mm2

and a α of 0.3 are used.

4 6 8 10 12 14 16 18 20 22
Time (hours)

0

0.5

1

1.5

2

2.5

3

3.5

4

q s (
kW

/m
)

10-3 Evolution of S. H. G. varying the latitude

Lat = -50º
Lat = -25º
Lat = 0º
Lat = 25º
Lat = 50º

Figure 8-5: Evolution of the qs with respect the latitude. The day of the simulation
is 21-July-2019 (summer solstice in the northern hemisphere)

The second case study of qs is based on comparing the solar heat gain along the

day for different dates. Heading Fig. 8-7, it can be observed that for dates closer to

summer, solar heat gain is increasing. For plotting this graph the following values are

considered: Lat=30◦, He=100 m, section of 80 mm2 and α=0.3.

The third scenario presents qs dependence respect He. As can be seen in Fig. 8-8,

there is not a great variation on qs for different altitudes. It can be highlighted that,

for higher values of He, the solar heat gain will be greater. In this graph the day

of simulation and latitude remain constant. Their values are 21st of July and 50◦,

respectively.

The next analysis is centered on studying qs for different α (see Fig. 8-9). Ab-

sorptivity is a property of the conductor. For new wires, this value will be around 0.2,

reaching 0.9 at the end of its lifetime. It is clearly see that for high values of α, qs is

91

4 6 8 10 12 14 16 18 20 22
Time (hours)

0

0.5

1

1.5

2

2.5

3

3.5

4
q s (

kW
/m

)
10-3 Evolution of S. H. G. varying the latitude

Lat = -50º
Lat = -25º
Lat = 0º
Lat = 25º
Lat = 50º

Figure 8-6: Evolution of the qs with respect the latitude. The day of the simulation
is 22-December-2019 (summer solstice in the southern hemisphere)

6 8 10 12 14 16 18 20
Time (hours)

0

0.5

1

1.5

2

2.5

3

3.5

q s (
kW

/m
)

10-3 Evolution of S. H. G. varying the day

01-Jan-2019
15-Feb-2019
30-Mar-2019
15-May-2019
01-Jul-2019

Figure 8-7: Evolution of the qs with respect day of simulation

92

4 6 8 10 12 14 16 18 20 22
Time (hours)

0

0.5

1

1.5

2

2.5

3

3.5

q s (
kW

/m
)

10-3 Evolution of S. H. G. varying the elevation

He = 0 m
He = 250 m
He = 500 m
He = 750 m
He = 1000 m

Figure 8-8: Evolution of the qs with respect elevation of the location

greater. Comparing this graph with the previous ones, it is checked that variations in

α affect in greater extent. For obtaining this graph, an elevation of 100 m, a latitude

of 50 ◦, a section of 80 mm2 and the date of northern solstice have been used.

4 6 8 10 12 14 16 18 20 22
Time (hours)

0

1

2

3

4

5

6

7

8

9

q s (
kW

/m
)

10-3 Evolution of S. H. G. varying

 = 0.2
 = 0.4
 = 0.6
 = 0.8
 = 0.9

Figure 8-9: Evolution of the qs with respect absorptivity

Finally, the evolution of qs against the section of the conductor is tested. With Fig.

8-10, it is confirmed that for high values of the section the solar heat gain increases.

The parameters used to perform this plot are: He=100 m, Lat=50 ◦, section of 80

mm2, α=0.3 and the date of northern solstice.

93

4 6 8 10 12 14 16 18 20 22
Time (hours)

0

0.5

1

1.5

2

2.5

3

3.5

4

q s (
kW

/m
)

10-3 Evolution of S. H. G. varying section of conductor

Section = 80 mm2

Section = 100 mm2

Section = 107 mm2

Section = 120 mm2

Section = 150 mm2

Figure 8-10: Evolution of the qs with respect section of the conductor

8.2 Influence of the sectioning length in the simu-

lation time and the error incurred

Sectioning length is a parameter that must be introduced at the beginning of the

simulation. Mainly, this value will affect the error incurred and the time of simulation.

In this section, the main goal is to study how sectioning length changes both. In order

to do that, the grid of Liège was selected. The analysis will be carried out, by means

of average temperature and the evolution of temperature with respect to time. The

graphs will be focused on line 2 of the grid.

Four different length of sections have been used. It is important to remember that

the section value entered in the interface is rounded to ensure that all sections are

equal. In tab. 8.2, the relation between both values are shown. In order to compute

the relative error of the average temperature, it is assumed the results of 25 m of

section as reference, i.e, relative error with sections of 25 m are supposed 0%.

In Fig.8-11, it is presented the average temperature of line 2 for the sections. As

can be seen, according as length of the section decreases, the waveform of the average

temperature is more detailed. Heeding Fig. 8-12, it is clearly see that, higher the

length of the section, greater the relative error. With sections of 200 m, there are

94

Table 8.2: Add caption
Sect. Length (m) Real Sect. Length (m)

200 177
100 101
50 50.5
25 25.25

peaks of relative error around 7%. When section is reduced to 50 m, the relative error

does not exceed 2 %. Note that for central values of the line, the errors are drastically

reduced, below 1 %.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Distance (km)

46

48

50

52

54

56

58

60

T
em

pe
ra

tu
re

 (
ºC

)

Temperature of the catenary (L2), from STN to PFR

Sect. length = 200 m
Sect. length = 100 m
Sect. length = 50 m
Sect. length = 25 m

Figure 8-11: Average temperature of L2 for different values of sectioning length

Fig.8-13 has been plotted, for studying how sectioning length changes temperature

from a temporal point of view. This figure shows that the highest values of temper-

ature are reached with lowest sectioning length. Using sections of 200 m, leads to

relative error between maximums of 4.8 %, i.e, 2◦C. With shorter section lengths such

as 50 m, the relative error is reduced to 1.7 % (see Fig. 8-14).

Finally, two graphs have been made in which the average value of the error is

compared with the total simulation time, showing that both magnitudes are inversely

proportional. In Fig. 8-15, the average error of Fig.8-11 has been implemented, and

for Fig. 8-16, the average error of Fig.8-13 has been used. It can be seen that as the

sectioning length is reduced by half, the simulation time is doubled, it means that

95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Distance (km)

-8

-6

-4

-2

0

2

4

6
R

el
at

iv
e

E
rr

or
 (

%
)

Relative Error for different Sectioning Length

Sect. length = 200 m
Sect. length = 100 m
Sect. length = 50 m
Sect. length = 25 m

Figure 8-12: Relative error of average temperature along the line

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

25

30

35

40

45

50

55

60

65

T
em

pe
ra

tu
re

 (
ºC

)

Temperature of the catenary (L2), at 0.02525 km

Sect. length = 200 m
Sect. length = 100 m
Sect. length = 50 m
Sect. length = 25 m

Figure 8-13: Evolution of temperature, at 0.025 km of L2

96

0 1000 2000 3000 4000 5000 6000 7000
Distance (km)

0

1

2

3

4

5

R
el

at
iv

e
E

rr
or

 (
%

)

Relative Error for different Sectioning Length

Sect. length = 200 m
Sect. length = 100 m
Sect. length = 50 m
Sect. length = 25 m

Figure 8-14: Relative error of temperature at 0.025 km of L2, during the simulation

the software must manage the double of data. It can also be observed that the error

is slightly greater when the temperature is studied from the time evolution point of

view.

These graphics are focused on the study of a particular line in a particular network,

so the results of the relative errors and simulation time may vary from one case to

another. The main factors that can determine the error are the length of the sections

studied, the total simulation time introduced in RailNeos and the vehicle schedules.

25 50 100 200
Sectioning Length (m)

0

0.5

1

1.5

2

2.5

3

3.5

R
el

at
iv

e
E

rr
or

 (
%

)

50

100

150

200

250

300

350

400

Si
m

ul
at

io
n

T
im

e
(s

)

Comparison between Average Error and Simulation Time

Figure 8-15: Comparison between average error of Fig.8-11 and simulation time

97

25 50 100 200
Sectioning Length (m)

0

1

2

3

4

5

R
el

at
iv

e
E

rr
or

 (
%

)

50

100

150

200

250

300

350

400

Si
m

ul
at

io
n

T
im

e
(s

)

Comparison between Average Error and Simulation Time

Figure 8-16: Comparison between average error of Fig.8-13 and simulation time

8.3 Case Study: Liège network

This study will be focused on analyzing the thermal behavior of a tram grid in Liège.

The goal is to use the RailThermal app to carry out a thermal study, locating the

points of the lines with higher temperatures. This will allow to know which is the

optimal section of the conductor.

The input data of the simulation is the following:

� Initial temperature of the catenary: 25 ◦C.

� Initial temperature of the air: 20 ◦C.

� Elevation of Liège: 66 m.

� Latitude of Liège: 50.63 ◦.

� Secioning length: 50 m.

� Date: 21st of July.

� Material of the conductor: Cu-ETP.

� Section of the conductor: 80 mm2.

In Fig.8-17, the thermal map of Liège is plotted. As can be seen, there are two

zones of the grid where temperature overcomes 100 ◦C. These parts coincide with

98

the join sections of the parallel branches. There are three lines that do not fulfill the

requirements established in Tab. 7.5. In Fig. 8-18, Fig.8-19 and Fig. 8-20, it is shown

that temperature in permanent regime exceed the of 80 ◦C of permanent operation

conditions.

Thermal Map of Liège (V w = 0 m/s)

 STN
 PFR

 PDM

 VBN

 PGL

 GDG

 EDG

 ABL

 CHA

 PDA

 LON
 OPE

 PSL CAD

 PDD MAR
 PAT

 RAC

 COR

 ALL
 GAB

 SS03

 SS04

 SS05

 SS06

 SS07

 SS08

 SS09

 SS10

 SS11

 SCDM
 CD2 PD2

Tmax 100 ºC
90 ºC Tmax < 100 ºC

80 ºC Tmax < 90 ºC
60 ºC Tmax < 80 ºC

40 ºC Tmax < 60 ºC
20 ºC Tmax < 40 ºC

Tmax < 20 ºC

Figure 8-17: Thermal of map of Liège’s network with Vw=0 m/s

Some thermal studies consider a certain wind speed so the temperature will de-

crease. The thermal map with a wind speed of 5 m/s is presented in Fig. 8-21. It

can be observed that the overall temperature of all the grid has been reduced, consid-

erably. But in this study, the maximum safety positioning will be used, considering

zero wind speed.

Retaking, the case with null wind, two options can be made, increase the conductor

section and maintain the type of material used. Or change the type of driver to

another with better thermal properties. In this study, results of both options will

99

1000 2000 3000 4000 5000 6000 7000
Time (s)

20

40

60

80

100

120

T
em

pe
ra

tu
re

 (
ºC

)

Temperature of the catenary (L16), at 6.338 km

Figure 8-18: Evolution of temperature for line 16, at point 6.338 km

1000 2000 3000 4000 5000 6000 7000
Time (s)

20

40

60

80

100

120

140

T
em

pe
ra

tu
re

 (
ºC

)

Temperature of the catenary (L17), at 6.3876 km

Figure 8-19: Evolution of temperature for line 17, at point 6.388 km

1000 2000 3000 4000 5000 6000 7000
Time (s)

20

40

60

80

100

120

T
em

pe
ra

tu
re

 (
ºC

)

Temperature of the catenary (L24), at 8.736 km

Figure 8-20: Evolution of temperature for line 17, at point 8.736 km

100

Thermal Map of Liège (Vw = 5 m/s)

 STN
 PFR

 PDM

 VBN

 PGL

 GDG

 EDG

 ABL

 CHA

 PDA

 LON
 OPE

 PSL CAD

 PDD MAR
 PAT

 RAC

 COR

 ALL
 GAB

 SS03

 SS04

 SS05

 SS06

 SS07

 SS08

 SS09

 SS10

 SS11

 SCDM
 CD2 PD2

Tmax 100 ºC
90 ºC Tmax < 100 ºC

80 ºC Tmax < 90 ºC
60 ºC Tmax < 80 ºC

40 ºC Tmax < 60 ºC
20 ºC Tmax < 40 ºC

Tmax < 20 ºC

Figure 8-21: Thermal map of Liège’s network with Vw=5 m/s

101

be shown. The results obtained using a Cu-ETP conductor with a section of 150

mm2 are shown in Fig. 8-22 and Fig. 8-23. Both figures show that on line 17 the

operation requirements for nominal conditions are still not met. L16 and L24 have

temperatures slightly above the nominal allowable of 80◦C. Therefore, it will proceed

to use a CuAg0.1 conductor. This type of wire allows to operate at higher temperature

conditions.

Thermal Map of Liège (Cu-ETP - 150 mm 2)

 STN
 PFR

 PDM

 VBN

 PGL

 GDG

 EDG

 ABL

 CHA

 PDA

 LON
 OPE

 PSL CAD

 PDD MAR
 PAT

 RAC

 COR

 ALL
 GAB

 SS03

 SS04

 SS05

 SS06

 SS07

 SS08

 SS09

 SS10

 SS11

 SCDM
 CD2 PD2

Tmax 100 ºC
90 ºC Tmax < 100 ºC

80 ºC Tmax < 90 ºC
60 ºC Tmax < 80 ºC

40 ºC Tmax < 60 ºC
20 ºC Tmax < 40 ºC

Tmax < 20 ºC

Figure 8-22: Thermal map of Liège’s network with Vw=0 m/s and a Cu-ETP con-
ductor with a section of 150 mm2

In Fig. 8-24, 8-26, 8-25,8-28, 8-27, 8-30 and 8-29, the final results of the line

of Liège by using a CuAg0.1 conductor with 150 mm2 are presented. The results

show that lines 16, 17 and 24 are below the operating limits. In these graphs, it is

indicated that no point of the network has exceeded temperatures of 100 ºC, being

the maximum reached in line 17, in the range of 90-100 ◦C. In addition, graphs of

average temperature along the line are shown.

102

1000 2000 3000 4000 5000 6000 7000
Time (s)

20

40

60

80

100

120

140

T
em

pe
ra

tu
re

 (
ºC

)

Temperature of the catenary (L17), at 6.3876 km

Figure 8-23: Evolution of temperature for line 17, at point 6.388 km

Thermal Map of Liège (CuAg0.1 - 150 mm 2)

 STN
 PFR

 PDM

 VBN

 PGL

 GDG

 EDG

 ABL

 CHA

 PDA

 LON
 OPE

 PSL CAD

 PDD MAR
 PAT

 RAC

 COR

 ALL
 GAB

 SS03

 SS04

 SS05

 SS06

 SS07

 SS08

 SS09

 SS10

 SS11

 SCDM
 CD2 PD2

Tmax 100 ºC
90 ºC Tmax < 100 ºC

80 ºC Tmax < 90 ºC
60 ºC Tmax < 80 ºC

40 ºC Tmax < 60 ºC
20 ºC Tmax < 40 ºC

Tmax < 20 ºC

Figure 8-24: Thermal map of Liège’s network with Vw=0 m/s and a CuAg0.1 con-
ductor with a section of 150 mm2

103

1000 2000 3000 4000 5000 6000 7000
Time (s)

20

30

40

50

60

70

80

90

T
em

pe
ra

tu
re

 (
ºC

)

Temperature of the catenary (L16), at 6.338 km

Figure 8-25: Evolution of temperature for line 16, at point 6.338 km

5.9 5.95 6 6.05 6.1 6.15 6.2 6.25 6.3
Distance (km)

55

60

65

70

75

80

85

T
em

pe
ra

tu
re

 (
ºC

)

Temperature of the catenary (L16), from LON to OPE

Figure 8-26: Average temperature of L16

104

1000 2000 3000 4000 5000 6000 7000
Time (s)

20

30

40

50

60

70

80

90

100

T
em

pe
ra

tu
re

 (
ºC

)

Temperature of the catenary (L17), at 6.3876 km

Figure 8-27: Evolution of temperature for line 17, at point 6.388 km

6.4 6.42 6.44 6.46 6.48 6.5 6.52 6.54 6.56 6.58
Distance (km)

91

91.5

92

92.5

93

93.5

T
em

pe
ra

tu
re

 (
ºC

)

Temperature of the catenary (L17), from OPE to SS08

Figure 8-28: Average temperature of L17

105

1000 2000 3000 4000 5000 6000 7000
Time (s)

20

30

40

50

60

70

80

T
em

pe
ra

tu
re

 (
ºC

)

Temperature of the catenary (L24), at 8.736 km

Figure 8-29: Evolution of temperature for line 24, at point 8.736 km

8.54 8.56 8.58 8.6 8.62 8.64 8.66 8.68 8.7 8.72
Distance (km)

68

70

72

74

76

78

T
em

pe
ra

tu
re

 (
ºC

)

Temperature of the catenary (L24), from PAT to SS10

Figure 8-30: Average temperature of L24

106

Thus, with conductors of CuAg0.1 and sections of 150 mm2, all points of the lines

met the operation requirements. In case of Cu-ETP, all the lines except L16, L17 and

L24 fulfilled the permanent operations limits. The most expensive solution is to use

for all the lines, conductors of CuAg0.1. In order to reduce the CAPEX, conductors

of CuAg0.1 can be installed for lines L16, L17 and L24, and for the rest of the lines,

Cu-ETP conductors can be used.

107

108

Chapter 9

Conclusions

In this Master’s Thesis, a tool, called RailThermal app, has been developed to cal-

culate the thermal behavior of railway systems. The main idea was to create an

intuitive software that was able to adjust to any type of grid, calculating the results

in a reasonable time. The concept of line sectioning allows to adapt the simulation

to the features of the grid, in terms of simulation time and precision.

An explanation of the software code and a description of the main functionalities of

the interface have been presented, serving as guide to anyone external to the project.

The idea is to describe how RailThermal app performs the calculations and how is

the interaction with the software. Then, a verification process of the main parameters

of the thermal calculation (qc, qr and qs) have been carried out. The influence of the

input parameters of these variables has been analyzed. Finally, a case study of Liège’s

network was presented. The network has been analyzed from the most unfavorable

case and solutions have been provided.

The main goal of this thesis, is to create a base tool for thermal calculation and its

subsequent implementation within RailNeos 2.0 software. For now, RailThermal app

is an application developed with Matlab that allows to extract temperature results,

plotting a thermal map of the lines and showing the temperature evolution over the

time and average temperature of the conductors.

109

110

Appendix A

Code of RailThemal app

A.1 Thermal study.m

1 function [OutLine, OutSect, nlines, OutNode, nnodes, Tcat max] = ...

Thermal study(Ts0,Tinf, dbfile, matCat, sectCat, He, Vw, ...

checkSHG, n month, n day, Lat, L sect)

2

3 %% IMPORT THE RES.DB FILE

4 connRes = sqlite(dbfile); % create the connection

5

6 %% FUNCTIONS

7

8 Conduct Types = contact wire;

9

10 [Cp, Do, Spc m, emi, absorp] = InitData(Conduct Types, matCat, ...

sectCat);

11

12 [OutLine, OutSect, nlines, nSteps, Paths, Lat, Start Time, ...

day year, OutNode, nnodes, Tcat max] = InputData(connRes, ...

checkSHG, n month, n day, Lat, L sect);

13

14 [Kangle,Coord nodes] = K angle(connRes);

15

111

16 OutSect = InputResults(OutSect, OutLine, Spc m, Do, Cp, Ts0, ...

Tinf, nSteps, Kangle, Vw, emi, nlines, Lat, Start Time, ...

day year, He, absorp);

17

18 Tcat max = T max(OutSect, OutLine, nlines, Tcat max);

112

A.2 contact wire.m

1 function Conduct Types = contact wire

2

3 catnames={'CuAg01','CuETP','CuMg02','CuMg05','CuSn01','CuSn02'}; ...

% catenary types

4 dbwire=fullfile(pwd,'Contact wire.db');

5 conn wire=sqlite(dbwire);

6

7 for n=1:length(catnames)

8 sqlcat=['select ', catnames{n},'.Sect, ', catnames{n},'.SpM from ...

', catnames{n}];

9 dataCat=cell2table(fetch(conn wire,sqlcat));

10

11 Sect=double(dataCat{:,1});

12 SpM=double(dataCat{:,2});

13

14 Conduct Types.(catnames{n}).info=['Sect: Section in mmˆ2 ...

';

15 'SpM: Specific mass in 10ˆ3 kg/m3'];

16 Conduct Types.(catnames{n}).data=[Sect, SpM];

17 end

18

19 % Note: this function import the data of the different types of wires

113

A.3 InitData

1 function [Cp, Do, Spc m, emi, absorp] = InitData(Conduct Types, ...

matCat, sectCat)

2 %% Initial temperatures

3

4 % Note: if Ts is lower than the Tinf the result

5 % of the convective heat loss will become a complex

6 % number so it is necessary to avoid that

7

8 % Specific heat of typical conductor metal wire

9 CP.info='Cp in J/(kg C)';

10 CP.Al=955; % Aluminum

11 CP.Cu=423; % Copper

12 CP.St=476; % Steel

13 CP.Al clad st=534; % Aluminum clad steel

14

15 CP.CuETP = 386;

16 CP.CuAg01 = 386;

17 CP.CuMg02 = 320;

18 CP.CuMg05 = 320;

19 CP.CuSn05 = 377;

20 CP.CuSn02 = 377;

21

22 Cp = CP.(matCat); % Specific heat of the conductor used

23 sectCat = str2double(sectCat);

24

25 if sectCat == 80

26 nsectCat = 1;

27 elseif sectCat == 100

28 nsectCat = 2;

29 elseif sectCat == 107

30 nsectCat = 3;

31 elseif sectCat == 120

32 nsectCat = 4;

114

33 elseif sectCat == 150

34 nsectCat = 5;

35 end

36

37 Do = sqrt(Conduct Types.(matCat).data(nsectCat,1)*4/pi)/1000; ...

% Diameter of the catenary in m

38 Spc m = Conduct Types.(matCat).data(nsectCat,2)*1000; ...

% Specific mass in kg/mˆ3

39

40 %% Variables for the radiated heat loss

41 emi = 0.3; % emissivity

42 %% Variables for the solar heat gain

43 absorp = 0.3; % absorptivity

115

A.4 InputData.m

1 function [OutLine, OutSect, nlines, nSteps, Paths, Lat, ...

Start Time, day year, OutNode, nnodes, Tcat max] = ...

InputData(connRes, checkSHG, n month, n day, Lat, L sect)

2

3 %% ---- LOSSES OF THE CATENARY ----

4 sqlOutLine = 'select OUT Line.Stp, OUT Line.Line ,OUT Line.P Los, ...

OUT Line.Length from OUT Line, Line t where ...

OUT Line.Line=Line t.ID';

5

6 % Import all the data of the catenay in a table

7 OutLine table = cell2table(fetch(connRes,sqlOutLine));

8 % Change the name of the variables

9 OutLine table.Properties.VariableNames = {'Step' 'Line' 'PLosses' ...

'Length'};

10 % Vector with the value of the steps

11 Step = double(OutLine table.Step(:,1));

12 % Vector with the number of the lines

13 Line = double(OutLine table.Line(:,1));

14 % Vector with the value of the PLosses

15 PLosses = double(OutLine table.PLosses(:,1));

16 Length = double(OutLine table.Length(:,1));

17

18 % Vector that contents all the lines at the first instant

19 nlines = double(OutLine table.Line((find(OutLine table.Step==1))));

20 % Select only the unique values, removing lines that appear twice

21 % (lines in which there is at least one train circulating)

22 nlines = unique(nlines);

23 % Each step

24 nSteps = unique(Step);

25

26 for n = 1:length(nlines)

27 mline = nlines(n);

28 linename = ['L',num2str(mline)];

116

29 OutLine.data.(linename) = [Step(Line==mline),...

30 PLosses(Line==mline), Length(Line==mline)];

31 end

32

33 % Note: it carries out the importation of the data of

34 % the catenary in the struct OutLine.

35 % OutLine is composed by n fields (L1,L2,...Ln) and

36 % insight each field there is an array of three

37 % colums: | Step (s) | PLosses (kW) | Length (km)

38

39 %% ---- VARIABLES FOR SOLAR HEAT GAIN ----

40 if checkSHG == 1

41 n year = 2019;

42 date = [n year n month n day];

43 date = datetime(date); % Date in the format: 02-Jan-2012

44 day year = day(date,'dayofyear'); % Day of the year

45 else

46 Lat = 0;

47 day year = 0;

48 end

49 %% ---- LINE SECTIONING ----

50

51 sqlOutLine = 'select Line t.ID, Line t.Length p, Line t.Src, ...

Line t.Dst from Line t';

52

53 Line table = cell2table(fetch(connRes,sqlOutLine));

54 % Table: | ID of line | Length (km) | Src | Dst

55 Line table.Properties.VariableNames = {'Line' 'Length' 'Src' 'Dst'};

56

57 Line ID = double(Line table.Line(:,1)); % Vector with the ...

ID of the line

58 Length Line = double(Line table.Length(:,1)); % Vector with the ...

length of the line

59 Src = double(Line table.Src(:,1)); % Vector with the ...

source node

117

60 Dst = double(Line table.Dst(:,1)); % Vector with the ...

destination node

61 %L sect = 0.100; % Length of each ...

section in km

62 nnodes = []; % Index of the nodes

63

64 for n = 1:length(nlines)

65 linename = ['L',num2str(nlines(n))];

66 L line = round(Length Line(Line ID==nlines(n)),3); % Length ...

of the line in km

67 OutLine.LengthReal.(linename) = L line; % Length ...

of the lines

68 OutLine.SrcDst.(linename) = [Src(Line ID==nlines(n)), ...

Dst(Line ID==nlines(n))]; % Source node and ...

destination node

69 nodesSrcDst = [Src(Line ID==nlines(n)), Dst(Line ID==nlines(n))];

70 nnodes = [nnodes , nodesSrcDst];

71

72 if round(L line,3) ≥ round(L sect,3)

73 No sect = round(L line/L sect); % The ...

number of the section must be an integer

74 L sect real = L line/No sect; % ...

Real Length of each section in km

75 coords = linspace(L sect real,L line,No sect)'; % ...

Vector with the position of each point

76 OutLine.Sect.(linename) = coords ;

77 else

78 OutLine.Sect.(linename) = L line;

79 end

80 end

81 % Note: this function add to Outline a field called Sect in which the

82 % division points for each line are defined

83

84 % Introduce the source and destination nodes

85 nnodes = unique(nnodes)'; % ...

only nodes of connected lines have been considered

118

86

87 %% REMOVE PARALLEL LINES (WHEN THEY HAVE SAME SOURCE AND ...

DESTINATION SOURCE)

88

89 Linefn = fieldnames(OutLine.SrcDst); % ...

Fields of Outline.SrcDst

90 nlines aux = nlines;

91 L SrcDst num all = [];

92

93 for n = 1:length(nlines aux)

94 linename = ['L',num2str(nlines aux(n))];

95 SrcDst Aux = OutLine.SrcDst.(linename);

96 tf = cellfun(@(x) isequal(OutLine.SrcDst.(x), SrcDst Aux), ...

Linefn);

97 if sum(tf)≥2

98 L SrcDst num aux = nlines(tf);

99 L SrcDst num = L SrcDst num aux(end,1);

100 L SrcDst num all = [L SrcDst num all; L SrcDst num];

101 end

102 end

103

104 if isempty(L SrcDst num all)== 0

105 L SrcDst num all = unique(L SrcDst num all);

106 if length(L SrcDst num all)>1

107 for n = 1:length(L SrcDst num all)

108 linename = ['L',num2str(L eqSrcDst num all(n))];

109 OutLine.data = rmfield(OutLine.data, linename);

110 OutLine.SrcDst = rmfield(OutLine.SrcDst, linename);

111 OutLine.Sect = rmfield(OutLine.Sect, linename);

112 OutLine.LengthReal = rmfield(OutLine.LengthReal, ...

linename);

113 nlines(strcmp(Linefn,L eqSrcDst all))=[];

114 end

115 else

116 linename = ['L',num2str(L SrcDst num all)];

117 OutLine.data = rmfield(OutLine.data, linename);

119

118 OutLine.SrcDst = rmfield(OutLine.SrcDst, linename);

119 OutLine.Sect = rmfield(OutLine.Sect, linename);

120 OutLine.LengthReal = rmfield(OutLine.LengthReal, linename);

121 nlines(nlines(:,1)==L SrcDst num all)=[];

122 end

123 end

124

125 %% ---- PATH LINES ----

126 sqlnpaths='select Path Line t.Path , Path Line t.Line, ...

Path Line t.Dir from Path Line t order by Path Line t.Path';

127

128 Paths table=cell2table(fetch(connRes,sqlnpaths));

129 Paths table.Properties.VariableNames = {'Path' 'Line' 'Dir'};

130

131 Path=double(Paths table.Path(:,1));

132 Line=double(Paths table.Line(:,1));

133 Dir=double(Paths table.Dir(:,1));

134

135 Line unique=unique(Line);

136

137 nPath=unique(Path); % number of the paths

138

139 Lines disc=setdiff(Line unique, nlines); % Line or lines ...

disconnected. It is

140 % compared the lines that appear in

141 % nlines and all the lines that compose

142 % the paths. The aim is to remove the

143 % Paths with lines that are disconneted

144

145 Path rmvd = []; % Paths that are ...

removed due to some line of this path has been disconnected

146

147 for n = 1:length(nPath)

148 pathname = ['P',num2str(nPath(n))];

149 Paths.(pathname) = [Line(Path==nPath(n)), Dir(Path==nPath(n))];

150 if any(ismember(Paths.(pathname)(:,1),Lines disc))==1

120

151 Paths = rmfield(Paths, pathname);

152 Path rmvd = [Path rmvd; nPath(n)];

153 end

154 end

155

156 Path names = fieldnames(Paths); % Number of paths that are ...

connected

157

158 % Note I: function ismember defines a logical array. 1 in the ...

case, the value of the

159 % line disconnected was the same that the line of the path. By ...

using any,

160 % the logical array is reduced to one figure. If this value is ...

equal to

161 % 1, the field of the path is removed

162

163 % Note II: Import the data of the paths in the variable ...

Path Line t. Path Line t

164 % consists of fields (called Path n), where the number of the ...

lines that compose

165 % the path are stored

166

167

168 %% ---- PLOT GRAPH NODES + DECLARE TCAT MAX.SRC VARIABLES ----

169

170 sqlOutNode = 'select Node.ID, Node.Pos X, Node.Pos Y , Node.Name ...

from Node';

171 % Import all the data of the catenay in a table

172 OutNode table = cell2table(fetch(connRes,sqlOutNode));

173 % Change the name of the variables

174 OutNode table.Properties.VariableNames = {'Node' 'Pos X' 'Pos Y' ...

'Name'};

175

176 Node = double(OutNode table.Node(:,1)); % Number of the node

177 Pos X = double(OutNode table.Pos X(:,1)); % Pos X of the node

178 Pos Y = double(OutNode table.Pos Y(:,1)); % Pos Y of the node

121

179 Name = OutNode table.Name(:,1); % Name of the node

180

181 for n = 1:length(nnodes)

182 nodename = ['N',num2str(nnodes(n))];

183 % ---- OutNode.Pos XY & OutNode.Name ----------------

184 % Coordinate X of the node

185 OutNode.Pos XY.(nodename) = [Pos X(Node==nnodes(n)) ...

Pos Y(Node==nnodes(n))];

186 % Name of the node

187 OutNode.Name.(nodename) = Name(Node==nnodes(n));

188

189 % ---- Tcat max.SrcDst ------------------------------

190 Tcat max.SrcDst.(nodename) = [0,0]; % Init the ...

variable Tcat max

191 end

192

193 %% COLOR OF THE PATHS + LENGTH OF THE LINES SCALED TO THE GRAPH +

194 %% REAL PK + INIT TCAT MAX FOR THE DIFFERENT INTERVALS

195 % Introduce the colors of each path

196 sqlColors = 'select Line t.ID, Path Line t.Path from Line t,...

197 Path Line t where Line t.ID = Path Line t.Line ';

198

199 Line Path = cell2table(fetch(connRes,sqlColors));

200 Line Path.Properties.VariableNames = {'Line' 'Paths'};

201

202 LinePath = double(Line Path.Line(:,1)); % number of lines

203 numPath = double(Line Path.Paths(:,1)); % number of the path

204

205 % Remove paths that containt a disconnected line

206 for n = 1:length(Path rmvd)

207 LinePath(numPath(:,1)==Path rmvd(n,1))= [];

208 numPath(numPath(:,1)==Path rmvd(n,1)) = [];

209 end

210

211 % variable with path and its color. First column is for the number

212 % of the path and the 2:end columns are the color code

122

213 Path clr = zeros(1,4);

214

215 colorsP = [0 0 1; 0 1 0; 1 0 0; 0 1 1; 1 0 1; 1 1 0];

216 ncolorP = 0;

217

218 for n = 1:length(nlines)

219 linename = ['L', num2str(nlines(n))];

220 % ---- Length of the lines scaled to the graph-------------

221

222 nodenameSrc = ['N', num2str(OutLine.SrcDst.(linename)(1,1))];

223 nodenameDst = ['N', num2str(OutLine.SrcDst.(linename)(1,2))];

224

225 OutLine.LengthGraph.(linename) = ...

pdist([OutNode.Pos XY.(nodenameSrc);...

226 OutNode.Pos XY.(nodenameDst)],'euclidean');

227

228 %---------------------------------------

229 % ---- Color of the Paths --------------

230 % Num of the path. Note that was removed such lines that are ...

disconnected

231 Path num aux = numPath(LinePath(:,1)==nlines(n),1);

232

233 % I) Use a generic color for the first 6 paths

234 if ncolorP < 6

235 % I.1) If the line is not associated to any path

236 if isempty(Path num aux)==1

237 Path num = 0;

238 % Color of the line

239 OutLine.Colors.(linename) = rand(1,3);

240 % Path of the line selected. (0 means that the ...

line hasn't path)

241 OutLine.PathSlctd.(linename) = Path num;

242 % I.2) If the line is associated to some path

243 else

244 % Only one path is selected, the others are neglected

245 Path num = Path num aux(1,1);

123

246 % Path of the line selected

247 OutLine.PathSlctd.(linename) = Path num;

248 if any(Path clr(:,1)==Path num)==1

249 OutLine.Colors.(linename) = ...

Path clr(Path clr(:,1)==Path num,2:end);

250 else

251 ncolorP = ncolorP+1;

252 OutLine.Colors.(linename) = colorsP(ncolorP,:);

253 Path clr = [Path clr; Path num, ...

OutLine.Colors.(linename)];

254 end

255 end

256 % II) Use a random color if there would be more than 6 paths

257 else

258 % II.1) If the line is not associated to any path

259 if isempty(Path num aux)==1

260 Path num = 0;

261 OutLine.Colors.(linename) = rand(1,3);

262 OutLine.PathSlctd.(linename) = Path num; ...

% Path of the line ...

selected. (0 means that the line hasn't assigned ...

path)

263 % II.2) If the line is associated to some path

264 else

265 Path num = Path num aux(1,1); ...

% Only one path ...

is selected, the others are neglected

266 OutLine.PathSlctd.(linename) = Path num; ...

% Path of the line selected

267 if any(Path clr(:,1)==Path num)==1

268 OutLine.Colors.(linename) = ...

Path clr(Path clr(:,1)==Path num,2:end);

269 else

270 OutLine.Colors.(linename) = rand(1,3);

271 Path clr = [Path clr; Path num, ...

OutLine.Colors.(linename)];

124

272 end

273 end

274 end

275 %--------------------------------------

276 % ---- Real Start PK ------------------

277 k = 1; ...

...

% Counter for calculatinf the Real Start PK

278 i PK = 0; ...

...

% PK Counter of the path

279 if Path num 6=0

280 pathname = ['P',num2str(Path num)];

281 Lines Path aux = Paths.(pathname); ...

% Lines that belong ...

to the path

282

283 while Lines Path aux(k,1) 6= nlines(n)

284 linename aux = ['L', num2str(Lines Path aux(k,1))];

285 i PK = i PK + OutLine.LengthReal.(linename aux);

286 k = k+1;

287 if k > length(Lines Path aux)

288 continue

289 end

290 end

291

292 OutLine.Real PK.(linename) = i PK + ...

OutLine.Sect.(linename); % Real PK of the lines

293 else

294 OutLine.Real PK.(linename) = OutLine.Sect.(linename); ...

% if there is not a path join to the ...

line the initial PK of the line is 0

295

296 end

297 %--

298 % ---- Init Tcat max for the different intervals --------

125

299

300 Tcat max.Higher100.(linename) = [];

301 Tcat max.fr90to100.(linename) = [];

302 Tcat max.fr80to90.(linename) = [];

303 Tcat max.fr60to80.(linename) = [];

304 Tcat max.fr40to60.(linename) = [];

305 Tcat max.fr20to40.(linename) = [];

306 Tcat max.Lower20.(linename) = [];

307 end

308

309

310

311 %% ---- OUTSECT -> LINE SECTIONING + LOSSES OF THE CATENARY ----

312

313 for n = 1:length(nlines)

314 % Init variables

315 linename = ['L',num2str(nlines(n))];

316 OutSect.(linename)=[];

317 Sect Length = OutLine.Sect.(linename)(1,1)-0; ...

% Length of the sections for ...

each line in km

318 num sect = length(OutLine.Sect.(linename)(:,1)); ...

% Total number of sections in Ln

319 Length Step = ones(num sect,1); ...

% Vector of ...

ones with the length of the total number of sections

320

321 for m = 1:length(nSteps)

322 % Init variables

323 PLosses OutSect = [];

324 % I) There isn't any train in the line

325 if length(OutLine.data.(linename)...

326 (OutLine.data.(linename)(:,1)==m,1))==1...

327 OutSect.(linename)= [OutSect.(linename);

328 m*Length Step, OutLine.Sect.(linename)(:,1), ...

OutLine.data.(linename)...

126

329 (OutLine.data.(linename)(:,1)==m,2)*Length Step/num sect];

330

331 % II) At least one train is circulating along the line

332 else

333 data Sec Aux = [OutLine.data.(linename)...

334 (OutLine.data.(linename)(:,1)==m,2),...

335 OutLine.data.(linename)(OutLine.data.(linename)(:,1)==m,3)];

336 % Aux variable: | PLosses (kW) | Length (km) |, for the ...

dynamic line in a instant

337 data Sec Aux(:,3) = data Sec Aux(:,1)./data Sec Aux(:,2); ...

% Plosses in kW/km

338 start seg = 0;

339 mid point =0;

340

341 for k = 1:length(data Sec Aux(:,1))

342

343 % FOR THE FIRST SEGMENT OF THE LINE

344 if k==1

345 if round(Sect Length,3)<round(data Sec Aux(1,2),3)

346 % Case 1) A train is circulating in the first section:

347 % |--o--|-----|-----|

348 mid point = data Sec Aux(k,2)+mid point;

349 ones seg 0 = round(OutLine.Sect.(linename)...

350 (:,1),3)>round(start seg,3) &...

351 round(OutLine.Sect.(linename)(:,1),3)<...

352 round(mid point,3);

353 % vector of ones with sections lower than the mid point ...

and higher than the start seg point

354

355 end seg = max(OutLine.Sect.(linename)(ones seg 0)); ...

% Coordinates of the last ...

section with a length lower than the midpoint

356

357 PLoss seg = ...

ones(sum(ones seg 0),1)*Sect Length*data Sec Aux(k,3); ...

% Plosses of each section of segment 1 in kW

127

358

359 % Mid point 1

360 ones seg 1 = round(OutLine.Sect.(linename)...

361 (:,1),3)≥round(mid point,3); % ...

Vector of ones with sections higher than the midpoint

362 start seg = min(OutLine.Sect.(linename)(ones seg 1)); ...

% Start seg point of the next ...

iteration

363

364 start seg aux = min(start seg, ...

365 mid point+data Sec Aux(k+1,2)); % Min of the ...

star seg and the next mid point for the case that the ...

next midpoint will be in the same segmente than the ...

previous midpoint

366

367 PLoss midpoint = (mid point-end seg)*data Sec Aux(k,3)+...

368 (start seg aux-mid point)*data Sec Aux(k+1,3);

369

370 % Join join the result of the segment and the middle

371 % segment

372 PLosses OutSect Aux = [PLoss seg; PLoss midpoint];

373

374 elseif round(Sect Length,3)≥round(data Sec Aux(1,2),3)

375 mid point = data Sec Aux(k,2);

376 ones seg 1 = round(OutLine.Sect.(linename)(:,1),3)...

377 ≥round(mid point,3); % Vector of ...

ones with sections higher than the midpoint

378 end seg = 0;

379 start seg = min(OutLine.Sect.(linename)(ones seg 1)); ...

% Start seg point of the next ...

iteration

380

381

382 PLoss midpoint = (mid point-0)*data Sec Aux(k,3)...

383 +(start seg-mid point)...

384 *data Sec Aux(k+1,3);

128

385 PLosses OutSect Aux = PLoss midpoint;

386 end

387 % FOR THE INTERMEDIATE SEGMENTS

388 elseif k 6=length(data Sec Aux(:,1)) && k 6=1

389

390 % Update

391 mid point 1 = data Sec Aux(k,2)+mid point; ...

...

% second midpoint of the group

392 limit seg = min(OutLine.Sect.(linename)...

393 (round(OutLine.Sect.(linename)...

394 (:,1),3)≥round(mid point 1,3))); % final point ...

for the next group of segments

395

396 % Case 1) Two trains are not in consecutive sections:

397 % |--o--|-----|--o--|

398 if length(OutLine.Sect.(linename)...

399 (round(OutLine.Sect.(linename)(:,1),3)...

400 ≥round(mid point,3) & round(OutLine.Sect.(linename)...

401 (:,1),3)≤(round(limit seg,3))))>2

402 % Segment of the line

403 mid point = mid point 1;

404 ones seg 0 = round(OutLine.Sect.(linename)(:,1),3)...

405 >round(start seg,3) & round(OutLine.Sect.(linename)...

406 (:,1),3)<round(mid point,3); % vector of ...

ones with sections lower than the mid point and higher ...

than the start seg point

407

408 end seg = max(OutLine.Sect.(linename)(ones seg 0)); ...

% Coordinates of the last ...

section with a length lower than the midpoint

409

410 PLoss seg = ones(sum(ones seg 0),1)*Sect Length*...

411 data Sec Aux(k,3); % Plosses of each section of ...

segment 1 in kW

412

129

413 % Mid point 1

414 ones seg 1 = round(OutLine.Sect.(linename)(:,1),3)...

415 ≥round(mid point,3); % Vector of ...

ones with sections higher than the midpoint

416 start seg = min(OutLine.Sect.(linename)(ones seg 1)); ...

% Start seg point of the next ...

iteration

417

418 start seg aux = min(start seg, mid point+...

419 data Sec Aux(k+1,2)); % Min of the star seg ...

and the next mid point for the case that the next ...

midpoint will be in the same segmente than the ...

previous midpoint

420

421 PLoss midpoint = (mid point-end seg)*data Sec Aux...

422 (k,3)+(start seg aux-mid point)*data Sec Aux(k+1,3);

423

424 % Join join the result of the segment and the middle

425 % segment

426 PLosses OutSect Aux = [PLoss seg; PLoss midpoint];

427

428 % Case 2) Two trains are in consecutive sections:

429 % |--o--|--o--|

430 elseif length(OutLine.Sect.(linename)(round...

431 (OutLine.Sect.(linename)(:,1),3)≥round(mid point,3) &...

432 round(OutLine.Sect.(linename)(:,1),3)≤...

433 (round(limit seg,3))))==2

434 mid point = mid point 1; ...

% ...

midpoint for the next iteration

435 ones seg 1 = round(OutLine.Sect.(linename)(:,1),3)≥...

436 round(mid point,3);

437 % Vector of ones with sections higher than the midpoint

438 start seg = min(OutLine.Sect.(linename)(ones seg 1)); ...

% Start seg point of the next ...

iteration

130

439

440 end seg = end seg + Sect Length;

441

442 s1 = mid point-end seg; ...

% ...

Length of the subsegment 3 (km)

443 s2 = start seg-mid point; ...

% ...

Length of the subsegment 4 (km)

444

445 % Join the result of the s1 and s2

446 PLosses OutSect Aux = s1*(data Sec Aux(k,3))+s2*...

447 (data Sec Aux(k+1,3)); % Plosses of the s1 and s2 (kW

448

449 % Case 3) Two train are in the same section:

450 % |-o-o- |

451 elseif length(OutLine.Sect.(linename)(round...

452 (OutLine.Sect.(linename)(:,1),3)≥...

453 round(mid point,3) &...

454 round(OutLine.Sect.(linename)(:,1),3)≤...

455 (round(limit seg,3))))==1

456 mid point = mid point 1;

457 ones seg 1 = round(OutLine.Sect.(linename)(:,1),3)...

458 ≥round(mid point,3); % Vector of ones with sections ...

higher than the midpoint

459 start seg = min(OutLine.Sect.(linename)(ones seg 1)); ...

% Start seg point of the next ...

iteration

460

461 PLosses OutSect(end,1) = PLosses OutSect Aux(end,end)+...

462 (start seg-mid point)*data Sec Aux(k+1,3); % The PLosses ...

are added to the previous segment

463 PLosses OutSect Aux = [];

464 end

465

466 % FOR THE LAST SEGMENT

131

467 else

468 % Segment of the line

469 end point = sum(data Sec Aux(:,2));

470 ones seg 0 = OutLine.Sect.(linename)(:,1)>start seg &...

471 OutLine.Sect.(linename)(:,1)≤(end point+1); % vector of ...

ones with sections lower than the mid point and ...

higher than the start seg point

472

473 PLoss seg = ...

ones(sum(ones seg 0),1)*Sect Length*data Sec Aux(k,3); ...

% Plosses of each ...

section of segment 1 in kW

474 PLosses OutSect Aux = PLoss seg;

475 end

476

477 PLosses OutSect = [PLosses OutSect; PLosses OutSect Aux];

478

479 end

480 % Update the data

481 OutSect.(linename) = [OutSect.(linename); Length Step*m,...

482 OutLine.Sect.(linename), PLosses OutSect];

483 end

484

485 end

486 end

487

488 %% ---- START TIME ----

489

490 sqlCfg = 'select Cfg.Start Time from Cfg';

491

492 Cfg table = cell2table(fetch(connRes,sqlCfg)); ...

% Import the time in which the ...

simulation has started

493 Cfg table.Properties.VariableNames = {'Star Time'}; ...

% Change the name of the variables

494

132

495 Start Time = double(Cfg table.Star Time(:,1)); ...

% Value of the start time in seconds

133

A.5 K angle.m

1 function [Kangle,Coord nodes] = K angle(connRes)

2

3 sqlCoord Src = 'select Line t.ID, Line t.Src, Node.Pos X, ...

Node.Pos Y from Node, Line t where Node.ID = Line t.Src';

4 sqlCoord Dst = 'select Line t.ID, Line t.Dst, Node.Pos X, ...

Node.Pos Y from Node, Line t where Node.ID = Line t.Dst';

5

6 Coord table Src = cell2table(fetch(connRes, sqlCoord Src));

7 Coord table Dst = cell2table(fetch(connRes, sqlCoord Dst));

8

9 Coord table Src.Properties.VariableNames = {'Line' 'Src' 'Pos X' ...

'Pos Y'};

10 Coord table Dst.Properties.VariableNames = {'Line' 'Dst' 'Pos X' ...

'Pos Y'};

11

12 Line = double(Coord table Src.Line(:,1)); ...

% Line ID

13 Src = double(Coord table Src.Src(:,1)); ...

% Source node ID

14 Pos X Src = double(Coord table Src.Pos X(:,1)); ...

% Pos X of the source node

15 Pos Y Src = double(Coord table Src.Pos Y(:,1)); ...

% Pos Y of the source node

16 Dst = double(Coord table Dst.Dst(:,1)); ...

% Destination node ID

17 Pos X Dst = double(Coord table Dst.Pos X(:,1)); ...

% Pos X of the destination node

18 Pos Y Dst = double(Coord table Dst.Pos Y(:,1)); ...

% Pos Y of the destination node

19 m = atan((Pos Y Dst-Pos Y Src)./(Pos X Dst-Pos X Src)).*180/pi; ...

% Calculate the direction of the lines in rad

20 normalizeDeg = @(x)(-mod(-x+180,360)+180); ...

% Function that normalize the angles ...

134

to [-180,180] range. Note the function mode calculate the ...

rest, where the first value is the dividen and the second the ...

divisor

21 phi L = normalizeDeg(m); ...

% angle direction ...

normalized between -180 and 180

22

23 Coord nodes = [Line, Src, Pos X Src, Pos Y Src, Dst, Pos X Dst, ...

Pos Y Dst, phi L];

24

25 % Note: Coord nodes is a variable with the following structure:

26 % | Line | Src | Pos X Src | Pos Y Src | Dst | Pos X Dst | ...

Pos Y Dst | direction |

27

28 phi WL = 0:30*pi/180:90*pi/180; ...

% angle between ...

the direction of the wind and the direction of the line

29

30

31 phi W=[]; % Wind angle:

32

33 K angle funct = @(phi) ...

1.194-cos(phi)+0.194*cos(2*phi)+0.368*sin(2*phi); % ...

function to calculate the wind direction factor. Remember that ...

this value is between 0 and 1

34

35 for n = 1:length(phi L)

36 m = phi L(n,1)*pi/180*ones(length(phi WL),1);

37 phi W =[phi W , phi WL'+m];

38 end

39

40 K angle array = K angle funct(phi WL);

41

42 for n = 1:length(Line) ...

% ...

Loop to ensure that the value of K angle of a specific ...

135

line is saved correctly

43 m = Line(n,1); ...

% ...

Index of the line

44 linename = ['L', num2str(m)];

45 Kangle.(linename) = phi W(:,n);

46 end

47

48 Kangle.phi WL = K angle array;

49

50 % Note: the K angle structure has fields with name L1, L2

where the

51 % value of the wind direction is saved. And in the field phi WL

52 % the value of the K angle going from phi WL equal to zero to ...

phi WL equal

53 % to 90 is calculated

54

55 % Example in degrees, Variable phi W: the wind angle is calculted ...

summing,

56 % phi L+phi WL.

136

A.6 InputResults.m

1 function OutSect = InputResults(OutSect, OutLine, Spc m, Do, ...

Cp, Ts0, Tinf, nSteps, Kangle, Vw, emi, nlines, Lat, ...

Start Time, day year, He, absorp)

2

3 for n = 1:length(nlines)

4 % Init variables

5 Ts Tot = []; % Vector with the temperatures of ...

each iteration

6 qc Tot = []; % Vector with the heat convection ...

loss in W

7 qr Tot = []; % Vector with the radiated heat ...

loss in W

8 qs Tot = []; % Vector with the solar heat gain ...

in W

9 count = 1; % Hour index, for each hour the ...

hour angle must be increased in 15 degrees

10

11 % Used variables

12 linename = ['L',num2str(nlines(n))];

13 Sect L = OutLine.Sect.(linename)(1,1)*1000;

14 % number of section for the line

15 nSect = ...

length(OutSect.(linename)((OutSect.(linename)(:,1)==1),3));

16 Ts= Ts0*ones(nSect,1); ...

% ...

Vector with T0

17

18 % Calculate: 1/(m*Cp)

19 K mCp = 1/(Spc m*Sect L*pi*Doˆ2/4*Cp); ...

% Factor 1/(mCp) in ...

C/J or C/(Ws)

20

21 for m = 1:length(nSteps)

137

22

23 % Convective heat loss in kW

24 qc = Convect Heat Loss(Kangle,Ts,Tinf,Do,Vw,He)*Sect L;

25

26 % Radiated heat loss in kW

27 qr = Radiated Heat Loss(Ts,Tinf,Do,emi)*Sect L;

28

29 % Solar heat gain in kW

30 qs = Solar Heat Gain(Lat, Start Time, day year, He,...

31 absorp, Do, nlines, nSect, count)*Sect L;

32

33 % Sum = (Plosses + qs - qc - qr) in W

34 Sum = (OutSect.(linename)((OutSect.(linename)...

35 (:,1)==m),3)-qc-qr+qs)*1000;

36

37 % Variation of the temperature for interval

38 dT dt = K mCp*Sum;

39

40 qc Tot = [qc Tot;qc];

41 qr Tot = [qr Tot;qr];

42 qs Tot = [qs Tot;qs];

43 % Vector with the final temperature of this instant

44 Ts 1 = Ts+dT dt;

45 % Vector with the initial temperature of the next instant

46 Ts = Ts 1;

47 % Vector with the temperatures of each iteration

48 Ts Tot = [Ts Tot;Ts 1];

49

50 % Update the counter for the hour angle, each hour of ...

simulation

51 if m > count*3600

52 count = count + 1;

53 end

54 end

55

56 % Add the column of the temperatures

138

57 OutSect.(linename)(:,4) = qc Tot;

58 OutSect.(linename)(:,5) = qr Tot;

59 OutSect.(linename)(:,6) = qs Tot;

60 OutSect.(linename)(:,7) = Ts Tot;

61

62

63 end

139

A.7 T max.m

1 function Tcat max = T max(OutSect, OutLine, nlines, Tcat max)

2

3 for n=1:length(nlines)

4 linename = ['L',num2str(nlines(n))];

5

6 % Define the maximum temperature of the line

7 for m = 1:length(OutLine.Sect.(linename))

8 Tmax = max(OutSect.(linename)(OutSect.(linename)(:,2) == ...

OutLine.Sect.(linename)(m,1),7));

9 Instant = OutSect.(linename)(OutSect.(linename)(:,7) == ...

Tmax(1,1) & OutSect.(linename)(:,2) == ...

OutLine.Sect.(linename)(m,1),1);

10 Instant = Instant(1,1); % this was made due to in some ...

situations, there were several instants with the max ...

temp for the same section

11 Position = OutLine.Sect.(linename)(m,1);

12 T H120 = ...

length(OutSect.(linename)(OutSect.(linename)(:,7) > ...

120 & OutSect.(linename)(:,2) == ...

OutLine.Sect.(linename)(m,1),1));

13 Position PK Real = OutLine.Real PK.(linename)(m,1);

14

15 if Tmax(1,1)≥100

16 Tcat max.Higher100.(linename) = ...

[Tcat max.Higher100.(linename); Instant Position ...

Tmax T H120 Position PK Real];

17 elseif Tmax(1,1)<100 && Tmax(1,1)≥90

18 Tcat max.fr90to100.(linename) = ...

[Tcat max.fr90to100.(linename); Instant Position ...

Tmax T H120 Position PK Real];

19 elseif Tmax(1,1)<90 && Tmax(1,1)≥80

20 Tcat max.fr80to90.(linename) = ...

[Tcat max.fr80to90.(linename); Instant Position ...

140

Tmax T H120 Position PK Real];

21 elseif Tmax(1,1)<80 && Tmax(1,1)≥60

22 Tcat max.fr60to80.(linename) = ...

[Tcat max.fr60to80.(linename); Instant Position ...

Tmax T H120 Position PK Real];

23 elseif Tmax(1,1)<60 && Tmax(1,1)≥40

24 Tcat max.fr40to60.(linename) = ...

[Tcat max.fr40to60.(linename); Instant Position ...

Tmax T H120 Position PK Real];

25 elseif Tmax(1,1)<40 && Tmax(1,1)≥20

26 Tcat max.fr20to40.(linename) = ...

[Tcat max.fr20to40.(linename); Instant Position ...

Tmax T H120 Position PK Real];

27 elseif Tmax(1,1)<20

28 Tcat max.Lower20.(linename) = ...

[Tcat max.Lower20.(linename); Instant Position ...

Tmax T H120 Position PK Real];

29 end

30

31 end

32

33 % Define the maximum temperature of the source and ...

destination nodes

34 nodeSrc = OutLine.SrcDst.(linename)(1,1);

35 nodeDst = OutLine.SrcDst.(linename)(1,2);

36

37 nodenameSrc = ['N',num2str(nodeSrc)];

38 nodenameDst = ['N',num2str(nodeDst)];

39

40 Tcat max Src aux = ...

max(OutSect.(linename)(OutSect.(linename)(:,2)== ...

min(OutSect.(linename)(:,2)),7));

41 T H120 Src = ...

length(OutSect.(linename)(OutSect.(linename)(:,7) > 120 & ...

OutSect.(linename)(:,2) == min(OutSect.(linename)(:,2)),1));

42

141

43 Tcat max Dst aux = ...

max(OutSect.(linename)(OutSect.(linename)(:,2)== ...

max(OutSect.(linename)(:,2)),7));

44 T H120 Dst = ...

length(OutSect.(linename)(OutSect.(linename)(:,7) > 120 & ...

OutSect.(linename)(:,2) == max(OutSect.(linename)(:,2)),1));

45

46 Tcat max.SrcDst.(nodenameSrc) = [...

max(Tcat max.SrcDst.(nodenameSrc)(1,1), ...

Tcat max Src aux(1,1)) ...

max(Tcat max.SrcDst.(nodenameSrc)(1,2), T H120 Src(1,1))];

47 Tcat max.SrcDst.(nodenameDst) = [...

max(Tcat max.SrcDst.(nodenameDst)(1,1), ...

Tcat max Dst aux(1,1)) ...

max(Tcat max.SrcDst.(nodenameDst)(1,2), T H120 Dst(1,1))];

48

49 end

142

A.8 Code implemented in the interface

1

2 % Update the information box

3 app.info.Value = 'Selecting the case...';

4

5 % Open the foulder and select the file

6 [file, path] = uigetfile('*.db');

7 dbfile = fullfile(path,file);

8

9 % Update the information box

10 app.info.Value = 'Simulating...';

11

12 % Define the title for the thermal map

13 titlefile = strsplit(path,'\');

14 filename title = titlefile(end-1);

15

16 if contains(filename title,' ')==1

17 filename title aux = char(filename title);

18 filename title aux = strsplit(filename title aux,' ');

19 filename title aux = strjoin(filename title aux,' ');

20 filename title{1,1} = filename title aux;

21 end

22

23

24 tic

25 % Define the values of initial temperature

26 Ts0 = app.Tcat0.Value; % Temperature of the conductor ...

(initial value) in C

27 Tinf = app.Tair.Value; % Temperature of the air in C

28

29 % Define the InitData for the catenary

30 matCat = app.Material.Value; % material of the catenary

31 sectCat = app.Sectionmm2.Value; % Section of the catenary in ...

mmˆ2

143

32

33 % Define the weather conditions

34 Vw = app.speedWnd.Value; % speed of the wind in m/s

35 He = app.seaLvl.Value; % sea level in m

36

37 % Solar heat gain

38 checkSHG = app.SolarHeatGainCheckBox.Value; % solar heat gain on/off

39 n month = app.MonthSim.Value; % Month of the ...

simulation

40 n day = app.DaySim.Value; % Day of the simulation

41 Lat = app.Latitude.Value; % Latitude of the ...

location in degrees

42 Lat = Lat*pi/180; % Latitude of the ...

location in rad

43

44 % Length of the section

45 L sect = app.LengthS.Value; % Length of the ...

sections in km

46

47 % Select graphs depending on temperature range

48 T H100 = app.TH100.Value;

49 T 90 100 = app.T90 100.Value;

50 T 80 90 = app.T80 90.Value;

51 T 60 80 = app.T60 80.Value;

52 T 40 60 = app.T40 60.Value;

53 T 20 40 = app.T20 40.Value;

54 T 20 = app.T20.Value;

55

56 [OutLine, OutSect, nlines, OutNode, nnodes, Tcat max] = ...

Thermal study...

57 (Ts0,Tinf, dbfile, matCat, sectCat, He, Vw, checkSHG, n month, ...

n day, Lat, L sect); % Run the main file

58

59 % Update the information box

60 app.info.Value = 'Plotting the results...';

61

144

62 %% GRAPHS

63 % Init variables

64 nSrc = [];

65 nDst = [];

66 Xpos = [];

67 Ypos = [];

68 nNames = [];

69 nColor = [];

70 addedNodes100 = [];

71 addedNodes90 100 = [];

72 addedNodes80 90 = [];

73 addedNodes60 80 = [];

74 addedNodes40 60 = [];

75 addedNodes20 40 = [];

76 addedNodes20 = [];

77 nodeTmax = [];

78 nodeSize = [];

79 L T H100 = 0;

80

81 % Create the variables for the arrays

82 for n = 1:length(nlines)

83 linename = ['L', num2str(nlines(n))]; ...

% Names of the lines

84 nSrc = [nSrc ; OutLine.SrcDst.(linename)(1,1)]; ...

% Source node index

85 nDst = [nDst ; OutLine.SrcDst.(linename)(1,2)]; ...

% Destination node index

86 nColor = [nColor; OutLine.Colors.(linename)]; ...

% Color of the line

87 end

88

89 for n = 1:length(nnodes)

90 nodename = ['N', num2str(nnodes(n))]; ...

% Names of the nodes in number

91 Xpos = [Xpos ; OutNode.Pos XY.(nodename)(1,1)]; ...

% X position of the nodes

145

92 Ypos = [Ypos ; OutNode.Pos XY.(nodename)(1,2)]; ...

% Y position of the nodes

93 nNames = [nNames; OutNode.Name.(nodename)]; ...

% Names of the nodes

94 nodeTmax = [nodeTmax; Tcat max.SrcDst.(nodename)(:,1)...

95 round(Tcat max.SrcDst.(nodename)(:,2)/60,1)]; ...

% Maximum temperatures of the nodes in C

96 end

97

98 nodeSize = 4*ones(length(nnodes),1);

99

100 % Add new nodes

101 namesLimT = fieldnames(Tcat max);

102 L T all = {};

103 % 1) T > 100 C

104 if all(structfun(@isempty, Tcat max.Higher100))==0

105 % Remove the fields that are empty

106 fn = fieldnames(Tcat max.Higher100);

107 tf = cellfun(@(c) isempty(Tcat max.Higher100.(c)), fn);

108 Tcat max.Higher100 = rmfield(Tcat max.Higher100, fn(tf));

109

110 L T H100 = fieldnames(Tcat max.Higher100); ...

% Lines with temperatures ...

higher than 80C

111 ind new node = length(nnodes); ...

% Index of the ...

new nodes

112

113

114

115 for n = 1:length(L T H100)

116

117 SrcNode = OutLine.SrcDst.(L T H100{n,1})(1,1); ...

% Source node of the line

118 DstNode = OutLine.SrcDst.(L T H100{n,1})(1,2); ...

% Destination node of the line

146

119 nodenameSrc = ['N', num2str(SrcNode)]; ...

% Name of the source node

120 nodenameDst = ['N', num2str(DstNode)]; ...

% Name of the destination node

121

122 nodenameSrc text = OutNode.Name.(nodenameSrc){1,1}; ...

% Name of the Source node (used in ...

T avg Vs PK)

123 nodenameDst text = OutNode.Name.(nodenameDst){1,1}; ...

% Name of the Destination node (used ...

in T avg Vs PK)

124

125 SrcPoint = [OutNode.Pos XY.(nodenameSrc)(1,1), ...

126 OutNode.Pos XY.(nodenameSrc)(1,2)];

127 DstPoint = [OutNode.Pos XY.(nodenameDst)(1,1), ...

128 OutNode.Pos XY.(nodenameDst)(1,2)];

129

130 alpha = getAngle(SrcPoint,DstPoint);

131

132 L line Real = OutLine.LengthReal.(L T H100{n,1}); ...

% Real length of the line

133 L line Graph = OutLine.LengthGraph.(L T H100{n,1}); ...

% Graphical length of the line

134 L Real = Tcat max.Higher100.(L T H100{n,1})(:,2); ...

% Distance between the source node and ...

the point with temperature higher than 80C

135 L Graph = L line Graph.*L Real./L line Real; ...

% L Tmax Real scaled to the graph

136

137 T added point = Tcat max.Higher100.(L T H100{n,1})(:,3:4); ...

% Maximum temperatures of the added nodes

138

139 X added point = OutNode.Pos XY.(nodenameSrc)(1,1)+...

140 (L Graph.*cos(alpha)); % X position of the added point

141 Y added point = OutNode.Pos XY.(nodenameSrc)(1,2)+...

142 (L Graph.*sin(alpha)); % Y position of the added point

147

143

144 Xpos = [Xpos; X added point]; ...

% Update the X ...

coordenates

145 Ypos = [Ypos; Y added point]; ...

% Updata the Y ...

coordenates

146

147 for m = 1:length(L Real)

148 ind new node = ind new node + 1; ...

% Update the index of the node

149 nNames = vertcat(nNames, ' '); ...

% Update the names of the ...

nodes

150 addedNodes100 = [addedNodes100 ; ind new node]; ...

% Add the new nodes to the array addedNodes

151 nodeSize = [nodeSize; 5]; ...

% Size of highlited ...

nodes

152 nodeTmax = [nodeTmax; T added point(m,1) ...

round(T added point(m,2)/60,1)]; % ...

Update the temperature of the added nodes

153 end

154

155 if T H100 == 1

156 % Graphs averaged temperature against length & evolution of the

157 % temperature with time for the section with highest Temp

158 SectL 100 = ...

OutSect.(L T H100{n,1})(OutSect.(L T H100{n,1})(:,1)==1,2); ...

% Length of the Sections

159 GraphL 100 = [];

160

161 % Variable to save the lines that have been already plotted

162 L T all = L T H100;

163

164 for m = 1:length(SectL 100)

148

165 Temp 100 = OutSect.(L T H100{n,1})(OutSect.(L T H100{n,1})...

166 (:,2)==SectL 100(m),7); % Select all the values of the temperatures

167 Temp 100 = Temp 100(round(length(Temp 100)/2):end,1); ...

% Try to select only the ...

temperatures in permanent regimen

168 GraphL 100 = [GraphL 100; SectL 100(m), mean(Temp 100)]; ...

% Average temperatures

169 end

170 Sect Tmax 100 = Tcat max.Higher100.(L T H100{n,1})...

171 (Tcat max.Higher100.(L T H100{n,1})...

172 (:,3)==max(Tcat max.Higher100.(L T H100{n,1})(:,3)),2);

173 Sect Tmax 100 = Sect Tmax 100(1,1); % Sect with the ...

highest temperature

174 Pk Tmax 100 = Tcat max.Higher100.(L T H100{n,1})...

175 (Tcat max.Higher100.(L T H100{n,1})...

176 (:,3)==max(Tcat max.Higher100.(L T H100{n,1})(:,3)),5);

177 Pk Tmax 100 = Pk Tmax 100(1,1);

178 Temp 100 = OutSect.(L T H100{n,1})...

179 (OutSect.(L T H100{n,1})(:,2)==Sect Tmax 100,7);

180 time 100 = OutSect.(L T H100{n,1})...

181 (OutSect.(L T H100{n,1})(:,2)==Sect Tmax 100,1);

182

183 % Graphs of the evolution of the temperature with time and the

184 % average temperature for the simaltion

185 if length(GraphL 100(:,1)) 6=1

186 figure('Name','Average temperature along the line');

187 plot(OutLine.Real PK.(L T H100{n,1}),GraphL 100(:,2));

188 set(gca, 'FontName', 'Times New Roman');

189 x0=340;

190 y0=200;

191 width=400;

192 height=200;

193 set(gcf,'position',[x0,y0,width,height]);

194 set(gcf,'units','points','position',[x0,y0,width,height])

195 title(['Temperature of the catenary (' L T H100{n,1} '), ...

196 from ' nodenameSrc text ' to ' nodenameDst text]);

149

197 xlabel('Distance (km)');

198 ylabel('Temperature (C)');

199 xlim([OutLine.Real PK.(L T H100{n,1})(1,1) ...

200 OutLine.Real PK.(L T H100{n,1})(end,1)]);

201 grid on;

202 figure('Name','Evolution of the temperature');

203 plot(time 100,Temp 100)

204 set(gca, 'FontName', 'Times New Roman');

205 set(gcf,'position',[x0,y0,width,height]);

206 set(gcf,'units','points','position',[x0,y0,width,height])

207 title(['Temperature of the catenary (' L T H100{n,1} '), at ' ...

num2str(Pk Tmax 100) ' km ']);

208 xlabel('Time (s)');

209 ylabel('Temperature (C)');

210 xlim([time 100(1,1) time 100(end,1)]);

211 grid on;

212 end

213 end

214 end

215 end

216 % 2) 100 > T > 90

217 if all(structfun(@isempty, Tcat max.fr90to100))==0

218 % Remove the fields that are empty

219 fn = fieldnames(Tcat max.fr90to100);

220 tf = cellfun(@(c) isempty(Tcat max.fr90to100.(c)), fn);

221 Tcat max.fr90to100 = rmfield(Tcat max.fr90to100, fn(tf));

222

223 L T 90 100 = fieldnames(Tcat max.fr90to100); ...

% Lines with temperatures ...

higher than 80C

224

225 ind new node = length(nnodes)+length(addedNodes100); ...

% Index of the new nodes

226 for n = 1:length(L T 90 100)

227

150

228 SrcNode = OutLine.SrcDst.(L T 90 100{n,1})(1,1); ...

% Source node of the line

229 DstNode = OutLine.SrcDst.(L T 90 100{n,1})(1,2); ...

% Destination node of the line

230 nodenameSrc = ['N', num2str(SrcNode)]; ...

% Name of the source node

231 nodenameDst = ['N', num2str(DstNode)]; ...

% Name of the destination node

232

233 nodenameSrc text = OutNode.Name.(nodenameSrc){1,1}; ...

% Name of the Source node (used in ...

T avg Vs PK)

234 nodenameDst text = OutNode.Name.(nodenameDst){1,1}; ...

% Name of the Destination node (used ...

in T avg Vs PK)

235

236 SrcPoint = [OutNode.Pos XY.(nodenameSrc)(1,1), ...

237 OutNode.Pos XY.(nodenameSrc)(1,2)];

238 DstPoint = [OutNode.Pos XY.(nodenameDst)(1,1), ...

239 OutNode.Pos XY.(nodenameDst)(1,2)];

240

241 alpha = getAngle(SrcPoint,DstPoint);

242

243 L line Real = OutLine.LengthReal.(L T 90 100{n,1}); ...

% Real length of the line

244 L line Graph = OutLine.LengthGraph.(L T 90 100{n,1}); ...

% Graphical length of the line

245 L Real = Tcat max.fr90to100.(L T 90 100{n,1})(:,2); ...

% Distance between the source node and ...

added point

246 L Graph = L line Graph.*L Real./L line Real; ...

% L Tmax Real scaled to the graph

247

248 T added point = Tcat max.fr90to100.(L T 90 100{n,1})(:,3:4); ...

% Maximum temperatures of the added nodes

249

151

250 X added point = ...

OutNode.Pos XY.(nodenameSrc)(1,1)+(L Graph.*cos(alpha)); % X ...

position of added point

251 Y added point = ...

OutNode.Pos XY.(nodenameSrc)(1,2)+(L Graph.*sin(alpha)); % Y ...

position of added point

252

253 Xpos = [Xpos; X added point]; ...

% Update the X ...

coordenates

254 Ypos = [Ypos; Y added point]; ...

% Updata the Y ...

coordenates

255

256 for m = 1:length(L Real)

257 ind new node = ind new node + 1; ...

% Update the index of the node

258 nNames = vertcat(nNames, ' '); ...

% Update the names of the ...

nodes

259 addedNodes90 100 = [addedNodes90 100 ; ind new node]; ...

% Add the new nodes to the array addedNodes

260 nodeSize = [nodeSize; 3]; ...

% Size of highlited ...

nodes

261 nodeTmax = [nodeTmax; T added point(m,:)]; ...

% Update the temperature of the ...

added nodes

262 end

263 if T 90 100 == 1

264 % Graphs averaged temperature against length & evolution of the

265 % temperature with time for the section with highest Temp

266 SectL 90 100 = ...

OutSect.(L T 90 100{n,1})(OutSect.(L T 90 100{n,1})(:,1)==1,2); ...

% Length of the Sections

267 GraphL 90 100 = [];

152

268

269 % Variable to save the lines that have been already plotted

270 ind line rmvd = strcmp(L T 90 100{n,1},L T all); ...

% line that must be removed

271

272 % Condition to not plot again the same line that already appear in

273 % other range of temperatures

274 if all(ind line rmvd==0)

275 L T all = [L T all;L T 90 100{n,1}];

276 % Update the values of the lines for average

277 %temperature and evolution of temperuta with time

278 for m = 1:length(SectL 90 100)

279 Temp 90 100 = OutSect.(L T 90 100{n,1})(OutSect.(L T 90 100{n,1})...

280 (:,2)==SectL 90 100(m),7); % Select all the values of the ...

temperatures

281 % Try to select only the temperatures in permanent regimen

282 Temp 90 100 = Temp 90 100(round(length(Temp 90 100)/2):end,1);

283 % Average temperatures

284

285 GraphL 90 100 = [GraphL 90 100; SectL 90 100(m), mean(Temp 90 100)];

286 end

287 Sect Tmax 90 100 = Tcat max.fr90to100.(L T 90 100{n,1})...

288 (Tcat max.fr90to100.(L T 90 100{n,1})...

289 (:,3)==max(Tcat max.fr90to100.(L T 90 100{n,1})(:,3)),2);

290 Sect Tmax 90 100 = Sect Tmax 90 100(1,1); % Sect with ...

the highest temperature

291 Pk Tmax 90 100 = Tcat max.fr90to100.(L T 90 100{n,1})...

292 (Tcat max.fr90to100.(L T 90 100{n,1})...

293 (:,3)==max(Tcat max.fr90to100.(L T 90 100{n,1})(:,3)),5);

294 Pk Tmax 90 100 = Pk Tmax 90 100(1,1);

295 Temp 90 100 = OutSect.(L T 90 100{n,1})(OutSect.(L T 90 100{n,1})...

296 (:,2)==Sect Tmax 90 100,7);

297 time 90 100 = OutSect.(L T 90 100{n,1})(OutSect.(L T 90 100{n,1})...

298 (:,2)==Sect Tmax 90 100,1);

299

300 % Graphs of the evolution of the temperature with time and the

153

301 % average temperature for the simaltion

302 if length(GraphL 90 100(:,1)) 6=1

303 figure('Name','Average temperature along the line');

304 plot(OutLine.Real PK.(L T 90 100{n,1}),GraphL 90 100(:,2));

305 set(gca, 'FontName', 'Times New Roman');

306 x0=340;

307 y0=200;

308 width=400;

309 height=200;

310 set(gcf,'position',[x0,y0,width,height]);

311 set(gcf,'units','points','position',[x0,y0,width,height])

312 title(['Temperature of the catenary (' L T 90 100{n,1} '),...

313 from ' nodenameSrc text ' to ' nodenameDst text]);

314 xlabel('Distance (km)');

315 ylabel('Temperature (C)');

316 xlim([OutLine.Real PK.(L T 90 100{n,1})(1,1)...

317 OutLine.Real PK.(L T 90 100{n,1})(end,1)]);

318 grid on;

319 figure('Name','Evolution of the temperature');

320 plot(time 90 100,Temp 90 100)

321 set(gca, 'FontName', 'Times New Roman');

322 set(gcf,'position',[x0,y0,width,height]);

323 set(gcf,'units','points','position',[x0,y0,width,height])

324 title(['Temperature of the catenary (' L T 90 100{n,1} '),...

325 at ' num2str(Pk Tmax 90 100) ' km ']);

326 xlabel('Time (s)');

327 ylabel('Temperature (C)');

328 xlim([time 90 100(1,1) time 90 100(end,1)]);

329 grid on;

330 end

331 end

332 end

333 end

334 end

335 % 3) 80 > T > 90

336 if all(structfun(@isempty, Tcat max.fr80to90))==0

154

337 % Remove the fields that are empty

338 fn = fieldnames(Tcat max.fr80to90);

339 tf = cellfun(@(c) isempty(Tcat max.fr80to90.(c)), fn);

340 Tcat max.fr80to90 = rmfield(Tcat max.fr80to90, fn(tf));

341

342 L T 80 90 = fieldnames(Tcat max.fr80to90); ...

% Lines with temperatures ...

higher than 80C

343

344 ind new node = length(nnodes)+length(addedNodes100)...

345 +length(addedNodes90 100); % Index of ...

the new nodes

346 for n = 1:length(L T 80 90)

347

348 SrcNode = OutLine.SrcDst.(L T 80 90{n,1})(1,1); ...

% Source node of the line

349 DstNode = OutLine.SrcDst.(L T 80 90{n,1})(1,2); ...

% Destination node of the line

350 nodenameSrc = ['N', num2str(SrcNode)]; ...

% Name of the source node

351 nodenameDst = ['N', num2str(DstNode)]; ...

% Name of the destination node

352

353 nodenameSrc text = OutNode.Name.(nodenameSrc){1,1}; ...

% Name of the Source node (used in ...

T avg Vs PK)

354 nodenameDst text = OutNode.Name.(nodenameDst){1,1}; ...

% Name of the Destination node (used ...

in T avg Vs PK)

355

356 SrcPoint = [OutNode.Pos XY.(nodenameSrc)(1,1), ...

357 OutNode.Pos XY.(nodenameSrc)(1,2)];

358 DstPoint = [OutNode.Pos XY.(nodenameDst)(1,1), ...

359 OutNode.Pos XY.(nodenameDst)(1,2)];

360

361 alpha = getAngle(SrcPoint,DstPoint);

155

362

363 L line Real = OutLine.LengthReal.(L T 80 90{n,1}); ...

% Real length of the line

364 L line Graph = OutLine.LengthGraph.(L T 80 90{n,1}); ...

% Graphical length of the line

365 L Real = Tcat max.fr80to90.(L T 80 90{n,1})(:,2); ...

% Distance between the source node and ...

added point

366 L Graph = L line Graph.*L Real./L line Real; ...

% L Tmax Real scaled to the graph

367

368 T added point = Tcat max.fr80to90.(L T 80 90{n,1})(:,3:4); ...

% Maximum temperatures of the added nodes

369

370 X added point = OutNode.Pos XY.(nodenameSrc)(1,1)+...

371 (L Graph.*cos(alpha)); % X position of added point

372 Y added point = OutNode.Pos XY.(nodenameSrc)(1,2)+...

373 (L Graph.*sin(alpha)); % Y position of added point

374

375 Xpos = [Xpos; X added point]; ...

% Update the X ...

coordenates

376 Ypos = [Ypos; Y added point]; ...

% Updata the Y ...

coordenates

377

378 for m = 1:length(L Real)

379 ind new node = ind new node + 1; ...

% Update the index of the node

380 nNames = vertcat(nNames, ' '); ...

% Update the names of the ...

nodes

381 addedNodes80 90 = [addedNodes80 90 ; ind new node]; ...

% Add the new nodes to the array addedNodes

382 nodeSize = [nodeSize; 3]; ...

% Size of highlited ...

156

nodes

383 nodeTmax = [nodeTmax; T added point(m,:)]; ...

% Update the temperature of the ...

added nodes

384 end

385

386 if T 80 90 == 1

387 % Graphs averaged temperature against length & evolution of the

388 % temperature with time for the section with highest Temp

389 SectL 80 90 = OutSect.(L T 80 90{n,1})...

390 (OutSect.(L T 80 90{n,1})(:,1)==1,2); % Length of the Sections

391 GraphL 80 90 = [];

392

393 % Variable to save the lines that have been already plotted

394 ind line rmvd = strcmp(L T 80 90{n,1},L T all); ...

% line that must be removed

395

396 % Condition to not plot again the same line that already appear in

397 % other range of temperatures

398 if all(ind line rmvd==0)

399 % Update the values of the lines for average

400 %temperature and evolution of temperuta with time

401 L T all = [L T all;L T 80 90{n,1}];

402

403 for m = 1:length(SectL 80 90)

404 Temp 80 90 = OutSect.(L T 80 90{n,1})...

405 (OutSect.(L T 80 90{n,1})(:,2)==SectL 80 90(m),7); % Select ...

all the values of the temperatures

406 Temp 80 90 = Temp 80 90(round(length(Temp 80 90)/2):end,1); ...

% Try to select only the ...

temperatures in permanent regimen

407 GraphL 80 90 = [GraphL 80 90; SectL 80 90(m), mean(Temp 80 90)]; ...

% Average temperatures

408 end

409

157

410 Sect Tmax 80 90 = ...

Tcat max.fr80to90.(L T 80 90{n,1})(Tcat max.fr80to90.(L T 80 90{n,1})...

411 (:,3)==max(Tcat max.fr80to90.(L T 80 90{n,1})(:,3)),2);

412 Sect Tmax 80 90 = Sect Tmax 80 90(1,1); % Sect with the ...

highest temperature

413 Pk Tmax 80 90 = Tcat max.fr80to90.(L T 80 90{n,1})...

414 (Tcat max.fr80to90.(L T 80 90{n,1})...

415 (:,3)==max(Tcat max.fr80to90.(L T 80 90{n,1})(:,3)),5);

416 Pk Tmax 80 90 = Pk Tmax 80 90(1,1);

417 Temp 80 90 = OutSect.(L T 80 90{n,1})(OutSect.(L T 80 90{n,1})...

418 (:,2)==Sect Tmax 80 90,7);

419 time 80 90 = OutSect.(L T 80 90{n,1})(OutSect.(L T 80 90{n,1})...

420 (:,2)==Sect Tmax 80 90,1);

421

422 % Graphs of the evolution of the temperature with time and the

423 % average temperature for the simaltion

424 if length(GraphL 80 90(:,1)) 6=1

425 figure('Name','Average temperature along the line');

426 plot(OutLine.Real PK.(L T 80 90{n,1}),GraphL 80 90(:,2));

427 set(gca, 'FontName', 'Times New Roman');

428 x0=340;

429 y0=200;

430 width=400;

431 height=200;

432 set(gcf,'position',[x0,y0,width,height]);

433 set(gcf,'units','points','position',[x0,y0,width,height])

434 title(['Temperature of the catenary (' L T 80 90{n,1} '),...

435 from ' nodenameSrc text ' to ' nodenameDst text]);

436 xlabel('Distance (km)');

437 ylabel('Temperature (C)');

438 xlim([OutLine.Real PK.(L T 80 90{n,1})(1,1) ...

439 OutLine.Real PK.(L T 80 90{n,1})(end,1)]);

440 grid on;

441 figure('Name','Evolution of the temperature');

442 plot(time 80 90,Temp 80 90)

443 set(gca, 'FontName', 'Times New Roman');

158

444 set(gcf,'position',[x0,y0,width,height]);

445 set(gcf,'units','points','position',[x0,y0,width,height])

446 title(['Temperature of the catenary (' L T 80 90{n,1} '),...

447 at ' num2str(Pk Tmax 80 90) ' km ']);

448 xlabel('Time (s)');

449 ylabel('Temperature (C)');

450 xlim([time 80 90(1,1) time 80 90(end,1)]);

451 grid on;

452 end

453 end

454 end

455 end

456 end

457

458 % 4) 60 > T > 80

459 if all(structfun(@isempty, Tcat max.fr60to80))==0

460 % Remove the fields that are empty

461 fn = fieldnames(Tcat max.fr60to80);

462 tf = cellfun(@(c) isempty(Tcat max.fr60to80.(c)), fn);

463 Tcat max.fr60to80 = rmfield(Tcat max.fr60to80, fn(tf));

464

465 L T 60 80 = fieldnames(Tcat max.fr60to80); ...

% Lines with temperatures ...

higher than 80C

466

467 ind new node = length(nnodes)+length(addedNodes100)+....

468 length(addedNodes90 100)+length(addedNodes80 90); ...

% Index of the new nodes

469 for n = 1:length(L T 60 80)

470

471 SrcNode = OutLine.SrcDst.(L T 60 80{n,1})(1,1); ...

% Source node of the line

472 DstNode = OutLine.SrcDst.(L T 60 80{n,1})(1,2); ...

% Destination node of the line

473 nodenameSrc = ['N', num2str(SrcNode)]; ...

% Name of the source node

159

474 nodenameDst = ['N', num2str(DstNode)]; ...

% Name of the destination node

475

476 nodenameSrc text = OutNode.Name.(nodenameSrc){1,1}; ...

% Name of the Source node (used in ...

T avg Vs PK)

477 nodenameDst text = OutNode.Name.(nodenameDst){1,1}; ...

% Name of the Destination node (used ...

in T avg Vs PK)

478

479 SrcPoint = [OutNode.Pos XY.(nodenameSrc)(1,1), ...

480 OutNode.Pos XY.(nodenameSrc)(1,2)];

481 DstPoint = [OutNode.Pos XY.(nodenameDst)(1,1),...

482 OutNode.Pos XY.(nodenameDst)(1,2)];

483

484 alpha = getAngle(SrcPoint,DstPoint);

485

486 L line Real = OutLine.LengthReal.(L T 60 80{n,1}); ...

% Real length of the line

487 L line Graph = OutLine.LengthGraph.(L T 60 80{n,1}); ...

% Graphical length of the line

488 L Real = Tcat max.fr60to80.(L T 60 80{n,1})(:,2); ...

% Distance between the source node and ...

added point

489 L Graph = L line Graph.*L Real./L line Real; ...

% L Tmax Real scaled to the graph

490

491 T added point = Tcat max.fr60to80.(L T 60 80{n,1})(:,3:4); ...

% Maximum temperatures of the added nodes

492

493 X added point = OutNode.Pos XY.(nodenameSrc)(1,1)+...

494 (L Graph.*cos(alpha)); % X position of added point

495 Y added point = OutNode.Pos XY.(nodenameSrc)(1,2)+...

496 (L Graph.*sin(alpha)); % Y position of added point

497

160

498 Xpos = [Xpos; X added point]; ...

% Update the X ...

coordenates

499 Ypos = [Ypos; Y added point]; ...

% Updata the Y ...

coordenates

500

501 for m = 1:length(L Real)

502 ind new node = ind new node + 1; ...

% Update the index of the node

503 nNames = vertcat(nNames, ' '); ...

% Update the names of the ...

nodes

504 addedNodes60 80 = [addedNodes60 80 ; ind new node]; ...

% Add the new nodes to the array addedNodes

505 nodeSize = [nodeSize; 3]; ...

% Size of highlited ...

nodes

506 nodeTmax = [nodeTmax; T added point(m,:)]; ...

% Update the temperature of the ...

added nodes

507 end

508

509 if T 60 80 == 1

510 % Graphs averaged temperature against length & evolution of the

511 % temperature with time for the section with highest Temp

512 SectL 60 80 = OutSect.(L T 60 80{n,1})...

513 (OutSect.(L T 60 80{n,1})(:,1)==1,2); % Length of the Sections

514 GraphL 60 80 = [];

515

516 % Variable to save the lines that have been already plotted

517 ind line rmvd = strcmp(L T 60 80{n,1},L T all); ...

% line that must be removed

518

519 % Condition to not plot again the same line that already appear in

520 % other range of temperatures

161

521 if all(ind line rmvd==0)

522 L T all = [L T all;L T 60 80{n,1}]; % Update the ...

values of the lines for average temperature and evolution of ...

temperuta with time

523 for m = 1:length(SectL 60 80)

524 Temp 60 80 = OutSect.(L T 60 80{n,1})...

525 (OutSect.(L T 60 80{n,1})(:,2)==SectL 60 80(m),7); % Select ...

all the values of the temperatures

526 Temp 60 80 = Temp 60 80(round(length(Temp 60 80)/2):end,1); ...

% Try to select only the ...

temperatures in permanent regimen

527 GraphL 60 80 = [GraphL 60 80; SectL 60 80(m), mean(Temp 60 80)]; ...

% Average temperatures

528 end

529

530 Sect Tmax 60 80 = Tcat max.fr60to80.(L T 60 80{n,1})...

531 (Tcat max.fr60to80.(L T 60 80{n,1})...

532 (:,3)==max(Tcat max.fr60to80.(L T 60 80{n,1})(:,3)),2);

533 Sect Tmax 60 80 = Sect Tmax 60 80(1,1); % Sect with the ...

highest temperature

534 Pk Tmax 60 80 = Tcat max.fr60to80.(L T 60 80{n,1})...

535 (Tcat max.fr60to80.(L T 60 80{n,1})...

536 (:,3)==max(Tcat max.fr60to80.(L T 60 80{n,1})(:,3)),5);

537 Pk Tmax 60 80 = Pk Tmax 60 80(1,1);

538 Temp 60 80 = OutSect.(L T 60 80{n,1})...

539 (OutSect.(L T 60 80{n,1})(:,2)==Sect Tmax 60 80,7);

540 time 60 80 = OutSect.(L T 60 80{n,1})...

541 (OutSect.(L T 60 80{n,1})(:,2)==Sect Tmax 60 80,1);

542

543 % Graphs of the evolution of the temperature with time and the

544 % average temperature for the simaltion

545 if length(GraphL 60 80(:,1)) 6=1

546 figure('Name','Average temperature along the line');

547 plot(OutLine.Real PK.(L T 60 80{n,1}),GraphL 60 80(:,2));

548 set(gca, 'FontName', 'Times New Roman');

549 x0=340;

162

550 y0=200;

551 width=400;

552 height=200;

553 set(gcf,'position',[x0,y0,width,height]);

554 set(gcf,'units','points','position',[x0,y0,width,height])

555 title(['Temperature of the catenary ...

556 (' L T 60 80{n,1} '), from ' nodenameSrc text ' to ' ...

nodenameDst text]);

557 xlabel('Distance (km)');

558 ylabel('Temperature (C)');

559 xlim([OutLine.Real PK.(L T 60 80{n,1})...

560 (1,1) OutLine.Real PK.(L T 60 80{n,1})(end,1)]);

561 grid on;

562 figure('Name','Evolution of the temperature');

563 plot(time 60 80,Temp 60 80)

564 set(gca, 'FontName', 'Times New Roman');

565 set(gcf,'position',[x0,y0,width,height]);

566 set(gcf,'units','points','position',...

567 [x0,y0,width,height])

568 title(['Temperature of the catenary ...

569 (' L T 60 80{n,1} '), at ' num2str(Pk Tmax 60 80) ' km ']);

570 xlabel('Time (s)');

571 ylabel('Temperature (C)');

572 xlim([time 60 80(1,1) time 60 80(end,1)]);

573 grid on;

574 end

575 end

576 end

577 end

578 end

579

580 % 5) 40 > T > 60

581 if all(structfun(@isempty, Tcat max.fr40to60))==0

582 % Remove the fields that are empty

583 fn = fieldnames(Tcat max.fr40to60);

584 tf = cellfun(@(c) isempty(Tcat max.fr40to60.(c)), fn);

163

585 Tcat max.fr40to60 = rmfield(Tcat max.fr40to60, fn(tf));

586

587 L T 40 60 = fieldnames(Tcat max.fr40to60); ...

% Lines with temperatures ...

higher than 80C

588

589 ind new node = length(nnodes)+length(addedNodes100)+...

590 length(addedNodes90 100)...

591 +length(addedNodes80 90)+length(addedNodes60 80); ...

% Index of the new nodes

592 for n = 1:length(L T 40 60)

593

594 SrcNode = OutLine.SrcDst.(L T 40 60{n,1})(1,1); ...

% Source node of the line

595 DstNode = OutLine.SrcDst.(L T 40 60{n,1})(1,2); ...

% Destination node of the line

596 nodenameSrc = ['N', num2str(SrcNode)]; ...

% Name of the source node

597 nodenameDst = ['N', num2str(DstNode)]; ...

% Name of the destination node

598

599 nodenameSrc text = OutNode.Name.(nodenameSrc){1,1}; ...

% Name of the Source node (used in ...

T avg Vs PK)

600 nodenameDst text = OutNode.Name.(nodenameDst){1,1}; ...

% Name of the Destination node (used ...

in T avg Vs PK)

601

602 SrcPoint = [OutNode.Pos XY.(nodenameSrc)(1,1), ...

603 OutNode.Pos XY.(nodenameSrc)(1,2)];

604 DstPoint = [OutNode.Pos XY.(nodenameDst)(1,1), ...

605 OutNode.Pos XY.(nodenameDst)(1,2)];

606

607 alpha = getAngle(SrcPoint,DstPoint);

608

164

609 L line Real = OutLine.LengthReal.(L T 40 60{n,1}); ...

% Real length of the line

610 L line Graph = OutLine.LengthGraph.(L T 40 60{n,1}); ...

% Graphical length of the line

611 L Real = Tcat max.fr40to60.(L T 40 60{n,1})(:,2); ...

% Distance between the source node and ...

added point

612 L Graph = L line Graph.*L Real./L line Real; ...

% L Tmax Real scaled to the graph

613

614 T added point = Tcat max.fr40to60.(L T 40 60{n,1})(:,3:4); ...

% Maximum temperatures of the added nodes

615

616 X added point = OutNode.Pos XY.(nodenameSrc)(1,1)...

617 +(L Graph.*cos(alpha)); % X position of added point

618 Y added point = OutNode.Pos XY.(nodenameSrc)(1,2)+...

619 (L Graph.*sin(alpha)); % Y position of added point

620

621 Xpos = [Xpos; X added point]; ...

% Update the X ...

coordenates

622 Ypos = [Ypos; Y added point]; ...

% Updata the Y ...

coordenates

623

624 for m = 1:length(L Real)

625 ind new node = ind new node + 1; ...

% Update the index of the node

626 nNames = vertcat(nNames, ' '); ...

% Update the names of the ...

nodes

627 addedNodes40 60 = [addedNodes40 60 ; ind new node]; ...

% Add the new nodes to the array addedNodes

628 nodeSize = [nodeSize; 3]; ...

% Size of highlited ...

nodes

165

629 nodeTmax = [nodeTmax; T added point(m,:)]; ...

% Update the temperature of the ...

added nodes

630 end

631

632 if T 40 60 == 1

633 % Graphs averaged temperature against length & evolution of the

634 % temperature with time for the section with highest Temp

635 SectL 40 60 = OutSect.(L T 40 60{n,1})(OutSect.(L T 40 60...

636 {n,1})(:,1)==1,2); % Length of the Sections

637 GraphL 40 60 = [];

638

639 % Variable to save the lines that have been already plotted

640 ind line rmvd = strcmp(L T 40 60{n,1},L T all); ...

% line that must be removed

641

642 % Condition to not plot again the same line that already appear in

643 % other range of temperatures

644 if all(ind line rmvd==0)

645 L T all = [L T all;L T 40 60{n,1}]; % Update the ...

values of the lines for average temperature and evolution of ...

temperuta with time

646 for m = 1:length(SectL 40 60)

647 Temp 40 60 = OutSect.(L T 40 60{n,1})(OutSect.(L T 40 60{n,1})...

648 (:,2)==SectL 40 60(m),7); % Select all the values of the ...

temperatures

649 Temp 40 60 = Temp 40 60(round(length(Temp 40 60)/2):end,1); ...

% Try to select only the ...

temperatures in permanent regimen

650 GraphL 40 60 = [GraphL 40 60; SectL 40 60(m), mean(Temp 40 60)]; ...

% Average temperatures

651 end

652

653 Sect Tmax 40 60 = Tcat max.fr40to60.(L T 40 60{n,1})...

654 (Tcat max.fr40to60.(L T 40 60{n,1})...

655 (:,3)==max(Tcat max.fr40to60.(L T 40 60{n,1})(:,3)),2);

166

656 Sect Tmax 40 60 = Sect Tmax 40 60(1,1); % Sect with the ...

highest temperature

657 Pk Tmax 40 60 = Tcat max.fr40to60.(L T 40 60{n,1})...

658 (Tcat max.fr40to60.(L T 40 60{n,1})(:,3)...

659 ==max(Tcat max.fr40to60.(L T 40 60{n,1})(:,3)),5);

660 Pk Tmax 40 60 = Pk Tmax 40 60(1,1);

661 Temp 40 60 = OutSect.(L T 40 60{n,1})...

662 (OutSect.(L T 40 60{n,1})...

663 (:,2)==Sect Tmax 40 60,7);

664 time 40 60 = OutSect.(L T 40 60{n,1})...

665 (OutSect.(L T 40 60{n,1})...

666 (:,2)==Sect Tmax 40 60,1);

667

668 % Graphs of the evolution of the temperature with time and the

669 % average temperature for the simaltion

670 if length(GraphL 40 60(:,1)) 6=1

671 figure('Name','Average temperature along the line');

672 plot(OutLine.Real PK.(L T 40 60{n,1}),GraphL 40 60(:,2));

673 set(gca, 'FontName', 'Times New Roman');

674 x0=340;

675 y0=200;

676 width=400;

677 height=200;

678 set(gcf,'position',[x0,y0,width,height]);

679 set(gcf,'units','points','position',...

680 [x0,y0,width,height])

681 title(['Temperature of the catenary ...

682 (' L T 40 60{n,1} '), from ' nodenameSrc text ' to ' ...

nodenameDst text]);

683 xlabel('Distance (km)');

684 ylabel('Temperature (C)');

685 xlim([OutLine.Real PK.(L T 40 60{n,1})...

686 (1,1) OutLine.Real PK.(L T 40 60{n,1})(end,1)]);

687 grid on;

688 figure('Name','Evolution of the temperature');

689 plot(time 40 60,Temp 40 60)

167

690 set(gca, 'FontName', 'Times New Roman');

691 set(gcf,'position',[x0,y0,width,height]);

692 set(gcf,'units','points','position',[x0,y0,width,height])

693 title(['Temperature of the catenary (' L T 40 60{n,1} '), at ' ...

num2str(Pk Tmax 40 60) ' km ']);

694 xlabel('Time (s)');

695 ylabel('Temperature (C)');

696 xlim([time 40 60(1,1) time 40 60(end,1)]);

697 grid on;

698 end

699 end

700 end

701 end

702 end

703

704 % 6) 20 > T > 40

705 if all(structfun(@isempty, Tcat max.fr20to40))==0

706 % Remove the fields that are empty

707 fn = fieldnames(Tcat max.fr20to40);

708 tf = cellfun(@(c) isempty(Tcat max.fr20to40.(c)), fn);

709 Tcat max.fr20to40 = rmfield(Tcat max.fr20to40, fn(tf));

710

711 L T 20 40 = fieldnames(Tcat max.fr20to40); ...

% Lines with temperatures ...

higher than 80C

712

713 ind new node = length(nnodes)+length(addedNodes100)+length...

714 (addedNodes90 100)+length(addedNodes80 90)+length...

715 (addedNodes60 80)+length(addedNodes40 60); ...

% Index of the new nodes

716 for n = 1:length(L T 20 40)

717

718 SrcNode = OutLine.SrcDst.(L T 20 40{n,1})(1,1); ...

% Source node of the line

719 DstNode = OutLine.SrcDst.(L T 20 40{n,1})(1,2); ...

% Destination node of the line

168

720 nodenameSrc = ['N', num2str(SrcNode)]; ...

% Name of the source node

721 nodenameDst = ['N', num2str(DstNode)]; ...

% Name of the destination node

722

723 nodenameSrc text = OutNode.Name.(nodenameSrc){1,1}; ...

% Name of the Source node (used in ...

T avg Vs PK)

724 nodenameDst text = OutNode.Name.(nodenameDst){1,1}; ...

% Name of the Destination node (used ...

in T avg Vs PK)

725

726 SrcPoint = [OutNode.Pos XY.(nodenameSrc)(1,1), ...

727 OutNode.Pos XY.(nodenameSrc)(1,2)];

728 DstPoint = [OutNode.Pos XY.(nodenameDst)(1,1), ...

729 OutNode.Pos XY.(nodenameDst)(1,2)];

730

731 alpha = getAngle(SrcPoint,DstPoint);

732

733 L line Real = OutLine.LengthReal.(L T 20 40{n,1}); ...

% Real length of the line

734 L line Graph = OutLine.LengthGraph.(L T 20 40{n,1}); ...

% Graphical length of the line

735 L Real = Tcat max.fr20to40.(L T 20 40{n,1})(:,2); ...

% Distance between the source node and ...

added point

736 L Graph = L line Graph.*L Real./L line Real; ...

% L Tmax Real scaled to the graph

737

738 T added point = Tcat max.fr20to40.(L T 20 40{n,1})(:,3:4); ...

% Maximum temperatures of the added nodes

739

740 X added point = OutNode.Pos XY.(nodenameSrc)...

741 (1,1)+(L Graph.*cos(alpha)); % X position of added point

742 Y added point = OutNode.Pos XY.(nodenameSrc)...

743 (1,2)+(L Graph.*sin(alpha)); % Y position of added point

169

744

745 Xpos = [Xpos; X added point]; ...

% Update the X ...

coordenates

746 Ypos = [Ypos; Y added point]; ...

% Updata the Y ...

coordenates

747

748 for m = 1:length(L Real)

749 ind new node = ind new node + 1; ...

% Update the index of the node

750 nNames = vertcat(nNames, ' '); ...

% Update the names of the ...

nodes

751 addedNodes20 40 = [addedNodes20 40 ; ind new node]; ...

% Add the new nodes to the array addedNodes

752 nodeSize = [nodeSize; 3]; ...

% Size of highlited ...

nodes

753 nodeTmax = [nodeTmax; T added point(m,:)]; ...

% Update the temperature of the ...

added nodes

754 end

755

756 if T 20 40 == 1

757 % Graphs averaged temperature against length & evolution of the

758 % temperature with time for the section with highest Temp

759 SectL 20 40 = OutSect.(L T 20 40{n,1})...

760 (OutSect.(L T 20 40{n,1})(:,1)==1,2); % Length of the Sections

761 GraphL 20 40 = [];

762

763 % Variable to save the lines that have been already plotted

764 ind line rmvd = strcmp(L T 20 40{n,1},L T all); ...

% line that must be removed

765

766 % Condition to not plot again the same line that already appear in

170

767 % other range of temperatures

768 if all(ind line rmvd==0)

769 L T all = [L T all;L T 20 40{n,1}]; % Update the ...

values of the lines for average temperature and evolution of ...

temperuta with time

770 for m = 1:length(SectL 20 40)

771 Temp 20 40 = OutSect.(L T 20 40{n,1})...

772 (OutSect.(L T 20 40{n,1})(:,2)==SectL 20 40(m),7); % Select ...

all the values of the temperatures

773 Temp 20 40 = Temp 20 40(round(length(Temp 20 40)/2):end,1); ...

% Try to select only the ...

temperatures in permanent regimen

774 GraphL 20 40 = [GraphL 20 40; SectL 20 40(m), mean(Temp 20 40)]; ...

% Average temperatures

775 end

776

777 Sect Tmax 20 40 = ...

Tcat max.fr20to40.(L T 20 40{n,1})(Tcat max.fr20to40.(L T 20 40{n,1})...

778 (:,3)==max(Tcat max.fr20to40.(L T 20 40{n,1})(:,3)),2);

779 Sect Tmax 20 40 = Sect Tmax 20 40(1,1); % Sect with the ...

highest temperature

780 Pk Tmax 20 40 = Tcat max.fr20to40.(L T 20 40{n,1})...

781 (Tcat max.fr20to40.(L T 20 40{n,1})(:,3)...

782 ==max(Tcat max.fr20to40.(L T 20 40{n,1})(:,3)),5);

783 Pk Tmax 20 40 = Pk Tmax 20 40(1,1);

784 Temp 20 40 = OutSect.(L T 20 40{n,1})(OutSect.(L T 20 40{n,1})...

785 (:,2)==Sect Tmax 20 40,7);

786 time 20 40 = OutSect.(L T 20 40{n,1})(OutSect.(L T 20 40{n,1})...

787 (:,2)==Sect Tmax 20 40,1);

788

789 % Graphs of the evolution of the temperature with time and the

790 % average temperature for the simaltion

791 if length(GraphL 20 40(:,1)) 6=1

792 figure('Name','Average temperature along the line');

793 plot(OutLine.Real PK.(L T 20 40{n,1}),GraphL 20 40(:,2));

794 set(gca, 'FontName', 'Times New Roman');

171

795 x0=340;

796 y0=200;

797 width=400;

798 height=200;

799 set(gcf,'position',[x0,y0,width,height]);

800 set(gcf,'units','points','position',[x0,y0,width,height])

801 title(['Temperature of the catenary (' L T 20 40{n,1} '),...

802 from ' nodenameSrc text ' to ' nodenameDst text]);

803 xlabel('Distance (km)');

804 ylabel('Temperature (C)');

805 xlim([OutLine.Real PK.(L T 20 40{n,1})(1,1) ...

806 OutLine.Real PK.(L T 20 40{n,1})(end,1)]);

807 grid on;

808 figure('Name','Evolution of the temperature');

809 plot(time 20 40,Temp 20 40)

810 set(gca, 'FontName', 'Times New Roman');

811 set(gcf,'position',[x0,y0,width,height]);

812 set(gcf,'units','points','position',[x0,y0,width,height])

813 title(['Temperature of the catenary (' L T 20 40{n,1} '), at ' ...

num2str(Pk Tmax 20 40) ' km ']);

814 xlabel('Time (s)');

815 ylabel('Temperature (C)');

816 xlim([time 20 40(1,1) time 20 40(end,1)]);

817 grid on;

818 end

819 end

820 end

821 end

822 end

823

824 % 7) T < 20

825 if all(structfun(@isempty, Tcat max.Lower20))==0

826 % Remove the fields that are empty

827 fn = fieldnames(Tcat max.Lower20);

828 tf = cellfun(@(c) isempty(Tcat max.Lower20.(c)), fn);

829 Tcat max.Lower20 = rmfield(Tcat max.Lower20, fn(tf));

172

830

831 L T 20 = fieldnames(Tcat max.Lower20); ...

% Lines with temperatures ...

higher than 80C

832

833 ind new node = length(nnodes)+length(addedNodes100)+...

834 length(addedNodes90 100)...

835 +length(addedNodes80 90)+length(addedNodes60 80)+...

836 length(addedNodes40 60)+length(addedNodes20 40); ...

% Index of the new nodes

837 for n = 1:length(L T 20)

838

839 SrcNode = OutLine.SrcDst.(L T 20{n,1})(1,1); ...

% Source node of the line

840 DstNode = OutLine.SrcDst.(L T 20{n,1})(1,2); ...

% Destination node of the line

841 nodenameSrc = ['N', num2str(SrcNode)]; ...

% Name of the source node

842 nodenameDst = ['N', num2str(DstNode)]; ...

% Name of the destination node

843

844 nodenameSrc text = OutNode.Name.(nodenameSrc){1,1}; ...

% Name of the Source node (used in ...

T avg Vs PK)

845 nodenameDst text = OutNode.Name.(nodenameDst){1,1}; ...

% Name of the Destination node (used ...

in T avg Vs PK)

846

847 SrcPoint = [OutNode.Pos XY.(nodenameSrc)(1,1),...

848 OutNode.Pos XY.(nodenameSrc)(1,2)];

849 DstPoint = [OutNode.Pos XY.(nodenameDst)(1,1), ...

850 OutNode.Pos XY.(nodenameDst)(1,2)];

851

852 alpha = getAngle(SrcPoint,DstPoint);

853

173

854 L line Real = OutLine.LengthReal.(L T 20{n,1}); ...

% Real length of the line

855 L line Graph = OutLine.LengthGraph.(L T 20{n,1}); ...

% Graphical length of the line

856 L Real = Tcat max.Lower20.(L T 20{n,1})(:,2); ...

% Distance between the source node and ...

added point

857 L Graph = L line Graph.*L Real./L line Real; ...

% L Tmax Real scaled to the graph

858

859 T added point = Tcat max.Lower20.(L T 20{n,1})(:,3:4); ...

% Maximum temperatures of the added nodes

860

861 X added point = OutNode.Pos XY.(nodenameSrc)...

862 (1,1)+(L Graph.*cos(alpha)); % X position of added point

863 Y added point = OutNode.Pos XY.(nodenameSrc)...

864 (1,2)+(L Graph.*sin(alpha)); % Y position of added point

865

866 Xpos = [Xpos; X added point]; ...

% Update the X ...

coordenates

867 Ypos = [Ypos; Y added point]; ...

% Updata the Y ...

coordenates

868

869 for m = 1:length(L Real)

870 ind new node = ind new node + 1; ...

% Update the index of the node

871 nNames = vertcat(nNames, ' '); ...

% Update the names of the ...

nodes

872 addedNodes20 = [addedNodes20 ; ind new node]; % ...

Add the new nodes to the array addedNodes

873 nodeSize = [nodeSize; 3]; ...

% Size of highlited ...

nodes

174

874 nodeTmax = [nodeTmax; T added point(m,:)]; ...

% Update the temperature of the ...

added nodes

875 end

876

877 if T 20 == 1

878 % Graphs averaged temperature against length & evolution of the

879 % temperature with time for the section with highest Temp

880 SectL 20 = ...

OutSect.(L T 20{n,1})(OutSect.(L T 20{n,1})(:,1)==1,2); ...

% Length of the Sections

881 GraphL 20 = [];

882

883 % Variable to save the lines that have been already plotted

884 ind line rmvd = strcmp(L T 20{n,1},L T all); ...

% line that must be removed

885

886 % Condition to not plot again the same line that already appear in

887 % other range of temperatures

888 if all(ind line rmvd==0)

889 L T all = [L T all;L T 20{n,1}];

890 % Update the values of the lines for average ...

891 temperature and evolution of temperuta with time

892 for m = 1:length(SectL 20)

893 Temp 20 = OutSect.(L T 20{n,1})(OutSect.(L T 20{n,1})...

894 (:,2)==SectL 20(m),7); % Select all the values of the ...

temperatures

895 Temp 20 = Temp 20(round(length(Temp 20)/2):end,1); ...

% Try to select only the ...

temperatures in permanent regimen

896 GraphL 20 = [GraphL 20; SectL 20(m), mean(Temp 20)]; ...

% Average temperatures

897 end

898

899 Sect Tmax 20 = ...

Tcat max.Lower20.(L T 20{n,1})(Tcat max.Lower20.(L T 20{n,1})...

175

900 (:,3)==max(Tcat max.Lower20.(L T 20{n,1})(:,3)),2);

901 Sect Tmax 20 = Sect Tmax 20(1,1); % Sect with the ...

highest temperature

902 Pk Tmax 20 = ...

Tcat max.Lower20.(L T 20{n,1})(Tcat max.Lower20.(L T 20{n,1})(:,3)...

903 ==max(Tcat max.Lower20.(L T 20{n,1})(:,3)),5);

904 Pk Tmax 20 = Pk Tmax 20(1,1);

905 Temp 20 = ...

OutSect.(L T 20{n,1})(OutSect.(L T 20{n,1})(:,2)==Sect Tmax 20,7);

906 time 20 = ...

OutSect.(L T 20{n,1})(OutSect.(L T 20{n,1})(:,2)==Sect Tmax 20,1);

907

908 % Graphs of the evolution of the temperature with time and the

909 % average temperature for the simaltion

910 if length(GraphL 20(:,1)) 6=1

911 figure('Name','Average temperature along the line');

912 plot(OutLine.Real PK.(L T 20{n,1}),GraphL 20(:,2));

913 set(gca, 'FontName', 'Times New Roman');

914 x0=340;

915 y0=200;

916 width=400;

917 height=200;

918 set(gcf,'position',[x0,y0,width,height]);

919 set(gcf,'units','points','position',[x0,y0,width,height])

920 title(['Temperature of the catenary (' L T 20{n,1} '),...

921 from ' nodenameSrc text ' to ' nodenameDst text]);

922 xlabel('Distance (km)');

923 ylabel('Temperature (C)');

924 xlim([OutLine.Real PK.(L T 20{n,1})(1,1)...

925 OutLine.Real PK.(L T 20{n,1})(end,1)]);

926 grid on;

927 figure('Name','Evolution of the temperature');

928 plot(time 20,Temp 20)

929 set(gca, 'FontName', 'Times New Roman');

930 set(gcf,'position',[x0,y0,width,height]);

931 set(gcf,'units','points','position',[x0,y0,width,height])

176

932 title(['Temperature of the catenary (' L T 20{n,1} '), at...

933 ' num2str(Pk Tmax 20) ' km ']);

934 xlabel('Time (s)');

935 ylabel('Temperature (C)');

936 xlim([time 20(1,1) time 20(end,1)]);

937 grid on;

938 end

939 end

940 end

941 end

942 end

943

944 % Reorganize the number of the nodes in order to have a ...

sequential numbering

945 while nnodes(1,1) 6= 1

946 nnodes = nnodes - 1;

947 nSrc = nSrc - 1;

948 nDst = nDst - 1;

949 end

950

951 while any(diff(nnodes) 6= 1)

952

953 node not seg = nnodes((diff(nnodes) 6=1));

954 nnodes to change = nnodes(nnodes(:,1)>node not seg(1,1),1);

955

956 for n = 1:length(nnodes to change)

957 nSrc(nSrc(:,1) == nnodes to change(n,1)) = nSrc(nSrc(:,1)...

958 == nnodes to change(n,1),1)-1;

959 nDst(nDst(:,1) == nnodes to change(n,1)) = nDst(nDst(:,1) ...

960 == nnodes to change(n,1),1)-1;

961

962 end

963 nnodes = [nnodes(1:node not seg(1,1),1); nnodes...

964 (node not seg(1,1)+1:end,1)-1];

965 end

966

177

967

968 %% Create the grid graph

969 gridGraph = graph(nSrc(:,1), nDst(:,1));

970 num added nodes = ind new node - length(nnodes);

971 gridGraph = addnode(gridGraph, num added nodes);

972

973 % Create the figure

974 figure('Name','Thermal Map');

975 H = plot(gridGraph, 'XData', Xpos, 'YData', Ypos, 'NodeLabel', ...

976 nNames, 'EdgeColor', nColor, 'LineWidth', 2, 'MarkerSize', nodeSize);

977 set(get(get(H(1),'Annotation'),'LegendInformation')...

978 ,'IconDisplayStyle','off');

979 title(['Thermal Map of ',filename title{1,1}], 'FontSize', 14);

980

981 hold on

982 scatter([],[], 5, 'r','filled');

983 scatter([],[], 3, [1 0.5 0],'filled');

984 scatter([],[], 3, [1 1 0],'filled');

985 scatter([],[], 3, [0.5 1 0],'filled');

986 scatter([],[], 3, [0 1 0.5],'filled');

987 scatter([],[], 3, [0 1 1],'filled');

988 scatter([],[], 3, [0 0.5 1],'filled');

989

990

991 legend('T {max} \geq 100 C', '90 C \leq T {max} < 100 C','80 C ...

992 \leq T {max} < 90 C','60 C \leq T {max} < 80 C','40 C \leq T {max}...

993 < 60 C', '20 C \leq T {max} < 40 C','T {max} < 20 C');

994

995 highlight(H,addedNodes20,'NodeColor',[0 0.5 1])

996 highlight(H,addedNodes20 40,'NodeColor',[0 1 1])

997 highlight(H,addedNodes40 60,'NodeColor',[0 1 0.5])

998 highlight(H,addedNodes60 80,'NodeColor',[0.5 1 0])

999 highlight(H,addedNodes80 90,'NodeColor',[1 1 0])

1000 highlight(H,addedNodes90 100,'NodeColor', [1 0.5 0])

1001 highlight(H,addedNodes100,'NodeColor','r')

1002 set(gca, 'XTick', [], 'YTick', []);

178

1003 set(gca, 'FontName', 'Times New Roman');

1004 hold off

1005

1006 % Update the information box

1007 app.info.Value = 'Simulation has finished succesfully';

1008

1009 % Data Cursor Callback

1010 hdt = datacursormode;

1011 hdt.UpdateFcn = @(obj,event obj) ...

GraphCursorCallback(obj,event obj,nodeTmax);

179

180

Bibliography

[1] Sight reduction tables for air navigators. ho pub. no. 249, vols. ii and iii,. US
Navy Hydrographic Office.

[2] Transmission conductors thermal ratings paper 68-tap-28. Report by Transmis-
sion Advisory Panel, East Central Area Reliability Coordination Agreement.

[3] Determination of bare overhead conductor ratings. Conductor Rating Task Force,
PA, NJ, and MD Interconnection, May 1973.

[4] Ieee draft standard for calculating the current-temperature relationship of bare
overhead conductors. IEEE Std 738-2012 Draft 10 (Revision of IEEE Std 738-
2006), pages 1–67, Sep. 2012.

[5] Gonzalo Abad. Power Electronics and Electric Drives for Traction Applications.
Mondragon University, Spain, 2017.

[6] CIGRE Working Group B2.12. Thermal behaviour of overhead conductors. Tech-
nical Brochure 207, August 2002.

[7] Bush R. A. Black, W. Z. Conductor temperature research. EPRI Report EL
5707, May 1988.

[8] R. L. Black, W. Z. Rehberg. Simplified model for steady state and real-time
ampacity of overhead conductors. IEEE Transactions on Power Apparatus and
Systems, vol. 104, pp. 29–42, October 1985.

[9] W. R. Black, W. Z. Byrd. Real-time ampacity model for overhead lines. IEEE
Transactions on Power Apparatus and Systems, vol. PAS-102, No. 7, pp. 2289-
2293, July 1983.

[10] Energy department CAF TE. Traction systems in europe. 2016.

[11] Yunus A Çengel and Michael A Boles. Thermodynamics: An Engineering
Approach,-PDF. McGraw-Hill, 2008.

[12] House H. E. Tuttle P. D. Current carrying capacity of acsr. IEEE Transactions
on Power Apparatus and Systems,pp. 1169-1178, February 1958.

181

[13] Donoho T. E. Landrieu P. R. H. Mcelhaney R. T. Saeger J. H.I Davidson, G. A.
Short-time thermal ratings for bare overhead conductors. EEE Transactions on
Power Apparatus and Systems, vol. PAS-88, No. 3, March 1969.

[14] M. W Davis. A new thermal rating approach: The real time thermal rating
system for strategic overhead conductor transmission lines, part ii. IEEE Trans-
actions on Power Apparatus and Systems, vol. PAS-97, pp. 810–825,, April 1978.

[15] Lin S. H. Fernandez R. A. Foss, S. D. Dynamic thermal line ratings,part 1,dy-
namic ampacity rating algorithm. IEEE Transactions on Power Apparatus and
Systems, vol. PAS-102, No. 6, pp 1858-1864, June 1983.

[16] Sheilah Frey. Railway electrification systems & engineering. Delhi: White Word
Publications., 2012.

[17] J Guo, AW Glisson, and D Kajfez. Skin-effect resistance of conductors with a
trapezoidal cross section. Microwave and Optical Technology Letters, 18(6):387–
389, 1998.

[18] Rigdon W. S. Grosh R. J. Cottingham W. B. House, H. E. Emissivity of weath-
ered conductors after service in rural and industrial environments. AIEE Trans-
actions, pp. 891–896, February 1963.

[19] Jorge LLaviana Juan. Diseño de las subestaciones eléctricas de tracción y centros
de autotransformación asociados de una ĺınea ferroviaria de alta velocidad. PhD
thesis, Escola Técnica Superior d’Enginyeria Industrial de Barcelona, 2010.

[20] David R Lide. CRC handbook of chemistry and physics, volume 85. CRC press,
2004.

[21] Philip C Magnusson, Vijai K Tripathi, Gerald C Alexander, and Andreas Weis-
shaar. Transmission lines and wave propagation. CRC press, 2000.

[22] Bernard Stanford Massey and Alfred John Ward-Smith. Mechanics of Fluids:
Solutions Manual. Taylor & Francis, 2006.

[23] W. H. McAdams. Heat transmission, 3rd ed. new york. McGraw-Hill, 1954.

[24] Bassam Mohamed. Power Flow Algorithms for Special Electric Networks In-
cluding Devices with Non-Linear and Non-Smooth Characteristics. PhD thesis,
Universidad de Oviedo, 2018.

[25] V. T. Morgan. The current carrying capacities of overhead line conductors paper
a75 575-3,. IEEE PES Summer Meeting, Los Angeles, CA,, 1978.

[26] Dario Zaninelli Morris Brenna, Federica Foiadelli. Electrical Railway Transporta-
tion Systems. IEEE Press, 2018.

[27] Serm Murmson. What is solar altitude? Sciencing, May 2018.

182

[28] G. A.Alcan Mussen. The calculation of current carrying capacity of overhead
conductors. Research and Development Limited, November 1966.

[29] B Umesh Rai. Handbook of research on emerging innovations in rail transporta-
tion engineering. IGI Global, 2016.

[30] F Schmid, CJ Goodman, and C Watson. Overview of electric railway systems.
2015.

[31] C. U. Schurig, O. R. Frick. Heating and current carrying capacity of bare con-
ductor for outdoor service. General Electric Review, vol. 33, no. 3, pp. 141-157,,
March 1930.

[32] House H. E. Taylor, C. S. missivity and its effects on the current carrying
capacity of stranded aluminium conductors. AIEE Transactions, vol. 75, pt. III,
pp. 970–976, October 1956.

[33] CAF TE. Generalidades sobre electrificación de ĺıneas ferroviarias. Internal
report CAF TE.

[34] CAF TE. Thermal calculation of the catenary temperature. Internal document.

[35] CER & UIC. Rail transport and enviroment: Facts & figures. CER/UIC 2014,
2015.

[36] Yi Yang, Ronald G Harley, Deepak Divan, and Thomas G Habetler. Thermal
modeling and real time overload capacity prediction of overhead power lines.
In 2009 IEEE International Symposium on Diagnostics for Electric Machines,
Power Electronics and Drives, pages 1–7. IEEE, 2009.

183

