

Universidad de Oviedo

ESCUELA POLITÉCNICA DE INGENIERÍA DE GIJÓN

MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ÁREA DE INGENIERÍA ELÉCTRICA

SISTEMA DE ALMACENAMIENTO REDOX PARA PLANTA FOTOVOLTAICA EN GUATEMALA

D. DE LA LLANA PABLOS, Javier TUTOR: D. DÍAZ GONZÁLEZ, Domingo Guzmán

FECHA: Junio de 2021

RESUMEN

El cambio climático y el calentamiento global han creado la necesidad de encontrar nuevas formas de generar energía eléctrica de una forma limpia y sostenible. La energía solar fotovoltaica es una de las tecnologías dedicadas a este fin más importantes. Sin embargo, es intermitente y dependiente de la radiación solar para producir electricidad. Por ello, se hace necesario combinarla con sistemas de almacenamiento de energía que permitan otorgar mayor flexibilidad al uso de esta.

El objetivo de este proyecto es el dimensionamiento, tanto de la potencia como de la capacidad energética, de un sistema de baterías de flujo redox para su incorporación en el parque fotovoltaico de autoconsumo que alimenta a una planta industrial en Guatemala. Se ha comenzado realizando una labor de investigación y documentación teórica, primero sobre los sistemas de almacenamiento de energía en general, y a continuación sobre las baterías de flujo redox en particular. Se han comparado distintas baterías en función de sus especies químicas para tratar de determinar cuál sería la más indicada para esta aplicación. Finalmente se decide instalar una batería redox de vanadio.

A continuación, se realizó un repaso de la documentación disponible sobre la fábrica en cuestión. Se estudia la estructura de la instalación eléctrica del parque fotovoltaico y los principales equipos que lo componen. También se revisa la demanda horaria de la fábrica con el objetivo de emplearla en el dimensionamiento posterior.

El siguiente paso es realizar un primer dimensionamiento de la batería. Se realiza una simulación inicial del parque fotovoltaico en el software PVsyst para obtener la producción hora a hora de este. Se definen una serie de variables, como el excedente que podría almacenarse en los acumuladores y la demanda que no podría suplirse con la generación fotovoltaica. Se calcularán mediante una hoja Excel. Las especificaciones son de 4 MW y 10 MWh. También se lleva a cabo una simulación en PVsyst de la instalación resultante. Tras esto, se realiza un estudio económico, siguiendo el método del Valor Actual Neto, para valorar el posible rendimiento económico de la batería. Se tiene en cuenta el coste del acumulador, así como el ahorro en la tarifa eléctrica resultado de la disminución del consumo.

Se optimiza el resultado del VAN, buscando su valor máximo, y se dimensiona la batería en consecuencia. Se acaba por seleccionar una batería de dimensiones menores a las previstas, de 40 kW y 800 kWh, justificándolo con el poco excedente potencial que se puede almacenar, así como el bajo precio de la electricidad en Guatemala. Se realiza también una simulación en PVsyst de este resultado.

PALABRAS CLAVE

Energía solar fotovoltaica; Almacenamiento electroquímico de energía;

Batería de flujo redox (RFB); Batería de flujo redox de vanadio (VRFB)

ABSTRACT

Climate change, as well as global warming, have raised the need to find new forms of generating electric energy in a clean and sustainable way. Photovoltaic solar energy is one of the most important technologies aimed at reaching that goal. However, it is both intermittent and dependant on the solar radiation in order to produce electricity. That is why it is necessary to combine it with a system of energy storage, which allows for more flexibility in its use.

The aim of this project is to sizing both the power and the energy capacity of a system of redox flow batteries for its use in the self-consumption photovoltaic power plant of a factory in Guatemala. The first task has been the conduction of research and theoretical documentation, first about energy storage systems as a whole, and then about redox flow batteries in particular. A comparison between the different types of batteries, depending on their chemical species, is made, in order to establish which one would be the best suited for this application. At the end, the vanadium redox flow battery is chosen.

Afterwards, a review of the available documentation on the factory is made. The structure of the electrical installation is studied, as well as the most important equipment that compose it. The hourly demand of the factory is also reviewed, in order to make use of it in the following sizing process.

The next step is a preliminary sizing of the battery. An initial simulation of the photovoltaic plant is made on the software PVsyst in order to obtain its hourly energy generation. Several variables are defined, such as the surplus that could be stored in the batteries, and the demand that could not be satisfied with the photovoltaic generation. The calculation is carried out on an Excel spreadsheet. The results of this first sizing are a power of 4 MW and a capacity of 10 MWh. A simulation on PVsyst is done as well. Then, an economic evaluation is performed by means of the Net Present Value method. The economic performance of the battery is assessed. The battery costs are taken into account, as well as the saving on the electricity bill that results from the decrease in consumption.

The NPV result is optimized, looking for its maximum value, and the battery is sized according to this criterion. The final battery has lower specifications than expected, with 40 kW and 800 kWh. This is justified by the small surplus that can be stored, as well as the low cost of electricity in Guatemala. A simulation on PVsyst is run for this final result.

KEYWORDS

Photovoltaic solar energy; Electrochemical energy storage Redox flow battery (RFB); Vanadium redox flow battery (VRFB)

ÍNDICE

1 Introducción	1
1.1 Introducción y antecedentes	1
1.2 Objetivo	2
1.3 Metodología	
2 Marco teórico	
2.1 La energía solar fotovoltaica	
2.1.1 La energía solar	
2.1.2 La situación mundial	5
2.1.3 Principio de funcionamiento	6
2.1.4 Estructura de una instalación solar fotovoltaica	
2.1.5 El módulo fotovoltaico	9
2.1.6 Ventajas y desventajas	
2.2 Almacenamiento de energía	
2.2.1 La necesidad del almacenamiento	
2.2.2 Almacenamiento directo de energía eléctrica	16
2.2.3 Almacenamiento de energía mecánica	
2.2.4 Almacenamiento de energía térmica	
2.2.5 Almacenamiento electroquímico	
2.3 Batería de flujo redox	
2.3.1 Estructura de una RFB	
2.3.2 Principio de funcionamiento electroquímico	
2.3.3 Propiedades eléctricas	
2.3.4 Ventajas y desventajas de las RFB	
2.3.5 La RFB de vanadio	
2.3.6 Otros tipos de RFB	
3 Revisión de la documentación	
3.1 Estructura de la instalación	
3.2 Equipos	
3.2.1 Módulos fotovoltaicos	
3.2.2 Inversores	
3.2.3 Transformadores	

3.3 Perfil de carga de la fábrica
4 Diseño y cálculo
4.1 Simulación PVsyst preliminar
4.1.1 Procedimiento de simulación
4.1.2 Resultados de simulación
4.2 Selección del tipo de batería 50
4.3 Primer dimensionamiento de la batería 53
4.3.1 Definición de variables
4.3.2 Dimensionamiento de la potencia 59
4.3.3 Dimensionamiento de la capacidad energética
4.3.4 Resultados primer dimensionamiento
4.3.5 Simulación PVsyst primer dimensionamiento
4.4 Análisis económico
4.4.1 Coste estimado primer dimensionamiento74
4.4.2 Precio de la electricidad
4.4.3 Balance de costes
4.4.4 Dimensionamiento final
5 resultados y discusión
5.1 Especificaciones de la batería
5.2 Balance energético
5.3 Balance económico
5.3.1 Costes batería
5.3.2 Precio electricidad
5.3.3 Valor Actual Neto
5.4 Simulación PVsyst final
5.5 Discusión de los resultados
6 Conclusiones
6.1 Conclusiones
6.2 Trabajo futuro
7 Bibliografía

1.- INTRODUCCIÓN

Este capítulo se centrará en realizar un breve preámbulo del proyecto a realizar, así como en definir el objetivo que se persigue, y la metodología que se seguirá para alcanzarlo.

1.1.- Introducción y antecedentes

Durante las últimas décadas, se ha hecho cada vez más patente la realidad del cambio climático antropogénico, cuyo síntoma más reconocido es el calentamiento global. Como consecuencia de este proceso, la temperatura media del planeta se ha incrementado en aproximadamente 0,7 °C respecto a los valores de principios del siglo XX.

Figura 1.1. Evolución de la temperatura global durante el último siglo [1]

La razón de este calentamiento es, mayoritariamente, el aumento de la concentración en la atmósfera de los llamados gases de efecto invernadero (GEI, también conocidos como GHG por sus siglas en inglés), entre los que se incluyen el dióxido de carbono (CO₂), el metano (CH₄), los óxidos de nitrógeno (NO_x), e incluso el vapor de agua. La presencia de estas sustancias en la atmósfera se ha visto incrementada progresivamente desde los inicios de la revolución industrial.

Parte de la radiación solar que incide sobre la Tierra es absorbida, manteniendo la temperatura del planeta, mientras que otra fracción es reflejada hacia la atmósfera. Sin embargo, los GEI absorben este calor, impidiendo que salga hacia el espacio exterior. Al aumentar la concentración de estos compuestos, se incrementa la fracción de calor que es retenido en la atmósfera, aumentando por tanto la temperatura del planeta por encima de sus valores normales. Este incremento de la concentración de gases viene dado, especialmente, por las emisiones generadas por las actividades humanas como el transporte, la industria o la generación de energía.

Los efectos que este fenómeno puede traer consigo a largo plazo, como el incremento del nivel del mar o la extinción de multitud de especies animales y vegetales, son desastrosos. Además, el progresivo incremento de la población mundial hace que las necesidades energéticas sean cada vez mayores. Por ello, en las últimas décadas gran parte de las naciones

de todo el mundo han comenzado a adoptar medidas para mitigar y revertir esta situación. Se han fundado organizaciones supranacionales como el Panel Intergubernamental del Cambio Climático (IPCC), así como firmado tratados internacionales tales como el Protocolo de Kioto en 1997 o el Acuerdo de París en 2016 con el objetivo de coordinar la acción conjunta de todo el mundo en la lucha contra este problema.

Dos de los sectores que más GEI emiten son la generación de energía y la industria. En 2008, la fracción de emisiones de CO_2 fueron del 41% y del 20% respectivamente sobre el total a nivel mundial. Por ello, se está haciendo un esfuerzo especial en transformar estas actividades para hacerlas más ecológicas.

De este modo surge la generación de energía renovable, que, frente a fuentes de energía más tradicionales como los combustibles fósiles, buscan la fabricación de electricidad a partir de recursos ilimitados tales como la radiación solar o la energía cinética del viento. Por ejemplo, la energía solar genera menos del 15% de CO₂ que una central térmica de carbón. Se persigue, por tanto, mantener los niveles de calidad de vida y servicios de la sociedad, disminuyendo el impacto que estos presentan sobre el medio ambiente.[1]

Muchas instalaciones particulares e industriales están implantando sistemas de autoconsumo, con el objetivo de generar la energía que necesitan para no tener que extraerla de la red eléctrica. La energía solar representa una opción muy atractiva para este uso, debido a que es fácilmente instalable sobre pequeñas parcelas de terreno o tejados, a diferencia de, por ejemplo, la eólica o la hidroeléctrica.

Sin embargo, tiene un inconveniente fundamental: su intermitencia y dependencia de la radiación solar, siendo la generación de energía por este medio inferior en condiciones de cielos nublados, y nula por la noche. Ya que el perfil de demanda de energía puede, y suele, no corresponderse con el de la generación, se hace necesario un sistema de almacenamiento de energía.

Las baterías de flujo redox (RFB) son una opción muy interesante. Su principal inconveniente, que es la baja densidad energética que presentan y el amplio volumen que requieren, no son factores determinantes en una aplicación estacionaria tal y como es una planta solar. Por otro lado, presentan múltiples ventajas frente a otros tipos de almacenamiento, como su larga vida útil, su sencillo mantenimiento, y su flexibilidad a la hora de escalar su potencia y su capacidad.[2]

1.2.- Objetivo

El presente proyecto tiene como emplazamiento una fábrica ubicada en Guatemala. Esta factoría cuenta con una instalación de generación de energía solar fotovoltaica de autoconsumo, con el propósito de fabricar la electricidad necesaria para su operación. La potencia pico instalada nominal de corriente continua y alterna es de unos 9 MWcc y 8MWca respectivamente. Además, los inversores cuentan con un sistema antivertido, para evitar inyectar el excedente de energía en la red eléctrica.

Esta fábrica cuenta con su propia subestación eléctrica, que se emplea para tomar la energía faltante de la red cuando la generada por la planta fotovoltaica no es suficiente para cubrir las demandas de la instalación.

El objetivo del trabajo consiste en el dimensionamiento de un sistema de almacenamiento, basado en baterías con tecnología redox. para su incorporación en este generador. Se persigue con ello almacenar la energía excedente en horas de mayor producción y menor demanda, para así emplearla cuando la factoría exija una mayor potencia y la generación fotovoltaica no baste para proporcionarla. Se dimensionará tanto la capacidad energética como la potencia característicos del acumulador.

1.3.- Metodología

Como punto de partida de este proyecto, se realizará un estudio del marco teórico con ayuda de la bibliografía, con el objetivo de introducir conceptos como el funcionamiento de una batería de flujo redox o el de la energía solar fotovoltaica, que serán de utilidad a la hora de realizar el diseño del banco de baterías instalar.

A continuación, se realizará un repaso de la documentación disponible del proyecto, incluyendo planos, simulaciones e informes, para obtener la mayor cantidad de información posible sobre el mismo antes de realizar la modificación que se plantea.

Tras esto, se procederá a realizar la implantación del banco de baterías en el generador. Se hará un cálculo tanto técnico como económico para decidir cuál es la solución óptima.

Se realizarán también simulaciones con el software PVsyst de las distintas posibilidades para apoyar los cálculos realizados.

Por último, se hará una discusión de los resultados obtenidos, así como de las conclusiones alcanzadas.

2.- MARCO TEÓRICO

En este capítulo se realizará un repaso de algunos de los conceptos y tecnologías que son de interés para este proyecto.

2.1.- La energía solar fotovoltaica

El trabajo a desarrollar en este proyecto, como ya se ha indicado en la traducción, consiste en la modificación de una instalación solar fotovoltaica. Pese a que el punto de partida del proyecto consta de la instalación fotovoltaica completamente instalada y operativa, resulta de interés cubrir algunos de los puntos fundamentales que caracterizan a esta tecnología con el objetivo de posteriormente trabajar con ella.

En este apartado se tratarán las características funcionales de la tecnología fotovoltaica, así como los tipos de células que se pueden instalar, las ventajas y desventajas que posee frente a otras formas de obtener electricidad, así como algunas de sus aplicaciones.

2.1.1.- La energía solar

La fuente energética de la energía fotovoltaica, y de prácticamente todas las formas de energía en el planeta, es el Sol. El núcleo del astro rey funciona como un reactor nuclear de enormes proporciones, transformando hidrógeno en helio mediante reacciones de fusión nuclear, e irradiando energía como consecuencia.

La potencia total irradiada por el Sol que llega hasta la atmósfera terrestre tiene un valor promedio de aproximadamente 1367 W/m², variando hasta un 3% según la estación del año, y un 1,5% debido a factores de actividad solar.

Existen dos conceptos fundamentales a la hora de hablar del aporte energético del sol. Una de ellas es la irradiancia, intensidad de la radiación solar, que se mide en unidades de potencia por unidad de superficie (W/m^2).

Por otro lado, la irradiación solar, integral de la irradiancia a lo largo de un periodo de tiempo, se mide en unidades de energía por unidad de superficie (Wh/m^2).

La radiación solar, además, puede dividirse en directa, que es la que llega desde el Sol sin cambiar de dirección, y difusa, que es la que ha sido desviada debido a los procesos de refracción y reflexión a lo largo de su paso por la atmósfera.[3]

A su llegada al suelo, la luz puede ser absorbida o reflejada. Existe un parámetro denominado albedo, que es el porcentaje de radiación que es reflejada, sobre el total de la que alcanza la superficie. Las superficies oscuras, como las de los módulos solares, tienen albedos inferiores a las claras y, por consiguiente, absorben más radiación y se calientan más.[4]

2.1.2.- La situación mundial

La energía solar fotovoltaica ha experimentado un crecimiento prácticamente exponencial en todos los sectores durante la última década. Un área de las más interesantes para la aplicación de esta tecnología es el sector industrial. Los costes y la eficiencia de la energía fotovoltaica, cada vez más favorables, la convierten en una elección muy atractiva para su implementación en fábricas e instalaciones de producción.[3] Ha sido la fuente de energía de la que más capacidad se ha instalado en los últimos años.

SOUICE: Frankfurt School-UNEP Centre and BNEF (2018)

Figura 2.1. Nueva capacidad mundial instalada de distintas energías en 2017 [5]

En la siguiente figura puede apreciarse la evolución de la capacidad mundial instalada de energía fotovoltaica.

Figura 2.2. Capacidad mundial instalada de energía fotovoltaica hasta 2017 [5]

Se puede comprobar como en una década la capacidad instalada se ha multiplicado por más de 20.

Por otro lado, en el siguiente diagrama de sectores puede apreciarse el reparto de esta capacidad entre países.

Figura 2.3. Reparto de capacidad fotovoltaica entre países y regiones en 2017 [5]

Se puede apreciar que China es la mayor potencia mundial en cuanto a energía fotovoltaica se refiere. Otras regiones que destacan son Japón, con una gran potencia disponible respecto a su superficie, y Europa, donde Alemania se sitúa a la cabeza.

2.1.3.- Principio de funcionamiento

La tecnología solar fotovoltaica consiste en transformar la energía que irradia el sol e incide sobre la superficie terrestre en electricidad que pueda ser empleada en aplicaciones útiles para el ser humano. En esta sección se cubrirán los procesos que hacen esto posible.

2.1.3.1.- El efecto fotovoltaico

El principio de funcionamiento básico de este tipo de energía es el efecto fotovoltaico. Este fenómeno tiene lugar en elementos semiconductores (aquellos que tienen propiedades eléctricas, tales como la conductividad, entre los valores típicos de los materiales conductores y los de los aislantes), siendo el más empleado el silicio ya que es abundante en la tierra y forma estructuras cristalinas.

Estos elementos presentan dos bandas energéticas (rangos entre los que se encuentra la energía de un electrón) distintas: la banda de valencia y la de conducción. La banda de valencia es la única que contiene electrones en el material. Por otra parte, la banda de conducción, que comprende un intervalo de energías mayores que las de la banda de valencia y cuyos electrones tienen la suficiente energía para poder moverse y generar corriente eléctrica, se encuentra vacía. A su vez, los materiales semiconductores se caracterizan porque ambas bandas no son adyacentes, sino que existe un intervalo hueco de estados energéticos en el que no pueden estar los electrones.

De este modo, es necesario realizar un aporte externo de energía a los electrones de la banda de valencia para que salven el intervalo de energías correspondiente al hueco, y accedan a la capa de conducción. En la tecnología solar fotovoltaica, es el sol el que, con su irradiación sobre la superficie terrestre, realiza este aporte energético sobre los electrones. En el caso del silicio, la amplitud del hueco, es decir, la distancia entre las bandas de conducción y de valencia, es de 1,12 eV. Una vez en la capa de conducción, los electrones pueden generar la corriente eléctrica.[6]

Figura 2.4.- Efecto fotovoltaico en una célula solar[6]

2.1.3.2.- La unión PN

La llamada unión PN es una parte fundamental en el funcionamiento de las células solares. Su existencia permite favorecer el movimiento de los electrones en el sentido y la dirección deseados, de manera que se pueda aprovechar la corriente eléctrica producida.

La unión PN se basa en juntar dos zonas de un material semiconductor, normalmente silicio, con distinta concentración de electrones, previamente dopados de una determinada manera. Para ello, se añaden agentes dopantes en pequeñas cantidades, que forman impurezas que otorgan al cristal la característica que se desee en cada caso.

Por un lado, el silicio tipo n (negativo) es aquel con una densidad de electrones superior. El silicio, en su estado natural, posee cuatro electrones en su última capa. Mediante la adición de un agente dopante con un mayor número de electrones de valencia, comúnmente fósforo, que posee cinco, este forma un enlace covalente con el silicio dejando un electrón libre por átomo.

El caso contrario ocurre en el silicio de tipo p (positivo). En este caso, el agente dopante es un elemento con un número de electrones de valencia inferior al del silicio. Comúnmente se emplea el boro, que tiene tres. Así, al formar el enlace covalente con el silicio, este queda incompleto ya que el boro tiene un electrón menos. De esta forma, se crea un "hueco positivo", que tenderá a admitir electrones.

En la región de contacto entre silicios, la unión PN, los electrones inicialmente se moverán desde el silicio n, donde están en exceso, al p, donde hay huecos que los admiten. De este modo, en la zona de contacto se formarán iones positivos en el silicio n, y negativos en el silicio p, generando un campo eléctrico en la zona.

Al incidir la radiación solar, y ceder energía a los electrones para que pasen de la banda de valencia a la de conducción, los electrones de los iones negativos del silicio p pasarán al n, y los "huecos" de los iones positivos del silicio n pasarán al p, generando corriente eléctrica en un único sentido, como si de un diodo se tratase.[4], [7]

2.1.4.- Estructura de una instalación solar fotovoltaica

Las instalaciones fotovoltaicas se dividen fundamentalmente en dos tipos: los sistemas conectados a la red, y los aislados.

2.1.4.1.- Instalaciones conectadas a la red

Figura 2.5.- Sistema conectado a la red[4]

Las instalaciones conectadas a la red vierten la energía que generan a la red eléctrica, y absorben la corriente de esta cuando su producción es insuficiente.

Debido a que los módulos fotovoltaicos producen energía en forma de corriente continua, es necesario su tratamiento previo al transporte.

En la parte inicial de corriente continua, después de los módulos solares, existen una serie de cuadros de distribución. Estos tienen incorporados diversos sistemas de protección, tales como seccionadores, para garantizar la seguridad de la planta. Puede haber uno por cadena de módulos, o agrupar los cables de varias cadenas con el objetivo de reducir el número de conductores. En la parte de corriente continua es también donde se instala el banco de baterías, si lo hubiera, aunque no es habitual puesto que se tiene acceso a la red eléctrica para suplir el posible déficit energético. Sin embargo, pueden instalarse para almacenar posibles excedentes que sean aprovechados y así evitar costes derivados de emplear la energía almacenada en la red, como es el caso del presente proyecto. También es posible conectar la batería al circuito de corriente alterna, siempre y cuando se incorpore un inversor para que la electricidad que llegue al acumulador esté en forma de corriente continua.

En el caso de querer instalar una batería, será necesario conectarla a un regulador de carga. Este regulador tiene como objetivo controlar el estado de carga de la batería, para protegerla y optimizarla.

La corriente continua directamente salida de los módulos solares, a baja tensión, ha de ser primero transformada en corriente alterna trifásica. Esto es posible gracias a los inversores. Dependiendo de sus características, puede ser necesario previamente elevar la tensión de la corriente mediante un convertidor de tipo CC/CC. Estos convertidores pueden emplearse para modificar la tensión con la que se alimenta la batería, de manera que esta se corresponda con la especificada por el fabricante del acumulador.[8]

A continuación, la corriente alterna a baja tensión ha de ser elevada para su transporte. Para ello, se emplean frecuentemente dos etapas. Con un primer transformador, se eleva la corriente hasta la media tensión. De este modo, se reducen las pérdidas de potencia transporte a lo largo del parque fotovoltaico hasta la subestación eléctrica, donde tiene lugar la elevación hasta la alta tensión, apta para el transporte a larga distancia.[4]

2.1.4.2.- Instalaciones aisladas

Figura 2.6.- Sistema aislado[4]

Las instalaciones aisladas de la red eléctrica se caracterizan por no estar conectadas a la misma, lo cual resulta de utilidad en localizaciones remotas o alejadas de subestaciones eléctricas, pero que reciben suficiente irradiación solar.

Este tipo de instalaciones han de estar provistas con un sistema de almacenamiento de energía, en forma de banco de baterías (parte central de este proyecto), que están protegidas por un regulador de carga. Este dispositivo tiene la función de optimizar los ciclos de carga y descarga de las baterías y maximizar así su vida útil.[6] De este modo, durante las horas de mayor irradiación solar, el excedente de energía producida será almacenado para ser empleado en aquellos momentos donde no se genere la suficiente corriente, como en horario nocturno.

La instalación fotovoltaica, además, puede alimentar a cargas de corriente continua o de corriente alterna. Las cargas de CC se alimentan directamente con la corriente producida por los módulos solares y las baterías, mientras que para alimentar las cargas de CA es necesario transformarla previamente en corriente alterna trifásica mediante un inversor.[4]

2.1.5.- El módulo fotovoltaico

Figura 2.7.- Módulo fotovoltaico[4]

Los módulos fotovoltaicos son la pieza central de toda la instalación, pues son los encargados de transformar la irradiación solar en energía eléctrica útil.

En la figura 2.4. puede observarse cuál es la nomenclatura de las distintas partes que componen el generador fotovoltaico. La pieza más básica de las mismas es la célula solar, construida normalmente con silicio, y que mediante una unión PN genera la corriente eléctrica a partir de la luz del Sol.

El módulo fotovoltaico, conocido coloquialmente como panel solar, agrupa una serie de células solares en serie. Es normalmente este módulo el que se comercializa en el mercado, y no las células solares por separado.

Normalmente se montan varios módulos solares en la misma estructura, en lo que se conoce como panel o mesa fotovoltaica. Estos paneles pueden ir montados tanto sobre suelo, como en tejados. A su vez, pueden ser de estructura fija, o ser los llamados seguidores solares, que se orientan siempre en la dirección del sol, optimizando de este modo la energía que generan.

Con el objetivo de obtener el voltaje deseado en la línea, se unen varios módulos fotovoltaicos en serie para formar una cadena de módulos, también conocida por su nombre en inglés *string*. Es posible montar varias cadenas en la misma estructura o panel fotovoltaico, dividiendo los módulos que la componen en grupos que se conecten en serie entre sí.

Finalmente, la conexión en paralelo de todas las cadenas de módulos fotovoltaicos da lugar al generador fotovoltaico, que proporcionará la potencia necesaria para alimentar las cargas o para verter a la red de transporte.[4]

2.1.5.1.- Parámetros de importancia

Existen una serie de parámetros que el fabricante proporciona en las hojas de características de sus módulos

Debido a que estas características varían con las condiciones de temperatura e irradiación, es necesario fijar unas condiciones comunes para poder comparar unos paneles solares con otros. Estas son las llamadas Condiciones Estándar de Medida (STC, por el inglés Standard Test Conditions), y se corresponden a una irradiancia de 1000 W/m², temperatura de operación del módulo de 25 °C, y una distribución espectral de la irradiación (energía en función de la frecuencia o de la longitud de onda) de AM 1,5.

Figura 2.8.- Curvas características de un panel solar [8]

En la figura 2.5. pueden apreciarse las curvas características de un módulo fotovoltaico comercial. Se representan para STC y para una irradiancia de 500 W/m². La curva roja representa la potencia en W frente al voltaje en V, mientras que la curva azul se corresponde a la corriente en A frente al potencial.

El parámetro más característico del módulo es la potencia nominal (Pmax), que mide los vatios que es capaz de entregar el panel en STC. Esta potencia es el producto de otras dos magnitudes que también se reflejan en la hoja de características: el voltaje (Vmp) y la corriente (Imp) de máxima potencia. Los inversores fotovoltaicos cuentan con un algoritmo denominado seguidor del punto de potencia máxima (MPPT), que detecta en todo momento, para las condiciones ambientales de irradiancia y temperatura existentes, cuáles son los valores de Vmp y de Imp del generador fotovoltaico para que funcionen bajo esas condiciones y optimizar así la potencia entregada por el mismo. Algunos inversores cuentan con varias entradas MPPT, de manera que se puedan monitorizar por separado y optimizar así el rendimiento de manera más personalizada.[4]

$$P_{max} = V_{mp} \cdot I_{mp} \tag{2.1}$$

Son también importantes el voltaje de circuito abierto (Voc) y la corriente de cortocircuito (Isc), que son respectivamente la tensión y la intensidad máximas que puede entregar el panel. Por último, la eficiencia, dada en porcentaje, indica qué fracción de la irradiación incidente se acaba transformando en energía eléctrica. Normalmente se encuentra en torno al 20% en los mejores casos.[8]

Es importante conocer cómo varía tanto la potencia como el Voc y la Isc fuera de las STC, con el objetivo de dimensionar correctamente el cableado (de manera que no se supere la corriente máxima admisible del mismo) y las cadenas de módulos (para que no se supere la tensión máxima admitida por el inversor).

Figura 2.9.- Variación de magnitudes con irradiancia y temperatura

Las curvas de la figura 2.6., extraídas de la hoja de características del módulo BiHiKu7 de Canadian Solar, muestran esta evolución. Puede verse que ambas magnitudes disminuyen con la irradiación, dando lugar a menores potencias. A su vez, al aumentar la temperatura, el Voc disminuye, mientras que la Isc aumenta. De este modo, el número de módulos solares en serie se suele elegir utilizando como referencia una temperatura mínima de operación, mientras que la cantidad de cadenas conectadas en paralelo por cada inversor se dimensiona de acuerdo con las corrientes generadas a una temperatura máxima. El fabricante normalmente proporciona la pendiente de la recta de Voc o Isc frente a la temperatura.

2.1.5.2.- Tipos

A la hora de construir un módulo solar, se busca un material que cumpla ciertas condiciones. Por ejemplo, un parámetro importante es la anchura del hueco entre las bandas de valencia y de conducción. Un hueco reducido mejorará la eficiencia puesto que será más fácil aportar a los electrones la energía necesaria para saltar entre bandas. También son características de importancia el precio y abundancia del material en el mercado, su grado de seguridad, y una buena absortividad de la luz para tener una eficiencia alta.

En el mercado fotovoltaico, existen diversos tipos de módulos atendiendo al material con el que se construyen y la antigüedad y madurez de su desarrollo. Se pueden distinguir atendiendo a estos criterios en tres generaciones distintas.

* * * *	
• • • •	K Lasta
• • • •	
	i la

Figura 2.10.- Comparación entre módulo de silicio monocristalino y policristalino[4]

Las células fotovoltaicas más comercializadas en la actualidad son las de silicio. Este elemento tiene diversas ventajas, como su abundante presencia en la tierra, su seguridad y

estabilidad y el hecho de tener un hueco entre bandas relativamente estrecho (1,12 eV). A su vez, los módulos solares de silicio pueden dividirse en tres grandes grupos atendiendo a la estructura cristalina de este. Uno de ellos es el silicio monocristalino (m-Si), construidos a partir de cristal de silicio muy puro. Para ello, se trata este cristal mediante el proceso de Czochralski, fundiéndolo en un crisol para obtener lingotes cilíndricos que se cortan en obleas de menos de 3 décimas de milímetro de espesor. Estas obleas se tratan superficialmente para reducir la reflectividad de estas y maximizar la absorción de la luz, lo que da a este tipo de módulos su color azul oscuro característico. Los silicios monocristalinos son los que presentan la mayor eficiencia, pero por otra parte también tienen precios más caros.

Existen también los módulos de silicio policristalino (p-Si), que se obtiene a partir de la solidificación de pasta de silicio sobre un molde. Por ello, se forman varios cristales pequeños de silicio en distintas direcciones. La principal ventaja de este tipo de silicio frente al monocristalino consiste en su menor coste, aunque a costa de una eficiencia también menor.

La segunda generación de módulos fotovoltaicos es de los llamados paneles de capa fina, que nacen con el objetivo de reducir la cantidad de semiconductor empleada en su fabricación. Sin embargo, generalmente presentan eficiencias menores que los paneles de cristal de silicio. Los llamados módulos de silicio amorfo (a-Si) son un ejemplo de este tipo de módulos. En lugar de estar hechas a base de silicio, se fabrican colocando una película de silicio no cristalino sobre un soporte de un material más barato, como el aluminio. De este modo, se consiguen paneles muy baratos, pero de eficiencia mucho menor que las de verdadero silicio debido a que el hueco entre bandas es del orden del 1,7 como consecuencia de la aleatoriedad en la estructura del material. Además, este rendimiento tiende a empeorar con el paso del tiempo a un ritmo mucho mayor que el de los módulos cristalinos.

Sin embargo, los paneles más importantes para este proyecto, ya que son los correspondientes a la planta de generación de energía para la fábrica, son los de película de telururo de cadmio (CdTe), siendo la compañía FirstSolar la líder en este campo. Este material posee un hueco entre bandas de 1,45 eV, menor que el del a-Si. Estas células suelen incorporar a su vez una fina capa de sulfuro de cadmio (CdS) para mejorar la eficiencia global de la célula puesto que reducen el riesgo de formación de microuniones y corrientes residuales entre el CdTe y el resto de elementos. Estos módulos ofrecen una absortividad de la luz, pero presentan eficiencias menores que las de los módulos de silicio cristalino. La principal desventaja de estos módulos es la peligrosidad del cadmio, ya que es tóxico y contaminante, por lo que se han de llevar a cabo procedimientos de reciclaje y desmantelamiento de los módulos cuya vida útil ya ha expirado. También representa un problema la potencial escasez de teluro, mucho menos abundante que el silicio, y su potencial efecto en los costes del producto.

Figura 2.11.- Estructura de una célula de CdTe [9]

Otro de los materiales que están siendo empleados para la fabricación de módulos de película fina es el arseniuro de galio (GaAS), que ofrece altas eficiencias, pero también acarrea elevados costes debido a la escasez de la materia prima.

Por último, la tercera generación de módulos fotovoltaicos, y la más reciente, es la de las células orgánicas. El motivo de esta elección es el coste, ya que los semiconductores orgánicos son más baratos que los inorgánicos. La tecnología se basa en películas finas, de unos 100 nm de espesor, fabricadas a partir de semiconductores orgánicos. Existen diversos modelos, como los que emplean polímeros por su flexibilidad, adaptabilidad y bajo precio de fabricación e instalación. Sin embargo, poseen un amplio hueco entre bandas (de unos 2 eV), que perjudica su eficiencia. Además, no tienen un buen envejecimiento, ya que pierden propiedades más rápido que el silicio. También se está investigando el desarrollo de películas de grafeno, por sus excelentes propiedades mecánicas y eléctricas.[4], [6], [9], [10]

2.1.6.- Ventajas y desventajas

La tecnología solar fotovoltaica promete revolucionar el mundo de la energía. Tiene numerosas ventajas frente a otras formas más tradicionales de obtener electricidad. No obstante, también trae consigo algunos inconvenientes. En este apartado se repasarán algunas de estas características.

2.1.6.1.- Ventajas

La principal y más reconocida de la tecnología fotovoltaica proviene, como es evidente, de su fuente de energía. La radiación solar es abundante, gratuita, y su aprovechamiento es completamente limpio. Esta tecnología es una de las abanderadas del cambio climático, ya que su uso no genera emisiones de gases de efecto invernadero.

Además, los costes de operación y mantenimiento son bajos. Es sencillo detectar fallos en las instalaciones, así como sustituir paneles defectuosos o estropeados.

También presentan la ventaja de la flexibilidad, puesto que cualquier instalación puede apoyarse mediante el uso de paneles fotovoltaicos, como por ejemplo en los tejados de la vivienda. Además, no genera ruidos ni olores, a diferencia otras como la eólica o la térmica, respectivamente. Tampoco tiene impactos medioambientales tan grandes como la hidroeléctrica.[6]

2.1.6.2.- Desventajas

Uno de los problemas del uso de instalaciones solares fotovoltaicas viene dado por su baja eficiencia espacial. Para generar cantidades de energía lo suficientemente grandes, han de ocuparse amplias extensiones de suelo con paneles solares, que pueden tener un impacto sobre la fauna y flora de la zona, o pierden posibles usos que pudiesen tener, como la agricultura.

Otro de los inconvenientes del uso de la energía solar fotovoltaica se debe a la dependencia de la radiación solar. La intermitencia de esta es problemática, ya que la energía generada no será continua, sino que esta será máxima en horas soleadas, y bajará en momentos de cielos nublados. Además, la corriente generada en horas nocturnas será nula, por lo que es necesaria algún sistema de almacenamiento, o un generador de energía auxiliar de otro tipo, para satisfacer las demandas de las cargas en esos momentos. A su vez, la posibilidad de explotar la radiación del sol viene condicionada también por las condiciones geográficas, pues hay zonas en las que, por la cantidad de luz que reciben, no resulta rentable o aprovechable.[6]

2.2.- Almacenamiento de energía

En este apartado se estudiarán las ventajas del almacenamiento de energía eléctrica, con el objetivo de comprender la utilidad del banco de baterías que se pretende instalar. También se verán algunas de las formas que existen actualmente para almacenar la energía

2.2.1.- La necesidad del almacenamiento

Tradicionalmente no era necesario almacenar la energía. Las centrales térmicas o las nucleares son capaces de generar electricidad bajo demanda, de manera que esta se producía cuando era necesaria.[11]

Sin embargo, con la implantación de las fuentes de energía renovables, esta situación está cambiando. Fuentes como la energía solar o la eólica dependen enteramente de la disponibilidad del recurso natural correspondiente para producir electricidad. En multitud de ocasiones su perfil de generación no se corresponderá al de consumo, existiendo situaciones en las que generen más de lo que se requiere y viceversa.

Dado el crecimiento exponencial de estas fuentes de energía, es cada vez más necesaria la instalación de acumuladores capaces de almacenar la energía excedente para emplearla en otro momento, garantizando de este modo un suministro eléctrico más continuo, uniforme y fiable.[11]–[13] La siguiente figura refleja algunas de las ventajas de aplicar esta tecnología.

Figura 2.12. Aplicaciones de los sistemas de almacenamiento [11]

Uno de los usos de un sistema de almacenamiento de energía es el alisado de picos. De este modo, se consigue evitar el sobredimensionamiento del generador, ya que se diseñará para satisfacer una potencia máxima más reducida puesto que el resto será suministrado por el acumulador gracias al excedente que ha sido almacenado anteriormente. Así, se consigue reducir el coste de la instalación.

También es posible diseñarlo para permitir que el generador suministre una potencia constante promedio a lo largo del tiempo. En este caso, el acumulador se encargará de compensar la demanda que supere a esta cantidad haciendo uso de la energía almacenada cuando la carga sea inferior a la generación. [11]

Existen multitud de métodos para almacenar la energía eléctrica. En los siguientes subapartados se repasarán algunos de ellos.

2.2.2.- Almacenamiento directo de energía eléctrica

La forma más directa de almacenar la energía eléctrica, sin cambiarla de forma, es mediante el empleo de condensadores eléctricos. Estos dispositivos almacenan la energía en un campo eléctrico. Para ello, emplean dos superficies llamadas electrodos separadas entre sí por un elemento de baja conductividad denominado dieléctrico.

Al someter ambas superficies a una diferencia de potencial, se produce un transporte de electrones que finalmente resulta en que un electrodo acabe cargado positivamente, mientras que el otro presentará una carga de igual módulo, pero de signo negativo. La carga máxima que es capaz de almacenar el condensador vendrá dada por su capacidad en faradios y por la diferencia de potencial a la que han sido sometidos ambos electrodos.

Cuando se retira la fuente de tensión, los electrones sobrantes en el electrodo positivo presentan una tendencia a querer compensar ambas cargas, pero este movimiento es impedido por el dieléctrico debido a su naturaleza aislante. De este modo, el condensador podrá ser conectado posteriormente en paralelo con la carga a alimentar, permitiendo finalmente el flujo de electrones de un electrodo a otro en forma de corriente a través del circuito.

Los condensadores presentan ventajas tales como unos tiempos de carga y descarga rápidos, así como una alta eficiencia, fruto del hecho de que la energía eléctrica no tenga que transformarse para ser almacenada. Sin embargo, son más idóneos para almacenarla en pequeñas cantidades, puesto que su baja densidad energética requiere de grandes superficies de dieléctrico y de electrodos para aplicaciones más voluminosas.

Los supercondensadores son una alternativa a los modelos tradicionales. Estos emplean un electrolito líquido en lugar de un material dieléctrico sólido, así como condensadores de carbono poroso. De esta manera, se logran grandes áreas de contacto entre electrodos y electrolito manteniendo un volumen reducido, mejorando la densidad energética como consecuencia. [11], [14]

2.2.3.- Almacenamiento de energía mecánica

Existen métodos que permiten almacenar la energía eléctrica transformándola en un tipo de energía mecánica, ya sea cinética, potencial o de presión. En este subapartado se repasarán algunos de ellos.

2.2.3.1.- Centrales hidroeléctricas de bombeo

Uno de los métodos más extendidos de almacenamiento de energía eléctrica a gran escala es mediante las estaciones hidroeléctricas de bombeo. Para ello, la electricidad se transforma en energía potencial.

Estas centrales cuentan con dos embalses de agua a distintas alturas, y un circuito de bombeo entre ellas, así como una serie de turbinas. Para almacenar energía, se emplea la electricidad para accionar las bombas, transportando el agua del depósito inferior al de mayor altura. Por el contrario, cuando se busca generar electricidad, se hace circular el agua almacenada en el embalse superior hasta el de cota inferior, accionando a su paso las turbinas y produciendo energía eléctrica.

La cantidad de electricidad que estas centrales pueden almacenar depende, por tanto, de la diferencia de cotas entre los embalses, así como de su volumen. Sin embargo, presentan desventajas. Una de ellas es la dependencia de la geografía del lugar, pues no todos los lugares son aptos para este tipo de instalaciones. Por ejemplo, son más propicias zonas montañosas con variaciones pronunciadas de altura que localizaciones más llanas. También se genera una pérdida de energía eléctrica en la conversión, lo cual provoca que la relación entre la energía suministrada por las turbinas y la consumida por las bombas sea del orden de un 70 o un 80%.[11]

2.2.3.2.- Almacenamiento por aire comprimido

Otra metodología muy empleada consiste en el almacenamiento de energía por aire comprimido. El excedente de energía eléctrica de la red alimenta un motor que acciona a su vez un compresor. Este equipo toma aire de la atmósfera y lo comprime, inyectándolo a presión en un depósito, que es normalmente una cavidad rocosa subterránea.

La energía permanece almacenada en el aire en forma de presión en este espacio hasta que sea requerida. Cuando esto sucede, se toma aire de la cavidad y se mezcla con combustible. Esta mezcla fluye a través de una turbina de gas donde tiene lugar su combustión. Así se acciona un generador, que reinyectará la energía eléctrica en la red.

El aire que abandona la turbina es liberado de nuevo a la atmósfera tras discurrir por un recuperador de calor, que calentará al fluido a presión que entra en la turbina.

Estos sistemas presentan muy buenas eficiencias. Sus rendimientos pueden ir desde el 70%, hasta casi el 90%. [11], [14]

2.2.3.3.- Volantes de inercia

También es posible almacenar energía cinética por medio de los volantes de inercia. Los volantes de inercia son cilindros o discos que rotan, accionados por un motor, durante la carga. En este proceso acumulan energía cinética en forma de inercia, aumentando progresivamente su velocidad de giro de acuerdo con el nivel de carga que tengan, alcanzando niveles de varios miles de revoluciones por minuto.

Al cesar el par motor, el volante permanece girando gracias a la inercia. Para evitar pérdidas por rozamiento con el aire, el volante se encuentra contenido en un recipiente a muy baja presión, casi alcanzando el vacío.

En la descarga, se libera esta inercia acumulada, de modo que en esta ocasión el motor actúa como un generador accionado por el volante. De este modo, el volante reduce su velocidad de giro progresivamente hasta detenerse por completo.

No es posible lograr un rendimiento del 100% debido especialmente a las pérdidas de fricción en los cojinetes y rodamientos del eje de giro, pero es posible reducirlas de manera muy notable empleando cojinetes magnéticos en lugar de mecánicos. Así se consiguen eficiencias muy altas, de más del 90%. Otra gran ventaja de los volantes de inercia consiste en su larga vida útil, pudiendo soportar multitud de ciclos de carga y descarga. Sin embargo, están limitados a aplicaciones de baja potencia y duración, ya que el efecto de la inercia no es sostenible a largo plazo.[11], [14]

2.2.4.- Almacenamiento de energía térmica

Los sistemas de almacenamiento de energía térmica se basan en el uso de electricidad para intercambiar calor con una sustancia o un material. Estos procesos se dividen en dos tipos. Los de baja temperatura sustraen calor del material objetivo, que normalmente es agua o un compuesto criogénico (como el nitrógeno líquido). La electricidad alimenta una máquina refrigeradora que disminuye la temperatura de la sustancia en cuestión.

En el caso de los sistemas de alta temperatura, tiene lugar el proceso opuesto. En este caso, se calienta una sustancia que posee normalmente un punto de fusión bajo y un calor latente de fusión alto. De este modo, se puede almacenar más energía en menos espacio y a una temperatura máxima menor. Para llevar a cabo este calentamiento se pueden emplear

distintos métodos, como el aporte de calor a través de resistencias eléctricas mediante efecto Joule.

En cualquiera de los casos, la sustancia calentada o enfriada se conserva a la temperatura correspondiente en un recinto adecuado hasta que sea necesaria la recuperación de la electricidad. Cuando esto suceda, se empleará un ciclo termodinámico para generar la corriente eléctrica a través de un motor.

Este método presenta bajas eficiencias totales, entre el 30 y el 60%. Por otro lado, su principal ventaja consiste en su bajo impacto ambiental y naturaleza no contaminante.[11]

2.2.5.- Almacenamiento electroquímico

Uno de los tipos de acumulador más flexibles y empleados en la actualidad en todo tipo de aplicaciones son los sistemas electroquímicos de almacenamiento de energía, conocidos como baterías secundarias o recargables. Estas están compuestas por un conjunto de celdas conectadas en serie y en paralelo de manera que suministren la intensidad de corriente requerida a la tensión necesaria.

Las baterías almacenan la energía eléctrica en forma de energía química, mediante una reacción reversible de reducción-oxidación (redox) que tiene lugar en las celdas de esta. Cada una de estas unidades cuenta con dos superficies conductoras llamadas electrodos, el ánodo (negativo) y el cátodo (positivo), y un medio entre ellos, el electrolito. Durante la descarga, se aplica una diferencia se produce una reacción entre ambos electrodos que induce una migración de iones. Por su parte, al ser el electrolito impermeable a electrones, estas partículas han de fluir necesariamente por el circuito externo conectado a la batería, pasando a través de la carga y generando corriente eléctrica continua, puesto que se mueven en un único sentido. El ánodo experimenta una semirreacción de oxidación, mientras que el cátodo actúa como agente oxidante, reduciéndose.

Para llevar a cabo la carga, se conectan los electrodos a una fuente de tensión que genera un flujo de electrones en sentido opuesto al de la descarga. De este modo tiene lugar la reacción inversa a la de descarga.

Figura 2.13. Funcionamiento de una celda electroquímica durante descarga y carga [14]

Las baterías se caracterizan por lo general por su capacidad de almacenar energía durante periodos prolongados de tiempo, además de presentar una relación elevada entre la energía obtenida en la descarga y la aportada en la carga y tiempos de respuesta bastante rápidos. Sin embargo, existen multitud de tecnologías de baterías distintas, entre las cuales las especificaciones pueden variar enormemente. [11], [14] En los siguientes párrafos se verán algunos de los tipos más extendidos en el mercado.

2.2.5.1.- Batería de plomo ácido

Las baterías de plomo ácido fueron la primera tecnología de almacenamiento electroquímico desarrollada, datando de mediados del siglo XIX. Consisten en un cátodo de dióxido de plomo (PbO₂) y un ánodo de plomo metálico (Pb). Los electrodos están sumergidos en un electrolito de ácido sulfúrico (H₂SO₄) con una concentración de aproximadamente 6 M. Las reacciones redox que tienen lugar se representan a continuación. Nótese que al ser reacciones reversibles, pueden ocurrir en ambos sentidos. En esta memoria las reacciones de carga se corresponden al sentido de izquierda a derecha, y las de descarga al sentido opuesto, de derecha a izquierda.

$$C\acute{a}todo: PbSO_4 + 2H_2O \leftrightarrow PbO_2 + SO_4^{2-} + 4H^+ + 2e^-$$
 (2.3)

$$Celda: 2PbSO_4 + 2H_2O \leftrightarrow Pb + PbO_2 + 2H_2SO_4$$

$$(2.4)$$

La tensión entre ambos electrodos es de unos 2 V.

La madurez de esta tecnología permite que tengan un coste bajo, de menos de 600 \notin /kW, además de una buena eficiencia energética (más del 70%). Además, operan a temperaturas cercanas a la ambiente, aunque a temperaturas reducidas no presentan buen rendimiento.

Sin embargo, no están exentas de problemas. Presentan una vida útil muy corta, pudiendo alcanzar tan solo los 1000 ciclos de carga y descarga en los mejores casos. Las características del plomo tampoco son favorables, puesto que, debido a su elevada densidad másica, la densidad energética (cantidad de energía que son capaces de almacenar por unidad de masa) de las baterías es reducida, alcanzando como mucho los 50 Wh/kg. También, dado que es un metal pesado, se trata de un elemento altamente tóxico, por lo que su manipulación debe llevarse a cabo siguiendo protocolos de seguridad adecuados para su reciclaje o eliminación. Esta peligrosidad también se aplica al ácido sulfúrico del electrolito, que debe ser neutralizado de manera adecuada.

Las propiedades químicas de estas baterías también complican el mantenimiento de las mismas, ya que pueden emitir gases, precipitar sulfatos o corroer los circuitos eléctricos.[11], [14], [15]

2.2.5.2.- Batería de níquel-cadmio

Las baterías de níquel presentan también una larga historia. Su principal sello de identidad es el cátodo de hidróxido de óxido de níquel (NiO(OH)). Por su parte, emplean un electrolito alcalino, comúnmente hidróxido de potasio hidratado (KOH·H₂O).

Existen distintos tipos de baterías de níquel que se distinguen entre sí por la sustancia que compone el ánodo. La clase más extendida son las baterías de níquel-cadmio, que presentan un electrodo negativo de cadmio metálico. La reacción redox correspondiente se presenta a continuación.

$$\acute{A}nodo: Cd(OH)_2 + 2e^- \leftrightarrow Cd + 2OH^-$$
(2.5)

$$C\acute{a}todo: 2Ni(OH)_2 + 2OH^- \leftrightarrow 2NiOOH + 2H_2O + 2e^-$$
(2.6)

$$Celda: 2Ni(OH)_2 + Cd(OH)_2 \leftrightarrow 2NiOOH + Cd + 2H_2O$$

$$(2.7)$$

La tensión entre los electrodos es menor que en el caso de la batería de plomo ácido, alcanzando unos 1,3 V.

La principal ventaja que tienen frente a las de plomo ácido se trata de su mayor densidad energética, pudiendo alcanzar los 70 Wh/kg, además de requerir de un mantenimiento más sencillo y barato.

El número de ciclos que soporta también es mayor, pudiendo llegar hasta los 2500 con una profundidad de descarga (porcentaje de energía que se sustrae de la batería frente a la capacidad máxima de esta) moderada.

Sin embargo, el coste de fabricación también es muy superior al de las de plomo ácido, pudiendo alcanzar prácticamente un importe del triple de magnitud. También han de tenerse en cuenta las implicaciones del uso del cadmio. Este elemento, al igual que el plomo, es un metal pesado tóxico que debe manipularse con precaución.

No obstante, su principal defecto consiste en la degradación progresiva que experimentan a lo largo de su vida útil debido a las reacciones químicas en los electrodos, que a largo plazo reducen su conductividad. También poseen efecto memoria, el cual, al

cargar una batería que no ha sido descargada por completo, provoca la formación de cristales en su interior que acaba por reducir gradualmente la capacidad máxima.[11], [14], [16]

2.2.5.3.- Batería de ion de litio

Esta tecnología emplea un cátodo de óxido metálico tratado con litio, como el LiNiO₂ o el LiCoO₂. Por la otra parte, el ánodo está compuesto de grafito. Ambos se encuentran sumergidos en un electrolito de sales de litio disueltas. La reacción redox para la batería que emplea dióxido de cobalto en su cátodo se muestra a continuación.

Ánodo:
$$C_6 + Li^+ + e^- \leftrightarrow LiC_6$$
 (2.8)

$$C\acute{a}todo: LiCoO_2 \leftrightarrow CoO_2 + Li^+ + e^-$$
(2.9)

$$Celda: C_6 + LiCoO_2 \leftrightarrow LiC_6 + CoO_2$$
(2.10)

En la carga, los átomos de litio del cátodo se desprenden del óxido en forma de cationes y viajan hacia el ánodo, donde admiten los electrones de las capas externas para transformarse en átomos neutros. El proceso opuesto tiene lugar en la descarga.

En los últimos años este tipo de baterías ha sido uno de los más populares, especialmente en aplicaciones móviles, dónde el peso y el tamaño son factores clave. Su elevada capacidad energética por unidad de masa (puede alcanzar los 200 Wh/kg) y por unidad de volumen (llegando hasta los 500 Wh/l) la hace la batería ideal para este uso. Además, pueden alcanzar eficiencias de casi el 100%. No menos importante es la gran cantidad de ciclos de carga y descarga que puede soportar, alcanzando los 100000.

Por el otro lado, el principal problema con las baterías de ion de litio es su coste, prácticamente el doble del de las de níquel-cadmio, y muy superior al de los acumuladores de plomo ácido. Este alto precio tiene un impacto más importante cuanto mayores son las dimensiones del sistema en cuando a capacidad y potencia requeridas. Es por ello por lo que, pese a que las baterías de litio estén muy extendidas en mercados como el de la telefonía móvil, no sea así en instalaciones de gran escala. El litio también presenta características peligrosas, como su inflamabilidad ante la presencia de aire o agua. [11], [14]

2.2.5.4.- Pila de hidrógeno

Las pilas de combustible difieren de las baterías convencionales en que no emplean una reacción redox reversible para generar energía. Para funcionar, se les han de suministrar un combustible, que fluirá por el ánodo, y un agente oxidante, que discurrirá por el cátodo. Existen multitud de combinaciones de combustible y oxidante. La más común es la correspondiente a la llamada pila de hidrógeno, la cual emplea hidrógeno molecular (H₂) como combustible y oxígeno molecular (O₂) como oxidante.

Las celdas de las pilas de hidrógeno están compuestas por dos membranas de carbono con catalizadores que hacen de electrodos separadas por una membrana de polímero que permite el intercambio de iones y es impermeable a electrones. En el lado del ánodo se suministra el hidrógeno, que reacciona con un catalizador de platino y se oxida, liberando electrones y transformándose en cationes de hidrógeno (H⁺), llamados protones.

Estos protones pasan a través de la membrana electrolítica hacia el cátodo. Como el electrolito es impermeable a electrones, estos han de moverse obligatoriamente por el circuito externo conectado a la pila, generando corriente eléctrica.

Una vez en el cátodo, el agente oxidante (oxígeno), los protones y los electrones reaccionan para formar el residuo, que se trata de agua en el caso de la pila de hidrógeno.

La reacción redox no reversible, en la que se genera corriente, se representa a continuación.

$$Ánodo: H2 → 2H+ + 2e-$$
(2.11)

$$C\acute{a}todo: \frac{1}{2}O_2 + 2H^+ + 2e^- \to H_2O$$
 (2.12)

$$Celda: \frac{1}{2}O_2 + H_2 \to H_2O$$
 (2.13)

Puede comprobarse que, más que una batería propiamente dicha, se trata de un motor que genera energía a base de hidrógeno. Se considera un sistema de almacenamiento de energía ya que el hidrógeno suministrado proviene normalmente de un electrolizador. La electricidad que busca almacenarse alimenta a este equipo, que mediante un proceso de hidrólisis genera hidrógeno molecular a partir de agua. A continuación, ese hidrógeno se almacena en un depósito a la espera de que se necesite energía eléctrica. En es momento, se inyectará el hidrógeno en la celda para generar la corriente. Mientras dure el suministro de combustible y oxidante, la pila será capaz de generar electricidad de manera continua.

Las pilas de hidrógeno presentan una gran densidad energética, mucho mayor que las baterías, de hasta 1,2 kWh/kg, lo que lo hace interesante para aplicaciones como su instalación en automóviles. La potencia y capacidad también son fácilmente escalables mediante la adición de más celdas a la pila. También son respetuosas con el medioambiente, puesto que no generan gases de efecto invernadero ni poseen componentes tóxicos. Además, el hecho de que el ánodo y el cátodo tengan funciones meramente catalizadoras, en lugar de experimentar cambios químicos en su composición, los hace más estables y duraderos.

Sin embargo, no están libres de desventajas. Tienen un rendimiento bajo, de un 20 a un 50%. Además, el platino que se emplea como catalizador es un factor que aumenta notablemente el coste del equipo. [11], [17]

2.2.5.5.- Batería de flujo redox

La principal particularidad de las baterías de flujo es el hecho de que cuentan con tanques externos para almacenar los electrolitos. Ese fluye entre los tanques y reactor con ayuda de un sistema de bombas.

La carga y descarga se lleva a cabo mediante reacciones redox reversibles. En este tipo de baterías el par redox no se encuentra en los electrodos, sino que está disuelto en el electrolito, donde se almacena la carga

Son uno de los tipos de baterías más populares para aplicaciones estacionarias y a gran escala. Esto viene dado por la capacidad de poder escalar de manera independiente y sencilla la potencia que entregan y la capacidad energética que pueden almacenar. [11]

En el presente trabajo, el fin que se persigue es la implantación de una batería de este tipo en una instalación fotovoltaica, con el objetivo de compensar los déficits de energía almacenando los excedentes. Por ello, el siguiente apartado se dedicará a realizar un estudio en profundidad de este tipo de baterías, comparando además algunos de los tipos que existen.

2.3.- Batería de flujo redox

La batería de flujo redox (RFB, por sus siglas en inglés) es una parte fundamental del presente trabajo, puesto que es el núcleo de la modificación que se pretende realizar a la instalación fotovoltaica. El objetivo de este apartado será realizar una breve explicación de cuáles son las principales características de este tipo de baterías, así como de sus ventajas y desventajas respecto a otras clases, con el propósito de encontrar qué batería redox es la más adecuada para la aplicación deseada.

2.3.1.- Estructura de una RFB

Las RBF son sistemas complejos, formados por una gran cantidad de dispositivos tales como sistemas de bombeo, de control del calor, sensores y actuadores, además de tanques de almacenamiento, y, lo que es más importante, un conjunto de celdas redox conectadas entre sí, donde tiene lugar la reacción que da nombre a las baterías.[2]

Cada celda de una batería redox está dividida en dos semiceldas, en cada una de las cuales existe una disolución de concentración comprendida normalmente entre 1 y 5 M, el electrolito que a su vez tiene disueltos iones metálicos de otra especie, con concentraciones oscilantes entre el 0,1 y 9 M, muy dependientes de la naturaleza de estos compuestos. [18]

Figura 2.14.- Esquema de una RFB [2]

En la siguiente figura se muestra el despiece de una celda de RFB:

Figura 2.15.- Estructura de una celda de RFB [2]

Las partes que componen la celda son:

- a) Chapas metálicas, encargadas de otorgar estabilidad estructural al conjunto
- b) Placa de aislamiento, para evitar contacto eléctrico entre las semiceldas.
- c) Placas de grafito, para sellar las semiceldas.
- d) Láminas de grafito, que son los electrodos de la batería. Se usa un material basado en carbono con el grafito ya que, pese a no presentar una conductividad eléctrica óptima, su naturaleza inerte permite reducir su interacción con la reacción redox, asegurando el buen funcionamiento de la celda.
- e) Marcos de flujo, que componen el circuito por donde discurrirán los electrolitos en el interior de cada semicelda para llevar a cabo la reacción redox.
- f) Membrana permeable a iones e impermeable a electrones, que separa ambas semiceldas.[2]

Por otro lado, por cada batería redox han de existir como mínimo dos tanques, que almacenen los electrolitos de cada semicelda de manera que no se mezclen entre sí.[13]

Para construir una RFB, se conectan una serie de celdas en serie hasta alcanzar el voltaje deseado. De este modo, se forman las llamadas pilas de celdas. En esta configuración, las células adyacentes están separadas entre sí por una placa bipolar que está en contacto con el electrodo positivo de una célula y el negativo de la contigua.[19], [20].

Figura 2.16. Construcción de una pila de RFB[19]

Adicionalmente, para que la batería entregue la potencia y la corriente deseadas, se pueden conectar varias pilas en paralelo.[19]

Por otro lado, el flujo del electrolito puede llevarse a cabo de varias formas.

Una de ellas es la circulación en paralelo. En esta configuración, dos tuberías distribuyen el anolito y el catolito respectivamente entre todas las células, y otras dos tuberías colectoras los recogen. El principal problema de este modelo se trata de la aparición de corrientes residuales en los colectores, reduciendo la eficiencia de la batería.

También puede hacerse el reparto de electrolito en serie. De este modo, ambos electrolitos fluyen de forma secuencial a lo largo de las celdas, saliendo de una y entrando a la siguiente. Así se reducen las corrientes residuales en los mismos, quedando tan sólo una corriente entre células de un orden menor. A pesar de que de este modo el gasto energético en las bombas necesarias para hacer fluir los electrolitos es mayor, se compensa con la mejor eficiencia.

A su vez, con la conexión en serie se pueden bombear los electrolitos de dos modos: en equicorriente y en contracorriente. La segunda forma es más ventajosa, ya que permite tener condiciones más uniformes entre celdas.[20]

Figura 2.17. Bombeo de electrolito en paralelo[20]

Figura 2.18. Bombeo de electrolito en serie en equicorriente y contracorriente[20]

2.3.2.- Principio de funcionamiento electroquímico

El principio de funcionamiento fundamental de estas baterías es la reacción redox, o reducción – oxidación, que tiene lugar en las celdas. Este proceso, que ya se ha repasado brevemente en el apartado destinado a tecnologías generales de almacenamiento electroquímico, se estudiará con más detalle en esta sección.

Las baterías redox se distinguen unas de otras mayormente en lo que se conoce como el par redox, es decir, la pareja de sustancias disueltas en cada uno de los dos electrolitos. Estos han sido tradicionalmente iones metálicos, debido a su simpleza y alda solubilidad, e iones halógenos, que presentan también alta solubilidad, amén de bajo peso molecular y buen comportamiento para llevar a cabo reacciones reversibles.[21]

En los procesos de carga y descarga de las baterías, cada una de estas sustancias experimenta una media reacción, ya sea la de oxidación o la de reducción. Esta evolución se representa a continuación.

Ánodo:
$$A^{n+} + xe^{-} \leftrightarrow A^{(n-x)+}$$
 (2.14)

$$C\acute{a}todo: C^{(m-x)+} \leftrightarrow C^{m+} + xe^{-}$$
(2.15)

$$Celda: A^{n+} + C^{(m-x)+} \leftrightarrow A^{(n-x)+} + C^{m+}$$

$$(2.16)$$

A y C son las dos especies que forman el par redox. Se puede ver que hay presentes dos iones de cada una de ellas durante todo el proceso de carga y descarga.

De nuevo, las reacciones reversibles ocurren hacia la derecha cuando el proceso se corresponde a la carga de la batería, y hacia la izquierda en el caso de la carga.

Los dos electrodos que forman una pila redox reciben el nombre de ánodo y cátodo, estando estos bautizados por convenio de acuerdo a la reacción que experimentan durante la descarga de la batería. El ánodo es el electrodo negativo, que es el que experimenta la semirreación de oxidación (pérdida de electrones) durante el proceso de descarga de batería. A su vez, el electrodo positivo se denomina cátodo. Es este el que recibe electrones durante la descarga de la batería, de acuerdo con la semirreación de reducción. Adicionalmente, los electrolitos correspondientes a ambos electrodos reciben respectivamente los nombres de anolito y catolito, y son el lugar donde la batería almacena la energía. [2], [11]

En la descarga de la batería, los iones disueltos en el electrolito que sufre la oxidación liberan electrones. Estos iones son transferidos a continuación a través de la membrana hacia la otra semicelda, pero como esta separación es impermeable para los electrones, estos han de pasar necesariamente a través de los electrodos, del ánodo al cátodo, para llevar a cabo la reducción. Este movimiento de electrones entre electrodos da lugar a la corriente eléctrica que alimentará a la aplicación de interés.

De manera análoga, durante el proceso de carga tiene lugar la reacción inversa. Esta vez la oxidación ocurre en el cátodo, que cede al ánodo iones que pasan a través de la membrana, y electrones que recorren el camino entre los electrodos gracias a la fuente de energía conectada.[18]

2.3.3.- Propiedades eléctricas

Las celdas de las baterías redox se caracterizan por su voltaje y por la corriente que son capaz de proporcionar. El potencial depende principalmente de las especies redox correspondientes a la batería, y se ha de regular de acuerdo con el voltaje requerido para alimentar la carga mediante la conexión de celdas en serie. Por otro lado, la corriente característica de la celda se suele dar en amperios por unidad de área de electrodo (A/cm²). De este modo, el aumento de esta superficie al conectar varias pilas de celdas en paralelo permite ajustar la intensidad que va a proporcionar. La potencia máxima que es capaz de entregar la batería será por tanto el voltaje al que está conectada por la densidad de corriente, y por el área total.

$$P(W) = A/cm^2 \cdot V \cdot S_{electrodo}$$
(2.17)

Adicionalmente, la capacidad de almacenamiento energético se suele dar en forma de densidad energética o de capacidad específica. Es decir, en unidades de energía por unidad de masa o de volumen (Wh/l o Wh/kg). En algunos casos, especialmente para celdas individuales y pequeñas baterías se expresa en unidades de intensidad de corriente por hora (Ah/l o Ah/kg). Ambas magnitudes están relacionadas entre sí mediante el voltaje de la batería.

$$C(Wh) = C(Ah) \cdot V \tag{2.18}$$

El tiempo de carga y descarga teórico del acumulador será la capacidad energética en la carga o la descarga respectivamente, entre la potencia o la intensidad de corriente (según sea la unidad en la que se exprese), o bien de la batería en caso de la descarga, o bien de la red que la alimenta en el caso de la carga.

$$t_{ch/dsch} = \frac{C (Wh)}{P (W)} = \frac{C (Ah)}{I (A)}$$
(2.19)

Existen diversos modos de medir la eficiencia de estas baterías. Uno de los más empleados es la llamada eficiencia de ida y vuelta. Esta se define como el porcentaje de la energía empleada para cargar la batería que puede ser recuperada en la descarga. Como durante la carga y descarga tanto la corriente como el voltaje experimentan variaciones, se expresa en forma de integral.

$$\eta_{ida \ y \ vuelta} = \frac{E_{dsch}}{E_{ch}} = \frac{\int_0^{t_{dsch}} I_{dsch}(t) \cdot V_{dsch}(t) \cdot dt}{\int_0^{t_{ch}} I_{ch}(t) \cdot V_{ch}(t) \cdot dt}$$
(2.20)

Adicionalmente, existe el concepto de eficiencia energética del sistema, que tiene en cuenta, además de la fracción de energía recuperable, las pérdidas en bombas, electrodos, y el resto de partes que componen la batería. Se suele tener en cuenta la energía necesaria para alimentar a las bombas que transportan el electrolito entre los tanques y el reactor, ya que representan las pérdidas más significativas. El rendimiento del sistema suele ser del orden de entre un 1% y un 1,5% menor que el de ida y vuelta. [13], [20], [22]–[24]

$$\eta_{energ\acute{e}tica} = \frac{E_{dsch} - E_{bomba,dsch}}{E_{ch} + E_{bomba,ch}}$$
(2.21)

Se puede expresar también en términos de potencia. Será la relación entre la potencia neta entregada por la batería, y la total consumida para su carga, teniendo en cuenta a su vez la potencia requerida por las bombas.

$$\eta_{potencia} = \frac{P_{neta}}{P_{total}} = 1 - \frac{P_{bomba} + P_{p\acute{e}rdidas}}{P_{total}}$$
(2.22)

Por otro lado, la eficiencia culómbica es la relación entre la capacidad de la batería durante la descarga, y la misma durante la carga.

$$\eta_{C} = \frac{C_{dsch}}{C_{ch}} = \frac{I_{dsch} \cdot t_{dsch}}{I_{ch} \cdot t_{ch}}$$
(2.23)

También se puede expresar la eficiencia en función de la tensión en la carga de la batería y en la descarga.

$$\eta_V = \frac{V_{ch}}{V_{dsch}} \tag{2.24}$$

Finalmente, la eficiencia energética de la célula puede calcularse con el producto de las dos anteriores.

$$\eta_E = \eta_V \cdot \eta_C \tag{2.25}$$

2.3.4.- Ventajas y desventajas de las RFB

En esta sección se repasarán algunos de los beneficios de emplear baterías de flujo redox, amén de enumerar ciertos inconvenientes derivados de su uso.

2.3.4.1.- Ventajas

La principal ventaja, y la más característica de las RFB, es la posibilidad de escalar independientemente la potencia y la capacidad energética de la misma. Para aumentar la entrega de potencia de la batería, es necesario aumentar el número o tamaño de las celdas en paralelo que componen el reactor, incrementando de este modo el área transversal del electrodo y la corriente que proporciona. Por otro lado, la energía que es capaz de almacenar el sistema depende principalmente del volumen de electrolito, además de la concentración de los pares redox en el mismo. Esta capacidad es fácilmente ampliable mediante el aumento del volumen de los tanques de almacenamiento. Esta independencia y capacidad de incremento hace que las RFB sean enormemente flexibles e ideales para múltiples aplicaciones. [2]

También es sencillo llevar un control de la temperatura de las celdas mediante la regulación del caudal de solución electrolítica, de manera que se pueda operar en condiciones lo más cercanas posibles a las óptimas.

Otra de sus principales ventajas consiste en la posibilidad de recargarlas rápidamente. Para ello, bastaría con sustituir la disolución de electrolito por otra que esté disponible para realizar la reacción redox correspondiente a la descarga. [18]

Además, es beneficioso el hecho de que la composición de los electrodos en las RFB no se vea alterada, ya que a diferencia de otro tipo de baterías como las de plomo ácido, las reacciones redox tienen lugar entre las especies disueltas en el electrolito. Al producirse el intercambio de iones únicamente entre los electrolitos, teniendo únicamente los electrodos la función de conducir los electrones, el número de ciclos de carga o la profundidad de

descarga de la batería son parámetros que no afectan de manera tan notable a las RFB como lo hacen a las baterías tradicionales, en las cuales el electrodo almacena la energía. Teniendo en cuenta que, en el caso de una aplicación de almacenamiento de energía fotovoltaica, la batería se cargará y descargará multitud de veces a lo largo del día, la capacidad de resistir un elevado número de ciclos es de las más importantes que puede tener un acumulador para este uso. Además, al carecer de efecto memoria, no es necesario descargarla completamente para volver a cargarla de nuevo, lo que ofrece mayor flexibilidad.[13]

2.3.4.2.- Desventajas

El inconveniente más acusado de las RFB es la baja densidad energética que presentan. Debido al hecho de que estas baterías son muy voluminosas, contando con un elevado número de celdas, con sistemas de bombeo, y con grandes tanques de almacenaje de electrolitos, la densidad de energía almacenada por unidad de masa es reducida. [13] Además, las disoluciones necesitan recorrer distancias relativamente grandes para alcanzar las zonas electroquímicamente activas, formando gradientes que disminuyen la eficiencia total del conjunto.[18]

Ha de tenerse en cuenta también que, comparado con otro tipo de baterías como las de ion-litio, que han visto su eficiencia mejorada año a año en los últimos tiempos, la densidad energética de las RFB se ha mantenido más o menos constante.[21] Mientras que la capacidad de las baterías de ion-litio es del orden de 100 - 200 Wh/kg, lo que las hace adecuadas para aplicaciones donde se requiere portabilidad y ligereza, la de las RFB oscila entre 10 - 50 Wh/kg aproximadamente.[18] No obstante, esta desventaja no es tan determinante para aplicaciones estacionarias (como sobre la que versa este proyecto), como para otros usos donde el peso o el tamaño de la batería son factores claves, incluyendo su instalación en vehículos eléctricos o dispositivos portátiles. [18]

A su vez, se pueden provocar pérdidas por corrientes residuales entre los electrolitos debido a la conductividad de estos, lo que reduce la eficiencia global de la batería.

También se puede provocar precipitación de algunas de las sustancias que forman la solución electrolítica, si esta no se mantiene entre los valores de temperatura óptimos. Para ello, suele ser necesario mantener la celda electrolítica a una temperatura cercana a la del ambiente. [18]

2.3.5.- La RFB de vanadio

De todas las RFB, la más extendida en el mercado es la llamada RFB de vanadio, o sólo vanadio, comúnmente representada por las siglas en inglés VRFB.[18]

2.3.5.1.- Características electroquímicas

La principal particularidad de la VRFB consiste en que emplea este metal como especie activa en ambas semiceldas. Esto es posible debido a que el vanadio es estable en numerosos estados de oxidación (2, 3, 4 y 5), con lo que es posible crear una diferencia de potencial electroquimico que permita la reacción redox.[18]

Ambos electrolitos consisten en una disolución de ácido sulfurico 1 Molar, en la que a su vez se encuentra disuelto el vanadio con concentraciones del orden de 2 - 3 M. [25]

En el ánodo participan los iones 2 y 3, mientras que en el cátodo se encuentran los iones 4 y 5 formando óxidos.

Figura 2.19.-Esquema de una VRFB[18]

Ánodo:
$$V^{3+} + e^- \leftrightarrow V^{2+}$$
 (2.26)

$$C\acute{a}todo: VO^{2+} + H_2O \leftrightarrow VO^+_2 + 2H^+ + e^-$$
(2.27)

$$Celda: VO^{2+} + V^{3+} + H_2O \leftrightarrow VO_2^+ + V^{2+} + 2H^+$$
(2.28)

Se recuerda que la reacción ocurre hacia la derecha durante el proceso de carga de la batería, y hacia la izquierda durante la descarga.

En el proceso de descarga, se produce la oxidación en el anolito, mediante el cual el V(2) libera un electrón, transformándose en el ion V(3). Este electrón, al no poder atravesar la membrana por ser esta impermeable para él, viaja entre los electrodos formando la corriente eléctrica que alimentará la carga. Una vez en el cátodo, el ion V(5), presente en la forma de VO_2^+ , se reducirá, transformándose en ion V(4) formando el compuesto VO^{2+} . Con el objetivo de mantener los electrolitos eléctricamente neutros, los iones H⁺ migrarán a través de la membrana que separa ambas semiceldas.

Las VRFB tienen baja densidad energética, en consonancia con el resto de baterías de flujo redox. Sus valores oscilan entre 25 y 35 Wh/l. Su densidad de potencia, por otro lado, es de como mucho 0,1 W/cm². Otra característica de interés es el voltaje de cada celda, que oscila entre 1,25 y 1,4 V. Además, la densidad de corriente que proporcionan las baterías suele estar comprendida entre los 50 y los 80 mA/cm².[18]

2.3.5.2.- Ventajas de las VRFB

La principal ventaja de las baterías de sólo vanadio viene dada por el hecho de emplear el mismo elemento en ambos electrolitos.

De este modo, si se filtrara parte del electrolito de una semicelda a la otra, la única consecuencia sería una disminución de la eficiencia de la batería.

Por el contrario, si las especies fuesen distintas, se sufriría una contaminación del electrolito afectado que disminuiría la eficacia del sistema, además de empeorar la capacidad energética del sistema y siendo necesario realizar una separación y limpieza de ambas soluciones.[13]

Debido a esto, las baterías de vanadio son de las RFB más duraderas, pudiendo su vida útil alcanzar de 15 a 20 años.[21]

2.3.5.3.- Desventajas de las VRFB

Las VRFB, al igual que el resto de baterías de flujo redox, falla principalmente en su baja densidad energética. La solubilidad del vanadio en la disolución de ácido sulfúrico del electrolito es limitada, requiriendo de voluminosos tanques para conseguir una capacidad de almacenamiento suficiente. Asimismo, es necesario controlar la concentración del elemento y las condiciones de temperatura para evitar la precipitación del vanadio.[13]

Otro de los principales inconvenientes de estas baterías consiste en la toxicidad del vanadio, y en el poder corrosivo de sus óxidos. Una manipulación cuidadosa es necesaria para tratar con estos dispositivos.[21]

La situación global del vanadio tampoco es beneficiosa, puesto que es un metal escaso que sólo tiene yacimientos en unos pocos países en todo el mundo, lo cual puede dar lugar a precios muy fluctuantes.[22]

2.3.6.- Otros tipos de RFB

Pese a que la VRFB es en la actualidad el modelo de batería redox más extendido, existen modelos que emplean iones de otros elementos en su electrolito. En esta sección se cubrirán algunos de ellos.

2.3.6.1.- RFB de vanadio/bromo

La batería de vanadio/bromo (también llamada VRFB de segunda generación, siendo la primera la de sólo vanadio) emplea iones de bromo y de vanadio como par redox, disueltos en un electrolito de ácido clorhídrico de molaridad entre 1,5 y 2. El voltaje de la celda es inferior al de la batería de sólo vanadio, encontrándose en el entorno de 1 V. [18], [20], [21]

Las reacciones redox correspondientes se muestran a continuación.

$$C\acute{a}todo: 2Br^{-} + Cl^{-} \leftrightarrow ClBr_{2}^{-} + 2e^{-}$$

$$(2.30)$$

$$Celda: 2VBr_3 + 2Br^- + Cl^- \leftrightarrow 2VBr_2 + 2Br^- + ClBr_2^-$$
(2.31)

La principal ventaja de estas baterías frente a las de sólo vanadio consiste en que, en presencia de los iones haluros de bromo, el vanadio presenta mejor solubilidad, pudiendo

aumentar de este modo la concentración del mismo en el electrolito. Así se consigue una mejora de la densidad energética de la celda, llegando a alcanzar incluso los 70 Wh/l. Se puede reducir el volumen total de electrolito hasta un 25% comparado con el de una batería equivalente de sólo vanadio.

Sin embargo, el inconveniente principal que presentan, y lo que impide que de momento sean comercialmente competitivas con las VRFB, reside en las propiedades químicas del bromo. Este elemento es tóxico o corrosivo, y los vapores que emite pueden ser altamente peligrosos para el ser humano. Por ello, han de emplearse agentes acomplejantes de bromo para mitigar este riesgo. Sin embargo, el elevado precio que presentan reduce de manera notable la competitividad de estas baterías en el mercado.[13], [20]

2.3.6.2.- RFB de vanadio/oxígeno

Esta tecnología se basa en las VRFB, con la salvedad de que sustituye el cátodo y el catolito por aire. Tiene lugar la siguiente reacción redox:

$$C\acute{a}todo: 2H_2 0 \leftrightarrow 4H^+ + O_2 + 4e^-$$
 (2.33)

$$Celda: 4V^{3+} + 2H_2O \leftrightarrow 4V^{2+} + 4H^+ + O_2$$
(2.34)

Las celdas de estas baterías presentan un voltaje de en torno a 1V. Su principal ventaja consiste en que aumenta de manera considerable la densidad energética de las VRFB, prácticamente doblándola debido a que prescinde del cátodo y del tanque de catolito, reduciendo en gran manera los requerimientos de espacio. Pese a esta gran ventaja, aún está en fase experimental, por lo que no tiene fuerte presencia en el mercado. [18]

2.3.6.3.- RFB de hierro/cromo

La primera batería de flujo redox moderna fue desarrollada por la NASA en el contexto de la primera crisis del petróleo con el propósito de crear un dispositivo electroquímico que permitiese almacenar energía a un coste reducido. El par redox finalmente escogido para este propósito, tras cotejar distintas posibilidades, incluyendo el vanadio, fue el hierro/cromo, principalmente debido a su bajo coste, pero sus celdas tienen un voltaje relativamente bajo, oscilando entre 0,9 y 1,2 V.[2]

La reacción redox que tiene lugar en estas baterías es la siguiente:

Ánodo:
$$Cr^{3+} + e^- \leftrightarrow Cr^{2+}$$
 (2.35)

$$C\acute{a}todo: Fe^{2+} \leftrightarrow Fe^{3+} + e^{-} \tag{2.36}$$

$$Celda: Cr^{3+} + Fe^{2+} \leftrightarrow Cr^{2+} + Fe^{3+}$$
(2.37)

Pese a que el hierro tiene buen comportamiento cinético y muestra reversibilidad en su reacción, el principal inconveniente de estas baterías es el cromo, mucho más lento, lo cual reduce la eficiencia global de la batería e incrementa los tiempos de carga y descarga.

También aumenta indirectamente el coste de operación, al precisar de mayores temperaturas de trabajo.[21] La densidad energética de la batería es también menor que la de las VRFB. El hecho de emplear iones de diferentes especies, a diferencia de las baterías de sólo vanadio, también reduce de manera notable su vida útil.[18]

2.3.6.4.- RFB de zinc/bromo

La RFB de zinc/bromo también cuenta con una larga historia a sus espaldas. Emplea en ambos electrolitos soluciones acuosas de bromuro de zinc (ZnBr₂). La reacción redox correspondiente es:

Ánodo:
$$Zn^{2+} + 2e^{-} \leftrightarrow Zn$$
 (2.38)

$$C\acute{a}todo: 2Br^{-} \leftrightarrow Br_2 + 2e^{-} \tag{2.39}$$

$$Celda: Zn^{2+} + 2Br^{-} \leftrightarrow Zn + Br_2 \tag{2.40}$$

A su favor están la alta solubilidad de los compuestos de Zinc (pudiendo alcanzar concentraciones superiores a 2 M). A pesar de esto, la densidad energética de la batería se ve limitada por el hecho de que el bromo molecular es menos soluble. También hay que tener en cuenta de nuevo los riesgos derivados del uso del bromo, tóxico para el ser humano.

Es característico también de este tipo de baterías el elevado voltaje entre electrodos, pudiendo alcanzar hasta 2,4 V, lo cual requiere de electrodos y electrolitos hechos de materiales estables en estas condiciones.[21]

2.3.6.5.- RFB de polisulfuro/bromo (PSB)

Las baterías de polisulfuro/bromo emplean distintos polisulfuros, comúnmente de sodio, en el ánodo para la reacción de oxidación, mientras que reducen bromuro en el cátodo. Presentan un voltaje de celda de unos 1,35 V.

Ánodo:
$$2Na^+ + xNa_2S_{x+1} + 2e^- \leftrightarrow (x+1)Na_2S_x$$
 (x = 1 − 4) (2.41)

$$C\acute{a}todo: 2NaBr \leftrightarrow Br_2 + 2Na^+ + 2e^-$$
(2.42)

$$Celda: 2Na^{+} + xNa_2S_{x+1} + 2NaBr \leftrightarrow (x+1)Na_2S_x +$$
(2.43)

Al ser ambas especies del par redox aniones, el intercambio de cargas se realiza por medio de una membrana permeable a cationes que permite el paso de los iones de sodio para mitigar la contaminación entre electrolitos. La velocidad de la reacción es relativamente baja, lo cual incrementa el tiempo de carga y descarga. Sin embargo, no necesita elementos especiales en sus electrodos capaces de soportar altas intensidades, lo cual permite el uso de revestimientos más baratos como el cobalto o níquel. Sumado al hecho de que el azufre presenta un coste bajo, y a que es capaz de operar a temperatura ambiente, estas baterías pueden ser una alternativa más económica que otras. Además, la alta solubilidad de los polisulfuros en algunos electrolitos permite obtener altas densidades energéticas, de hasta 60 Wh/l.

Uno de los inconvenientes es el riesgo de contaminación entre ambos electrolitos, lo que puede dar lugar a la precipitación de compuestos como bromo molecular (Br₂) o ácido

sulfhídrico (H₂S). Al igual que en el resto de baterías que emplean bromo, los riesgos derivados del uso de este halógeno han de ser tenidos en cuenta de nuevo. [11], [13], [20], [26]

En la siguiente tabla se resumen algunas de las características de las baterías consideradas.

	VRFB	V/Br	Fe/Cr	Zn/Br	PS/Br
Densidad energética (Wh/l)	20-33	35-70	<10 (Wh/kg)	50	16-60
Voltaje de celda (V)	1,4	1	1,18	1,8	1,35
Temperatura de operación (°C)	5-40	0-50	65	20-50	20-40
ηida y vuelta (%)	80-85	60-70	70-80	75	50-75

Tabla 2.1. Características de algunas RFB [14], [20]

2.3.6.6.- Otros tipos

Existen muchos más tipos de baterías redox en el mercado o en investigación, puesto que hay una gran versatilidad en las combinaciones de los pares redox. Muchas de estas baterías están basadas en otras más establecidos, buscando mitigar sus inconvenientes y potenciar sus ventajas. Un ejemplo es la RFB de zinc y vanadio, que combina la buena solubilidad del primero con la seguridad que presenta el vanadio sobre el bromo, mucho más toxico.[2]

Más allá de la combinación de distintos pares redox, existen rutas de investigación que buscan el desarrollo de RFB más alejadas de las tradicionales, que emplean iones metálicos y halógenos. Por ejemplo, se ha investigado la posibilidad de desarrollar RFB sin metales. Los iones metálicos son más escasos y costosos, por lo que se busca sustituirlos por compuestos orgánicos no metálicos. Las baterías redox a base de quinonas son prometedoras, puesto que tienen buenas propiedades electroquímicas, como la reversibilidad de sus reacciones y su solubilidad en electrolitos acuosos.

Otra línea de investigación consiste en una combinación de las baterías de ion-litio con las de flujo redox. De este modo, se busca aprovechar los beneficios del litio, como su gran capacidad energética y su elevado voltaje (más de 3 V). La semicelda catódica de estas baterías es la convencional en las RFB, con un electrolito líquido almacenado en un tanque que es bombeado al reactor. Sin embargo, el ánodo se compone únicamente de un electrodo de litio y un electrolito orgánico, que no se recircula. Se puede emplear una membrana como en las RFB tradicionales, o alternativamente utilizar un electrolito sólido para el ánodo de litio. Pese a los beneficios anteriormente citados, estas baterías híbridas presentan las desventajas características de las baterías de litio, como su baja ciclabilidad y la toxicidad del litio.[21]

3.- REVISIÓN DE LA DOCUMENTACIÓN

En este capítulo de realizará un análisis de la documentación facilitada sobre la instalación fotovoltaica. Se resumirán las principales particularidades de la misma, y también se expondrán las características de los equipos empleados en el generador. También se evaluarán los datos sobre las necesidades energéticas de la fábrica a lo largo del tiempo.

3.1.- Estructura de la instalación

Potencia CC pico en STC (kWdc)	9021
Potencia CA (kWac)	8085
Ratio potencia (Pcc/Pac)	1,12
Nº módulos	20502
N° inversores	3
N° transformadores	3
Tensión de conexión a la red (kV)	34,5

Las características básicas del parque fotovoltaico se resumen en la siguiente tabla:

Tabla 3.1. Características principales del generador fotovoltaico

La potencia total instalada del conjunto de los módulos fotovoltaicos será de 9021 kW en STC. En las condiciones esperadas de operación, de una temperatura de superficie de los módulos de 50 °C, será algo inferior, de unos 8297 kW.

La fábrica cuenta con una subestación eléctrica privada, desde donde se toma la energía de la red a media tensión, concretamente a 34,5 kV.

Los 20502 módulos fotovoltaicos que componen la instalación se han conectado en serie de 6 en 6 para formar cadenas o strings, consiguiendo una tensión de baja en las condiciones de operación (50 °C) de unos 1006 V. Cada mesa solar desplegada en el generador está compuesta por tres cadenas conectadas en paralelo.

A su vez, mesas se conectan entre sí en paralelo en cajas de combinación equipadas con protecciones y seccionadores. Cada una de ellas atiende entre 18 y 28 mesas. De estos combinadores se parte hacia los inversores.

Cada uno de los tres inversores dispuestos en el terreno es alimentado por un total de 14 cajas de combinación, que se corresponden a la tercera parte de los módulos dispuestos sobre suelo (5982 paneles). Por último, cada uno de estos inversores alimenta a un transformador, que eleva el voltaje hasta la media tensión, con un valor de 34,5 kV, que es el que se corresponde con el potencial de la subestación presente en la fábrica. La subestación y la zona del generador están conectados mediante una línea de distribución aérea de unos 700 metros de longitud que bordea la fábrica.

El generador fotovoltaico se divide en dos zonas fundamentales. Por un lado, la mayor parte de los módulos, 17946, están instalados en mesas fijas sobre suelo. Estos paneles tienen una inclinación de 11° sobre la horizontal, y están orientados con un acimut (ángulo respecto a la dirección sur) de 8° hacia el este.

El resto de los módulos fotovoltaicos, un total de 2556 unidades, están dispuestos sobre la cubierta a dos aguas de un almacén de la fábrica. La inclinación de los módulos es de 10°, adaptándose a la del tejado. Los módulos están repartidos a partes iguales a ambos lados de la cumbrera, por lo que cada mitad presenta distinta orientación. El acimut de los módulos ubicados en los faldones orientados hacia el suroeste tiene es de 21° hacia el oeste, mientras que el de los situados en los faldones del noreste es el ángulo suplementario, es decir, de - 159°, o 21° dirección norte-este.

Los módulos de la cubierta alimentan a uno de los inversores situados en el suelo, de mayor potencia que los otros dos, y que comparten con un tercio de los paneles instalados sobre terreno, ocupando los de los tejados un 30% de las entradas MPPT del mismo.

En las siguientes figuras se pueden ver un esquema tanto de la configuración de las mesas, como de la disposición de la planta, distinguiendo mediante un código de colores entre los distintos niveles de tensión y tipos de corriente. Las zonas con puntos suspensivos en paralelo con otros equipos representan el número de estos elementos que existen en total.

Figura 3.1. Esquema de mesa fotovoltaica

Figura 3.2. Esquema generador fotovoltaico

Se dispone de varios diagramas unifilares de la instalación eléctrica del parque fotovoltaico, que no pueden ser publicados en este trabajo por motivos de confidencialidad. Se cuenta con el diagrama de baja tensión, que abarca el circuito entre los módulos fotovoltaicos y los transformadores, así como el de media tensión, que representa los equipos desplegados entre los transformadores del campo y la línea aérea que va hacia la subestación de la fábrica. También se disponen de esquemas de equipos como las cajas de combinación o seccionadores.

El tiempo de vida de la instalación fotovoltaica está estimado en 25 años.

Por último, hay planos relativos a una ampliación futura prevista para la planta fotovoltaica. Esta consistirá en la instalación de 612 nuevos módulos sobre la cubierta de otra nave de la fábrica. Se planea añadir de este modo unos 270 kW adicionales. No obstante, esta modificación no será contemplada en este trabajo.

3.2.- Equipos

Este apartado recoge las principales características de los equipos más importantes empleados en la instalación. Se incluirán las propiedades de los módulos fotovoltaicos, de los inversores, y de los transformadores presentes en el generador.

3.2.1.- Módulos fotovoltaicos

El módulo fotovoltaico empleado será el modelo FS-6440A. Se trata de un panel de película fina de CdTe manufacturado por la empresa First Solar. Sus características principales, tanto en STC como en las condiciones de operación de 50 °C se recogen en la siguiente tabla. Los datos se han obtenido a partir de la hoja de características del modelo disponible en el anexo I, así como de la base de datos del software PVsyst.

FS-6440A	STC	Condiciones de operación (50 °C)
Potencia nominal (W)	440	404,7
Vmp (V)	184,7	167,7
Imp (A)	2,38	2,41
Voc (V)	220	205,4
Isc (A)	2,55	2,58
Tensión máxima (V)		1500
Eficiencia (%)	17,8	16,4

Tabla 3.2. Características del módulo fotovoltaico

3.2.2.- Inversores

Los inversores empleados en el generador fotovoltaico pertenecerán a dos modelos distintos, ambos fabricados por la empresa valenciana Power Electronics. Se desplegarán en

total dos unidades del inversor FS2235K, cada uno de los cuales atenderá a un tercio de los módulos instalados sobre suelo. Por otro lado, habrá un modelo FS3350K que tratará la corriente generada por el tercio restante de los módulos sobre suelo, y la de los ubicados sobre las dos cubiertas. La temperatura de operación esperada para los tres equipos es de unos 40 °C. Además, los inversores están provistos de un sistema antivertido, de manera que no se inyectará el excedente energético a la red, sino que se controlará en todo momento la demanda para regular en consecuencia la generación de electricidad.

La potencia total entregada entre los tres inversores será de aproximadamente 8 MWac. Pese a que se pretende aumentar la potencia máxima del parque fotovoltaico en corriente continua mediante la adición del banco de baterías, no se busca incrementar la potencia de corriente alterna de la instalación, sino que permanecerá en su valor actual. Por tanto, no será necesario añadir más inversores a los ya instalados

Los datos más relevantes de ambos modelos, extraídos de la hoja de características proporcionada por el fabricante, se resumen en la tabla a continuación. En el anexo I se puede encontrar la hoja completa, con todas las características incluidas.

	FS2235K	FS3350K		
Cantidad	2	1		
Potencia de salida AC (40ºC) (kVA/kW)	2310	3465		
Corriente máxima de salida AC (A)	2117	3175		
Tensión de salida (V)	630			
Frecuencia de salida (Hz)	50/60			
Tensión de entrada para potencia máxima (V)	891-1500			
Tensión máxima de entrada (V)	15	00		
Número máximo de entradas	36			
Corriente de entrada de operación máxima (A)	2645	3970		
Eficiencia (%)	98,79	98,85		

Tabla 3.3. Características de inversores

3.2.3.- Transformadores

Debido a la presencia de dos modelos distintos de inversores, y a que cada uno alimenta a un único transformador, también habrá dos modelos de transformadores. Se desplegarán dos unidades del modelo MVSSH2310, y una del MVSSH3465, de la marca Power Electronics. Estos se conectarán con los inversores FS2235K y el FS3350K respectivamente, y su función será la de elevar la tensión para reducir las pérdidas en el

transporte desde el campo de módulos fotovoltaicos hasta la subestación eléctrica. Sus características vienen recogidas en la siguiente tabla.

	MVSSH2310	MVSSH3465		
Cantidad	2	1		
Potencia nominal (kVA)	2310	3465		
Tensión del primario (kV)	34,5			
Tensión del secundario (V)	630			
Tipo de conexión	Dy11			
Frecuencia de funcionamiento (Hz)	60)		

Tabla 3.4. Características de los transformadores

3.3.- Perfil de carga de la fábrica

Con el objetivo de dimensionar correctamente la batería y conocer el excedente de energía del que se dispondrá, es necesario conocer las necesidades eléctricas de la factoría.

Se cuenta para ello con datos de la energía consumida en kWh. Están disponibles los valores horarios de la totalidad del año 2017, así como los del año 2018 hasta septiembre inclusive.

	Consumo 2017 (MWh)	Consumo 2018 (MWh)
Enero	3790,92	4257,35
Febrero	3670,87	3737,99
Marzo	4097,24	4497,76
Abril	3973,73	4381,50
Mayo	4007,70	4513,10
Junio	3489,16	4454,72
Julio	4160,22	4687,54
Agosto	4228,10	4655,08
Septiembre	3971,98	4403,41
Octubre	4009,94	No disponible
Noviembre	3984,49	No disponible
Diciembre	4244,76	No disponible

En la siguiente tabla se recoge el total de cada mes.

Tabla 3.5. Demanda eléctrica mensual de la fábrica

Para este proyecto se creará un año tipo, tomando los datos disponibles de 2018, así como los de 2017 correspondientes a los meses restantes (octubre, noviembre y diciembre). Esto se debe a que el consumo en los meses de enero a septiembre de 2018 es sustancialmente superior al de sus homólogos del año anterior. Por ello, con vistas a dimensionar una batería que satisfaga correctamente las necesidades energéticas, resultan

preferibles sobre los meses de 2017. Por otro lado, ya que de los últimos tres meses solo se dispone de valores de 2017, se tomarán esos.

Se reflejan en la siguiente gráfica los datos diarios de consumo de cada mes. Puede observarse que la mayor parte de los días la demanda está concentrada entre las franjas de aproximadamente 130000 y 150000 kWh. Se aprecian también algunos valores bastante inferiores, de 60000 kWh o menores, en días puntuales.

Figura 3.3. Carga demandada diaria

Es también interesante conocer el reparto de esta demanda a lo largo del día. Para ello, se representa en la gráfica siguiente el promedio de los consumos horarios para cada hora del día en los distintos meses.

Figura 3.4. Carga horaria promedio para cada mes

Se puede apreciar que los valores son bastante homogéneos para todos los meses, siendo algo superiores en primavera y verano e inferiores en otoño e invierno. Por otro lado, el consumo a lo largo del día parece ser relativamente constante, salvo en el intervalo comprendido entre las 16:00 y las 23:00, donde se puede apreciar una caída de la demanda de unos 2000 kWh.

Dia\Mes	1	2	3	4	5	6	7	8	9	10	11	12	
1	35984	123351	137831	146012	143893	131516	152099	143146	153555	139961	136254	124907	
2	143395	136390	138917	143213	157086	144308	120204	145567	142363	88582	147833	144202	
3	143604	134664	144714	121664	156151	153472	128147	131946	129629	112210	148719	145922	
4	139063	138193	147557	147120	153061	159953	149742	147875	148254	100364	145683	146934	
5	137247	143260	95153	148184	143612	158894	161389	143251	151189	128110	147243	149441	
6	140584	145297	129808	152639	145488	155553	152056	151880	142293	111500	137356	140625	
7	134602	148526	141131	145377	156598	158880	163062	164536	151305	115590	130452	126546	
8	136205	147665	148775	155265	156128	157303	162889	155072	152117	119864	119506	147580	
9	140272	143765	153009	159320	151994	157316	151850	156324	141357	103904	64058	144537	
10	139280	143656	143052	161604	147059	141301	159102	157783	134925	101479	109533	145870	
11	146125	145051	148781	126650	146307	132803	145699	159790	129859	86173	144412	137585	
12	147183	145474	143343	151282	155049	144556	115951	153606	145053	126087	137405	144871	
13	148339	147835	155848	140015	154939	153083	117284	118977	151228	146958	147679	135629	
14	145320	139915	146039	151153	151467	139841	147159	129943	155057	148135	143117	148182	
15	142598	143132	143725	157066	144008	154375	165011	149555	145835	144644	139001	146474	
16	133902	65305	143964	161121	56241	156130	165153	161269	154835	134598	141346	141091	
17	143315	120961	151128	155255	121921	151008	162336	130138	151953	141340	145541	135197	
18	144303	127227	154525	151401	148603	158984	152404	138312	152810	145739	147022	136199	
19	116811	111429	158048	132694	140322	131784	157688	161001	157643	147028	147144	134910	
20	144420	119425	149666	136665	122364	137607	155691	161209	143923	144676	146581	147551	
21	148761	142086	152268	157844	159583	131153	158015	165466	142247	139915	145358	150712	
22	144250	145399	149211	158824	157468	160154	160349	156805	140302	140902	101982	142442	
23	146073	138665	144492	146193	155080	151940	151716	152409	147223	141427	99059	137085	
24	143274	149388	138832	151169	150576	149906	161408	134474	158456	146507	130991	139946	
25	129302	144991	158628	155993	157340	153658	146017	149507	157749	145762	134388	148835	
26	130261	115264	154819	142463	156128	156287	163097	153960	156755	139670	137209	143417	
27	148495	103509	154441	143008	156663	162969	156730	160805	151459	136615	112334	58983	
28	149766	128164	155299	133072	150868	154009	159136	159163	130503	138721	135046	140396	
29	143686		147965	114314	158641	131732	155093	151859	145399	134922	138679	126466	
30	137081		139797	134916	151306	124239	140242	157856	138138	135349	123559	115970	
31	133850		126991		107156		150823	151593		123204		116259	
Total	4257352	3737990	4497756	4381496	4513097	4454715	4687540	4655075	4403412	4009937	3984490	4244763	51827622

En la tabla siguiente se recoge el total diario de la demanda energética.

Tabla 3.6. Demanda diaria (kWh)

4.- DISEÑO Y CÁLCULO

Este capítulo versará sobre los cálculos necesarios para instalar el sistema de almacenamiento en el parque fotovoltaico. Se realizará una simulación preliminar con el software PVsyst con el objetivo de obtener la generación de energía horaria de la instalación fotovoltaica.

Con los datos obtenidos, se calculará mediante una hoja Excel el excedente horario, así como el déficit eléctrico en las horas sin generación. Con los datos obtenidos se procederá a predimensionar el sistema de acumulación.

A continuación, se realizará una propuesta atendiendo tanto a criterios técnicos como económicos. Se simulará este resultado en PVsyst.

4.1.- Simulación PVsyst preliminar

Pese a que entre la documentación entregada se cuenta con un informe de la simulación de la planta fotovoltaica en PVsyst, se ha decidido hacer otra desde cero. Se busca con ello preparar el sistema para introducir posteriormente la información de las baterías, y comparar los resultados de manera directa.

4.1.1.- Procedimiento de simulación

El primer paso será importar a la base de datos del programa los archivos con los datos del modelo de panel solar que se va a emplear, así como los correspondientes a los dos modelos de inversores existentes.

Los datos climatológicos se obtendrán a partir de las coordenadas y la altitud de un punto geográfico situado aproximadamente en el centro del campo fotovoltaico. A partir de esta ubicación, se importará información tal como la radiación solar incidente y la temperatura desde la base de datos PVGIS para un año promedio. Se generará automáticamente el archivo con la información meteorológica horaria de todo el año.

A continuación, se crean cuatro subconjuntos en total. Tres de ellos se corresponderán cada a uno a un tercio de los paneles desplegados sobre suelo (5982 por subconjunto, divididos en 997 cadenas de 6 módulos en serie cada una), y el cuarto incluirá los 2556 módulos dispuestos sobre la cubierta. Dos de los subconjuntos del suelo se conectarán cada uno a un inversor FS2235K. Por otro lado, el subconjunto de suelo restante, así como el de la cubierta, se conectarán al 70% y al 30% de las entradas MPPT del mismo inversor FS3350K.

Se emplearán las pérdidas del circuito estándar. Como la instalación emplea inversores centrales, las pérdidas en el circuito de DC serán de un 1,5%, mientras que las de AC serán de 0,3%. Adicionalmente, al existir transformadores de MT de 34,5 kV, se considerarán las

pérdidas en el mismo de un 0,1%. Las pérdidas auxiliares en los elementos del inversor se considerarán de 3 W/kW.

En el caso de las pérdidas térmicas, se tomará un valor intermedio para la constante Uc que PVsyst emplea entre el correspondiente a módulos con ventilación alrededor de los módulos (Uc = 29 W/m²K), y el apropiado para módulos sin ventilación trasera, es decir, los que están sobre cubierta (Uc = 15 W/m²K). Se elegirá un valor de Uc = 20 W/m²K, puesto que existen módulos en ambas situaciones.

Se estimarán unas pérdidas por ensuciamiento de los módulos del 2%, puesto que no es un área con una cantidad abundante de arena o de polvo. No se tendrá en cuenta el envejecimiento de los paneles, sino que se realizará el cálculo para un año promedio.

Al emplear un módulo fotovoltaico de CdTe, es muy importante activar el modelo FirstSolar propuesto por el fabricante para la corrección espectral. Esto se debe a que este tipo de módulos presenta una gran degradación inicial al comienzo de su vida útil, por lo que sin activar este modelo el rendimiento en la simulación resultaría peor de lo que es en realidad.

Seguidamente será necesario diseñar el entorno circundante para reflejar las pérdidas por sombras, tanto lejanas como cercanas, en la simulación.

La determinación del sombreado provocado por obstáculos lejanos es sencilla, ya que es posible importar el perfil topográfico desde la base de datos PVGIS. El siguiente diagrama representa dicho contorno. El punto medio del eje horizontal será la dirección sur, mientras que los límites izquierdo y derecho representan el este y el oeste respectivamente. A su vez, el área amarilla contiene las líneas que muestran cuál es la trayectoria solar en distintos momentos del año.

Figura 4.1. Contorno de sombreados lejanos

El proceso para permitir el cálculo de las pérdidas por sombras cercanas es más complejo. Para ello, se ha de modelar la escena 3D de las instalaciones en el entorno de

dibujo que posee PVsyst. Se ha representado de forma simplificada tanto el campo fotovoltaico del suelo, así como la nave de la fábrica y los paneles a ambos lados de su cubierta.

Figura 4.2. Escena 3D de la instalación fotovoltaica

Una vez finalizada la definición del sistema, se puede proceder a la simulación. El informe completo se puede encontrar en el anexo II. En el siguiente subapartado se resumen los principales resultados.

4.1.2.- Resultados de simulación

Los resultados mensuales de la simulación se reflejan en la siguiente tabla.

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m*	kWh/m²	MWh	MWh	proporción
Enero	164.2	39.96	21.07	182.9	174.5	1425	1385	0.840
Febrero	162.0	41.02	23.56	174.2	167.2	1352	1314	0.836
Marzo	199.1	53.59	22.65	205.8	198.2	1601	1557	0.838
Abril	198.2	66.11	26.26	197.4	189.9	1532	1490	0.837
Mayo	194.5	80.50	27.43	188.8	181.2	1478	1438	0.844
Junio	187.7	76.29	27.09	179.8	172.4	1419	1380	0.851
Julio	202.0	75.25	25.74	194.0	186.1	1538	1495	0.855
Agosto	203.2	65.85	26.62	199.9	192.3	1572	1529	0.848
Septiembre	170.1	77.24	26.76	172.7	165.8	1365	1328	0.852
Octubre	143.3	70.00	24.23	149.5	142.6	1183	1151	0.853
Noviembre	147.0	46.04	22.87	161.3	154.2	1253	1218	0.837
Diciembre	151.6	42.45	24.43	170.8	162.6	1317	1281	0.831
Año	2122.8	734.29	24.90	2177.2	2087.1	17035	16567	0.844

Leyendas GlobHor Irradiación horizontal globa DiffHor Irradiación difusa horizontal T Amb Temperatura ambiente Global incidente plano receptor GlobInc GlobEff Global efectivo, corr. para IAM y sombreados

Energía efectiva a la salida del conjunto EArray E_Grid Energia inyectada en la red

Proporción de rendimiento

Tabla 4.1. Resultados de simulación preliminar

PR

Las cuatro primeras columnas se corresponden a datos medioambientales, no a resultados de simulación. Estos son la irradiación sobre la superficie horizontal tanto total como difusa, la temperatura ambiente promedio, y la irradiación global sobre la superficie inclinada de los módulos. Puede verse que sus valores son algo superiores a los de la irradiación sobre el plano horizontal.

La quinta columna versa sobre la irradiación global efectiva en los colectores. Es decir, es el valor de la irradiación sobre el plano inclinado menos las pérdidas por suciedad y por sombras tanto lejanas como cercanas sobre los módulos. Se comprueba que es menor que la global.

EArray es la cantidad de energía que sale directamente de los módulos fotovoltaicos. Incluye la eficiencia de conversión entre radiación solar y energía eléctrica de los paneles, pérdidas de calidad de la superficie, degradación o pérdidas por temperatura.

E_Grid es quizás el parámetro más importante del conjunto. Representa la cantidad de energía que se inyecta a la red, una vez ha pasado por inversores, transformadores... y se han computado pérdidas en los equipos y el cableado.

Por último, PR (proporción de rendimiento) es un parámetro que mide la eficiencia de la instalación fotovoltaica. Expresa la relación entre la energía inyectada en la red frente a la irradiación sobre el plano inclinado por la potencia total instalada de la planta.

$$PR = \frac{E_Grid}{GlobInc \cdot PnomPV} = \frac{16567 \cdot 10^3 \, MWh}{2177,2 \, kWh/m^2 \cdot 9021 \, kW} \cdot 100 = 84,4\%$$
(4.1)

La PR supera ampliamente el 80% todos los meses, lo cual muestra que se tiene un buen rendimiento en la planta fotovoltaica.

Una vez obtenidos los resultados de la simulación, se procederá a generar un archivo de Excel el cual recogerá los datos, hora por hora, de las variables representadas en la figura anterior. Sobre esta hoja de cálculo se realizará el dimensionamiento del banco de baterías, el cual se desarrolla en el siguiente apartado.

Finalmente, se representa a continuación el diagrama de pérdidas de la instalación, que representa las mermas que sufre la energía desde que incide sobre la superficie terrestre hasta que es inyectada en la red, así como la tabla con la información sobre la generación diaria por parte de los paneles fotovoltaicos.

2123 kWh/m ²	_	Irradiación horizontal global
	+2.6%	Global incidente plano receptor
	→ -0.30%	Sombreados lejanos / Horizonte
) -0.52%	Sombreados cercanos: perdida de irradiancia
	9-1.37%	Factor IAM en global
	9-2.00%	Factor de pérdida de suciedad
2087 kWh/m² * 50744 m² colect	t.	Irradiancia efectiva en colectores
eficiencia en STC = 17.78%		Conversión FV
18827 MWh		Conjunto de energía nominal (con efic. STC)
	9-0.97%	Pérdida FV debido al nivel de irradiancia
	9.30%	Pérdida FV debido a la temperatura.
	+3.29%	Corrección espectral
	→ -0.40%	Sombreados: pérdida eléctrica según las cadenas
	a +1.25%	Pérdida calidad de módulo
	9 -2.10%	Pérdidas de desajuste, módulos y cadenas
	9 -1.19%	Pérdida óhmica del cableado
	₩ -0.02%	Orientación mixta pérdida de desajuste
17037 MWh		Energía virtual del conjunto en MPP
	9-1.42%	Pérdida del inversor durante la operación (eficiencia)
	90.00%	Pérdida del inversor sobre potencia inv. nominal
	9 0.00%	Pérdida del inversor debido a la corriente de entrada máxima
	₩0.00%	Pérdida de inversor sobre voltaje inv. nominal
	₩0.00%	Pérdida del inversor debido al umbral de potencia
	9 -0.01%	Pérdida del inversor debido al umbral de voltaje
	₩0.00%	Consumo nocturno
16792 MWh		Energía disponible en la salida del inversor
	→ -0.30%	Auxiliares (ventiladores, otros)
	÷-0.02%	Pérdidas óhmicas CA
	9 -0.84%	Pérdida de transfo de voltaje medio
	9-0.19%	Pérdida óhmica de línea M∨
16567 MWh]	Energía inyectada en la red

Figura 4.3. Diagrama de pérdidas de la simulación preliminar

Dia\Mes	1	2	3	4	5	6	7	8	9	10	11	12	
1	47231	20001	35584	54630	51962	50472	44900	51490	50690	45258	48245	47846	
2	47090	20408	58038	56187	46588	50341	45185	55067	34395	20983	40235	46415	
3	48802	24334	51004	48061	55117	40379	52336	54538	40851	39315	30979	34618	
4	48812	41715	48421	55381	54441	51810	38733	54045	44772	42928	47521	34988	
5	48171	51271	49847	53616	53364	52813	45882	52847	49140	52777	29683	28794	
6	49074	52221	57274	50508	46338	54221	54352	54260	53024	49415	48233	42265	
7	19132	52126	57113	55530	53237	48477	50361	54994	48965	37023	47761	35981	
8	31071	52800	56662	53858	53302	50444	48288	34900	36599	39721	44431	28918	
9	47231	50869	39018	56890	51252	49696	46348	38049	47339	53150	48786	31531	
10	48009	53499	56557	56373	51096	52497	52363	33813	42196	46216	47680	38587	
11	49076	52830	47020	55491	53477	43568	48527	48384	37233	42678	38741	27015	
12	44563	53113	51197	50328	52687	29646	36520	40608	36030	20006	50611	44224	
13	45469	52925	56547	48788	54067	46125	36798	42602	32503	25568	48160	46146	
14	49275	31252	55101	30024	44136	49153	51752	54268	48385	29032	49665	46370	
15	42144	54069	56149	48188	49854	46541	52891	52272	46292	28208	49294	46300	
16	51659	27540	53932	54233	41952	44498	46465	52599	49093	30996	48892	46120	
17	50506	54811	30898	41618	41591	50145	54078	37319	35258	27944	33695	42986	
18	41761	51035	36504	36674	30565	47157	48115	47728	39591	21212	17938	44159	
19	26724	54476	52718	48107	45260	46467	51559	53485	47458	17510	19357	21592	
20	37836	35036	20657	40263	45518	45358	49208	53162	40788	29708	26034	37388	
21	49157	53555	51457	28040	29721	51209	54860	54605	39213	28787	36389	39269	
22	46279	54422	56310	50362	30664	54040	52306	50565	31656	46368	42507	46881	
23	50787	50669	44889	50745	45698	48719	55151	53968	34817	34228	49343	46439	
24	28162	53620	55896	50650	45832	46104	52646	41677	46798	34300	47643	46646	
25	37577	54020	51275	55580	50285	29568	38620	51879	50672	38644	47526	47395	
26	49321	54035	54865	55436	44450	32549	52156	55155	50047	47992	36720	47393	
27	51007	55018	54547	51097	35638	30442	53472	48590	51634	52559	38132	47375	
28	51091	52623	55799	49807	37996	46032	48557	52364	54517	52567	44168	47283	
29	47041		52222	52549	38420	38509	38572	54372	54660	45763	47778	45007	
30	51721		55451	51319	50957	52853	51360	50402	53182	45709	12283	48225	
31	49695		53592		52583		43103	49058		24444		46749	
Total	1385473	1314291	1556540	1490329	1438049	1379830	1495464	1529066	1327800	1151008	1218431	1280906	16567188

Tabla 4.2. Generación fotovoltaica diaria (kWh)

4.2.- Selección del tipo de batería

En el capítulo 2 se estudiaron varios tipos de RFB. En la siguiente tabla se resumirán las ventajas e inconvenientes de las mismas para seleccionar cuál se implantará.

Tipo de RFB	Ventajas	Desventajas			
Sólo Vanadio (VRFB)	No hay contaminación en electrolitos al emplear un único elemento.	Baja densidad energética. Requiere grandes volúmenes para alcanzar buenas capacidades.			
	Vida útil muy larga, puede soportar muchos ciclos.	Vanadio tóxico y óxidos corrosivos, además de escaso.			
	La RFB más implantada y extendida en el mercado				
Vanadio/bromo	Densidad energética mucho mayor que la VRFB.	Bromo tóxico y corrosivo, vapores peligrosos.			
		Son necesarios agentes químicos de alto coste.			
Vanadio/oxígeno	Densidad energética del orden de dos veces las de VRFB.	Está en fase experimental, sin implantación extendida en el mercado			
	El aire es abundante y gratuito.	mercado.			
Hierro/cromo	Bajo coste de sus materiales.	Requiere de altas temperaturas de operación.			
		Baja densidad energética y largos periodos de carga y descarga.			
		Corta vida útil.			
Zinc/bromo	Densidad energética moderada, mayor que la de VRFB, pero	El alto voltaje de la célula requiere materiales especiales.			
	menor que la de vanadio/bromo.	Peligros del bromo.			
Polisulfuro/bromo El azufre es barato y presenta buena capacidad energética.		Contaminación entre semiceldas que provoca precipitaciones.			
	Uso de elementos baratos en revestimiento de electrodos.	Riesgos derivados del bromo.			
	Densidad energética alta.				
	Operación a temperatura ambiente.				

Tabla 4.3. Ventajas y desventajas de las distintas RFB

La batería de vanadio/bromo, pese a tener buena densidad energética, hace necesaria la adopción de protocolos de seguridad y adquisición de costosos agentes químicos que encarecen el coste de manera notoria. El hecho de que el presente trabajo verse sobre una

aplicación estacionaria como la del presente trabajo, donde el peso y el tamaño del banco de baterías no son factores críticos, hace que la densidad energética, principal ventaja de esta batería sobre la VRFB, no sea un criterio decisivo, por lo que el uso de la batería de sólo vanadio resulta prioritario sobre esta.

La batería de vanadio/oxígeno, por su parte, está en fase experimental, por lo que su implantación no resultaría óptima. De nuevo, su principal ventaja, la mayor densidad energética, no es tan importante como otros factores.

Por su parte, la batería de hierro/cromo resulta obsoleta al ser el primer modelo de RFB desarrollado. La principal ventaja de las mismas (el bajo precio de su par redox) es negado por la baja vida útil y la pobre velocidad de carga y descarga que presentan.

Las opciones más interesantes son, por tanto, la de sólo vanadio, la de zinc/bromo y la de polisulfuro/bromo. Se ha de realizar una comparación en detalle entre ambas, atendiendo a características técnicas y también económicas.

Las propiedades tenidas en cuenta para este propósito son las empleadas por *Bradbury*, *K*. [14]. Cabe destacar que especialmente en los criterios económicos puede llegar a existir una horquilla muy amplia en cuanto a la inversión necesaria. El precio depende de factores tales como la densidad de corriente de la membrana entre semiceldas, el tiempo de carga y descarga deseado, o la pureza del electrolito [27], [28]. A continuación, se comparan las propiedades de las distintas baterías:

- Criterios técnicos:
 - Densidad energética (Wh/l): pese a que como se ha expresado anteriormente, no es un criterio decisivo en este proyecto, se comparará por su posible implicación en los costes del mismo al afectar al volumen de electrolito que será necesario adquirir.
 - Eficiencia de ida y vuelta: la relación entre la energía suministrada por la batería en su descarga y la que hay que aportarle durante la carga. Es conveniente conocerla para dimensionar la capacidad nominal requerida en función de la energía necesaria.
 - Vida útil: el número de ciclos de carga y descarga que puede soportar la batería antes de experimentar una degradación de sus capacidades.
 - En el caso de las RFB, la densidad de potencia (W/l) no aplica. Como se ha visto en el capítulo 2, la potencia que entrega la batería depende del área transversal del electrodo, siendo completamente independiente del volumen de la misma.

	VRFB	Zn/Br	PS/Br
Densidad energética (Wh/l)	16-33	30-60	16-60
ηida y vuelta (%)	60-85	60-75	57-75
Vida útil (ciclos)	12000-14000	2000	2000

Tabla 4.4. Comparación de baterías por criterios técnicos [14]

- Criterios económicos.
 - Costes de potencia (\$/kW) y energía (\$/kWh): Es el precio de la batería atendiendo a sus especificaciones de potencia máxima y capacidad de almacenamiento. En el caso de las RFB ambos son independientes.
 - Costes de elementos auxiliares (\$/kWh): incluye los equipos necesarios para conectar la batería a la red, como transformadores, controladores y aislamiento.
 - Costes de construcción e instalación (\$/kW): coste destinado a construir la infraestructura y gestionar los permisos necesarios para la conexión de la batería.
 - Costes de operación y mantenimiento (\$/kW-año): el coste anual destinado a mantener en condiciones óptimas el equipo. Se incluyen únicamente los costes fijos, ya que los variables se consideran despreciables frente a estos.

	VRFB	Zn/Br	PS/Br
Costes potencia (\$/kW)	200-1800	200-3000	400-3000
Costes energía (\$/kWh)	180-1200	180-1200	145-1200
Coste elementos auxiliares (\$/kWh)	145-750	145-725	145-725
Costes construcción e instalación (\$/kW)	45-145	0-145	70-145
Costes operación y mantenimiento (\$/kW- año)	30-80	18-57	21-116

Tabla 4.5. Comparación de baterías por criterios económicos [14]

Los costes, dados en el artículo en dólares de 2010, han sido transformados en dólares de 2021 para mayor exactitud. La tasa de inflación es de aproximadamente 1,21 \$ en 2021 por 1 \$ en 2010.

Atendiendo a todos estos criterios, se puede proceder a la selección de la batería:

Criterios técnicos: la VRFB es la clara ganadora en cuanto al número de ciclos de carga y descarga que puede soportar, gracias a la no contaminación entre electrolitos. Este parámetro es de alta importancia, puesto que reduce las necesidades de mantenimiento y sustitución de equipos. Teniendo en cuenta que cada día tendrá lugar, previsiblemente, un ciclo de carga y descarga, con entre 12000 y 14000 ciclos se tendrían vidas útiles de entre 33 y 38 años. También se puede comprobar que los rendimientos de las tres baterías comparadas se encuentran próximos los unos a los otros, aunque la eficiencia de la de vanadio puede llegar a ser potencialmente un 10% mayor que la de las demás. Por otro lado, se comprueba que el punto débil de la VRFB es claramente la densidad energética, cuyo valor apenas llega a la mitad de las otras. Sin embargo, este factor en una aplicación estacionaria no es demasiado

importante ya que no hay limitaciones de espacio ni peso demasiado restrictivas. Tienen más peso la vida útil y el rendimiento, con lo que la VRFB parece la alternativa más atractiva de este grupo.

 Criterios económicos: se observa que el precio donde más difieren los tres tipos de baterías de flujo es en el de escalado de potencia. La batería de vanadio tiene un coste máximo de algo más de la mitad del de los otros dos acumuladores. Por otro lado, los otros costes son similares en las tres clases. Por lo tanto, de nuevo la batería más favorable parece ser la de vanadio.

Tras esta comparación se puede concluir que la mejor opción es la VRFB.

El coste total de una VRFB se puede dividir entre los elementos que la componen de la manera que indica la siguiente figura.

Figura 4.4. Desglose de costes de una VRFB [27]

Se comprueba que los electrolitos y las pilas de celdas representan la mayoría del coste total de la VRFB. Por otra parte, dentro de las pilas de celdas, el elemento que eleva el precio de una forma más notoria es la membrana que separa las semiceldas. Esta puede representar un 25% del coste total de la batería.[27]

Posteriormente se decidirá cómo debe ser el diseño del banco de baterías atendiendo al dimensionamiento que se realizará a continuación.

4.3.- Primer dimensionamiento de la batería

El objetivo de este apartado será realizar un primer dimensionamiento de la batería. Se calculará qué especificaciones de potencia y capacidad energética ha de tener el banco de baterías a instalar. Se partirá de la hoja Excel mencionada en el apartado anterior.

4.3.1.- Definición de variables

Para el cálculo, el resultado fundamental de la simulación será E_Grid, es decir, la energía inyectada en la red en kWh. El valor que da PVsyst realmente es de potencia (P_Grid), es decir, en kW.

$$E_Grid (kWh) = P_Grid (kW) \cdot t (h)$$
(4.2)

Para este trabajo, como se cuenta con datos en intervalos de 1 hora (t=1), se supondrá que la potencia inyectada es constante para cada hora. Es decir, la energía inyectada en kWh tendrá el mismo valor que la potencia suministrada en kW.

Se importará en la hoja los datos horarios de demanda energética de la fábrica que ya se han mencionado en el capítulo 3.3. A esta variable se le denominará E_Consum.

Para una hora dada, se podrá calcular tanto el excedente que se puede almacenar en las baterías, o el déficit que existe para poder suministrar la energía demandada. Se crearán así nuevas variables.

El excedente de la batería (Ex) es la energía generada por los paneles fotovoltaicos a una hora determinada, que no va a ser empleada para satisfacer el consumo demandado a dicha hora, y que por tanto ha de ser almacenado en las baterías.

Como la batería no tiene un rendimiento perfecto, ha de hacerse una distinción entre la energía que se almacena en un momento determinado, y la parte de la misma que se puede emplear posteriormente para atender la demanda.

El Excedente de carga (Ex_ch) se refiere a la carga nueva que se almacena en la batería procedente de los paneles fotovoltaicos a esa hora, con independencia de la que existiese con anterioridad. Se trata también de la energía generada que se pierde al carecer de batería, cuando la producción de los módulos fotovoltaicos supera a la demanda.

Por otro lado, el Excedente de descarga (Ex_dsch) será la fracción del excedente de carga almacenado en las baterías, que se puede extraer de la batería tras descontar las pérdidas. Su valor será por tanto el rendimiento de la batería por Ex_ch. Se puede ver en la tabla 4.4. que las eficiencias de ida y vuelta en el caso de las VRFB oscilan entre un 60 y un 85%. Para este primer dimensionamiento se tomará un valor de 75%.

Por su parte, déficit (Def) será la energía demandada que no podrá ser satisfecha únicamente con el aporte de la planta fotovoltaica. En otras palabras, es la energía que hay que tomar de la red en ausencia del banco de baterías. El cómputo de estas variables se llevará a cabo de la siguiente manera.

Ex ch
$$\begin{cases} si E_Grid > E_Consum \rightarrow E_Grid - E_Consum \end{cases}$$
(4.3)

$$si E_Grid < E_Consum \rightarrow 0$$
(4.4)

$$\eta \cdot Ex_ch \tag{4.5}$$

$$\int si E_Consum > E_Grid \rightarrow E_Consum - E_Grid$$
(4.6)

si E_Consum < E_Grid
$$\rightarrow 0$$
 (4.7)

En la siguiente tabla se representa el déficit total que se da cada día del año.

Ex_dsch

Día\Mes	1	2	3	4	5	6	7	8	9	10	11	12	
1	32268	104042	105542	91779	95164	86774	107706	92527	104582	96194	89304	83793	
2	97480	115983	87063	95206	110851	94871	89859	91969	107967	70547	108145	98112	
3	96285	110349	96287	91161	101777	113093	84559	78976	88962	75773	118022	111768	
4	92348	97609	102156	94266	98800	108208	111274	95259	103706	70318	100045	111945	
5	92260	94869	70531	96053	97442	106451	115663	92980	103147	81779	117559	120647	
6	93069	95593	83591	103202	99981	105503	98553	98876	93686	75512	92339	99098	
7	115469	98478	89370	93133	103921	110404	112701	109581	104359	84992	88383	91602	
8	105206	97577	95328	103096	103174	106994	114601	120897	115518	87357	81276	118664	
9	94345	97639	114677	103923	100741	107830	106404	118275	97484	68041	45498	113007	
10	96120	94477	92177	105896	95963	93567	106954	123969	96470	62390	71933	107283	
11	99132	94698	104368	90972	94280	90275	99141	111841	94703	62892	105923	111193	
12	104819	94180	94232	106683	102362	114910	82250	113214	109023	106081	93346	101369	
13	103875	96442	101361	96806	102234	108065	86076	86510	118725	121390	100838	97284	
14	96889	108975	93814	121198	109242	95214	95700	84754	106671	119104	95977	101837	
15	101862	91947	90373	110267	94703	107834	112120	97366	99543	116436	92195	100577	
16	91496	65013	93181	107968	55192	111633	118786	112280	106776	103602	93868	95230	
17	94827	74757	120229	115064	81125	100989	108441	99019	116695	113397	111845	94982	
18	103725	87595	118660	117345	118039	111827	105146	96488	113633	124527	129084	95683	
19	99743	63321	106146	94174	95061	87295	106502	107527	110878	129518	127786	113318	
20	107736	88217	129009	97353	78294	100025	109115	108525	103134	114968	120547	110827	
21	100891	95958	105752	129805	129862	81175	103952	111061	103729	111762	109714	111928	
22	99874	95144	100230	108463	126804	106125	108043	107115	108647	95382	79239	97583	
23	96733	92979	105306	100403	109382	103221	96666	99686	112406	107269	64284	92101	
24	115112	97721	91463	100712	104851	103849	109594	92797	112478	112207	86349	94996	
25	97563	93114	108103	100412	107056	124090	108038	98594	107845	107699	89121	102178	
26	82753	76855	101664	89939	112026	124003	111043	100479	107388	95117	100545	96663	
27	99171	64563	101027	93609	121093	132528	105891	112226	102314	87768	81051	57960	
28	99600	78774	100994	91824	112871	111089	110579	107189	89395	89882	93166	93182	
29	99884		99548	72020	120920	93486	116521	102134	93234	97966	93123	86783	
30	88335		90802	87178	102796	73367	91925	108072	93006	91685	111276	76362	
31	88814		84521		64822		107720	105111		99467		70394	
Total	2987686	2566869	3077506	3009909	3150827	3114694	3241524	3185297	3126106	2981019	2891782	3058347	36391565

Tabla 4.6. Déficit total diario (kWh)

Se puede comprobar que, a lo largo de un año, en la situación actual sin baterías, hay que tomar de la red un total de 36.391 MWh para satisfacer completamente la demanda.

Se representa también el excedente diario que se genera.

Dia\Mes	1	2	3	4	5	6	7	8	9	10	11	12	
1	43515	691	3294	397	3233	5730	507	871	1717	1491	1295	6732	
2	1175	0	6184	8180	352	904	14841	1470	0	2948	547	325	
3	1482	18	2576	17557	743	0	8747	1569	185	2878	282	463	
4	2096	1131	3020	2527	181	65	266	1429	224	12882	1884	0	
5	3185	2880	25225	1485	7194	370	157	2575	1098	6447	0	0	
6	1559	2517	11057	1070	831	4171	849	1256	4418	13427	3216	738	
7	0	2078	5353	3285	560	0	0	38	2019	6426	5693	1036	
8	71	2712	3216	1689	348	135	0	725	0	7214	6201	2	
9	1304	4742	687	1494	0	210	902	0	3467	17286	30226	0	
10	4849	4321	5682	665	0	4762	215	0	3741	7127	10080	0	
11	2084	2478	2608	19812	1451	1040	1969	435	2077	19396	252	622	
12	2199	1819	2087	5730	0	0	2820	216	0	0	6553	722	
13	1005	1532	2060	5578	1362	1107	5590	10135	0	0	1319	7801	
14	844	311	2875	69	1912	4526	293	9079	0	0	2525	25	
15	1408	2884	2797	1388	549	0	0	83	0	0	2488	403	
16	9253	27248	3149	1080	40903	0	98	3610	1034	0	1414	259	
17	2018	8607	0	1426	795	126	183	6201	0	0	0	2771	
18	1184	11403	638	2618	0	0	857	5904	415	0	0	3643	
19	9656	6368	815	9587	0	1977	374	10	694	0	0	0	
20	1152	3828	0	950	1448	7776	2633	477	0	0	0	664	
21	1287	7426	4941	0	0	1231	797	200	696	635	745	485	
22	1903	4167	7329	0	0	10	0	875	0	848	19765	2022	
23	1447	4983	5703	4955	0	0	100	1245	0	70	14568	1455	
24	0	1953	8527	193	107	47	832	0	820	0	3001	1696	
25	5838	2144	750	0	0	0	641	967	768	580	2258	738	
26	1813	15626	1709	2913	349	266	103	1675	680	3438	55	639	
27	1683	16072	1133	1699	68	0	2634	11	2490	3713	6849	46352	
28	924	3233	1493	8559	0	3112	0	391	13409	3728	2289	69	
29	3239		3805	10255	699	263	0	4647	2495	8807	2222	5324	
30	2976		6455	3582	2447	1981	3043	619	8050	2044	0	8617	
31	4659		11122		10249		0	2576		707		884	
	115807	143171	136290	118742	75779	39809	49448	59288	50494	122090	125724	94490	1131132

Tabla 4.7. Excedente diario generado (kWh)

Es decir, a lo largo de un año, se podrían generar un total de 1.131 MWh adicionales durante horas en las que el aporte fotovoltaico supera a la demanda, pero al no tener sistema de almacenamiento, esta energía se pierde.

Esta energía representa un 3,1% del déficit total.

Las variables anteriores sólo tienen en cuenta la energía inyectada y consumida de cada hora. Sin embargo, la carga que se almacene en la batería cuando haya excedente a una hora determinada permanece en la misma (obviando efectos de autodescarga) hasta que es requerida en una hora en la que exista déficit. Por ello, ha de introducirse una nueva variable,

Excedente acumulado de carga (Exac_ch). El valor de Exac_ch a una hora t será la energía que hay en la batería al final de esa hora. Se calculará como la energía disponible en la batería al inicio de esa hora, más la que se inyecta en la red, menos la que se consume en la fábrica durante esa hora. La diferencia entre estos dos últimos términos también puede escribirse como el excedente menos el déficit a esa hora (uno de los dos siempre será 0). Hay que tener en cuenta que esta variable no puede ser negativa, por lo que su mínimo valor posible será 0, lo que se corresponde a las baterías completamente descargadas. Adicionalmente, se definirá la variable Excedente acumulado de descarga (Exach_dsch), cuyo valor será el rendimiento por Exac_ch, y que representará cuánta energía se podría descargar potencialmente de la batería a una hora determinada.

$$Exac_{ch}(t) = máx \{ Exac_{ch}(t-1) + Ex_{ch}(t) - Def(t); 0 \}$$
(4.8)

$$Exac_dsch(t) = \eta \cdot Exac_ch(t)$$
(4.9)

A partir de esta variable, puede definirse una nueva: el déficit con batería (Defbat). Esta representará qué parte de la demanda energética es la que queda sin cubrir, pero teniendo en cuenta esta vez, además de la energía generada durante esa franja horaria, también la energía que se puede extraer de la batería.

$$Defbat (t) = máx \{ Def (t) - Exac_dsch (t - 1); 0 \}$$
(4.10)

En la siguiente tabla puede observarse cuáles son los valores diarios de esta variable.

Dia\Mes	1	2	3	4	5	6	7	8	9	10	11	12	
1	2245	103523	103071	91481	92739	82477	107325	91874	103294	95076	88333	78744	
2	93985	115983	82425	89072	110586	94193	78729	90867	107967	68336	107735	97868	
3	95173	110335	94354	77993	101220	113093	77998	77799	88824	73614	117810	111420	
4	90776	96761	99891	92371	98665	108160	111075	94187	103539	60656	98632	111945	
5	89872	92709	51617	94939	92046	106173	115546	91048	102323	76944	117559	120647	
6	91900	93706	75293	102399	99357	102374	97916	97934	90373	65442	89928	98544	
7	115469	96919	85356	90669	103501	110404	112701	109552	102845	80173	84114	90825	
8	105152	95543	92917	101829	102913	106893	114601	120353	115518	81947	76625	118662	
9	93367	94082	114162	102803	100741	107673	105727	118275	94884	55076	31986	113007	
10	92483	91237	87916	105397	95963	89995	106793	123969	93664	57045	55217	107283	
11	97570	92840	102412	76112	93192	89495	97664	111515	93145	48344	105734	110726	
12	103170	92816	92668	102386	102362	114910	80136	113052	109023	106081	88432	100827	
13	103122	95293	99816	92622	101213	107235	81883	78909	118725	121390	99849	91433	
14	96256	108741	91657	121147	107808	91820	95480	77945	106671	119104	94083	101818	
15	100806	89784	88275	109226	94291	107834	112120	97303	99543	116436	90329	100274	
16	84557	48474	90819	107158	45809	111633	118712	109573	106000	103602	92808	95035	
17	93314	64405	120229	113994	59235	100895	108304	94368	116695	113397	111845	92904	
18	102838	79043	118181	115382	118039	111827	104503	92060	113323	124527	129084	92951	
19	92501	58545	105535	86984	95061	85812	106222	107519	110358	129518	127786	113318	
20	106872	85346	129009	96640	77208	94193	107140	108167	103134	114968	120547	110329	
21	99926	90388	102046	129805	129862	80252	103354	110911	103207	111286	109155	111565	
22	98447	92019	94733	108463	126804	106117	108043	106459	108647	94746	64415	96066	
23	95648	89242	101029	96687	109382	103221	96591	98752	112406	107217	53358	91010	
24	115112	96256	85068	100567	104771	103814	108970	92797	111863	112207	84098	93724	
25	93184	91506	107540	100412	107056	124090	107557	97870	107269	107264	87427	101624	
26	81394	65136	100382	87755	111764	123804	110966	99223	106878	92538	100503	96183	
27	97909	52509	100177	92335	121042	132528	103916	112217	100447	84983	75914	40120	
28	98907	76349	99874	85405	112871	108755	110579	106896	79338	87086	91450	76206	
29	97455		96695	64329	120395	93289	116521	98648	91362	91361	91456	82790	
30	86104		85960	84492	100961	71881	89643	107608	86969	90152	111276	69899	
31	85319		76180		57135		107720	103179		98937		69731	
Total	2900830	2459491	2975289	2920852	3093992	3084838	3204438	3140831	3088235	2889452	2797489	2987479	35543216

Tabla 4.8. Déficit diario con batería (kWh)

Es decir, el mínimo ahorro potencial que se podría conseguir instalando una batería es de 35.543 MWh. Esto supone un ahorro del 2,3%.

Con estas variables definidas y calculadas, se puede proceder al dimensionamiento de la batería. Hay dos características fundamentales del acumulador que deben determinarse: la potencia y la capacidad de almacenamiento. Como se ha explicado en la revisión de la literatura, en una batería de flujo redox ambas especificaciones pueden escalarse de manera completamente independiente. Por lo tanto, se calcularán por separado.

4.3.2.- Dimensionamiento de la potencia

4.3.2.1.- Estudio preliminar de la potencia

La potencia de la batería, a la que se denominará $P_{maxdsch}$, medida en W o sus múltiplos, determinará la velocidad a la que la batería puede entregar una cantidad determinada de energía. Es decir, esta propiedad dictará cuál será el tiempo de descarga del acumulador. En una batería de flujo redox, el valor depende del área de electrodo de la batería, pudiendo incrementarse mediante la conexión de varias pilas en paralelo.

Para este cálculo preliminar se hallará de la siguiente manera:

$$P_{maxdsch} = m\acute{a}x \{ Exac_dsch (t-1) - Exac_dsch (t) \}$$

$$(4.11)$$

Se realizará una simplificación para este cálculo: como sólo se cuenta con datos horarios de la producción y el consumo, se considerará que la energía almacenada en la batería se descargará, para cada hora, a un ritmo constante. Tal y como se puede observar en la ecuación 4.2, al contar con escalones de t = 1 hora, los valores de potencia (en kW) y energía (en kWh) serán equivalentes. Por ello, en la ecuación 4.9 está implícita la división entre t = 1 para pasar de unidades de energía en kWh a unidades de potencia en kW.

La lógica detrás de la ecuación anterior será la búsqueda de cuál es el salto más pronunciado entre los valores de carga de la batería al comienzo y al final de un periodo de una hora. Se tendrán en cuenta las ocasiones en el que se tenga más carga al inicio que al final, es decir, aquellas franjas en las que la batería entrega potencia.

En la siguiente tabla, se representa, por días, cuál es la potencia máxima suministrada. En las columnas se representan los meses y en las filas el día correspondiente. En la última fila se computa cuál es la potencia máxima para ese mes y para el año completo.

Dia\Mes	1	2	3	4	5	6	7	8	9	10	11	12	
1	6368	518	1317	280	1837	2505	265	653	1187	1064	586	3314	
2	2613	0	2234	3402	264	678	3383	683	0	1262	410	157	
3	899	14	934	4750	557	0	2107	815	138	1799	212	348	
4	1572	848	1444	1798	135	48	199	839	168	3125	1413	0	
5	1322	1083	5616	1095	2179	164	117	1520	537	3469	0	0	
6	862	1181	3662	803	542	2283	320	533	1419	2987	1737	279	
7	0	1395	2823	1544	420	0	0	29	889	2366	2672	445	
8	53	1161	1375	798	261	101	0	544	0	2567	2106	2	
9	592	1416	489	726	0	133	676	0	1384	4081	2211	0	
10	1703	2069	2567	499	0	1864	130	0	1788	3196	4124	0	
11	1071	956	1563	5056	921	780	961	326	788	4163	189	245	
12	1416	1192	1445	2628	0	0	1246	161	0	0	2776	542	
13	428	840	1381	3075	708	830	4014	3489	0	0	989	3417	
14	502	233	1059	52	1089	2400	184	3869	0	0	1185	19	
15	969	1244	1169	561	338	0	0	51	0	0	1470	193	
16	3333	4364	2092	552	2997	0	74	1364	775	0	647	194	
17	1359	3897	0	1070	4804	95	137	3196	0	0	0	1383	
18	521	3980	311	1352	0	0	643	3148	311	0	0	1829	
19	5793	2530	612	3870	0	1157	280	8	520	0	0	0	
20	864	2019	0	713	725	2885	1665	358	0	0	0	498	
21	640	2995	2588	0	0	924	597	150	522	476	305	364	
22	1360	2772	3402	0	0	8	0	382	0	476	4003	1159	
23	781	1878	3479	1989	0	0	75	934	0	52	3955	749	
24	0	1204	3251	145	43	35	510	0	615	0	1599	1069	
25	3255	1058	563	0	0	0	374	725	576	291	1376	554	
26	1219	4136	922	1299	255	199	66	922	413	1211	41	479	
27	935	4403	462	1175	51	0	1078	9	1495	1624	2343	5036	
28	447	1875	865	3552	0	983	0	293	4802	1654	1301	5307	
29	1158		1755	3501	525	197	0	1870	<u>15</u> 58	5040	1208	2288	
30	1140		2457	1679	994	1222	1674	367	3588	1401	0	4178	
31	2542		3593		4192		0	954		530		656	
Max	6368	4403	5616	5056	4804	2885	4014	3869	4802	5040	4124	5307	6368

Tabla 4.9. Cálculo de la potencia máxima diaria suministrada por las baterías (kW)

Se puede observar que el valor máximo es de prácticamente 6,5 MW. No obstante, al estudiar los datos disponibles día por día, se observa que tan sólo se alcanzan esas cifras en días puntuales, ya que la mayoría de los días se encuentran bastante por debajo. Además, en algunas jornadas las baterías ni siquiera almacenan excedente, ya que la demanda es en todo momento superior a la energía aportada por los módulos fotovoltaicos.

Según los datos reflejados en la tabla 4.5., el coste de una VRFB, atendiendo al dimensionamiento de la potencia, se encuentra entre valores de 200 y 1800 dólares por cada kW. Si se quisiese instalar una batería capaz de proporcionar la potencia demandada en todo

momento, es decir, 6500 kW, el coste de la batería según la potencia podría abarcar valores desde 1.300.000 \$ hasta 11.700.000 \$. Viendo coste tan elevado que se puede alcanzar, es más beneficioso sacrificar algo de potencia para de ese modo reducir el precio final de la batería.

Se establecerá inicialmente una potencia de 4 MW para los acumuladores. Se puede comprobar que esta es suficiente para no limitar la batería en la amplia mayoría de los días. Por tanto, la potencia seleccionada para este primer dimensionamiento será esta. Retornando a los costes de la tabla 4.5., con una potencia instalada de 4000 kW el rango de precios esperado será de entre 800.000 y 7.200.000, lo cual constituye un ahorro potencial importante respecto al caso anterior.

4.3.2.2.- Límite de potencia de 4 MW

Al limitar la potencia que puede entregar el banco de baterías a 4 MW, el mayor salto de carga que puede existir en un periodo de una hora en el que la batería esté descargándose es de 4000 kWh. Por tanto, para introducir esta limitación se definirá una nueva variable, el Excedente acumulado con limitación de 4 MW (Exac_4). Su formulación será la siguiente:

Erroa 1 ab	$ \begin{bmatrix} \operatorname{si} Exac_4_dsch(t-1) - [Ex_dsch(t) + \\ Exac_4_dsch(t-1) - Def(t)] < 4000 \end{bmatrix} $	$\longrightarrow Ex_ch$	$h(t) + Exac_4_ch(t-1) - Def(t)/\eta$	(4.12)
Exac_4_cli	si $Exac_4_dsch(t-1) - [Ex_dsch(t) + Exac_4_dsch(t-1) - Def(t)] \ge 4000$	->	$Exac_4_ch(t-1) - 4000/\eta$	(4.13)

 $Exac_4_dsch$

 $\eta \cdot Exac_4_ch$ (4.14)

El algoritmo comprueba en un primer momento si la diferencia entre la cantidad de energía que puede ser descargada de la batería al inicio de la hora y al final (hablando en todo momento de procesos de descarga, puesto que en la carga a priori no hay limitación) va a ser inferior o superior a 4000 kWh. En el caso de que sea menor que 4000, se aplicará la fórmula del excedente acumulado, teniendo en cuenta el estado de carga anterior con limitación.

Si la diferencia supera los 4000 kWh, la fórmula provocará que sólo se reste la cantidad límite del estado de carga anterior, con lo que en ningún momento se superará esta diferencia.

En la siguiente tabla se reflejan las potencias máximas diarias tras introducir la limitación.

Dia\Mes	1	2	3	4	5	6	7	8	9	10	11	12	
1	4000	518	1317	280	1837	2505	265	653	1187	1064	586	3314	
2	4000	0	2234	3402	264	678	3383	683	0	1262	410	157	
3	899	14	934	4000	557	0	2107	815	138	1799	212	348	
4	1572	848	1444	1798	135	48	199	839	168	3125	1413	0	
5	1322	1083	4000	1095	2179	164	117	1520	537	3469	0	0	
6	862	1181	3662	803	542	2283	320	533	1419	2987	1737	279	
7	0	1395	2823	1544	420	0	0	29	889	2366	2672	445	
8	53	1161	1375	798	261	101	0	544	0	2567	2106	2	
9	592	1416	489	726	0	133	676	0	1384	4000	2211	0	
10	1703	2069	2567	499	0	1864	130	0	1788	3196	4000	0	
11	1071	956	1563	4000	921	780	961	326	788	4000	189	245	
12	1416	1192	1445	2628	0	0	1246	161	0	0	2776	542	
13	428	840	1381	3075	708	830	4000	3489	0	0	989	3417	
14	502	233	1059	52	1089	2400	184	3869	0	0	1185	19	
15	969	1244	1169	561	338	0	0	51	0	0	1470	193	
16	3333	4000	2092	552	2997	0	74	1364	775	0	647	194	
17	1359	4000	0	1070	4000	95	137	3196	0	0	0	1383	
18	521	3980	311	1352	0	0	643	3148	311	0	0	1829	
19	4000	2530	612	3870	0	1157	280	8	520	0	0	0	
20	864	2019	0	713	725	2885	1665	358	0	0	0	498	
21	640	2995	2588	0	0	924	597	150	522	476	305	364	
22	1360	2772	3402	0	0	8	0	382	0	476	4000	1159	
23	781	1878	3479	1989	0	0	75	934	0	52	3955	749	
24	0	1204	3251	145	43	35	510	0	615	0	1599	1069	
25	3255	1058	563	0	0	0	374	725	576	291	1376	554	
26	1219	4000	922	1299	255	199	66	922	413	1211	41	479	
27	935	4000	462	1175	51	0	1078	9	1495	1624	2343	4000	
28	447	1875	865	3552	0	983	0	293	4000	1654	1301	4000	
29	1158		1755	3501	525	197	0	1870	1558	4000	1208	2288	
30	1140		2457	1679	994	1222	1674	367	3588	1401	0	4000	
31	2542		3593		4000		0	954		530		656	
Max	4000	4000	4000	4000	4000	2885	4000	3869	4000	4000	4000	4000	4000

Tabla 4.10. Potencia máxima diaria con limitación de 4 MW (kW)

Como se había observado en el apartado anterior, no se alcanza la limitación de potencia en la mayoría de días, con lo que aún podría existir cierto margen para disminuir esta y así optimizar más aún los costes de la batería. No obstante, se procederá con

4.3.3.- Dimensionamiento de la capacidad energética

4.3.3.1.- Estudio preliminar de la capacidad

El otro factor importante a dimensionar es la cantidad de energía que puede ser almacenada en la batería, es decir, su capacidad energética. Esta magnitud se puede medir con dos tipos de unidades, potencia por tiempo (Wh), o intensidad de corriente por tiempo (Ah), tal como se explicó en el apartado 2.3.3.

En este apartado se llevará a cabo un estudio inicial de la capacidad requerida para almacenar el excedente de la producción fotovoltaica. Se partirá de los valores obtenidos en el apartado anterior, es decir, teniendo en cuenta desde un comienzo la limitación de potencia de 4 MW.

Para determinar la capacidad máxima requerida, basta con conocer cuál es el mayor excedente acumulado de carga que existe en el transcurso del año, pues esa energía sobrante será la que se almacene. En la siguiente tabla puede observarse cuál es el máximo excedente almacenado simultáneamente en kWh en las baterías para cada día.

Dia\Mes	1	2	3	4	5	6	7	8	9	10	11	12	
1	43515	691	1756	397	3233	5730	507	871	1717	1491	1074	6732	
2	4021	0	6184	8180	352	904	14841	1470	0	2567	547	325	
3	1482	18	2577	17052	743	0	8747	1087	185	2878	282	463	
4	2096	1131	3020	2527	181	65	266	1429	224	12882	1884	0	
5	3185	2880	25225	1460	7194	370	157	2576	716	6447	0	0	
6	1559	2517	11057	1070	778	4171	849	1256	4179	13427	2604	372	
7	0	2078	5353	3285	560	0	0	38	2019	6426	5693	1036	
8	71	2712	3216	1689	348	135	0	725	0	7214	4848	2	
9	1304	3829	687	1494	0	210	902	0	3467	17286	30226	0	
10	4849	4321	5682	665	0	4762	215	0	3741	7127	10080	0	
11	2084	2478	2608	19812	1451	1040	1969	435	2077	19396	252	622	
12	2199	1819	2013	5730	0	0	1662	216	0	0	6553	722	
13	1005	1532	2060	5578	1362	1107	5590	6141	0	0	1319	7801	
14	844	311	2875	69	1912	4526	293	9079	0	0	2525	25	
15	1408	2884	2797	1388	549	0	0	83	0	0	2488	403	
16	9253	27248	3149	1080	40903	0	98	3610	1034	0	1414	259	
17	2018	8607	0	1426	25188	126	183	4262	0	0	0	2771	
18	695	11403	638	2618	0	0	857	5904	415	0	0	3643	
19	9656	6368	815	9587	0	1542	374	10	694	0	0	0	
20	1152	3828	0	951	1147	7776	2631	477	0	0	0	664	
21	1287	7426	4941	0	0	1231	797	200	696	635	474	485	
22	1903	4167	7329	0	0	10	0	875	0	635	19765	2022	
23	1447	4983	5636	4880	0	0	100	1245	0	70	14568	1455	
24	0	1953	8527	193	107	47	832	0	820	0	3001	1697	
25	5838	2144	750	0	0	0	641	967	768	580	2258	738	
26	1813	15626	1709	2913	349	266	103	1675	680	3438	55	639	
27	1683	16072	1133	1699	68	0	2634	11	2490	3713	6117	46352	
28	924	3233	1494	8559	0	3112	0	391	13409	3728	2289	18613	
29	2019		3805	10255	699	263	0	4647	2495	8807	2222	5324	
30	2976		6455	3582	2447	1981	3043	619	8050	2044	0	8617	
31	4659		11122		10249		0	2576		707		884	
Max	43515	27248	25225	19812	40903	7776	14841	9079	13409	19396	30226	46352	46352

Tabla 4.11. Excedente simultáneo máximo diario (kWh)

Puede observarse que hay determinados días con picos muy pronunciados, de más de 40000 kWh debido a que la producción de la fábrica es reducida. Sin embargo, la gran mayoría de días se alcanzan cifras muy inferiores.

Por tanto, dimensionar la batería para poder almacenar los casi 46500 kWh que se llegan a alcanzar resultaría excesivo. Es mejor opción perder algo de energía, pero optimizando los costes del equipo. Atendiendo a los costes por unidad de capacidad de la tabla 4.5., una batería capaz de almacenar el valor máximo existente costaría entre 180 y 1200 dólares por kWh, es decir, un total de entre 8.370.000 y 55.800.000 \$, lo cual resulta

una cantidad excesiva. Se puede observar en la tabla 4.9 que muchos días no se llega a alcanzar ni siquiera el 10% de esta capacidad.

Por ello, se va a limitar la capacidad máxima de la batería en un valor mucho menor al máximo existente. Se probará para el primer dimensionamiento con 10000 kWh, lo que acarrearía unos costes de entre 1.800.000 y 12.000.000 \$

4.3.3.2.- Limitación de la capacidad a 10000 kWh

La limitación de la máxima capacidad a 10000 kWh afectará a la variable que se ha denominado Excedente acumulado de carga con limitación de capacidad (Exac_cap_ch), puesto que es la que refleja la energía que hay realmente almacenada. Su formulación será similar a la de Ex_4_ch, con una salvedad que puede observarse a continuación.

Even con ch	$ \begin{cases} si Exac_cap_dsch(t-1) - [Ex_dsch(t) + \\ Exac_cap_dsch(t-1) - Def(t)] < 4000 \end{cases} \longrightarrow min\{Ex_ch(t) + Exac_4_ch(t-1) - Def(t)/\eta; 10000\} \end{cases} $	(4.15)
Exac_cap_cn	$\begin{bmatrix} si Exac_4_dsch(t-1) - [Ex_dsch(t) + \\ Exac_4_dsch(t-1) - Def(t)] \ge 4000 \end{bmatrix} \longrightarrow min\{Exac_4_ch(t-1) - 4000/\eta; \ 10000\}$	(4.16)

 $Exac_cap_dsch$

$\eta \cdot Exac_cap_ch$ (4.17)

Se observa que, debido al rendimiento del 75% que se ha definido, la máxima cantidad de energía que se puede descargar de la batería es de 7500 kWh, que se da cuando esta está a su capacidad total de 10000 kWh.

En la siguiente tabla se recoge el máximo excedente simultáneo diario en kWh tras haber introducido la limitación de la capacidad.

Dia\Mes	1	2	3	4	5	6	7	8	9	10	11	12	
1	10000	691	1756	397	3233	5730	507	871	1717	1491	1074	6732	
2	1175	0	6184	8180	352	904	10000	1470	0	2567	547	325	
3	1482	18	2577	10000	743	0	8747	1087	185	2878	282	463	
4	2096	1131	3020	2527	181	65	266	1429	224	10000	1884	0	
5	3185	2880	10000	1460	7194	370	157	2576	716	6447	0	0	
6	1559	2517	10000	1070	778	4171	849	1256	4179	10000	2604	372	
7	0	2078	5353	3285	560	0	0	38	2019	6426	5693	1036	
8	71	2712	3216	1689	348	135	0	725	0	7214	4848	2	
9	1304	3829	687	1494	0	210	902	0	3467	10000	10000	0	
10	4849	4321	5682	665	0	4762	215	0	3741	7127	10000	0	
11	2084	2478	2608	10000	1451	1040	1969	435	2077	10000	252	622	
12	2199	1819	2013	5730	0	0	1662	216	0	0	6553	722	
13	1005	1532	2060	5578	1362	1107	5590	6141	0	0	1319	7801	
14	844	311	2875	69	1912	4526	293	9079	0	0	2525	25	
15	1408	2884	2797	1388	549	0	0	83	0	0	2488	403	
16	9253	10000	3149	1080	10000	0	98	3610	1034	0	1414	259	
17	2018	8607	0	1426	795	126	183	4262	0	0	0	2771	
18	695	10000	638	2618	0	0	857	5904	415	0	0	3643	
19	9656	6368	815	9587	0	1542	374	10	694	0	0	0	
20	1152	3828	0	951	1147	7776	2631	477	0	0	0	664	
21	1287	7426	4941	0	0	1231	797	200	696	635	474	485	
22	1903	4167	7329	0	0	10	0	875	0	635	10000	2022	
23	1447	4983	5636	4880	0	0	100	1245	0	70	10000	1455	
24	0	1953	8527	193	107	47	832	0	820	0	3001	1697	
25	5838	2144	750	0	0	0	641	967	768	580	2258	738	
26	1813	10000	1709	2913	349	266	103	1675	680	3438	55	639	
27	1683	10000	1133	1699	68	0	2634	11	2490	3713	6117	10000	
28	924	3233	1494	8559	0	3112	0	391	10000	3728	2289	69	
29	2019		3805	10000	699	263	0	4647	2495	8807	2222	5324	
30	2976		6455	3582	2447	1981	3043	619	8050	2044	0	8617	
31	4659		10000		10000		0	2576		707		884	
Max	10000	10000	10000	10000	10000	7776	10000	9079	10000	10000	10000	10000	10000

Tabla 4.12. Excedente simultáneo máximo diario con capacidad máxima de 10000 kWh (kWh)

En la mayor parte de días, los valores diarios son iguales a los de la tabla 4.9. También conviene conocer cuál es la mayor potencia de carga que se da durante la operación de la batería, ya que, aunque se sabe que en la descarga la potencia está limitada a 4000 kW, se desconocen los valores en la carga. Esta se puede calcular de la siguiente manera:

$$P_{maxch} = m\acute{a}x \{ Exac_ch (t) - Exac_ch (t-1) \}$$

$$(4.18)$$

Dia\Mes	1	2	3	4	5	6	7	8	9	10	11	12	
1	2611	691	1756	397	808	941	507	569	716	589	747	1158	
2	312	0	907	1871	169	377	2592	661	0	1133	526	325	
3	438	18	1212	5686	247	0	1388	705	185	1854	282	463	
4	388	895	1342	473	152	65	266	353	224	4102	507	0	
5	834	543	5281	933	1547	353	157	1678	716	1418	0	0	
6	408	606	1624	332	778	1850	849	335	3028	2046	1524	366	
7	0	490	811	796	189	0	0	38	1302	2845	1447	1036	
8	71	757	1187	486	144	135	0	725	0	1734	1761	2	
9	408	2052	687	390	0	210	524	0	1022	1934	2996	0	
10	946	1280	1478	278	0	1367	215	0	1588	1647	1348	0	
11	469	545	1571	1815	503	657	1370	151	2077	2653	252	622	
12	763	457	1790	1682	0	0	1662	216	0	0	1411	265	
13	644	363	435	1193	257	746	1671	3274	0	0	482	1287	
14	397	311	646	69	1013	837	293	2120	0	0	897	25	
15	833	544	715	399	237	0	0	83	0	0	398	188	
16	1947	3131	534	349	2815	0	98	1153	354	0	444	109	
17	499	864	0	555	455	116	91	1951	0	0	0	987	
18	695	2389	638	1160	0	0	440	2322	415	0	0	976	
19	2227	1365	274	2071	0	1316	302	10	450	0	0	0	
20	641	2076	0	329	502	2730	1465	195	0	0	0	280	
21	366	1877	708	0	0	697	298	200	696	635	474	438	
22	408	767	2050	0	0	10	0	287	0	635	2310	617	
23	421	996	2920	1559	0	0	43	500	0	70	1337	445	
24	0	481	1228	193	107	47	265	0	304	0	524	503	
25	1965	614	507	0	0	0	641	348	323	580	601	249	
26	455	1774	496	1100	215	266	103	602	680	671	55	317	
27	474	1352	366	359	36	0	592	11	2034	828	2634	2540	
28	259	682	337	1721	0	1281	0	179	1498	574	830	69	
29	1220		1105	758	699	132	0	1518	749	1570	582	1079	
30	759		876	643	538	869	1141	619	1640	1276	0	1310	
31	834		1036		1122		0	1560		707		253	
Max	2611	3131	5281	5686	2815	2730	2592	3274	3028	4102	2996	2540	5686

Tabla 4.13. Potencia máxima de carga (kW)

El máximo valor que se da se puede comprobar que es de 5686 kW, lo cual resulta algo asumible y de un orden similar al de la descarga, con lo que no es necesaria la limitación del cargador. El tiempo estimado de carga (capacidad entre potencia) será de 1,75 horas.

Resultaría interesante conocer también cuánta es la energía que se pierde como consecuencia de tener una producción en un momento dado que excede a la producción cuando las baterías están llenas. Se muestra a continuación una tabla con la energía total diaria perdida.

Dia\ Mes	1	2	3	4	5	6	7	8	9	10	11	12	
1	33515	0	0	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	4841	0	0	0	0	0	
3	0	0	0	7052	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	2882	0	0	
5	0	0	15225	0	0	0	0	0	0	0	0	0	
6	0	0	1057	0	0	0	0	0	0	3427	0	0	
7	0	0	0	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	0	0	0	0	0	0	
9	0	0	0	0	0	0	0	0	0	7286	20226	0	
10	0	0	0	0	0	0	0	0	0	0	80	0	
11	0	0	0	9812	0	0	0	0	0	9396	0	0	
12	0	0	0	0	0	0	0	0	0	0	0	0	
13	0	0	0	0	0	0	0	0	0	0	0	0	
14	0	0	0	0	0	0	0	0	0	0	0	0	
15	0	0	0	0	0	0	0	0	0	0	0	0	
16	0	17248	0	0	30903	0	0	0	0	0	0	0	
17	0	0	0	0	0	0	0	0	0	0	0	0	
18	0	1403	0	0	0	0	0	0	0	0	0	0	
19	0	0	0	0	0	0	0	0	0	0	0	0	
20	0	0	0	0	0	0	0	0	0	0	0	0	
21	0	0	0	0	0	0	0	0	0	0	0	0	
22	0	0	0	0	0	0	0	0	0	0	9765	0	
23	0	0										0	
24	0	0	0	0	0	0	0	0	0	0	4568	0	
	0	0	0	0	0	0	0	0	0	0	4568 0	0	
25	0	0	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	4568 0 0	0	
25 26	0	0 0 5626	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	4568 0 0	0	
25 26 27	0 0 0 0	0 0 5626 6072	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	4568 0 0 0	0 0 0 36352	
25 26 27 28		0 0 5626 6072 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 3409	0 0 0 0 0	4568 0 0 0 0	0 0 0 36352 0	
25 26 27 28 29		0 0 5626 6072 0	0 0 0 0 0 0	0 0 0 0 0 255	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 3409 0	0 0 0 0 0	4568 0 0 0 0 0	0 0 36352 0 0	
25 26 27 28 29 30		0 0 0 5626 6072 0	0 0 0 0 0 0 0 0	0 0 0 0 0 255 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 3409 0 0	0 0 0 0 0 0 0	4568 0 0 0 0 0 0 0	0 0 36352 0 0 0	
25 26 27 28 29 30 31		0 0 5626 6072 0	0 0 0 0 0 0 0 1122	0 0 0 0 255 0	0 0 0 0 0 0 0 0 249		0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 3409 0	0 0 0 0 0 0 0 0	4568 0 0 0 0 0 0 0	0 0 36352 0 0 0 0	

Tabla 4.14. Energía diaria perdida (kWh)

Se pierden unos 232 MWh, lo cual no es una cantidad despreciable frente a los 1131 MWh que constituye el excedente total anual. Sin embargo, estos picos se concentran en días muy concretos en los que la producción de la fábrica es excepcionalmente baja. Por tanto, a priori compensa sacrificar ese excedente para así reducir costes en la batería.

4.3.4.- Resultados primer dimensionamiento

En esta primera aproximación, se ha llegado a las siguientes especificaciones para la batería:

Tipo de batería	VRFB
$oldsymbol{\eta}$ ida y vuelta	75%
Pmax dsch (kW)	4000
Pmax ch (kW)	5686
Cmax (kWh)	10000
V conexión AC (V)	630
I dsch AC (A)	3666
Volumen (m ³)	303 - 625

Tabla 4.15. Características de la batería predimensionada

Nótese que el banco de baterías se conectará en la zona de tensión alterna, posteriormente a los inversores. El motivo reside en que el número de cables que entran en el inversor es muy superior al de los que salen, ya que cada uno de estos equipos es alimentado por 14 cajas de combinación, con 6 adicionales en el caso del inversor que atiende también a la cubierta. Conectar todos estos circuitos al banco de baterías sería muy complejo. Los acumuladores, además, suelen requerir de una tensión nominal de baja, con lo cual tampoco sería adecuado conectar la batería después de los transformadores de MT, ya que requeriría de la presencia de un transformador adicional únicamente para esta. De este modo, es preferible realizar la conexión únicamente entre la salida de los tres inversores en trifásica, y el banco de baterías.

La batería deberá equiparse con su propio inversor bidireccional, de manera que este transforme la corriente alterna del excedente en continua para su almacenamiento, y la retorne a la forma de corriente alterna durante la descarga para atender la demanda.

La intensidad de descarga máxima trifásica de la batería, por su parte, se calcula de la siguiente manera:

$$I = \frac{P}{V_{linea} \cdot \sqrt{3} \cdot \cos \phi} \tag{4.19}$$

La tensión de línea se corresponde a los 630 V del punto de conexión de la batería. Por su parte, el factor de potencia (ϕ), puesto que no se conoce la relación entre resistencia y reactancia del circuito, se ha considerado como igual a 1.

La intensidad resultante es de 3666 A, lo cual resulta a priori un valor bastante elevado si se compara con las intensidades existentes en la instalación (figura 3.2).

El volumen estimado de la batería se ha calculado haciendo uso de las densidades energéticas de la tabla 4.4, del siguiente modo:

$$Vol(m^{3}) = \frac{1}{\rho(Wh/l)} \cdot Cmax(kWh) \cdot \frac{1000Wh}{1kWh} \cdot \frac{1m^{3}}{1000l}$$
(4.20)

El rango de volúmenes resultantes es de entre 303 y 625 m^3 , lo cual es un espacio bastante considerable.

En la tabla siguiente se han recopilado los principales resultados obtenidos de los cálculos realizados en la hoja Excel.

ales	E_Grid (kWh)	16567493
genera	E_Consum (kWh)	51827622
sticas	Ex_ch total (kWh)	1131141
acterís	Ex_dsch total (kWh)	848355
Car	Déficit sin batería (kWh)	36371269
	Ex_ch con batería (kWh)	899371
atería	Ex_dsch con batería (kWh)	674528
Con b	Déficit con batería (kWh)	35716741
	Energía perdida por batería llena (kWh)	231770

Tabla 4.16. Resultados principales del primer dimensionamiento

Se pueden observar los siguientes puntos:

- De los 16.567.493 kWh que se generan, se consumen directamente 15.436.352 kWh (93,2%) sin pasar por la batería. Por otro lado, se almacenan 899.371 kWh (5,4%) (de los cuales se podrá aprovechar el 75%, unos 674.528 kWh), y se pierden por estar el acumulador lleno unos 231.770 kWh (1,4%). Se aprovechan en total, por tanto, unos 16.110.880 kWh (97,2%)
- De los 51.827.622 kWh que se demandan, se pueden satisfacer 16.110.880 kWh (31%). El 69% restante se corresponde al déficit, 35.716.741 kWh, que deberá de tomarse de la red eléctrica.

Al comparar el parque fotovoltaico sin batería con la situación en la que se cuenta con ella, se puede apreciar:

• El déficit (energía que ha de tomarse de la red) disminuye de 36.391.269 kWh a 35.716.741 kWh, lo que se corresponde a un decremento del 1,9%.

- De los 1.131.140 kWh de excedente que pueden llegar a almacenarse potencialmente, se logran guardar 899.371 kWh, lo que se corresponde a aproximadamente un 80% del total.
- El mínimo déficit potencial que se puede conseguir con una batería de este rendimiento es de 35.543.216 kWh. El déficit conseguido de 35.716.741 kWh supone un 0,5% más que este.

El desglose de la energía se representa en los siguientes diagramas de sectores.

Figura 4.5. Desglose de demanda total en primer dimensionamiento

Figura 4.6. Desglose de energía generada en primer dimensionamiento

4.3.5.- Simulación PVsyst primer dimensionamiento

Para finalizar con el primer dimensionamiento de la batería, y previamente a la realización del análisis económico para optimizar su diseño, se llevará a cabo una simulación con PVsyst para comprobar la adecuación de los resultados a la realidad.

Los parámetros de la simulación serán los mismos que los introducidos para llevar a cabo la simulación inicial (apartado 4.1), pero en esta ocasión se introducirán dos nuevos elementos: las necesidades energéticas y el sistema de almacenamiento de energía.

Como se dispone de las necesidades del usuario en formato horario durante un año completo, se importarán directamente desde Excel a PVsyst para tener la mayor precisión posible.

Figura 4.7. Necesidades energéticas mensuales en PVsyst

Para la definición de la batería habrá que hacer una serie de concesiones. La tecnología de baterías de flujo aún no está implementada en el software, por lo que habrá de emplearse un modelo distinto y aproximar la capacidad y el voltaje lo máximo posible. Se ha escogido una batería US2000B de la marca Pylontech. Se trata de un acumulador de ion de litio con un voltaje nominal de 48 V y una capacidad de 50 Ah (o 2,4 kWh). Se ha configurado el banco de baterías conectando 13 baterías en serie (para alcanzar un voltaje de 624 V, próximo a los 630 V objetivos), y 323 en paralelo para lograr una capacidad de 9994,6 kWh, que se aproxima a los 10000 kWh buscados. Por otro lado, se ha limitado la potencia de descarga a 4000 kW, y la de carga a 6500 kW (muy por encima de los 5686 kW que se dan según los cálculos, con lo que esta limitación no debería tener impacto). La eficiencia de ida y vuelta se ha establecido en un 80%, ya que es el mínimo valor que PVsyst admite para este tipo de tecnología. Esto se debe a que, como se ha comentado en el apartado correspondiente, las baterías de ion de litio tienen eficiencias cercanas al 100%, por lo que un 80%, mientras que es un valor muy bueno para una VRFB (motivo por el que se ha dejado en 75%), resulta un rendimiento bastante bajo para una batería de litio.

Tras definir el sistema y realizar la simulación, se han obtenido los resultados resumidos a continuación. Una vez más, el informe de PVsyst completo se facilita en el anexo II.

Balances y resultados principales

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_User	E_Solar	EUnused	EFrGrid
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	MWh	MWh	MWh
Enero	164.2	39.96	21.07	182.9	174.5	1425	4257	1339	36.09	2919
Febrero	162.0	41.02	23.56	174.2	167.2	1352	3738	1269	27.38	2469
Marzo	199.1	53.59	22.65	205.8	198.2	1601	4498	1522	14.92	2976
Abril	198.2	66.11	26.26	197.4	189.9	1532	4381	1457	14.86	2924
Мауо	194.5	80.50	27.43	188.8	181.2	1478	4513	1398	29.91	3115
Junio	187.7	76.29	27.09	179.8	172.4	1419	4455	1372	0.00	3083
Julio	202.0	75.25	25.74	194.0	186.1	1538	4688	1482	3.99	3205
Agosto	203.2	65.85	26.62	199.9	192.3	1572	4655	1517	0.00	3138
Septiembre	170.1	77.24	26.76	172.7	165.8	1365	4403	1317	2.52	3087
Octubre	143.3	70.00	24.23	149.5	142.6	1183	4010	1117	20.24	2893
Noviembre	147.0	46.04	22.87	161.3	154.2	1253	3984	1171	32.55	2814
Diciembre	151.6	42.45	24.43	170.8	162.6	1317	4245	1234	35.34	3011
Año	2122.8	734.29	24.90	2177.2	2087.1	17035	51828	16194	217.80	35634

Leyendas

GlobHor	Irradiación horizontal global	EArray	Energia efectiva a la salida del conjunto
DiffHor	Irradiación difusa horizontal	E_User	Energia suministrada al usuario
T_Amb	Temperatura ambiente	E_Solar	Energia del sol
Globinc	Global incidente plano receptor	EUnused	Energía no utilizada (batería llena, sin inyección de red)
GlobEff	Global efectivo, corr. para IAM y sombreados	EFrGrid	Energía de la red

Puede comprobarse que los valores son muy similares a los obtenidos en el cálculo en Excel, obviando pérdidas en los cargadores.

Resultado	Excel	PVsyst
Energía generada (MWh)	16567	16567
Energía aprovechada (MWh)	16110	16194
Energía directa (MWh)	15436	15438
Energía almacenada (MWh)	899	911
Energía perdida (MWh)	232	217
Déficit (MWh)	35716	35634

Tabla 4.18. Comparación resultados Excel y PVsyst para primer dimensionamiento

Debido al parecido de los valores obtenidos, se puede concluir que los compromisos adoptados para la simulación no afectan el resultado de manera grave.

4.4.- Análisis económico

Una vez finalizado el dimensionado, se va a proceder a continuación a hacer un análisis económico de este primer diseño. Con los datos obtenidos de este estudio, se realizarán las modificaciones que sean oportunas para obtener un diseño final lo más optimizado posible.

4.4.1.- Coste estimado primer dimensionamiento

El primer paso en el análisis económico consiste en el cálculo del coste aproximado de la batería. Para ello se emplearán nuevamente los valores recogidos en la tabla 4.5. (extraídos de [14] y adaptados a la inflación actual), que establecen unos límites inferiores y superiores para los mismos. Sin embargo, estos datos reflejan valores relativamente antiguos. En los últimos años, los sistemas de almacenamiento VRFB han experimentado un notable descenso en su precio.

Por ejemplo, estudios más recientes [29] estiman el coste de operación y mantenimiento en un 1% de la inversión requerida para adquirir la batería. Por otro lado, en cuanto al precio de la batería en sí, diversos autores han estimado a corto plazo una reducción del coste de entre un 40% y más de un 60% en el precio que los acumuladores de solo vanadio (o baterías de vanadio de primera generación) presentaban a comienzos de década. [30], [31]

Figura 4.9. Evolución de los costes en los próximos años para distintas baterías [31]

Para este estudio, se tomará un valor promedio entre ambos escenarios. Es decir, los costes serán el 50% de los recogidos en la tabla 4.5, salvo el de operación y mantenimiento, que representará un 1% del precio de la inversión inicial.

En la siguiente tabla pueden verse los costes desglosados, así como el total, para el límite inferior y el superior estimados.

Costes	Lim inf	Lim sup		
Costes Potencia (\$)	400.000	3.600.000		
Costes Energía (\$)	900.000	6.000.000		
Costes auxiliares (\$)	725.000	3.750.000		
Costes Const y oper (\$)	90.000	290.000		
Inversión inicial (\$)	2.115.000	13.640.000		
Inversión inicial (\$/kWh)	212	1.364		
Inversión inicial + impuestos (\$)	2.368.800	15.276.800		
Costes op y mant (\$/año)	23.688	152.768		

Tabla 4.19. Horquilla de costes de la batería en primer dimensionado

Se han reflejado, además de los costes por cada concepto individual, el total de la inversión inicial (tanto incluyendo como excluyendo el Impuesto sobre el Valor Añadido del 12% vigente en el país ([32], [33]). También se ha calculado la relación entre inversión inicial y la capacidad en kWh, ya que será de interés para acotar más el precio de la batería.

Nótese que los costes de operación y mantenimiento se dan por año. Para el cómputo de la inversión inicial estos no se han tenido en cuenta.

La inversión inicial incluyendo impuestos oscila entre los 2.368.000 \$ y los 15.276.800 \$, lo cual es un intervalo bastante amplio. Ha de acotarse este intervalo, para lo que se recurrirá a la literatura. [28]

> • La mayoría de las baterías analizadas presentan costes por debajo de los 500 \$/kWh. La horquilla de precios analizada [14] presenta valores tope bastante altos, puesto que contiene información de estudios relativamente antiguos donde el coste de las baterías era superior. Para esta batería, el precio en dólares por unidad de almacenamiento de energía sería, para el coste mínimo, máximo

y promedio, de 212 y 1364 \$/kWh respectivamente. La situación de precio máximo sería excepcionalmente elevada, mientras que la de precio mínimo es cercana a los valores manejados en los estudios realizados, que oscilan entre los 160 € y los 1104 € aproximadamente. En dólares, estas cantidades (aplicando la tasa de cambio proporcionada por el Banco Central Europeo [34] a fecha de 2 de junio de 2021 de 1,2225 \$/€) serían de 195,6 \$/kWh y 1350 \$/kWh respectivamente.

• La relación entre inversión inicial y capacidad de la batería es menor cuanto mayor es este segundo término. Una batería de 10000 kWh de capacidad es de un tamaño relativamente considerable.

Figura 4.10. Relación ratio inversión inicial y capacidad de la batería [28]

Se observa que el coste estimado para una batería de 10 MWh y 8 MW es de unos 950 €/kWh. Por otro lado, para un acumulador de la misma capacidad y de 3 MW el coste sería de unos 600 €/kWh. En el caso de tener una potencia de 1 MW, el precio sería de unos 450 \$/kWh.

Interpolando cuadráticamente, para una batería de 4 MW y 10 MWh como la actual, la relación de costes estimada sería de unos 670 €/kWh, o 820 \$/kWh.

• El factor que más acentúa el coste de la batería son los elementos de potencia (superficie de membranas y electrodos). De acuerdo con la literatura, cuanto mayor es la relación energía/potencia, menor es la inversión necesaria.

Figura 4.11. Inversión inicial frente a relación energía/potencia [28]

En este caso, esta relación tiene un valor de:

Relación entre energía y potencia
$$=$$
 $\frac{10000 \, kWh}{4000 \, kW} = 2,5$ (4.21)

Aproximándolo mediante una interpolación cuadrática, el valor de la inversión a realizar sería de unos 5.460.000 €, lo que se traduce a 6.675.000 \$, aproximadamente 668 \$/kWh.

• El rendimiento tomado (75%) es bastante conservador, puesto que las VRFB pueden llegar hasta un 85%. Altos rendimientos requieren costes mayores, por lo que con un 75% se asegura que el precio de la batería no aumente demasiado.

Se tienen, por tanto, dos valores: 668 \$/kWh y 820 \$/kWh. Se tomará el promedio de los mismos: 744 \$/kWh. Estimando de nuevo una disminución de precio del 50% en los próximos años, el precio unitario por unidad de energía permanecerá en 372 \$/kWh. Este valor es asumible, puesto que se encuentra dentro de los límites anteriormente fijados, y es similar a los precios recogidos en la literatura. [28] Se calculan a continuación los costes desglosados.

Concepto	Importe
Costes Potencia (\$)	704.000
Costes Energía (\$)	1.583.000
Costes auxiliares (\$)	1.276.000
Costes Const y oper (\$)	159.000
Inversión inicial (\$)	3.722.000
Inversión inicial (\$/kWh)	372
Inversión inicial + impuestos (\$)	4.168.640
Costes op y mant (\$/año)	41.664

Tabla 4.20. Costes de batería primer dimensionamiento

Adicionalmente, se estiman los costes de los distintos elementos de acuerdo a la figura 4.4:

Desglose costes	%	Sin impuestos	Más IVA	
Pilas de celdas	31%	1.153.820	1.292.278	
Electrolito	37%	1.377.140	1.542.397	
Tanques	8%	297.760	333.491	
Elementos estructurales	21%	781.620	875.414	
Int calor y bombas	3%	111.660	125.059	
		3.722.000	4.168.640	

Tabla 4.21. Costes de la batería de primer dimensionamiento desglosados por elemento

Para comprobar si estos precios son rentables, ha de conocerse cuánto ahorro se consigue gracias al almacenamiento de energía para su uso posterior. El próximo apartado se centrará en esta tarea.

4.4.2.- Precio de la electricidad

El principal beneficio de la instalación de baterías en una planta fotovoltaica consiste en el almacenamiento de energía en horas de alta producción y baja demanda, para emplearla en horas nocturnas, cuando no haya generación, pero siga habiendo consumo energético.

Más allá del equilibrio entre generación y demanda, hay otro factor que ha de tenerse en cuenta a la hora de cuantificar el ahorro económico derivado del uso de baterías: la discriminación horaria en la tarifa eléctrica.

La discriminación horaria consiste en la división del día en varias franjas o periodos, de manera que en cada uno de ellos el precio de la energía sea distinto. Habitualmente, las franjas en las que existe una mayor demanda energética presentan precios mayores (horas pico), mientras que, en horarios de poco consumo, normalmente correspondientes a las horas de madrugada, los costes son más reducidos (horas valle).

Por este motivo, puede ser interesante en algunas ocasiones dejar la batería totalmente cargada durante varias horas (y perdiendo por tanto el excedente que se genere en ese periodo), para descargarla únicamente durante las horas pico, reduciendo la energía que se toma de la red en dicho periodo y consiguiendo un ahorro económico. En este apartado se calculará el ahorro económico derivado de la implantación de la batería.

4.4.2.1.- Tarifa eléctrica en Guatemala

Para este proyecto, se tomará como referencia para el cálculo de la tarifa eléctrica a la Empresa Eléctrica de Guatemala (EEGSA). Esta compañía, a través de su Comercializadora Eléctrica de Guatemala (COMEGSA) es la mayor empresa eléctrica del país. [35]

EEGSA, a través de su página web, informa de cuáles son las tarifas disponibles. [36]

La subestación presente en la fábrica suministra electricidad a media tensión (34,5 kV). Por tanto, de todas las tarifas que se ofertan, hay dos que podrían corresponderse: Media

Tensión Horaria con Demanda (MTHD) y Media Tensión con Demanda Autoproductores (MTDA).

La segunda tarifa es únicamente aplicable a los llamados usuarios autoproductores. La Comisión Nacional de Energía Eléctrica guatemalteca (CNEE) define este concepto como "El usuario del sistema de distribución que inyecta energía eléctrica a dicho sistema, producida por generación con fuentes de energía renovable, ubicadas dentro de sus instalaciones de consumo, y que no recibe remuneración por dichos excedentes.".[37]

Sin embargo, esta definición no es aplicable a la instalación fotovoltaica sobre la que se versa el presente trabajo. Esto es debido a la primera parte de la definición: El usuario del sistema de distribución que inyecta energía eléctrica a dicho sistema". Al contar con inversores antivertido, no se genera excedente si no se es capaz de almacenarlo, con lo que la inyección en la red eléctrica es nula. La energía generada en los módulos fotovoltaicos se emplea únicamente para atender la demanda propia.

Por ello, la tarifa correspondiente será la MTHD, la cual EEGSA define como "Es una tarifa para usuarios de Media Tensión en general y cualquier uso de energía y con una potencia superior a 11 kW, se mide la energía por banda horaria, medición de Potencia Máxima Demandada y Medición de Potencia de Punta Demandada, posee un sistema de medición inteligente, compuesta por: Cargo por consumidor (CF), Cargo por energía de punta (CEP), Cargo por energía intermedia (CEI), Cargo por energía de Valle (CEV), Cargo por energía de Valle Adicional (CEVa), Cargo por Potencia de Punta (CPP), Cargo por Potencia Contratada (CPC), es una tarifa ideal para clientes que puedan adecuar su consumo o utilizar la energía en horarios fuera de punta."

Es decir, esta tarifa aplica una discriminación horaria en tres periodos o bandas, que son los que siguen [38]:

- Banda valle: la que presenta el coste más bajo, de 22:00 a 6:00.
- Banda intermedia: con costes comprendidos entre las otras dos. Abarca desde las 6:00 a las 18:00.
- Banda en punta: tiene los precios más altos del día, entre las 18:00 y las 6:00.

La CNEE facilita una herramienta para consultar las cuantías de las tarifas eléctricas de cada mes.[39] En el caso de la MTHD, estas se encuentran desglosadas en las categorías indicadas en la definición citada con anterioridad. Los precios vienen dados en quetzales (símbolo Q), la moneda de curso legal en Guatemala. La tarifa se divide en:

- Cargo por Consumidor (Q/usuario·mes): es el coste asociado a estar conectado a la red de distribución. Se trata de un coste fijo mensual.
- Cargo unitario por energía en punta/intermedia/en valle (Q/kWh): el precio relativo a cada kWh de energía que se toma de la red en la banda horaria correspondiente. También existe el cargo unitario por energía en valle adicional (Q/kWh), que es el correspondiente al consumo adicional respecto a

la demanda típica de los usuarios para ese nivel de tensión. Este coste es inferior al de valle, por lo que no se tendrá en cuenta para el cálculo. Todo el consumo en valle se pagará al precio del cargo unitario en valle.

- Cargo unitario por potencia de punta (Q/kW·mes): es un cargo proporcional a la máxima potencia registrada en la demanda de la red durante algún momento del periodo de facturación
- Cargo unitario por potencia contratada (Q/kW·mes): coste asociado a la
 potencia que se haya contratado con la distribuidora. En el caso de que la
 potencia de punta exceda a la contratada, se podrá cobrar la diferencia al doble
 del coste correspondiente al cargo unitario por potencia contratada, además de
 tener la obligación de incrementar la potencia contratada hasta el valor que
 corresponda. [40]

Para realizar este análisis económico, únicamente se tendrán en cuenta los cargos unitarios por energía en las tres franjas horarias, así como el cargo unitario por potencia de punta y el de potencia contratada, puesto que serán los que más van a ser afectados por la instalación de baterías. El cargo por consumidor se obviará, puesto que este es invariable y no se verá modificado por la instalación de baterías.

En la siguiente tabla se recogen los costes correspondientes mes a mes, extraídos de la web de la CNEE. Nótese que para el año 2021 solo hay tarifas hasta el mes de julio incluido, con lo que los costes de los meses restantes serán los de 2020. Además, se ha incorporado el IVA del 12% que existe en el país.

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Energía en												
Punta	1,0118	0,9938	0,9938	0,9938	1,0206	1,0206	1,0206	1,0006	1,0006	1,0006	1,0674	1,0118
(Q/kWh)												
Energía												
Intermedia	1,0080	0,9900	0,9900	0,9900	1,0003	1,0003	1,0003	0,9968	0,9968	0,9968	1,0635	1,0080
(Q/kWh)												
Energía en												
Valle	0,9933	0,9753	0,9753	0,9753	0,9890	0,9890	0,9890	0,9821	0,9821	0,9821	1,0479	0,9933
(Q/kWh)												
Potencia de												
punta	42,799	42,799	42,799	42,799	43,094	43,094	43,094	42,799	42,799	42,799	42,799	42,799
(Q/kW-mes)												
Potencia												
contratada	14,078	15,888	15,888	15,888	15,888	15,888	15,888	14,078	14,078	14,078	14,077	14,078
(Q/kW-mes)												

Tabla 4.22. Costes unitarios de la energía por tramos horarios [39]

Una vez conocidos los costes de la electricidad, se puede proceder al cálculo del ahorro energético que supone la instalación de las baterías.

4.4.2.2.- Costes de la electricidad sin baterías

El primer paso consiste en averiguar a cuánto asciende la tarifa en la situación inicial, es decir, atendiendo la demanda únicamente con la producción de los paneles fotovoltaicos, de manera que no se pueda almacenar su excedente.

Se comenzará calculando cuál es el cargo por potencia de punta y potencia contratada. Para ello, se ha calculado el valor máximo de las potencias demandadas en cada mes (es decir, la variable Déficit), así como su promedio y desviación típica tanto incluyendo valores nulos como excluyéndolos.

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Total
Máximo	6830	6871	7275	7550	7430	7612	7554	7635	7308	6787	6760	6949	7635

Tabla 4.23. Máximas potencias demandadas por mes sin batería (kW)

Para obtener el importe a abonar por el componente de potencia de punta, se multiplicará el máximo de cada mes por el coste unitario correspondiente.

En el caso de la potencia contratada, viendo que el máximo anual es de unos 7635,3 kW, se ha decidido establecerla en 7700 kW. De este modo, no se superará en ningún momento del año.

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	
Potencia de punta	292.297	294.080	311.381	323.110	320.198	328.026	325.537	326.783	312.789	290.490	289.301	297.420	
Potencia contratada	108.397	122.335	122.335	122.335	122.335	122.335	122.335	108.397	108.397	108.397	108.397	108.397	
Suma	400.694	416.415	433.717	445.446	442.533	450.361	447.873	435.179	421.186	398.887	397.698	405.817	5.095.807

Los importes correspondientes en quetzales se recogen a continuación.

Tabla 4.24. Coste total de componentes de potencia de punta y contratada sin batería (Q)

El importe anual por estos conceptos asciende a unos 5.095.807 Q.

A este componente ha de sumarse el correspondiente a la cantidad de energía demandada de la red en cada periodo horario. Para calcularlo, se ha dividido el déficit en tres grupos correspondientes a la energía demandada entre las 6 y las 18, las 18 y las 22, y las 22 y las 6, y multiplicado esta cantidad de energía por el coste unitario del mes y franja horaria correspondiente.

Las dos tablas siguientes contienen la información sobre la cantidad de energía correspondiente a cada franja, así como el coste asociado a esta.

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	
Demanda intermedia	928753	742096	893388	841483	982187	961859	954635	937695	1017875	1053935	954303	998660	
Demanda en punta	559281	488447	590625	602197	578885	576556	630868	624517	569659	513590	510467	546908	
Demanda en valle	1499651	1336326	1593493	1566229	1589755	1576280	1656021	1623086	1538572	1413493	1427012	1512779	
Total	2987686	2566869	3077506	3009909	3150827	3114694	3241524	3185297	3126106	2981019	2891782	3058347	36391565

Tabla 4.25. Déficit energético mensual para cada franja horaria sin batería (kWh)

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	
Coste en intermedia	936.212	734.705	884.490	833.102	982.524	962.189	954.963	934.720	1.014.646	1.050.592	1.014.878	1.006.679	
Coste en punta	565.857	485.403	586.944	598.444	590.785	588.408	643.837	624.864	569.976	513.876	544.880	553.339	
Coste en valle	1.489.577	1.303.308	1.554.121	1.527.530	1.572.243	1.558.916	1.637.779	1.594.000	1.511.001	1.388.163	1.495.361	1.502.616	
Total	2.991.646	2.523.415	3.025.554	2.959.075	3.145.553	3.109.514	3.236.579	3.153.584	3.095.623	2.952.632	3.055.119	3.062.634	36.310.929

Tabla 4.26. Coste por energía demandada en cada franja horaria sin batería (Q)

Sumando los resultados obtenidos en la tabla 4.25 y 4.27 para cada mes, se obtiene el total a abonar cada mes debido a la energía demandada.

	Enero	Febrero	Marzo	Abril	Мауо	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Anual
Sin batería	3.392.340	2.939.830	3.459.271	3.404.521	3.588.086	3.559.875	3.684.452	3.588.764	3.516.809	3.351.519	3.452.817	3.468.452	41.406.736

Tabla 4.27. Importe total mensual y anual por la demanda eléctrica de la red sin batería (Q)

En total hay que pagar a lo largo del año unos 41.406.736 quetzales para inyectar desde la red la energía que no puede ser suministrada por los módulos fotovoltaicos.

4.4.2.3.- Costes de la electricidad con baterías

Una vez conocido el importe a abonar por la electricidad al carecer de baterías y alimentar la fábrica únicamente con la energía generada en el mismo momento por el parque fotovoltaico, se ha de calcular el ahorro que se consigue con la implantación del sistema de acumulación. Así se podrá valorar la rentabilidad del conjunto.

Para ello, el paso siguiente será repetir los cálculos llevados a cabo en el apartado anterior, pero esta vez para la situación en la que existe la batería definida en el primer dimensionamiento. Se comenzará una vez más calculando las potencias máximas para cada vez, con el objetivo de hallar cuál es la de punta, y cuál debe contratarse.

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Total
Máximo	6830	6871	7275	7550	7430	7612	7554	7635	7308	6787	6760	6949	7635

Tabla 4.28. Máximas potencias demandadas por mes con batería (kW)

Puede comprobarse que los máximos mensuales, así como el anual, son exactamente los mismos. Por tanto, los cargos por potencia de punta y potencia contratada (de nuevo 7700 kW) serán iguales a los de la situación sin batería (tabla 4.25).

De manera idéntica a como se hizo en el caso anterior, se calcula la energía tomada de la red en las tres franjas horarias, así como su coste.

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	
Demanda en intermedia	872881	676271	811631	774191	958042	933159	925355	894204	982835	990410	897327	962290	
Demanda en punta	553434	469656	583217	593271	573214	575399	626692	623541	569385	502792	499129	539675	
Demanda en valle	1499651	1336326	1593493	1566229	1586099	1576280	1656021	1623086	1538572	1413493	1427012	1512779	
Total	2925967	2482253	2988342	2933691	3117356	3084838	3208068	3140831	3090792	2906696	2823468	3014743	35717043

Tabla 4.29. Déficit energético mensual para cada franja horaria con batería (kWh)

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	
Coste en intermedia	879.890	669.535	803.547	766.480	958.372	933.480	925.673	891.368	979.717	987.268	954.285	970.017	
Coste en punta	559.942	466.729	579.582	589.574	584.998	587.228	639.575	623.888	569.702	503.072	532.777	546.021	
Coste en valle	1.489.577	1.303.308	1.554.121	1.527.530	1.568.628	1.558.916	1.637.779	1.594.000	1.511.001	1.388.163	1.495.361	1.502.616	
Total	2.929.409	2.439.572	2.937.250	2.883.584	3.111.997	3.079.624	3.203.028	3.109.255	3.060.420	2.878.504	2.982.424	3.018.654	35.633.720

Tabla 4.30. Coste por energía demandada en cada franja horaria con batería (Q)

Sumando ambos costes se obtiene el gasto total mensual y anual. Si se resta este importe a los precios sin batería (tabla 4.28) se obtiene el ahorro económico conseguido.

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Anual
Sin batería	3.392.340	2.939.830	3.459.271	3.404.521	3.588.086	3.559.875	3.684.452	3.588.764	3.516.809	3.351.519	3.452.817	3.468.452	41.406.736
Con batería	3.330.103	2.855.987	3.370.967	3.329.029	3.554.530	3.529.985	3.650.900	3.544.435	3.481.606	3.277.391	3.380.122	3.424.471	40.729.527
Ahorro	62.236	83.843	88.304	75.492	33.556	29.890	33.552	44.329	35.203	74.128	72.695	43.980	677.209

Tabla 4.31. Importe por la demanda eléctrica con y sin baterías y ahorro conseguido (Q)

El precio a pagar por la electricidad tras la instalación de la VRFB es de 40.729.527 quetzales, consiguiendo un ahorro de tan sólo 677.209 Q, es decir, una disminución del 1,6% respecto de la cantidad inicial.

Para llevar a cabo la evaluación económica, se transformarán los importes en quetzales a la divisa en la que se expresan los costes de la batería, es decir, dólares. Según el Banco de Guatemala, a fecha de 2 de junio de 2021 el tipo de cambio es de 7,72179 quetzales por dólar americano, o lo que es lo mismo, 0,12950 dólares por quetzal [41]. De este modo, el ahorro anual en dólares sería de 87.701 \$.

4.4.3.- Balance de costes

Para evaluar la rentabilidad del proyecto, se va a aplicar el método del Valor Actual Neto (VAN). Este algoritmo permite evaluar la rentabilidad de una inversión, adaptando los flujos monetarios futuros a su valor actual.

Para ello, se emplea la expresión:

$$VAN = -I_0 + \sum_{t=1}^{n} \frac{F_t}{(1+k)^t}$$
(4.21)

Siendo I_0 la inversión inicial, t el año futuro del horizonte de la inversión, F_t el valor del flujo monetario del año t en unidades de dicho año, y k la tasa de descuento aplicada.

Una inversión es rentable cuando el VAN es superior a 0. Generará pérdidas cuando es inferior a este valor, y se encuentra en el umbral de rentabilidad cuanto es nulo.

La tasa de descuento depende del tipo de interés (i). En el caso de Guatemala, el tipo de interés legal a fecha de 2 de junio de 2021 es de 1,75% [42]. La tasa de descuento k se obtiene:

$$k = \frac{i}{1+i} \tag{4.22}$$

El valor correspondiente de k es de 1,72 %. La inversión inicial será el coste de la batería, sin contar gastos de operación y mantenimiento, e incluyendo el IVA.

Por otro lado, t será la vida útil esperada del parque fotovoltaico, es decir, 25 años.

El flujo monetario F_t será el mismo todos los años. Su valor será el beneficio obtenido de la batería menos los gastos asociados a ella. En otras palabras, será el coste de la electricidad ahorrada menos los gastos anuales de operación y mantenimiento.

$$F_t = Ahorro\ eléctrico\ -\ Gastos\ op\ y\ mant = 87.701\$ - 41.664\$ = 46.037\$$$
 (4.23)

Cada año existe un beneficio de 46.037 \$. No obstante, hay que considerar si es posible recuperar la inversión en los años de vida de la planta.

t (años)	Ft (\$)	Sumando (\$)	VAN (\$)
1	46.037	45.259	- 4.123.381
2	46.037	44.493	- 4.078.888
3	46.037	43.741	- 4.035.147
4	46.037	43.001	- 3.992.145
5	46.037	42.274	- 3.949.871
6	46.037	41.560	- 3.908.311
7	46.037	40.857	- 3.867.454
8	46.037	40.166	- 3.827.288
9	46.037	39.487	- 3.787.801
10	46.037	38.819	- 3.748.982
11	46.037	38.163	- 3.710.819
12	46.037	37.518	- 3.673.301
13	46.037	36.883	- 3.636.418
14	46.037	36.260	- 3.600.158
15	46.037	35.647	- 3.564.512
16	46.037	35.044	- 3.529.468
17	46.037	34.451	- 3.495.017
18	46.037	33.869	- 3.461.148
19	46.037	33.296	- 3.427.851
20	46.037	32.733	- 3.395.118
21	46.037	32.180	- 3.362.939
22	46.037	31.636	- 3.331.303
23	46.037	31.101	- 3.300.202
24	46.037	30.575	- 3.269.627
25	46.037	30.058	- 3.239.569

Se va a proceder a calcular el VAN.

Tabla 4.32. Flujos monetarios anuales adaptados al año 0

VAN (\$)	- 3.239.569
10 (\$)	4.168.640,00
t (años)	25,00
i	1,75%
k	1,72%
Flujo total (\$)	929.071

Tabla 4.33. Parámetros y resultados del VAN

El VAN en el horizonte de vida de la batería es de más de 3 millones de dólares de pérdidas. Por lo tanto, es necesario mejorar el diseño de la batería, modificando tanto la capacidad como la potencia de la misma.

4.4.4.- Dimensionamiento final

El principal pilar sobre el que se sustentará este dimensionamiento final consistirá especialmente en la reducción de la potencia de la batería.

Como se ha visto anteriormente, una alta relación Energía/Potencia reduce los costes de la batería. La potencia afecta directamente a los tiempos de descarga de la batería. En aplicaciones en los que es necesaria rapidez en la respuesta del acumulador, es crucial que esta sea lo suficientemente elevada.

No obstante, en este caso, el mantener unos tiempos de ciclo bajos no es un factor decisivo. La planta demanda energía durante las 24 horas del día, por lo que, aunque la potencia sea baja, la energía acabará consumiéndose más tarde.

La relación actual es de 2,5, con lo que existe mucho margen para bajarla.

El procedimiento para alcanzar el diseño final de la batería será un proceso iterativo. Se irá variando una de las dos especificaciones principales de la batería, comenzando con la potencia, hasta alcanzar un valor del VAN lo suficientemente alto. Acto seguido, adoptando esa especificación, se variará la capacidad hasta alcanzar nuevamente un VAN aceptable. Tras esto, se volverá a iterar modificando la primera característica, y así sucesivamente hasta alcanzar el máximo absoluto. Entre iteraciones se variará también la potencia máxima de carga, para que el tiempo de carga no sea excesivamente bajo. A continuación, se representan distintas tablas con cada paso de la iteración, resaltando la fila que contiene la solución seleccionada.

Capacidad =10000 kWh								
P carga = 5 MW								
P (kW) VAN (\$)								
4000	- 3.239.569,30							
2000	- 2.590.263,63							
1000	- 2.127.472,22							
500	- 1.970.046,55							

Tabla 4.34. Primera iteración con potencia

Pote	Potencia = 500 kW									
Рс	P carga = 1 MW									
C (kWh) VAN (\$)										
10000	-	1.970.046,55								
8000	I	1.483.340,08								
5000	I	653.643,41								
4000	I	424.418,50								
3000	I	223.914,78								
2000	-	85.151,42								
1000	-	39.743,10								

Tabla 4.35. Primera iteración con capacidad

C	Capacidad = 1000 kWh								
	P carga = 500 kW								
P (kW) VAN (\$)									
500	- 56.892,18								
400	- 25.101,88								
300	5.733								
200	37.309,05								
100	66.100,59								
90	68.189,78								
80	73.348,24								
70	83.522,33								
50	103.038,90								
40	103.190,07								
30	46.395,27								

Tabla 4.36. Segunda iteración con potencia

Potencia = 40 kW										
P carga = 500 kW										
C (kWh) VAN (\$)										
1000 103.190,07										
900	106.256,53									
800	106.923,57									
700	700 96.357,56									

Tabla 4.37. Segunda iteración con capacidad

Finalmente se llega a una solución con una potencia de 40 kW y una capacidad de 800 kWh. Estos resultados se discutirán en el siguiente capítulo.

5.- RESULTADOS Y DISCUSIÓN

Una vez calculado y optimizado el diseño de la batería de acuerdo con el mínimo periodo de amortización posible, se procederá a detallar las características de la batería, así como a estudiar cuál es la situación de la planta fotovoltaica una vez este acumulador está instalado.

5.1.- Especificaciones de la batería

Tipo de batería	VRFB
η ida y vuelta	75%
Pmax dsch (kW)	40
Pmax ch (kW)	500
Cmax (kWh)	800
V conexión AC (V)	630
I dsch AC (A)	36,7
Volumen (m ³)	24,2 - 50

Las especificaciones principales de la batería son las indicadas a continuación.

Tabla 5.1. Especificaciones dimensionamiento final

En comparación con la batería del primer dimensionamiento (que contaba con una potencia de 4000 kW y una capacidad de 10000 kWh), esta es mucho más reducida. La potencia es del 1% de lo que era, mientras que la capacidad representa apenas un 8%.

Por otro lado, la corriente, en consonancia con la potencia, se ha reducido también a su 1%, lo cual facilita la instalación del cableado, pues será posible conectar conductores más pequeños y baratos.

Además, el volumen, dependiente de la capacidad, ahora representa únicamente un 8% de su valor anterior, con lo cual la posibilidad de encontrar un espacio para instalarla es mucho más factible.

Conviene conocer también los tiempos de carga y descarga. Obviando rendimiento de los cargadores, su cálculo sería:

Tiempo de descarga

$$t_{dsch} = \frac{C_{max} \cdot \eta_{ida \ y \ vuelta}}{P_{max \ dsch}}$$
(5.1)

Tiempo de carga

$$t_{ch} = \frac{C_{max}}{P_{max \ ch}} \tag{5.2}$$

En este caso, el tiempo de descarga estimado sería de unas 15 horas. Por otro lado, se ha decidido limitar la potencia que entra a 500 kW, para poseer un tiempo de carga de 1,6 horas, más cercano al que se tenía en el modelo anterior.

5.2.- Balance energético

Resulta interesante conocer cuál será la situación de la batería cada día. Por ello, en las siguientes tablas se han recogido los valores diarios de algunas variables del acumulador, al igual que ya se hizo con la batería del dimensionamiento inicial.

Dia\Mes	1	2	3	4	5	6	7	8	9	10	11	12	
1	800	500	800	397	800	800	500	800	800	800	800	800	
2	800	0	800	800	352	800	800	800	213	800	510	325	
3	800	18	800	800	743	213	800	800	185	800	282	463	
4	800	735	800	800	181	65	266	800	224	800	800	0	
5	800	800	800	800	800	370	157	800	776	800	160	0	
6	800	800	800	800	500	800	500	800	800	800	800	684	
7	213	800	800	800	560	213	0	213	800	800	800	500	
8	71	800	800	800	348	135	0	500	213	800	800	2	
9	800	800	500	800	0	210	800	0	800	800	800	0	
10	800	800	800	665	0	800	320	0	800	800	800	0	
11	800	800	800	800	800	800	800	435	500	800	252	500	
12	800	800	723	800	160	213	800	216	0	267	800	722	
13	800	800	800	800	800	800	800	800	0	0	800	800	
14	800	311	800	267	800	800	293	800	0	0	800	213	
15	800	800	800	800	549	267	0	320	0	0	800	403	
16	800	800	800	800	800	0	98	800	800	0	800	259	
17	800	800	267	800	795	126	183	800	160	0	213	800	
18	800	800	500	800	209	0	800	800	415	0	0	800	
19	800	800	774	800	0	800	374	267	694	0	0	213	
20	800	800	134	800	800	800	800	477	107	0	0	664	
21	800	800	800	213	160	800	797	200	500	500	638	485	
22	800	800	800	0	0	73	263	800	0	606	800	800	
23	800	800	800	800	0	0	100	800	0	70	800	800	
24	213	800	800	297	107	47	800	160	800	0	800	800	
25	800	800	622	0	0	0	500	800	768	500	800	738	
26	800	800	800	800	349	266	103	800	500	800	213	639	
27	800	800	800	800	68	0	800	213	800	800	800	800	
28	800	800	800	800	0	800	213	391	800	800	800	373	
29	800		800	800	500	263	0	800	800	800	800	800	
30	800		800	800	800	800	800	500	800	800	213	800	
31	800		800		800		267	800		500		800	
Max	800	800	800	800	800	800	800	800	800	800	800	800	800

Tabla 5.2. Máximo excedente simultáneo almacenado en dimensionamiento final (kWh)

Se observa que la mayoría de los días la batería alcanza su máxima capacidad. Muchos de los días en los que la batería no llega a llenarse son jornadas en las que no existe excedente energético, debido a que la demanda supera a la producción fotovoltaica en todo momento.

Dia\Mes	1	2	3	4	5	6	7	8	9	10	11	12	
1	800	500	853	397	800	800	500	800	800	800	853	800	
2	800	0	800	800	352	800	800	800	0	853	510	325	
3	800	18	800	907	743	0	800	907	185	800	282	463	
4	800	735	800	800	181	65	266	800	224	800	800	0	
5	800	800	800	824	800	370	157	800	882	800	0	0	
6	800	800	800	800	553	800	500	800	907	800	853	738	
7	0	800	800	800	560	0	0	38	800	800	800	500	
8	71	800	800	800	348	135	0	500	0	800	853	2	
9	800	853	500	800	0	210	800	0	800	800	800	0	
10	800	800	800	665	0	800	215	0	800	800	800	0	
11	800	800	800	800	800	800	800	435	500	800	252	500	
12	800	800	797	800	0	0	960	216	0	0	800	722	
13	800	800	800	800	800	800	800	853	0	0	800	800	
14	800	311	800	69	800	800	293	800	0	0	800	25	
15	800	800	800	800	549	0	0	83	0	0	800	403	
16	800	800	800	800	800	0	98	800	800	0	800	259	
17	800	800	0	800	795	126	183	907	0	0	0	800	
18	853	800	500	800	0	0	800	800	415	0	0	800	
19	800	800	774	800	0	960	374	10	694	0	0	0	
20	800	800	0	800	853	800	801	477	0	0	0	664	
21	800	800	800	0	0	800	797	200	500	500	745	485	
22	800	800	800	0	0	10	0	800	0	712	800	800	
23	800	800	853	853	0	0	100	800	0	70	800	800	
24	0	800	800	193	107	47	800	0	800	0	800	800	
25	800	800	622	0	0	0	500	800	768	500	800	738	
26	800	800	800	800	349	266	103	800	500	800	55	639	
27	800	800	800	800	68	0	800	11	800	800	960	800	
28	800	800	800	800	0	800	0	391	800	800	800	69	
29	853	0	800	800	500	263	0	800	800	800	800	800	
30	800	0	800	800	800	800	800	500	800	800	0	800	
31	800	0	800	0	800	0	0	800	0	500	0	800	
TOTAL	22578	20018	22499	19908	12358	11251	13046	16728	13573	15135	17364	15333	199792

También se calcula cuánto excedente se almacena en total cada día.

Tabla 5.3. Excedente total almacenado cada día (kWh)

La energía perdida cada día por estar la batería al completo se representa a continuación.

Dia\Mes	1	2	3	4	5	6	7	8	9	10	11	12	
1	42715	191	2441	0	2433	4930	7	71	917	691	442	5932	
2	375	0	5384	7380	0	104	14041	670	0	2095	36	0	
3	682	0	1776	16651	0	0	7947	662	0	2078	0	0	
4	1296	395	2220	1727	0	0	0	629	0	12082	1084	0	
5	2385	2080	24425	660	6394	0	0	1775	216	5647	0	0	
6	759	1717	10257	270	278	3371	349	456	3511	12627	2362	0	
7	0	1278	4553	2485	0	0	0	0	1219	5626	4893	536	
8	0	1912	2416	889	0	0	0	225	0	6414	5348	0	
9	504	3889	187	694	0	0	102	0	2667	16486	29426	0	
10	4049	3521	4882	0	0	3962	0	0	2941	6327	9280	0	
11	1284	1678	1808	19012	651	240	1169	0	1577	18596	0	122	
12	1399	1019	1290	4930	0	0	1860	0	0	0	5753	0	
13	205	732	1260	4778	562	307	4790	9281	0	0	519	7001	
14	44	0	2075	0	1112	3726	0	8279	0	0	1725	0	
15	608	2084	1997	588	0	0	0	0	0	0	1688	0	
16	8453	26448	2349	280	40103	0	0	2810	234	0	614	0	
17	1218	7807	0	626	0	0	0	5295	0	0	0	1971	
18	330	10603	138	1818	0	0	57	5104	0	0	0	2843	
19	8856	5568	42	8787	0	1017	0	0	0	0	0	0	
20	352	3028	0	150	594	6976	1831	0	0	0	0	0	
21	487	6626	4141	0	0	431	0	0	196	135	0	0	
22	1103	3367	6529	0	0	0	0	75	0	135	18965	1222	
23	647	4183	4850	4101	0	0	0	445	0	0	13768	655	
24	0	1153	7727	0	0	0	32	0	20	0	2201	896	
25	5038	1344	129	0	0	0	141	167	0	80	1458	0	
26	1013	14826	909	2113	0	0	0	875	180	2638	0	0	
27	883	15272	333	899	0	0	1834	0	1690	2913	5889	45552	
28	124	2433	693	7759	0	2312	0	0	12609	2928	1489	0	
29	2386		3005	9455	199	0	0	3847	1695	8007	1422	4524	
30	2176		5655	2782	1647	1181	2243	119	7250	1244	0	7817	
31	3859		10322		9449		0	1776		207		84	
Max	93229	123153	113792	98834	63421	28557	36402	42560	36921	106955	108359	79157	931340

Tabla 5.4. Energía diaria perdida (kWh)

Si se compara esta situación con la del dimensionamiento inicial (tabla 4.17), se observa que se pierde mucha más energía debido a la baja capacidad de la batería. Se pasa de unos 232 MWh, a 931 MWh.

Dia\Mes	1	2	3	4	5	6	7	8	9	10	11	12	
1	500	500	500	397	500	500	500	500	500	500	500	500	
2	488	0	500	500	261	500	500	485	0	500	500	325	
3	438	18	500	500	422	0	500	482	185	500	282	463	
4	412	500	500	387	166	65	266	447	224	500	500	0	
5	500	500	500	387	500	361	157	500	500	500	0	0	
6	408	500	500	468	500	500	500	465	500	500	500	366	
7	0	490	500	410	327	0	0	38	500	500	500	500	
8	71	500	500	486	246	135	0	500	0	500	500	2	
9	500	500	500	410	0	210	500	0	500	500	500	0	
10	500	500	500	338	0	500	215	0	500	500	500	0	
11	469	500	500	500	500	500	500	254	500	500	252	500	
12	500	457	500	500	0	0	500	216	0	0	500	374	
13	500	437	500	500	494	500	500	500	0	0	500	415	
14	462	311	500	69	500	500	293	500	0	0	500	25	
15	500	500	500	402	312	0	0	83	0	0	421	215	
16	500	500	500	451	500	0	98	500	460	0	500	181	
17	499	500	0	500	455	121	91	500	0	0	0	500	
18	489	478	500	500	0	0	494	500	415	0	0	500	
19	500	470	500	500	0	500	302	10	450	0	0	0	
20	500	500	0	500	322	458	500	336	0	0	0	472	
21	500	414	500	0	0	500	473	200	500	500	474	438	
22	408	500	500	0	0	10	0	453	0	500	500	500	
23	484	500	500	500	0	0	58	500	0	70	500	445	
24	0	481	500	193	107	47	416	0	395	0	500	500	
25	500	500	500	0	0	0	500	452	323	500	500	454	
26	455	500	496	500	282	266	103	500	500	500	55	425	
27	474	500	500	441	36	0	442	11	500	401	500	500	
28	500	500	463	500	0	500	0	282	500	500	500	69	
29	500		500	500	500	132	0	500	500	500	500	500	
30	500		500	471	500	500	500	500	500	500	0	500	
31	500		500		500		0	500		500		497	
Max	500	500	500	500	500	500	500	500	500	500	500	500	500

Tabla 5.5. Potencia máxima de carga (kW)

La mayoría de los días se llega a la potencia de carga máxima de 500 kW. Habría que dotar a la batería de un cargador que pudiese soportar esta potencia, lo que conllevaría un tiempo de carga de aproximadamente 1,6 horas desde un estado de batería vacío hasta el estado completo.

Por su parte, se representa también el déficit total diario.

Dia\Mes	1	2	3	4	5	6	7	8	9	10	11	12	
1	31988	103387	104862	91241	94524	86174	107131	92087	104022	95634	88864	83433	
2	96760	115983	86503	94806	110386	94231	89499	91399	107767	69860	107562	97628	
3	95685	110335	95687	90521	101377	112893	83919	78386	88824	75220	117810	111420	
4	91828	97249	101556	93666	98508	108160	110875	94579	103539	69758	99605	111945	
5	91605	94318	70011	95434	97042	106173	115546	92380	102747	81099	117399	120647	
6	92444	94993	82911	102562	99366	105103	98178	98276	92945	74992	91939	98698	
7	115269	97871	88770	92533	103521	110204	112701	109352	103759	84312	87743	91074	
8	105152	96985	94688	102496	102893	106893	114601	120522	115318	86797	80716	118662	
9	93945	96959	114102	103323	100741	107673	106084	118275	97084	67481	44898	113007	
10	95520	93917	91817	105296	95963	93191	106513	123969	95870	61710	71253	107283	
11	98532	94098	103728	90553	93840	89651	98741	111515	94128	62332	105534	110818	
12	104219	93540	93592	106043	102202	114710	81610	113052	109023	105841	92986	100969	
13	103275	95842	100804	96206	101834	107705	85396	86150	118725	121390	100158	96742	
14	96289	108541	93214	120907	108682	94614	95280	84154	106671	119104	95417	101618	
15	101262	91587	89813	109867	94051	107594	112120	97023	99543	116436	91595	100274	
16	90936	64533	92581	107368	54952	111633	118712	111920	106336	103602	93268	95035	
17	94187	74077	119989	114424	80365	100895	108304	98339	116535	113397	111645	94582	
18	103085	86955	118285	116825	117842	111827	104746	95888	113323	124527	129084	95083	
19	99143	62761	105706	93614	95061	86975	106022	107279	110478	129518	127786	113118	
20	107136	87497	128869	96673	77814	99265	108754	108167	103014	114968	120547	110387	
21	100291	95438	105392	129605	129702	80430	103352	110911	103354	111387	109194	111506	
22	99314	94584	99590	108463	126804	106022	107805	106715	108647	94902	78881	97183	
23	96093	92376	104706	100025	109382	103221	96591	99046	112406	107163	63684	91501	
24	114912	97044	90863	100305	104771	103814	109194	92637	112078	112207	85669	94396	
25	97243	92554	107423	100412	107056	124090	107478	98154	107245	107324	88521	101578	
26	82073	76295	101238	89499	111764	123804	110951	99919	106837	94677	100303	96109	
27	98571	63963	100427	93009	121042	132528	105491	112017	101914	87208	80611	57601	
28	99000	78134	100394	91304	112871	110609	110379	106896	88835	89282	92486	92810	
29	99284		98988	71420	120545	93169	116521	101774	92594	97366	92523	86383	
30	87735		90202	86578	102396	72967	91565	107457	92406	91085	111076	75802	
31	88254		83921		64262		107480	104671		98892		69754	
Max	2971032	2551816	3060632	2994978	3141558	3106216	3231539	3172911	3115966	2969468	2878759	3047047	36241921

Tabla 5.6. Excedente total diario (kWh)

Se procederá a comparar la situación sin batería inicial, con la situación de dimensionamiento preliminar. y la de dimensionamiento final.

ales	E_Grid (kWh)	16567493
genera	E_Consum (kWh)	51827622
sticas	Ex_ch total (kWh)	1131141
acterís	Ex_dsch total (kWh)	848355
Car	Déficit sin batería (kWh)	36371269
al	Ex_ch con batería (kWh)	899371
inicia	Ex_dsch con batería (kWh)	674528
imens	Déficit con batería (kWh)	35716741
D	Energía perdida por batería llena (kWh)	231770
	Ex_ch con batería (kWh)	199792
s. fina	Ex_dsch con batería (kWh)	149844
)imen:	Déficit con batería (kWh)	36241921
Г	Energía perdida por batería llena (kWh)	931340

Tabla 5.7. Resultados principales dimensionamiento final

Se observa lo siguiente:

- En la nueva situación, de los 16.567.493 kWh generados, la parte que se consume automáticamente sin ser almacenada es prácticamente igual que en el caso sin batería (15.436.056 kWh, el 93,2%). En esta ocasión, se almacenará una cantidad de energía considerablemente menor que en el primer dimensionamiento, de tan solo 199.792 kWh (el 1,2% de lo generado), de los que se aprovecharán el 75%, es decir, 149.844 kWh. La energía aprovechada asciende a un total de 15.585.900 kWh, el 94% de lo generado. En el dimensionamiento inicial, la cantidad de energía aprovechada ascendía a 16.110.880 kWh (un 97,2% sobre lo generado). Existe aproximadamente un 3,3% de diferencia, lo cual no representa una diferencia importante comparado con el ahorro en el periodo de amortización conseguido.
- En esta ocasión, de la demanda de 51.827.622 kWh se satisfacen gracias a la generación fotovoltaica unos 15.585.900 kWh (30%) El déficit de 36.241.921 kWh representa el 70% restante. Si se compara con el dimensionamiento inicial, se puede ver que no existe una gran variación. En dicho caso el déficit

de 35.716.741 kWh era inferior (debido al mayor aprovechamiento de la energía), y representaba un 69% de la demanda total. El aumento de esta variable ha sido de un 1,4%,

En comparación con la situación inicial sin batería:

- Se experimenta una disminución de la energía a tomar de la red (déficit) de 36.371.269 kWh a 36.241.921 kWh (reducción de un 0,36%)
- Del excedente máximo posible de 1.131.140 kWh, se almacenan 199.792 kWh, un 17,7%. El resto se pierde por estar la batería llena.
- Mientras que el mínimo déficit posible para una batería de 75% de rendimiento en esta instalación es de 35.543.216 kWh, se consigue con este acumulador un 36.241.921 kWh, es decir, un 2% mayor.

Al igual que en el caso anterior, se representan desglosadas la demanda total y la energía generada en sendos diagramas de sectores.

Figura 5.1. Desglose de demanda total en dimensionamiento final

Figura 5.2. Desglose de energía generada en dimensionamiento final

5.3.- Balance económico

En este apartado, se estudiarán los costes de la batería para la solución seleccionada. Se compararán también con los costes de la electricidad que ha de tomarse de la red, y se hallará cuánto dinero se puede ahorrar gracias al acumulador.

5.3.1.- Costes batería

De nuevo, se calcula el coste estimado de la batería de acuerdo con el precio por kWh instalado de acuerdo a los métodos seguidos en el apartado 4.4., y siendo proporcionales a la potencia y capacidad correspondientes a la batería calculada en el dimensionamiento final.

Costes	
Costes Potencia (\$)	7.000
Costes Energía (\$)	123.000
Costes auxiliares (\$)	99.000
Costes Const y oper (\$)	2.000
Inversión inicial (\$)	231.000
Inversión inicial (\$/kWh)	288
Inversión inicial + impuestos (\$)	258.720
Costes op y mant (\$/año)	2.578

Tabla 5.8. Coste de la batería en dimensionamiento final (\$)

La inversión inicial es de 288 \$/kWh, lo cual es coherente con las estimaciones de algunos autores. [31]

Adicionalmente, en la siguiente tabla se reflejan estos costes totales desglosados por cada elemento que compone la batería, de acuerdo con la estimación sugerida por *Zhang et al.* (figura 4.4.). [27]

Desglose costes	%	Sin impuestos	Más IVA
Pilas de celdas	31%	71.610	80.203
Electrolito	37%	85.470	95.726
Tanques	8%	18.480	20.698
Elementos estructurales	21%	48.510	54.331
Int calor y bombas	3%	6.930	7.762
		231.000	258.720

Tabla 5.9. Coste desglosado de la VRFB en dimensionamiento final (\$)

El coste estimado con impuestos es de 258.720 \$. Si se compara la inversión inicial con la correspondiente al primer dimensionamiento de 4.168.640 \$, se comprueba que el nuevo precio representa aproximadamente tan solo un 6,2% que en el caso anterior.

5.3.2.- Precio electricidad

Al igual que se hizo con la batería del primer dimensionamiento, se calcula el importe de la tarifa eléctrica en quetzales. Se vuelve a realizar una división en el cálculo. Por un lado, se calculan los términos relacionados con la potencia contratada y la potencia de punta, y por el otro, los costes relacionados con la cantidad de energía consumida.

	Enero	Febrero	Marzo	Abril	Мауо	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Total
Máximo	6790	6846	7235	7550	7390	7612	7554	7595	7292	6747	6760	6949	7612

Tabla 5.10. Máximas potencias demandadas por mes con batería final (kW)

A diferencia de lo que ocurría con la batería del primer dimensionamiento, en esta ocasión algunas de las máximas potencias registradas son inferiores a la situación sin batería. Esto se debe al mayor tiempo de descarga del acumulador. Esta característica provoca que, mientras que la batería del primer dimensionamiento (con un tiempo de descarga estimado de algo menos de 2 horas) está vacía en los horarios en los que se dan estas máximas potencias, la nueva batería, al tener un periodo de descarga de 15 horas, aún es capaz de alimentar la demanda, disminuyendo ligeramente la potencia máxima requerida.

Por otro lado, la potencia contratada continuará siendo de 7700 kW, algo superior a la máxima registrada (7612 kW).

Se calcula el coste relativo a la potencia contratada y a la máxima registrada, con los costes de la tabla 4.23.

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	
Potencia de punta	290.585	293.001	309.669	323.110	318.474	328.026	325.537	325.071	312.110	288.778	289.301	297.420	
Potencia contratada	108.397	122.335	122.335	122.335	122.335	122.335	122.335	108.397	108.397	108.397	108.397	108.397	
Suma	398.982	415.337	432.005	445.446	440.809	450.361	447.873	433.467	420.506	397.175	397.698	405.817	5.085.477

Tabla 5.11. Coste total de componentes de potencia de punta y contratada con batería final (Q)

El coste es de 5.087.477 Q, algo inferior al importe sin batería.

A continuación, se halla la energía requerida de la red en cada mes y tramo horario, como se hizo en el caso del primer dimensionamiento.

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	
Demanda en intermedia	924525	738595	889162	837508	978754	958854	951157	933466	1014467	1050517	950341	994867	
Demanda en punta	554801	484334	585985	598219	576290	574521	628324	621090	566813	510560	507044	543540	
Demanda en valle	1491706	1328887	1585486	1559250	1586515	1572840	1652058	1618355	1534686	1408391	1421374	1508639	
Total	2971032	2551816	3060632	2994978	3141558	3106216	3231539	3172911	3115966	2969468	2878759	3047047	36241921

Tabla 5.12. Déficit energético mensual para cada franja horaria con batería final (kWh)

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	
Coste en intermedia	931.949	731.238	880.306	829.166	979.090	959.184	951.484	930.505	1.011.249	1.047.184	1.010.665	1.002.857	
Coste en punta	561.324	481.315	582.333	594.491	588.137	586.332	641.241	621.435	567.128	510.845	541.225	549.932	
Coste en valle	1.481.685	1.296.052	1.546.311	1.520.723	1.569.039	1.555.515	1.633.860	1.589.354	1.507.184	1.383.152	1.489.453	1.498.504	
Total	2.974.959	2.508.606	3.008.949	2.944.381	3.136.266	3.101.030	3.226.585	3.141.294	3.085.562	2.941.181	3.041.343	3.051.292	36.161.449

Tabla 5.13. Coste por energía demandada en cada franja horaria con batería final (Q)

Y de nuevo, se suman ambos conjuntos de costes para obtener el importe total. Esta suma se le resta al precio sin baterías, y así se obtiene el ahorro conseguido.

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Anual
Sin batería	3.392.340	2.939.830	3.459.271	3.404.521	3.588.086	3.559.875	3.684.452	3.588.764	3.516.809	3.351.519	3.452.817	3.468.452	41.406.736
Con batería	3.373.941	2.923.943	3.440.954	3.389.827	3.577.075	3.551.392	3.674.457	3.574.762	3.506.068	3.338.356	3.439.041	3.457.109	41.246.926
Ahorro	18.399	15.888	18.317	14.694	11.011	8.484	9.995	14.002	10.741	13.163	13.776	11.342	159.810

Tabla 5.14. Importe por la demanda eléctrica sin y con batería final y ahorro conseguido (Q)

Los 159.810 Q ahorrados representan una disminución del 0,4% respecto a la situación inicial. Este ahorro es a su vez un 23,6% del alcanzado con el primer dimensionamiento (677.209 Q, que era un 1,6% del total).

5.3.3.- Valor Actual Neto

A continuación, se calcula tanto el flujo monetario anual de las baterías como el Valor Actual Neto de la batería de dimensionamiento final.

t	Ft (\$)	Sumando (\$)	VAN (\$)
1	18.118	17.812	- 240.908
2	18.118	17.511	- 223.397
3	18.118	17.215	- 206.183
4	18.118	16.924	- 189.259
5	18.118	16.637	- 172.622
6	18.118	16.356	- 156.265
7	18.118	16.080	- 140.186
8	18.118	15.808	- 124.378
9	18.118	15.540	- 108.838
10	18.118	15.278	- 93.560
11	18.118	15.019	- 78.541
12	18.118	14.765	- 63.775
13	18.118	14.516	- 49.260
14	18.118	14.270	- 34.989
15	18.118	14.029	- 20.960
16	18.118	13.792	- 7.168
17	18.118	13.559	6.390
18	18.118	13.329	19.720
19	18.118	13.104	32.824
20	18.118	12.882	45.706
21	18.118	12.665	58.371
22	18.118	12.450	70.821
23	18.118	12.240	83.061
24	18.118	12.033	95.094
25	18.118	11.830	106.924

Tabla 5.15. Flujos monetarios anuales de batería final

VAN (\$)	106.924		
10 (\$)	258.720,00		
t (años)	25,00		
i	1,75%		
k	1,72%		
Flujo total (\$)	365.644		

Tabla 5.16. Parámetros y resultados del VAN para la batería final

En este caso, existe un beneficio de 106.924 \$, con lo que se acabaría ganando dinero al final del periodo. Se comenzaría a obtener beneficio sobre la inversión a partir del año 17.

5.4.- Simulación PVsyst final

Al igual en el primer dimensionamiento, se ha llevado a cabo una nueva simulación en PVsyst con la batería diseñada, con el ánimo de comparar su resultado una vez más con los del cálculo realizado en Excel.

Los parámetros de la simulación son idénticos a los empleados en el caso anterior, con la salvedad del banco de baterías. Para esta simulación, se ha usado el mismo modelo que en el primer dimensionamiento (batería de ion de litio US20000B de PyoIntech), modificando el número de cadenas en paralelo, reduciéndolo hasta 26 para obtener una capacidad aproximada de 800 kWh. El número de baterías en serie ha permanecido en 13 para respetar el voltaje de conexión existente. Se ha establecido la potencia de carga máxima en 500 kW, y la de descarga en 40 kW.

El informe completo se puede hallar en el anexo II. A continuación, se presenta una tabla con los principales resultados, además del diagrama de pérdidas de la instalación.

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_User	E_Solar	EUnused	EFrGrid
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	MWh	MWh	MWh
Enero	164.2	39.96	21.07	182.9	174.5	1425	4257	1291	91.0	2966
Febrero	162.0	41.02	23.56	174.2	167.2	1352	3738	1190	121.6	2548
Marzo	199.1	53.59	22.65	205.8	198.2	1601	4498	1442	111.8	3056
Abril	198.2	66.11	26.26	197.4	189.9	1532	4381	1391	96.9	2991
Мауо	194.5	80.50	27.43	188.8	181.2	1478	4513	1374	62.5	3139
Junio	187.7	76.29	27.09	179.8	172.4	1419	4455	1351	27.8	3104
Julio	202.0	75.25	25.74	194.0	186.1	1538	4688	1459	35.5	3229
Agosto	203.2	65.85	26.62	199.9	192.3	1572	4655	1485	41.2	3170
Septiembre	170.1	77.24	26.76	172.7	165.8	1365	4403	1290	36.0	3114
Octubre	143.3	70.00	24.23	149.5	142.6	1183	4010	1044	105.7	2966
Noviembre	147.0	46.04	22.87	161.3	154.2	1253	3984	1109	107.1	2876
Diciembre	151.6	42.45	24.43	170.8	162.6	1317	4245	1200	78.0	3044
Año	2122.8	734.29	24.90	2177.2	2087.1	17035	51828	15624	915.2	36203

Leyendas

-			
GlobHor	Irradiación horizontal global	EArray	Energía efectiva a la salida del conjunto
DiffHor	Irradiación difusa horizontal	E_User	Energía suministrada al usuario
T_Amb	Temperatura ambiente	E_Solar	Energía del sol
GlobInc	Global incidente plano receptor	EUnused	Energía no utilizada (batería llena, sin inyección de red)
GlobEff	Global efectivo, corr. para IAM y sombreados	EFrGrid	Energía de la red

Tabla 5.17. Resultados principales de simulación de dimensionamiento final

Figura 5.3. Diagrama de pérdidas de la simulación de dimensionamiento final

Se reflejan en la siguiente tabla tanto los principales resultados obtenidos en la hoja Excel, como los de la última simulación de PVsyst.

Resultado	Excel	PVsyst		
Energía generada (MWh)	16567	16567		
Energía aprovechada (MWh)	15586	15624		
Energía directa (MWh)	15436	15447		
Energía almacenada (MWh)	200	215		
Energía perdida (MWh)	931	915		
Déficit (MWh)	36242	36203		

Tabla 5.18. Comparación resultados Excel y PVsyst para primer dimensionamiento

Ambos procedimientos de cálculo presentan resultados de órdenes similares, con lo que puede determinarse que el resultado es fiable.

5.5.- Discusión de los resultados

Se ha conseguido finalmente obtener un rendimiento económico positivo de la batería en el horizonte de vida de la planta fotovoltaica. Sin embargo, la batería está más subdimensionada de lo que cabría esperar, como demuestra la comparación entre el diseño final y el preliminar.

Esto es por varios motivos:

- El coste de la batería, siendo proporcional a sus propiedades de potencia y capacidad. La batería inicial de 4 MW de potencia y 10 MWh de capacidad podía almacenar la gran mayoría de la energía no empleada por la planta fotovoltaica para emplearla más adelante, aproximadamente un 80%. Sin embargo, esta potencia resultaba excesiva. El tiempo de descarga de 2,5 horas, pese a que puede ser útil para posibles aplicaciones que requieran de cierta velocidad de respuesta de la batería, no es un factor determinante en la instalación actual. La planta estará demandando energía las 24 horas del día, con lo que se podría bajar perfectamente esta potencia, ya que la energía se emplearía más tarde, pero acabaría usándose igualmente. Por ello, la potencia final de 40 kW es muy inferior a la inicial. Por otro lado, también hubo que reducir la capacidad de almacenamiento. El aumento de precio del acumulador como resultado de tener una gran capacidad tenía más peso que el hecho de perder energía excedente del parque fotovoltaico. Al final, la capacidad fue de 800 kW, también inferior al valor inicial.
- El precio de la electricidad en Guatemala es relativamente barato, siendo de unos pocos céntimos por kWh. Por ello, la cantidad de energía que se debería almacenar en las baterías para que el ahorro resultante de su uso tenga un importe destacable debería ser muy elevada. Cuanta más energía se almacene, mayor será el ahorro anual tarifado, pero a su vez se requerirá de baterías mayores que tendrán asociados costes cada vez mayores.

• La producción de la planta demanda una enorme cantidad de energía relativamente uniforme durante las 24 horas del día. Por otra parte, el parque fotovoltaico tan sólo es capaz de fabricar algo menos de un tercio de esta cantidad. Además, la mayor parte de la electricidad es consumida en el momento por la fábrica. Por tanto, el excedente que sobra y que estaría disponible para almacenarse es relativamente pequeño frente a la demanda total, lo que provoca que la disminución en la cantidad de kilovatios-hora en el periodo de un año no sea muy notable.

Por estos motivos, el coste de la batería al incrementar su potencia y capacidad aumenta a un ritmo mayor que el ahorro en la electricidad requerida de la red.

Por tanto, la batería que permite obtener la mayor rentabilidad es un acumulador relativamente modesto comparado con la envergadura de la planta. Permite obtener un beneficio al final de los 25 años de vida del parque fotovoltaico de 106.924 \$. Este ahorro es pequeño frente a los órdenes de magnitud manejados en la tarifa eléctrica, de varios millones de dólares.

No obstante, es esperable que tanto las características técnicas de las VRFB (eficiencia, densidad energética), como las económicas (precio de los electrodos o el electrolito) experimenten mejorías en los próximos años. Por tanto, cabe la posibilidad de que la rentabilidad sea superior a la calculada en este proyecto.

6.- CONCLUSIONES

Para finalizar este proyecto, se ofrecerán unas conclusiones sobre el trabajo desarrollado. Por último, se sugerirá cuál puede ser la ruta a seguir para continuar con este trabajo.

6.1.- Conclusiones

La búsqueda de energías cada vez más limpias, seguras y eficientes con el ánimo de luchar contra el cambio climático ha dado lugar al deseo de obtener electricidad a partir de fuentes renovables. Así nacen tecnologías tales como la energía solar fotovoltaica, la cual hace posible extraer la energía contenida en la radiación del sol y transformarla en electricidad útil y aprovechable.

Sin embargo, fuentes como el sol o el viento tienen un problema fundamental: su intermitencia. No es posible prever con total exactitud de cuánto recurso natural se dispondrá en una hora determinada. Además, como la electricidad ha de emplearse en el mismo momento en el que se fabrica, no se puede garantizar el suministro las 24 horas del día. Por ello, se hacen indispensables sistemas de acumulación de energía, que permitan almacenar la energía en horas en las que se genere cierto excedente para su uso posterior.

Las baterías electroquímicas son uno de los sistemas de acumulación más extendidos y prometedores en el panorama energético actual y futuro. Existen multitud de tecnologías distintas, cada una de ellas apta para distintas aplicaciones. En el caso del almacenamiento eléctrico estacionario y a gran escala, las baterías de flujo redox, especialmente las de vanadio, resultan ser las idóneas.

Las VRFB ofrecen una gran flexibilidad para dimensionar potencia y capacidad. También tienen una larga vida útil. Pese a no ser indicadas para aplicaciones que requieran de acumuladores ligeros o pequeños, estas baterías, por sus ventajas frente a otras, son perfectas para almacenar el excedente de energía de, por ejemplo, una planta fotovoltaica como la discutida en este trabajo. Además, los costes de estas baterías están constantemente en decremento, con lo que cada vez representan una opción más viable y atractiva para otorgar flexibilidad al uso de la energía o reducir picos de demanda.

La batería diseñada para este trabajo es de 40 kW de potencia y 800 kWh de capacidad. Es un tamaño relativamente modesto frente a la gran envergadura de la planta fotovoltaica, que cuenta con una potencia pico instalada de unos 9 MW. Sin embargo, prácticamente toda la generación se usa en el momento para satisfacer la demanda de la fábrica. Además, el bajo precio de la electricidad guatemalteca provoca que un acumulador no sea tan rentable como en otros países con tarifas más elevadas.

Pese a ello, esta batería permite obtener un pequeño beneficio económico a lo largo de su vida útil. En plantas con otras características, tales como una demanda más irregular y

con picos en horas sin producción, y ubicada en un país con tarifas eléctricas elevadas, es posible que una batería de mayor capacidad y potencia resultase más económica.

6.2.- Trabajo futuro

Tras haber completado el cálculo del dimensionamiento de la potencia y energía de la batería, es necesario determinar otros parámetros antes de proceder a su instalación en la planta.

Por ejemplo, ha de dimensionarse el cableado, con el objetivo de que su intensidad admisible sea superior a la otorgada en cualquier momento por la batería. También ha de procurarse que estos conductores no provoquen pérdidas eléctricas importantes, pues ello causaría una disminución del rendimiento tanto eléctrico como económico del acumulador. Otros instrumentos asociados a la batería y de los que habría que proveerse sería el inversor bidireccional, así como los dispositivos de control y el regulador de carga para proteger su vida útil.

También sería necesario el diseño de la cimentación de la batería, así como la decisión sobre el lugar que ocuparía en el complejo fotovoltaico. Convendría seleccionar un emplazamiento que permita reducir lo más posible la longitud del cableado, con el objetivo de minimizar las pérdidas eléctricas.

Otro paso importante sería investigar sobre los posibles permisos o trámites que fuese necesario llevar a cabo para poder instalar esta batería, de acuerdo con las leyes de Guatemala.

Es recomendable también ponerse en contacto con distintos fabricantes de VRFB, con la meta de obtener presupuestos y precios más ajustados a la realidad.

7.- BIBLIOGRAFÍA

- [1] M. F. Akorede, H. Hizam, M. Z. A. Ab Kadir, I. Aris, and S. D. Buba, "Mitigating the anthropogenic global warming in the electric power industry," *Renewable and Sustainable Energy Reviews*, vol. 16, no. 5. Elsevier Ltd, pp. 2747–2761, 2012, doi: 10.1016/j.rser.2012.02.037.
- [2] J. Noack, N. Roznyatovskaya, T. Herr, and P. Fischer, "The Chemistry of Redox-Flow Batteries," *Angewandte Chemie - International Edition*, vol. 54, no. 34, 2015, doi: 10.1002/anie.201410823.
- [3] B. F. Towler, "Solar Power The Future of Solar Energy."
- [4] *Cuaderno de aplicaciones técnicas n.º 10 Plantas fotovoltaicas*. ABB.
- [5] "Global Market Outlook." Accessed: May 10, 2021. [Online]. Available: www.africaeu-renewables.org.
- [6] P. G. V. Sampaio and M. O. A. González, "Photovoltaic solar energy: Conceptual framework," *Renewable and Sustainable Energy Reviews*, vol. 74. Elsevier Ltd, pp. 590–601, 2017, doi: 10.1016/j.rser.2017.02.081.
- [7] R. P. Smith, A. A.-C. Hwang, T. Beetz, and E. Helgren, "Introduction to semiconductor processing: Fabrication and characterization of p-n junction silicon solar cells," *American Journal of Physics*, vol. 86, no. 10, pp. 740–746, Oct. 2018, doi: 10.1119/1.5046424.
- [8] M. Malinowski, J. I. Leon, and H. Abu-Rub, "Solar Photovoltaic and Thermal Energy Systems: Current Technology and Future Trends," *Proceedings of the IEEE*, vol. 105, no. 11, pp. 2132–2146, Nov. 2017, doi: 10.1109/JPROC.2017.2690343.
- C. S. Ferekides, U. Balasubramanian, R. Mamazza, V. Viswanathan, H. Zhao, and D. L. Morel, "CdTe thin film solar cells: Device and technology issues," *Solar Energy*, vol. 77, no. 6, pp. 823–830, Dec. 2004, doi: 10.1016/j.solener.2004.05.023.
- [10] L. el Chaar, L. A. Lamont, and N. el Zein, "Review of photovoltaic technologies," *Renewable and Sustainable Energy Reviews*, vol. 15, no. 5. pp. 2165–2175, Jun. 2011, doi: 10.1016/j.rser.2011.01.004.
- [11] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, "Progress in electrical energy storage system: A critical review," *Progress in Natural Science*, vol. 19, no. 3. Science Press, pp. 291–312, Mar. 10, 2009, doi: 10.1016/j.pnsc.2008.07.014.
- [12] S. Maddukuri, D. Malka, M. S. Chae, Y. Elias, S. Luski, and D. Aurbach, "On the challenge of large energy storage by electrochemical devices," *Electrochimica Acta*, vol. 354. Elsevier Ltd, Sep. 10, 2020, doi: 10.1016/j.electacta.2020.136771.

- [13] A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, and Q. Liu, "Redox flow batteries: a review," *Journal of Applied Electrochemistry*, vol. 41, no. 10, p. 1137, 2011, doi: 10.1007/s10800-011-0348-2.
- [14] K. Bradbury, "Energy Storage Technology Review," 2010.
- [15] R. D. Prengaman and A. H. Mirza, "Lead Acid Battery Recycling concepts for leadacid batter-ies."
- [16] N. Omar, "Nickel Cadmium Battery Analysis of Nickel-Based Battery Tech-nologies for Hybrid and Electric Vehi-cles Nickel-Cadmium Battery," 2014.
- [17] T. M. Letcher, *Future Energy: Improved, Sustainable and Clean Options for our Planet.* Elsevier Inc., 2013.
- [18] P. Alotto, M. Guarnieri, and F. Moro, "Redox flow batteries for the storage of renewable energy: A review," *Renewable and Sustainable Energy Reviews*, vol. 29. 2014, doi: 10.1016/j.rser.2013.08.001.
- [19] S. Eckroad, "Vanadium Redox Flow Batteries EPRI Project Manager," 2007. [Online]. Available: www.epri.com.
- [20] Á. Cunha, J. Martins, N. Rodrigues, and F. P. Brito, "Vanadium redox flow batteries: A technology review," *International Journal of Energy Research*, vol. 39, no. 7. John Wiley and Sons Ltd, pp. 889–918, Jun. 10, 2015, doi: 10.1002/er.3260.
- [21] F. Pan and Q. Wang, "Redox species of redox flow batteries: A review," *Molecules*, vol. 20, no. 11. 2015, doi: 10.3390/molecules201119711.
- [22] E. Sánchez-Díez *et al.*, "Redox flow batteries: Status and perspective towards sustainable stationary energy storage," *Journal of Power Sources*, vol. 481, Jan. 2021, doi: 10.1016/j.jpowsour.2020.228804.
- [23] Q. Xu *et al.*, "Evaluation of redox flow batteries goes beyond round-trip efficiency: A technical review," *Journal of Energy Storage*, vol. 16. Elsevier Ltd, pp. 108–115, Apr. 01, 2018, doi: 10.1016/j.est.2018.01.005.
- [24] Q. Xu, T. S. Zhao, and P. K. Leung, "Numerical investigations of flow field designs for vanadium redox flow batteries," *Applied Energy*, vol. 105, pp. 47–56, 2013, doi: 10.1016/j.apenergy.2012.12.041.
- [25] C. Fabjan *et al.*, "The vanadium redox-battery: an efficient storage unit for photovoltaic systems," 2001. [Online]. Available: www.elsevier.com/locate/electacta.
- [26] E. O. Ogunniyi and H. C. V. Z. Pienaar, "Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications," in *Proceedings of the 25th Conference on the Domestic Use of Energy, DUE 2017*, May 2017, pp. 233– 239, doi: 10.23919/DUE.2017.7931849.

- [27] M. Zhang, M. Moore, J. S. Watson, T. A. Zawodzinski, and R. M. Counce, "Capital Cost Sensitivity Analysis of an All-Vanadium Redox-Flow Battery," *Journal of The Electrochemical Society*, vol. 159, no. 8, pp. A1183–A1188, 2012, doi: 10.1149/2.041208jes.
- [28] J. Peters, J. Fulton, M. Baumann, and M. Weil, *Life Cycle Costs Model for Vanadium Redox Flow Batteries*. 2017.
- [29] J. R. Morante, "Generación de electricidad descentralizada con energía fotovoltaica (1): aspectos técnicos." [Online]. Available: http://www.ennaranja.com/para-.
- [30] "Projecting the Future Levelized Cost of Electricity Storage Technologies _ Elsevier Enhanced Reader."
- [31] V. Viswanathan *et al.*, "Cost and performance model for redox flow batteries," *Journal of Power Sources*, vol. 247, pp. 1040–1051, 2014, doi: 10.1016/j.jpowsour.2012.12.023.
- [32] "Principales Impuestos en Guatemala Portal SAT." https://portal.sat.gob.gt/portal/preguntas-frecuentes/principales-impuestosguatemala/ (accessed May 26, 2021).
- [33] "Guatemala IVA Impuesto de Valor Añadido 2006 | datosmacro.com." https://datosmacro.expansion.com/impuestos/iva/guatemala (accessed May 27, 2021).
- [34] "US dollar (USD)." https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchan ge_rates/html/eurofxref-graph-usd.es.html (accessed Jun. 02, 2021).
- [35] "COMEGSA GRUPO EPM-." https://www.comegsa.com.gt/index.html (accessed May 26, 2021).
- [36] "Información de tarifas EEGSA." https://eegsa.com/factura-eegsa-2/calculadorade-facturas/informacion-de-tarifas/ (accessed May 26, 2021).
- [37] "Estudios Eléctricos | CNEE." https://www.cnee.gob.gt/wp/estudios-electricos/ (accessed May 26, 2021).
- [38] "¿Qué es la Tarifa Horaria? EEGSA." https://eegsa.com/noticia/que-es-la-tarifahoraria/ (accessed May 26, 2021).
- [39] "Pliegos." https://www.cnee.gob.gt/Calculadora/pliegos.php (accessed May 26, 2021).
- [40] C. Nacional de Energía Eléctrica, "NORMAS TECNICAS DEL SERVICIO DE DISTRIBUCION –NTSD-." Accessed: May 26, 2021. [Online].
- [41] "Tipo de Cambio Banco de Guatemala." https://www.banguat.gob.gt/cambio/ (accessed Jun. 02, 2021).

[42] "Guatemala - Tipos de interés banco central 2020 | datosmacro.com." https://datosmacro.expansion.com/tipo-interes/guatemala (accessed Jun. 02, 2021).

ANEXO I.- HOJAS DE EQUIPOS

Este Anexo recopila las hojas de características completas de los principales equipos desplegados en el parque fotovoltaico. Se incluyen los que han sido comentados en el apartado 3.2. de la memoria, que consisten en:

Módulos fotovoltaicos

Se corresponden al modelo FS-6440A. Se resalta su nombre en la hoja de características, pues esta incluye los de varios modelos más.

Inversores

Se incluyen las especificaciones de los dos modelos empleados en la instalación: el FS2235K y el FS3350K.

Transformadores

Se incluye únicamente una hoja de características genérica sobre la familia a la que pertenecen ambos transformadores empleados (MVSSH2310 y MVSSH3465, de la familia MV Skid) puesto que sus fichas de especificaciones concretas han sido consideradas confidenciales.

First Solar Series 6™

ADVANCED THIN FILM SOLAR TECHNOLOGY

MODULE DATASHEET

HIGH-POWER PV MODULES

First Solar Series 6[™] photovoltaic (PV) modules set the industry benchmark for reliable energy production, optimized design and environmental performance. The advanced design is optimized for every stage of your application, significantly reducing balance of system, shipping, and operating costs.

PROVEN PERFORMANCE

- With superior temperature coefficient, spectral response and shading behavior, Series 6 modules generate up to 8% more energy per watt than conventional crystalline silicon solar modules
- Unlike crystalline silicon modules, First Solar's thin film technology does not experience the losses associated with LID and LeTID.
- · Anti-reflective coated glass enhances energy production

INNOVATIVE MODULE DESIGN

- Under-mount frame provides the cleaning and snowshedding benefits of a frameless module while protecting edges against breakage
- Innovative SpeedSlots[™] combine the robustness of bottom mounting with the speed of top clamping while utilizing fewer fasteners to achieve the industry's fastest installation times and lowest mounting hardware costs
- Dual junction box design optimizes module-to-module
 connections and eliminates the need for wire management

BEST IN-CLASS RELIABILITY & DURABILITY

- Manufactured under one roof with 100% traceable QA/QC
- Independently tested and certified for reliable performance that exceeds IEC standards in high temperature, high humidity, extreme desert and coastal applications
- Inherently immune to and warranted against power loss
 from cell cracking
- Durable glass/glass construction with market-leading hail impact certification

BEST ENVIRONMENTAL PROFILE

- · Fastest energy payback time in the industry
- Carbon footprint that is up to 6X lower and a water footprint that is up to 24X times lower than conventional c-Si solar panels on a life cycle basis
- Global PV module recycling services available through First Solar or customer-selected third-party

420-450 Watts Up to 18.2% Efficiency

INDUSTRY-LEADING MODULE WARRANTY⁴

98% WARRANTY START POINT

- 30-Year Linear Performance Warranty
- 12-Year Limited Product Warranty
- Industry's First and Only Cell Cracking Warranty

FIRST SOLAR SERIES 6[™]

MODEL TYPES AND RATINGS AT STANDARD TEST CONDITIONS (1000W/m², AM 1.5, 25°C)2								
NOMINAL VALUES		FS-6420 FS-6420A	FS-6425 FS-6425A	FS-6430 FS-6430A	FS-6435 FS-6435A	FS-6440 FS-6440A	FS-6445 FS-6445A	FS-6450 FS-6450A
Nominal Power ³ (-0/+5%)	P _{MAX} (W)	420	425	430	435	440	445	450
Efficiency (%)	%	17.0	17.2	17.4	17.6	17.8	18.0	18.2
Voltage at P _{MAX}	V _{MAX} (V)	180.4	181.5	182.6	183.6	184.7	185.7	186.8
Current at P _{MAX}	I _{MAX} (A)	2.33	2.34	2.36	2.37	2.38	2.40	2.41
Open Circuit Voltage	V _{OC} (V)	218.5	218.9	219.2	219.6	220.0	220.4	221.1
Short Circuit Current	I _{SC} (A)	2.54	2.54	2.54	2.55	2.55	2.56	2.57
Maximum System Voltage	V _{SYS} (V)				1500 ⁵			
Limiting Reverse Current	I _R (A)				5.0			
Maximum Series Fuse	I _{CF} (A)				5.0			
RATINGS AT NOMINAL OPERATING	CELL TEMPERA	TURE OF 45°C	(800W/m², 20°	°C air temperatı	ıre, AM 1.5, 1m/	's wind speed) ²		
Nominal Power	P _{MAX} (W)	317.2	320.9	324.7	328.5	332.4	336.0	339.9
Voltage at P _{MAX}	V _{MAX} (V)	168.7	169.8	170.9	172.0	173.1	174.1	175.2
Current at P _{MAX}	I _{MAX} (A)	1.88	1.89	1.90	1.91	1.92	1.93	1.94
Open Circuit Voltage	V _{OC} (V)	206.3	206.6	207.0	207.3	207.7	208.0	208.8
Short Circuit Current	I _{SC} (A)	2.04	2.05	2.05	2.06	2.06	2.06	2.07

TEMPERATURE CHARACTERISTICS			ISO 1400	01:2015
Module Operating Temperature Range	(°C)	-40 to +85	EPEAT Si	01:2018 Ilver Registered
Temperature Coefficient of $P_{_{\rm MAX}}$	Т _к (Р _{мах})	-0.32%/°C [Temperature Range: 25°C to 75°C]		
Temperature Coefficient of $\rm V_{\rm oc}$	$T_{\kappa}(V_{oc})$	-0.28%/°C	IEC	
Temperature Coefficient of I_{sc}	$T_{K}\left(I_{sc}\right)$	+0.04%/°C		

MECHANICAL DESCRIPTION

Length	2009mm
Width	1232mm
Thickness	49mm
Area	2.47m ²
Module Weight	34.5kg
Leadwire ⁶	2.5mm ² , 720mm (+) & Bulkhead (-)
Connectors	MC4-EVO 2 or TE Connectivity PV4-S
Bypass Diode	N/A
Cell Type	Thin film CdTe semiconductor, up to 264 cells
Frame Material	Anodized Aluminum
Front Glass	Heat strengthened
Back Glass	Heat strengthened
Encapsulation	Laminate material with edge seal
Frame to Glass Adhesive	Silicone
Load Rating ⁷	2400Pa

PACKAGING INFORMATION						
Modules Per Pack	27	Pack Dimensions (L x W x H)	2200 x 1300 x 1164mm (86 x 51 x 45.8in)			
Packs per 40' Container	18	Pack Weight	1032kg			

MECHANICAL DRAWING

CERTIFICATIONS AND TESTS 4

UL 1703 1500V Listed⁵ UL 61730 1500V Listed REGIONAL CERTIFICATIONS

EXTENDED DURABILITY TESTS ANSI/CAN/CSA-C450-18 Long-Term Sequential Thresher Test PID Resistant QUALITY & EHS ISO 9001:2015

61215:2016 & 61730-1:2016⁵, CE 61701 Salt Mist Corrosion 60068-2-68 Dust and Sand

SII

Buy American Act (BAA) Compliant

FSEC

CE

IEC

Resistance UL

InMetro

MyHijau

BIS

Install in portrait only

- 1 Limited power output and product warranties subject to warranty terms and conditions
- $^2\,$ All ratings ±10%, unless specified otherwise. Specifications are subject to change
- 3 Measurement uncertainty applies
- 4 Testing Certifications/Listings pending 5 IEC 61730-1: 2016 Class II | III C (Can
- EC 61730-1: 2016 Class II | ULC (Canada) 1703 1000V listed
- 6 Leadwire length from junction box exit to connector mating surface 7 1000Pa tentative design load rating for 1940mm mounting slots. High
- 1000Pa tentative design load rating for 1940mm mounting slots. Higher loads may be acceptable, subject to testing

Disclaimer

The information included in this Module Datasheet is subject to change without notice and is provided for informational purposes only. No contractual rights are established or should be inferred because of user's reliance on the information contained in this Module Datasheet. Please refer to the appropriate Module User Guide and Module Product Specification document for more detailed technical information regarding module performance, installation and use.

The First Solar logo, First Solar^{IM}, and all products denoted with [®] are registered trademarks, and those denoted with a ^{IM} are trademarks of First Solar, Inc.

TECHNICAL CHARACTERISTICS

HEMK 630V

		FRAME 1	FRAME 2	
REFERENCE		FS2235K	FS3350K	
OUTPUT	AC Output Power(kVA/kW) @50°C ^[1]	2235	3350	
	AC Output Power(kVA/kW) @40°C [1]	2310	3465	
	Max. AC Output Current (A) @40°C	2117	3175	
	Operating Grid Voltage(VAC) ^[2]	630V ±10%		
	Operating Grid Frequency(Hz)	50Hz/60Hz		
	Current Harmonic Distortion (THDi)	< 3% per	IEEE519	
	Power Factor (cosine phi) [3]	0.5 leading 0.5 lagging adjustable	/ Reactive Power injection at night	
INPUT	MPPt @full power (VDC) @35°C ^[4]	891V-	1500V	
	MPPt @full power (VDC) @50°C ^[4]	891V-	1310V	
	Maximum DC voltage	150	00V	
	Number of PV inputs [2]	Up to	o 36	
	Number of Freemaq DC/DC inputs [5]	Up 1	:0 6	
	Max. DC continuous current (A) [5]	2645	3970	
	Max. DC short circuit current (A) [5]	4000	6000	
EFFICIENCY & AUXILIARY SUPPLY	Efficiency (Max) (η)	98.79%	98.85%	
	Euroeta (η)	98.42%	98.59%	
	Max. Power Consumption (KVA)	8	10	
CABINET	Dimensions [WxDxH] (ft)	12 x 7 x 7		
	Dimensions [WxDxH] (m)	3.7 x 2.2 x 2.2		
	Weight (lb)	12125	12677	
	Weight (kg)	5500	5750	
	Type of ventilation	Forced ai	r cooling	
ENVIRONMENT	Degree of protection	NEMA 3	R - IP55	
	Permissible Ambient Temperature	-35°C to +60°C / >50°C	Active Power derating	
	Relative Humidity	4% to 100% nc	on condensing	
	Max. Altitude (above sea level)	2000m; >2000m power	derating (Max. 4000m)	
	Noise level [6]	< 79	dBA	
CONTROL INTERFACE	Communication protocol	Modbu	IS TCP	
	Plant Controller Communication	Opti	onal	
	Keyed ON/OFF switch	Stan	dard	
PROTECTIONS	Ground Fault Protection	GFDI and Isolation monitoring device		
	General AC Protection	Circuit I	Breaker	
	General DC Protection	Fus	ses	
	Overvoltage Protection	AC, DC Inverter and a	uxiliary supply type 2	
CERTIFICATIONS	Safety	UL1741, CSA 22.2 No.107.1-16, UL	62109-1, IEC62109-1, IEC62109-2	
	Compliance	NEC 20	17 / IEC	
	Utility interconnect	EEE 1547.1-2005 / UL1741SA	A-Feb. 2018 / IEC62116:2014	

MV SKID

UTILITY SCALE SOLAR STATION

TURN-KEY SOLUTION

HIGH RELIABILITY

EASY TO INSTALL

OUTDOOR DURABILITY

SIMPLIFY YOUR COMMISSIONING WITH THE MOST COMPETITIVE SOLUTION INTEGRATED WITH ALL THE MEDIUM VOLTAGE EQUIPMENT

The MV Skid is a compact turnkey outdoor platform made from high resistance galvanized steel with all the medium voltage equipment integrated, including an outdoor power transformer, MV switchgear, oil tank, filter and built in fast power connection to any HEMK solar inverter. With between 600 V - 690 V in the low voltage range and 12 kV to 36 kV in the high voltage range, this compact platform achieves power outputs between 2125 kVA and 3800 kVA.

This compact solution also allows the installation of a low voltage cabinet that is fully configurable to the customer needs as well as different types of cells and even an enclosure fence among other options. The MV SKID simplifies the project design of the PV plant, reducing installation costs and the amount of resources needed. The benefits of the MV Skid and the fact that it is also easier to transport and deliver into remote sites makes it the optimal solution for EPC's (engineering, procurement and construction).

MODEL NUMBERS AND OPERATIONAL DIAGRAM

REFERENCE	RATED POWER @50°C (kVA)
MVS2125[]	2125
MVS2180[]	2180
MVS2235[]	2235
MVS2285[]	2285
MVS2340[]	2340
MVS2445[]	2445
MVS3190[]	3190
MVS3270[]	3270
MVS3350[]	3350
MVS3430[]	3430
MVS3510[]	3510
MVS3670[]	3670

SECTION

TECHNICAL CHARACTERISTICS

MEDIUM VOLTAGE	Rated power range @50°C	2125 k\/A - 3670 k\/A
EQUIPMENT	Rated power range @40°C	2200 kVA - 3800 kVA
	MV voltage range	6.6 kV / 11 kV / 13.2 kV / 15 kV / 20 kV / 22 kV / 23 kV / 25 kV / 30 kV / 33 kV / 34.5 kV
		600 V / 615 V / 635 V / 645 V / 660 V / 600 V
		UNAN Dull
	vector group	Dy I I Drataction relev for pressure temperature (two levels) and georging
	Transformer protection	Monitoring of dielectric level decrease. PT100 optional.
	Oil retention tank	Integrated with hydrocarbon filter
	Transformer index of protection	IP54
	Switchgear configuration	Double feeder (2L)
	Switchgear protection [1]	Automatic circuit breaker (V)
CONNECTIONS	Inverter AC connection	Close coupled solution (Plug & Play)
	LV protection	Circuit breaker included in the inverter
	HV AC wiring	MV bridge between transformer and protection switchgear prewired
ENVIRONMENT	Ambient temperature [2]	-10°C+50°C (T>50°C power derating)
	Maximum altitude (above sea level)	Customizable
	Relative humidity	4% to 95% non condensing
MECHANICAL	Skid dimensions (WxHxD) mm [3]	5780 x 2340 x 2240
MECHANICAL CHARACTERISTICS	Skid weight with MV equipment [1]	< 11 Tn
	Oil retention tank material	Galvanized steel
	Skid material	Galvanized steel
	Cabinet type	Outdoor
	Anti-rodent protection	¥
AUXILIARY SERVICES	Auxiliary supply ^[1]	400 V (3-phase), 50/60 Hz
ELECTRICAL PANEL	User power supply available	5 kVA / 20 kVA / 40 kVA
	Cabinet type	Outdoor
	Cooling	Air
	Auxiliary supply protection	✓
	Communication ^[4]	Ethernet (fiber optic or RJ45)
	UPS system ^[5]	1 kW (30 minutes) - 20 kW (20 minutes)
OTHER EQUIPMENT	Safety mechanism	Interlocking system
	Safety perimeter	Transformer access protection fence
	Backfeed tracker supply	Optional
	Emergency lighting	1h autonomy
	Fire extinguishing system (transformer accessory)	Optional
	LV revenue grade meter	For inverter output / for customer auxiliary supply
	I/O interface	Digital I/O, analog I/O
STANDARDS	Compliance	IEC 62271-212, IEC 62271-200, IEC 60076, IEC 61439-1

MV SKID

ANEXO II.- INFORMES PVSYST

En este anexo se incluyen los informes íntegros de las distintas simulaciones realizadas en PVsyst durante el proyecto.

Estructura del informe

Los principales puntos de los que consta un informe de PVsyst son:

1.- Resumen

Muestra los parámetros más importantes de la simulación, tales como la zona de cálculo (omitida en este trabajo por motivos de confidencialidad), el número de módulos e inversores desplegados, así como la energía inyectada a la red y el rendimiento de la instalación.

2.- Características del conjunto FV

Esta sección detalla los modelos de módulos fotovoltaicos y de inversores, así como su número, su potencia, el número de módulos por cadena, así como la cantidad de cadenas conectadas en paralelo. También se indica la orientación e inclinación de las placas solares. Si hubiese baterías, su disposición y características también se incluyen aquí.

3.- Pérdidas del conjunto

Se resumen las distintas pérdidas eléctricas que afectan a la instalación fotovoltaica. Se desglosan por tipo de pérdidas: por resistividad del cableado, por temperatura de los módulos, pérdidas en el transformador...

4.- Definición del horizonte

Muestra la silueta del horizonte topográfico de la zona donde se encuentra el parque fotovoltaico, así como las coordenadas de los puntos que lo componen. Esta información se emplea para calcular las pérdidas por sombras lejanas.

5.- Parámetro de sombreados cercanos

Se representa una imagen del modelado 3D del entorno del parque fotovoltaico, utilizado para calcular las pérdidas por sombras cercanas.

6.- Resultados principales

Se recogen los principales resultados, tanto mensuales como anuales, de variables tales como la energía inyectada a la red (E_Grid), la eficiencia de la instalación (PR), o la energía que se perdería por tener la batería llena, si se dispusiese de una (E_Unused).

7.- Diagrama de pérdida

Representa todas las pérdidas de energía que tienen lugar en todo el proceso, desde que la radiación solar incide sobre la superficie de la Tierra hasta que se inyecta la electricidad en la red. En el caso de haber baterías, también indica que porcentaje de la energía generada se emplea directamente, cuánto se almacena, y cuál es el déficit que ha de ser tomado de la red eléctrica.

8.- Evaluación P50 – P90

Representa un estudio estadístico sobre la producción anual de la planta fotovoltaica. Se expresan los valores P50, P90 y P95 (valor de generación anual que se superaría en un 50%, un 90% o un 95% de los años respectivamente).

Informes

A continuación, se recogen los tres informes de PVsyst empleados en el proyecto. Se detalla a continuación a qué simulación corresponde cada denominación, así como el apartado de la memoria principal en la que se citan:

1.- Simulación sin baterías (apartado 4.1.)

Se corresponde a la situación inicial de la planta, antes de contar con un sistema de almacenamiento de energía.

2.- Simulación con batería predimensionada (apartado 4.3.5)

Es la simulación de la planta incluyendo la batería correspondiente al primer dimensionamiento, con un acumulador de 4 MW y 10 MWh.

3.- Simulación con batería final (apartado 5.4)

La simulación correspondiente a la planta fotovoltaica con la batería definitiva de 40 kW y 800 kWh.

PVsyst - Informe de simulación

Sistema conectado a la red

Proyecto: Guatemala Variante: Simulación sin baterías Sistema de construcción Potencia del sistema: 9021 kWp Guatemala

> Autor(a) Isotron S.A.U. (Spain)

Vsyst V7.2.2		Proyecto: Guatemala Variante: Simulación sin baterías Isotron S.A.U. (Spain)				
/05/21 13:25 1 v7.2.2						
		Resumen de	l proyecto —			
Sitio geográfico Guatemala		Situación		Configuración del p Albedo	0.20	
Datos meteo PVGIS api TMY						
		Resumen de	l sistema —			
Sistema conectado	o a la red	Sistema de constru	cción			
Orientación campo Planos fijos 3 orie Inclin./azimuts	D FV entaciones 10 / 21 ° 10 / -159 ° 11 / -8 °	Sombreados cercar Según las cadenas Efecto eléctrico	n os 100 %	Necesidades del us Carga ilimitada (red)	uario	
Información del sis Coniunto FV	stema		Inversores			
Núm. de módulos Pnom total		20502 unidades 9021 kWp	Núm. de unidades Pnom total Proporción Pnom	808 1.1	3 unidades 85 kWca 16	
			resultados —			
Energía producida	16567 MWh/año	Producción específica	1837 kWh/kWp/año	Proporción rend. PR	84.35 %	
		Tabla de co	ntenido —			
Posumon do provoctos	a v rocultados					2
Parámetros generales	Características del co	niunto FV. Pérdidas del sister	ma			_23
Definición del horizonte	9					7
Definición del sombrea	do cercano - Diagram	a de iso-sombreados				8
Resultados principales	i i					9
Diagrama de pérdida_						10
Gráficos especiales						_11
						12

Proyecto: Guatemala

Variante: Simulación sin baterías

Isotron S.A.U. (Spain)

	Parámetros	s generales ——	
Sistema conectado a la l	red Sistema de constr	rucción	
Orientación campo FV Orientación Planos fijos 3 orientacio Inclin./azimuts 10 10 / - 11	Configuración de co ones / 21 ° .159 ° / -8 °	bertizos	Modelos usadosTransposiciónPerezDifusoImportadoCircunsolarseparado
Horizonte	Sombreados cerc	anos	Necesidades del usuario
Altura promedio	5.2 ° Según las cadenas		Carga ilimitada (red)
	Efecto eléctrico	100 %	
	Características c	lel conjunto FV	
Módulo FV		Inversor	
Fabricante	First Solar	Fabricante	Power Electronics
Modelo	FS-6440A Dec2017	Modelo	FS3350K_630V_20201022_2MPPT
(Definición de parámetros	s personalizados)	(Definición de parám	etros personalizados)
Unidad Nom. Potencia	440 Wp	Unidad Nom. Potencia	3465 kWca
Número de módulos FV	8538 unidades	Número de inversores	1 Unidad
Nominal (STC)	3757 kWp	Potencia total	3465 kWca
Conjunto #1 - Cubierta Orient. mixta #1/2: 213/213 cadenas Inclinación/Azimut	10/21 ° 10/-159 °		
Número de módulos FV	2556 unidades	Número de inversores	1 * MPPT 0.30 0.3 unidades
Nominal (STC)	1125 kWp	Potencia total	1044 kWca
Módulos	426 Cadenas x 6 En series		
En cond, de funcionam.	(50°C)	Voltaie de funcionamien	to 891-1500 V
Pmpp	1034 kWp	Proporción Pnom (CC:C	A) 1.08
U mpp	1006 V	•	,
l mpp	1028 A		
Conjunto #2 - Suelo 3 Orientación Inclinación/Azimut	#3 11/-8 °		
Número de módulos FV	5982 unidades	Número de inversores	1 * MPPT 0.70 0.7 unidades
Nominal (STC)	2632 kWp	Potencia total	2421 kWca
Módulos	997 Cadenas x 6 En series		
En cond. de funcionam.	(50°C)	Voltaje de funcionamien	to 891-1500 V
Pmpp	2421 kWp	Proporción Pnom (CC:C	A) 1.09
U mpp	1006 V		
I mpp	2406 A		
Módulo FV		Inversor	
Fabricante	First Solar	Fabricante	Power Electronics
Modelo	FS-6440A Dec2017	Modelo	FS2235K_630V_20201022
(Definición de parámetros	s personalizados)	(Definición de parám	ietros personalizados)
Unidad Nom. Potencia	440 Wp	Unidad Nom. Potencia	2310 kWca
Número de módulos FV	11964 unidades	Número de inversores	2 unidades
Nominal (STC)	5264 kWp	Potencia total	4620 kWca

Variante: Simulación sin baterías

PVsyst V7.2.2 VC0, Fecha de simulación: 24/05/21 13:25 con v7.2.2

Isotron S.A.U. (Spain)

Características del conjunto FV

Conjunto #3 - Suelo 2			
Orientación	#3		
Inclinación/Azimut	11/-8 °		
Número de módulos FV	5982 unidades	Número de inversores	1 Unidad
Nominal (STC)	2632 kWp	Potencia total	2310 kWca
Módulos 99	97 Cadenas x 6 En series		
En cond. de funcionam. (50°C))	Voltaje de funcionamiento	891-1500 V
Pmpp	2421 kWp	Proporción Pnom (CC:CA)	1.14
U mpp	1006 V		
l mpp	2406 A		
Conjunto #4 - Suelo 1			
Orientación	#3		
Inclinación/Azimut	11/-8 °		
Número de módulos FV	5982 unidades	Número de inversores	1 Unidad
Nominal (STC)	2632 kWp	Potencia total	2310 kWca
Módulos 99	97 Cadenas x 6 En series		
En cond. de funcionam. (50°C))	Voltaje de funcionamiento	891-1500 V
Pmpp	2421 kWp	Proporción Pnom (CC:CA)	1.14
U mpp	1006 V		
l mpp	2406 A		
Potencia FV total		Potencia total del inversor	
Nominal (STC)	9021 kWp	Potencia total	8085 kWca
Total	20502 módulos	Núm. de inversores	3 unidades
Área del módulo	50744 m²	Proporción Pnom	1.12
Área celular	46494 m²		

Proyecto: Guatemala

Variante: Simulación sin baterías

Isotron S.A.U. (Spain)

			– Pérdio	das del conju	into —			
Pérdidas de s Fracción de pér	suciedad d rdida	el conjunto 2.0 %	Factor de pe Temperatura r Uc (const) Uv (viento)	érdida térmica nódulo según irra 20 0	adiancia 0.0 W/m²K 0.0 W/m²K/m/s	Pérdida d e Fracción de	e calidad móo pérdida	dulo -1.3 %
Pérdidas de Fracción de pér	desajuste d rdida	e módulo 2.0 % en MPP	Pérdidas de Fracción de pé	desajuste de érdida C	cadenas			
Factor de pé	rdida IAM							
Efecto de incide	encia (IAM): P	erfil definido por el	usuario	65°	70°	75°	80°	۹۵°
Efecto de incide 0° 1.000	encia (IAM): P 30° 1.000	erfil definido por el 55° 0.990	usuario 60° 0.980	65° 0.960	70° 0.920	75° 0.850	80° 0.720	90° 0.000
Efecto de incide 0° 1.000 Corrección e Modelo FirstSo Agua precipitab	encia (IAM): P 30° 1.000 espectral lar ole estimada a	erfil definido por el 55° 0.990 partir de la humed	usuario 60° 0.980 lad relativa	65° 0.960	70° 0.920	75° 0.850	80° 0.720	90° 0.000
Efecto de incide 0° 1.000 Corrección e Modelo FirstSo Agua precipitab Cco	encia (IAM): P 30° 1.000 espectral lar ble estimada a onjunto de coe	erfil definido por el 55° 0.990 partir de la humed	usuario 60° 0.980 lad relativa C0	65° 0.960	70° 0.920 C2	75° 0.850 C3	80° 0.720 C4	90° 0.000 C5

Pérdidas de cableado CC							
Res. de cableado global Fracción de pérdida	2.0 mΩ 1.5 % en STC						
Conjunto #1 - Cubierta			Conjunto #2 - Suelo 3				
Res. conjunto global		16 mΩ	Res. conjunto global	6.9 mΩ			
Fracción de pérdida		1.5 % en STC	Fracción de pérdida	1.5 % en STC			
Conjunto #3 - Suelo 2			Conjunto #4 - Suelo 1				
Res. conjunto global		6.9 mΩ	Res. conjunto global	6.9 mΩ			
Fracción de pérdida		1.5 % en STC	Fracción de pérdida	1.5 % en STC			

Pérdidas del sistema.

Pérdidas auxiliares Proporcional a la potencia 3.0 W/kW 0.0 kW del umbral de potencia

Pérdidas de cableado CA

i oralidad d	
asta transfo MV	
630 Vca tri	
0.03 % en STC	
20201022_2MPPT, FS2235K_630V_20	0201022
Cobre 3 x 3 x 2500 mm ²	
5 m	
ı	
34.5 kV	
Alu 3 x 70 mm ²	
892 m	
0.30 % en STC	
	asta transfo MV 630 Vca tri 0.03 % en STC 20201022_2MPPT, FS2235K_630V_20 Cobre 3 x 3 x 2500 mm ² 5 m 34.5 kV Alu 3 x 70 mm ² 892 m 0.30 % en STC

Variante: Simulación sin baterías

Isotron S.A.U. (Spain)

PVsyst V7.2.2 VC0, Fecha de simulación: 24/05/21 13:25 con v7.2.2

Pérdidas de CA en transformadores

Transfo MV	
Voltaje de red	34.5 kV
Pérdidas operativas en STC	
Potencia nominal en STC	8891 kVA
Pérdida de hierro (desconexión nocturna)	8.89 kW
Fracción de pérdida	0.10 % en STC
Resistencia equivalente de bobinas	3 x 0.45 mΩ
Fracción de pérdida	1.00 % en STC

Variante: Simulación sin baterías

Isotron S.A.U. (Spain)

PVsyst V7.2.2 VC0, Fecha de simulación: 24/05/21 13:25 con v7.2.2

	— Definición del horizonte — — — — — — — — — — — — — — — — — — —												
				•									
Altura promed	lio	5.2 °		Factor	Albedo		0.87						
Factor difuso		0.99		Fracción de albedo		do	100 %						
	Perfil del horizonte												
Azimut [°]	-180	-173	-165	-158	-150	-143	-135	-128	-120	-113	-105	-90	
Altura [°]	12.2	10.7	10.3	10.7	8.4	6.9	5.3	3.1	2.3	2.3	1.1	1.1	
Azimut [°]	-83	-75	-68	-60	-53	-45	-38	-30	-23	-15	-8	0	
Altura [°]	1.5	2.3	2.7	2.3	1.5	2.3	1.5	1.9	2.3	2.7	3.1	3.8	
Azimut [°]	8	15	23	30	38	45	75	83	90	98	105	113	
Altura [°]	4.2	3.1	2.3	1.5	1.9	3.8	3.8	4.6	4.6	6.1	6.9	8.4	
Azimut [°]	120	128	135	143	150	158	165	173	180				
Altura [°]	9.2	7.6	8.4	8.8	11.1	12.2	12.6	12.6	12.2				

Recorridos solares (diagrama de altura / azimut)

Variante: Simulación sin baterías

Isotron S.A.U. (Spain)

PVsyst V7.2.2 VC0, Fecha de simulación: 24/05/21 13:25 con v7.2.2

Diagrama de iso-sombreados Factor de sombreado de haz (según las cadenas) : Curvas de iso-sombreados 90 Pérdida de sombreado: 1% Atenuación para difuso: 0.000 2 Pérdida de sombreado: 5% y albedo; 0.000 Pérdida de sombreado. 10% Pérdida de sembreado. 20% 75 Pérdida de sombreado: 40% 5 10 4h 60 6 Altura del sol [°] 15h 91 45 1: 22 junio 8h 16h 2: 22 mayo - 23 julio 30 3: 20 abr - 23 ago 4: 20 mar - 23 sep 71 17h 5: 21 feb - 23 oct 6: 19 ene - 22 nov 15 7: 22 diciembre Detrás Detrás del plano del plano 0 Azimut [°] -30 -180 -150 -120 -90 -60 30 60 90 120 150 180

Proyecto: Guatemala

Variante: Simulación sin baterías

Isotron S.A.U. (Spain)

Resultados principales

Producción del sistema Energía producida

16567 MWh/año

Producciones normalizadas (por kWp instalado)

Producción específica Proporción de rendimiento (PR)

1837 kWh/kWp/año 84.35 %

Proporción de rendimiento (PR)

Balances y resultados principales

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	proporción
Enero	164.2	39.96	21.07	182.9	174.5	1425	1385	0.840
Febrero	162.0	41.02	23.56	174.2	167.2	1352	1314	0.836
Marzo	199.1	53.59	22.65	205.8	198.2	1601	1557	0.838
Abril	198.2	66.11	26.26	197.4	189.9	1532	1490	0.837
Мауо	194.5	80.50	27.43	188.8	181.2	1478	1438	0.844
Junio	187.7	76.29	27.09	179.8	172.4	1419	1380	0.851
Julio	202.0	75.25	25.74	194.0	186.1	1538	1495	0.855
Agosto	203.2	65.85	26.62	199.9	192.3	1572	1529	0.848
Septiembre	170.1	77.24	26.76	172.7	165.8	1365	1328	0.852
Octubre	143.3	70.00	24.23	149.5	142.6	1183	1151	0.853
Noviembre	147.0	46.04	22.87	161.3	154.2	1253	1218	0.837
Diciembre	151.6	42.45	24.43	170.8	162.6	1317	1281	0.831
Año	2122.8	734.29	24.90	2177.2	2087.1	17035	16567	0.844

Leyendas

GlobHor	Irradiación horizontal global	EArray	Energía efectiva a la salida del conjunto
DiffHor	Irradiación difusa horizontal	E_Grid	Energía inyectada en la red
T_Amb	Temperatura ambiente	PR	Proporción de rendimiento
GlobInc	Global incidente plano receptor		
GlobEff	Global efectivo, corr. para IAM y sombreados		

Proyecto: Guatemala

Variante: Simulación sin baterías

Isotron S.A.U. (Spain)

Diagrama de pérdida 2123 kWh/m² Irradiación horizontal global +2.6% Global incidente plano receptor → -0.30% Sombreados lejanos / Horizonte -0.52% Sombreados cercanos: perdida de irradiancia -1.37% Factor IAM en global -2.00% Factor de pérdida de suciedad 2087 kWh/m² * 50744 m² colect. Irradiancia efectiva en colectores eficiencia en STC = 17.78% Conversión FV 18827 MWh Conjunto de energía nominal (con efic. STC) Pérdida FV debido al nivel de irradiancia ♦ -0.97% 9.30% Pérdida FV debido a la temperatura. ⊈ +3.29% Corrección espectral -0.40% Sombreados: pérdida eléctrica según las cadenas +1.25% Pérdida calidad de módulo -2.10% Pérdidas de desajuste, módulos y cadenas -1.19% Pérdida óhmica del cableado → -0.02% Orientación mixta pérdida de desajuste 17037 MWh Energía virtual del conjunto en MPP 为-1.42% Pérdida del inversor durante la operación (eficiencia) Pérdida del inversor sobre potencia inv. nominal ♦ 0.00% ♦ 0.00% Pérdida del inversor debido a la corriente de entrada máxima Pérdida de inversor sobre voltaje inv. nominal → 0.00% ₩0.00% Pérdida del inversor debido al umbral de potencia → -0.01% Pérdida del inversor debido al umbral de voltaje €0.00 ל Consumo nocturno 16792 MWh Energía disponible en la salida del inversor → -0.30% Auxiliares (ventiladores, otros...) →-0.02% Pérdidas óhmicas CA -0.84% Pérdida de transfo de voltaje medio Pérdida óhmica de línea MV -0.19% 16567 MWh Energía inyectada en la red

Proyecto: Guatemala

Variante: Simulación sin baterías

Isotron S.A.U. (Spain)

Variante: Simulación sin baterías

Isotron S.A.U. (Spain)

PVsyst V7.2.2 VC0, Fecha de simulación: 24/05/21 13:25 con v7.2.2

Datos meteo Incertidu Fuente de datos meteo PVGIS api TMY Modelado Tipo TMY, multianual Incertidun Variabilidad año a año(Varianza) 0.5 % Incertidun Desviación especificada Incertidun Incertidun Cambio climático 0.0 % Probabil

Variabilidad global (inclos y sistema)	
Variabilidad (Suma cuadrática)	1.9 %

Incertidumbres sobre la simulación y los parámetrosModelado/parámetros del módulo FV1.0 %Incertidumbre eficiencia inversor0.5 %Incertidumbres de suciedad y desajuste1.0 %Incertidumbre de degradación1.0 %

Probabilidad de producción anual

Variabilidad	310 MWh
P50	16567 MWh
P90	16170 MWh
P95	16058 MWh

Distribución de probabilidad

PVsyst - Informe de simulación

Sistema conectado a la red

Proyecto: Guatemala Variante: Simulación con batería predimensionada Sistema de construcción Potencia del sistema: 9021 kWp Guatemala

> Autor(a) Isotron S.A.U. (Spain)

Proyecto: Guatemala

Variante: Simulación con batería predimensionada

Isotron S.A.U. (Spain)

		— Resumen del	proyecto —		
Sitio geográfico Guatemala	Sitio geográfico Guatemala			Configuración del p Albedo	0.20
Datos meteo PVGIS api TMY					
		— Resumen del	sistema —		
Sistema conecta	do a la red	Sistema de construc	ción		
Orientación cam Planos fijos 3 c Inclin./azimuts	po FV vrientaciones 10 / 21 ° 10 / -159 ° 11 / -8 °	Sombreados cercan Según las cadenas Efecto eléctrico	os 100 %	Necesidades del usu Ext. definida como archiv PARAMS_Hourly_Param	
Información del s	sistema				
Conjunto FV		Inversores		Paquete de baterías	
Num. de modulos	20502 unidades	Num. de unidades	3 unidades	Estrategia de almacena	miento : Autoconsul
	9021 kwp	Proporción Pnom	1.116	Voltaje Capacidad	624 V 16344 Ah
		Resumen de re	esultados		
Energía producida	16567 MWh/año	Producción específica	1837 kWh/kWp/año	Proporción rend. PR Fracción solar (SF)	82.45 % 31.25 %
		— Tabla de coi	ntenido ——		
Resumen de provec	tos v resultados				2
Parámetros generale	es, Características del con	unto FV, Pérdidas del sistem	าอ		3
Definición del horizo	nte				7
Definición del sombr	reado cercano - Diagrama	de iso-sombreados			8
Resultados principal	es				9
Diagrama de pérdida	a				10
Gráficos especiales_					11
Evaluación P50 - P9	0				12

PVsyst V7.2.2

VC2, Fecha de simulación: 24/05/21 13:35 con v7.2.2

Proyecto: Guatemala

Variante: Simulación con batería predimensionada

Isotron S.A.U. (Spain)

					P	arámetr	os gene	erales					
Sistema	a conect	ado a la i	red		Sistema	a de con	strucció	n					
Orienta	ción can	npo FV											
Orientad	ción				Configu	ración de	cobertizo	s		Modelos	s usados		
Planos fi	jos 3	orientacio	nes							Transpo	sición	F	Perez
Inclin./az	imuts	10	/ 21 °							Difuso		Impo	rtado
		10 / -	159 °							Circunso	olar	sepa	arado
		11	/ -8 °										
Horizonte				Sombreados cercanos					Necesidades del usuario				
Altura pr	omedio		5.2 °		Según las cadenas				Ext. definida como archivo				
					Efecto eléctrico 100 %			PARAM	S_Hourly_	Paramete	er_Template.csv		
Almace	enamient	o											
Tipo			A	utoconsun	าด								
Sin reiny	ección de	red											
Estrateg	jia de carg	ga			Estrateg	ia de des	carga						
Cuando	hay un exc	ceso de po	tencia sola	ər	Tan pron	ito como s	e necesite	potencia					
Ene.	Feb.	Mar.	Abr.	Mayo	Jun.	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Año	
4257351	3737989	4497756	4381496	4513097	4454715	4687539	4655076	4403412	4009938	3984490	4244762	*827620	kWh

	— Características	s del conjunto FV 🛛 —	
Módulo FV		Inversor	
Fabricante	First Solar	Fabricante	Power Electronics
Modelo	FS-6440A Dec2017	Modelo F	S3350K_630V_20201022_2MPPT
(Definición de parámetros personali	zados)	(Definición de parámetro	s personalizados)
Unidad Nom. Potencia	440 Wp	Unidad Nom. Potencia	3465 kWca
Número de módulos FV	8538 unidades	Número de inversores	1 Unidad
Nominal (STC)	3757 kWp	Potencia total	3465 kWca
Conjunto #1 - Cubierta			
Orient. mixta			
#1/2: 213/213 cadenas			
Inclinación/Azimut	10/21 °		
	10/-159 °		
Número de módulos FV	2556 unidades	Número de inversores	1 * MPP1 0.30 0.3 unidades
Nominal (STC)	1125 kWp	Potencia total	1044 kWca
Módulos 426 C	Cadenas x 6 En series		
En cond. de funcionam. (50°C)		Voltaje de funcionamiento	891-1500 V
Pmpp	1034 kWp	Proporción Pnom (CC:CA)	1.08
U mpp	1006 V		
l mpp	1028 A		
Conjunto #2 - Suelo 3			
Orientación	#3		
Inclinación/Azimut	11/-8 °		
Número de módulos FV	5982 unidades	Número de inversores	1 * MPPT 0.70 0.7 unidades
Nominal (STC)	2632 kWp	Potencia total	2421 kWca
Módulos 997 0	Cadenas x 6 En series		
En cond. de funcionam. (50°C)		Voltaje de funcionamiento	891-1500 V
Pmpp	2421 kWp	Proporción Pnom (CC:CA)	1.09
U mpp	1006 V		
l mpp	2406 A		

Variante: Simulación con batería predimensionada

PVsyst V7.2.2

VC2, Fecha de simulación: 24/05/21 13:35 con v7.2.2

Isotron S.A.U. (Spain)

Características del conjunto FV

Módulo FV		Inversor	
Fabricante	First Solar	Fabricante	Power Electronics
Modelo	FS-6440A Dec2017	Modelo	FS2235K_630V_20201022
(Definición de parámetros personaliz	zados)	(Definición de parámetros per	rsonalizados)
Unidad Nom. Potencia	440 Wp	Unidad Nom. Potencia	2310 kWca
Número de módulos FV	11964 unidades	Número de inversores	2 unidades
Nominal (STC)	5264 kWp	Potencia total	4620 kWca
Conjunto #3 - Suelo 2			
Orientación	#3		
Inclinación/Azimut	11/-8°		
Número de módulos FV	5982 unidades	Número de inversores	1 Unidad
Nominal (STC)	2632 kWp	Potencia total	2310 kWca
Módulos 997 C	adenas x 6 En series		
En cond. de funcionam. (50°C)		Voltaje de funcionamiento	891-1500 V
Pmpp	2421 kWp	Proporción Pnom (CC:CA)	1.14
U mpp	1006 V		
l mpp	2406 A		
Coniunto #4 - Suelo 1			
Orientación	#3		
Inclinación/Azimut	11/-8 °		
Número de módulos FV	5982 unidades	Número de inversores	1 Unidad
Nominal (STC)	2632 kWp	Potencia total	2310 kWca
Módulos 997 C	adenas x 6 En series		
En cond. de funcionam. (50°C)		Voltaje de funcionamiento	891-1500 V
Pmpp	2421 kWp	Proporción Pnom (CC:CA)	1.14
U mpp	1006 V		
l mpp	2406 A		
Potencia FV total		Potencia total del inversor	
Nominal (STC)	9021 kWp	Potencia total	8085 kWca
Total	20502 módulos	Núm. de inversores	3 unidades
Área del módulo	50744 m²	Proporción Pnom	1.12
Área celular	46494 m²		
Almacanamiento de batería			
Batería			
Fabricante	Pylontech		
Modelo	US2000B 50Ah		
Paquete de baterías	—	Características del paquete de	baterías
Núm. de unidades	13 en series	Voltaje	624 V
	x 323 en paralelo	Capacidad nominal	16344 Ah (C10)
Descarga mín. SOC	2.0 %	Temperatura	Fijo 20 °C
Energía almacenada	9994.6 kWh		
Cargador de entrada de batería			
Modelo	Genérico		
Máx. potencia de carga	6500.0 kWcc		
Eficiencia máx./Euro	97.0/95.0 %		
Inversor batería a red			
Modelo	Genérico		
Máx. potencia descarga	4000.0 kWca		
Eficiencia máx./Euro	97.0/95.0 %		

Variante: Simulación con batería predimensionada

Isotron S.A.U. (Spain)

PVsyst V7.2.2 VC2, Fecha de simulación: 24/05/21 13:35 con v7.2.2

Fracción de pérdida

Pérdidas del conjunto

 Factor de pérdida térmica

 Temperatura módulo según irradiancia

 Uc (const)
 20.0 W/m²K

 Uv (viento)
 0.0 W/m²K/m/s

Pérdida de calidad módulo

Fracción de pérdida

-1.3 %

Pérdidas de desajuste de módulo Fracción de pérdida 2.0 % en MPP

Pérdidas de suciedad del conjunto

Pérdidas de desajuste de cadenas Fracción de pérdida 0.1 %

Factor de pérdida IAM

Efecto de incidencia (IAM): Perfil definido por el usuario

2.0 %

0°	30°	55°	60°	65°	70°	75°	80°	90°
1.000	1.000	0.990	0.980	0.960	0.920	0.850	0.720	0.000

Corrección espectral

Modelo FirstSolar

Agua precipitable estimada a partir de la humedad relativa

Conjunto de coeficientes	C0	C1	C2	C3	C4	C5
CdTe FirstSolar Series 4-2 and Later	0,86273	-0,038948	-0,012506	0,098871	0,084658	-0,0042948

		- Pérdidas d	le cableado CC	
Res. de cableado global Fracción de pérdida	2.0 mΩ 1.5 % en STC			
Conjunto #1 - Cubierta			Conjunto #2 - Suelo 3	
Res. conjunto global		16 mΩ	Res. conjunto global	6.9 mΩ
Fracción de pérdida		1.5 % en STC	Fracción de pérdida	1.5 % en STC
Conjunto #3 - Suelo 2			Conjunto #4 - Suelo 1	
Res. conjunto global		6.9 mΩ	Res. conjunto global	6.9 mΩ
Fracción de pérdida		1.5 % en STC	Fracción de pérdida	1.5 % en STC

Pérdid	as del	siste	ma
		0.0.0	

Pérdidas auxiliares

Proporcional a la potencia 3.0 W/kW 0.0 kW del umbral de potencia

Pérdidas de cableado CA

Línea de salida del inv. ha	asta transfo MV	
Voltaje inversor	630 Vca tri	
Fracción de pérdida	0.03 % en STC	
Inversores: FS3350K_630V_2	20201022_2MPPT, FS2235K_630V	_20201022
Sección cables (3 Inv.)	Cobre 3 x 3 x 2500 mm ²	
Longitud media de los cables	5 m	
Línea MV hasta inyección	l	
Voltaje MV	34.5 kV	
Cables	Alu 3 x 70 mm ²	
Longitud	892 m	
Fracción de pérdida	0.30 % en STC	

PVsyst V7.2.2

Proyecto: Guatemala

Variante: Simulación con batería predimensionada

VC2, Fecha de simulación: 24/05/21 13:35 con v7.2.2

Isotron S.A.U. (Spain)

	Pérdidas de CA en transformadores ——	
Transfo MV		
Voltaje de red	34.5 kV	
Pérdidas operativas en STC		
Potencia nominal en STC	8891 kVA	
Pérdida de hierro (desconexión nocturna)	8.89 kW	
Fracción de pérdida	0.10 % en STC	
Resistencia equivalente de bobinas	3 x 0.45 mΩ	
Fracción de pérdida	1.00 % en STC	

Variante: Simulación con batería predimensionada

Isotron S.A.U. (Spain)

PVsyst V7.2.2 VC2, Fecha de simulación: 24/05/21 13:35 con v7.2.2

Definición del horizonte												
				-								
Altura promed	dio	5.2 °		Factor	Albedo		0.87					
Factor difuso		0.99		Fracci	ón de albeo	do	100 %					
	Perfil del horizonte											
Azimut [°]	-180	-173	-165	-158	-150	-143	-135	-128	-120	-113	-105	-90
Altura [°]	12.2	10.7	10.3	10.7	8.4	6.9	5.3	3.1	2.3	2.3	1.1	1.1
Azimut [°]	-83	-75	-68	-60	-53	-45	-38	-30	-23	-15	-8	0
Altura [°]	1.5	2.3	2.7	2.3	1.5	2.3	1.5	1.9	2.3	2.7	3.1	3.8
Azimut [°]	8	15	23	30	38	45	75	83	90	98	105	113
Altura [°]	4.2	3.1	2.3	1.5	1.9	3.8	3.8	4.6	4.6	6.1	6.9	8.4
Azimut [°]	120	128	135	143	150	158	165	173	180			
Altura [°]	9.2	7.6	8.4	8.8	11.1	12.2	12.6	12.6	12.2			

Recorridos solares (diagrama de altura / azimut)

Variante: Simulación con batería predimensionada

Isotron S.A.U. (Spain)

PVsyst V7.2.2 VC2, Fecha de simulación: 24/05/21 13:35 con v7.2.2

Diagrama de iso-sombreados

Variante: Simulación con batería predimensionada

Isotron S.A.U. (Spain)

PVsyst V7.2.2 VC2, Fecha de simulación: 24/05/21 13:35 con v7.2.2

Duración de vida de batería

Resultados principales

16567 MWh/año	P
	P
	Fi
ado de desgaste)	
98.6 %	
80.0 %	
	16567 MWh/año ado de desgaste) 98.6 % 80.0 %

5.0 años

Producción específica
Proporción de rendimiento (PR)
Fracción solar (SF)

1837 kWh/kWp/año 82.45 % 31.25 %

Producciones normalizadas (por kWp instalado)

Proporción de rendimiento (PR)

Balances y resultados principales

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_User	E_Solar	EUnused	EFrGrid
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	MWh	MWh	MWh
Enero	164.2	39.96	21.07	182.9	174.5	1425	4257	1339	36.09	2919
Febrero	162.0	41.02	23.56	174.2	167.2	1352	3738	1269	27.38	2469
Marzo	199.1	53.59	22.65	205.8	198.2	1601	4498	1522	14.92	2976
Abril	198.2	66.11	26.26	197.4	189.9	1532	4381	1457	14.86	2924
Мауо	194.5	80.50	27.43	188.8	181.2	1478	4513	1398	29.91	3115
Junio	187.7	76.29	27.09	179.8	172.4	1419	4455	1372	0.00	3083
Julio	202.0	75.25	25.74	194.0	186.1	1538	4688	1482	3.99	3205
Agosto	203.2	65.85	26.62	199.9	192.3	1572	4655	1517	0.00	3138
Septiembre	170.1	77.24	26.76	172.7	165.8	1365	4403	1317	2.52	3087
Octubre	143.3	70.00	24.23	149.5	142.6	1183	4010	1117	20.24	2893
Noviembre	147.0	46.04	22.87	161.3	154.2	1253	3984	1171	32.55	2814
Diciembre	151.6	42.45	24.43	170.8	162.6	1317	4245	1234	35.34	3011
Año	2122.8	734.29	24.90	2177.2	2087.1	17035	51828	16194	217.80	35634

Leyendas

GlobHor	Irradiación horizontal global	EArray	Energía efectiva a la salida del conjunto
DiffHor	Irradiación difusa horizontal	E_User	Energía suministrada al usuario
T_Amb	Temperatura ambiente	E_Solar	Energía del sol
GlobInc	Global incidente plano receptor	EUnused	Energía no utilizada (batería llena, sin inyección de red)
GlobEff	Global efectivo, corr. para IAM y sombreados	EFrGrid	Energía de la red

Variante: Simulación con batería predimensionada

Isotron S.A.U. (Spain)

PVsyst V7.2.2 VC2, Fecha de simulación: 24/05/21 13:35 con v7.2.2

Diagrama de pérdida

Variante: Simulación con batería predimensionada

Isotron S.A.U. (Spain)

PVsyst V7.2.2 VC2, Fecha de simulación: 24/05/21 13:35 con v7.2.2

Variante: Simulación con batería predimensionada

Isotron S.A.U. (Spain)

PVsyst V7.2.2 VC2, Fecha de simulación: 24/05/21 13:35 con v7.2.2

Evaluación P50 - P90

Datos meteoFuente de datos meteoPVGIS api TMYTipoTMY, multianualVariabilidad año a año(Varianza)0.5 %Desviación especificada0.0 %Cambio climático0.0 %Variabilidad global (meteo y sistema)1.9 %

Incertidumbres sobre la simulación y los parámetrosModelado/parámetros del módulo FV1.0 %Incertidumbre eficiencia inversor0.5 %Incertidumbres de suciedad y desajuste1.0 %Incertidumbre de degradación1.0 %

Probabilidad de producción anual

Variabilidad	310 MWh
P50	16567 MWh
P90	16170 MWh
P95	16058 MWh

Distribución de probabilidad

PVsyst - Informe de simulación

Sistema conectado a la red

Proyecto: Guatemala Variante: Simulación con batería final Sistema de construcción Potencia del sistema: 9021 kWp Guatemala

Proyecto: Guatemala

Variante: Simulación con batería final

Isotron S.A.U. (Spain)

		— Resumen del	proyecto —		
Sitio geográfico Guatemala		Situación		Configuración del p Albedo	royecto 0.20
Datos meteo PVGIS api TMY					
		— Resumen del	sistema —		
Sistema conectad	lo a la red	Sistema de construc	ción		
Orientación camp Planos fijos 3 or Inclin./azimuts	bo FV rientaciones 10 / 21 ° 10 / -159 ° 11 / -8 °	Sombreados cercan Según las cadenas Efecto eléctrico	os 100 %	Necesidades del us Ext. definida como arch PARAMS_Hourly_Para	uario vo neter_Template.csv
Información del s Conjunto FV	istema	Inversores		Paquete de baterías	
Num. de modulos Pnom total	20502 unidades 9021 kWp	Num. de unidades Pnom total Proporción Pnom	3 unidades 8085 kWca 1.116	Estrategia de almacena Núm. de unidades Voltaje Capacidad	miento : Autoconsum 338 unidades 624 V 1316 Ah
		Resumen de re	esultados		
Energía producida	16567 MWh/año	Producción específica	1837 kWh/kWp/año	Proporción rend. PR Fracción solar (SF)	79.55 % 30.15 %
		— Tabla de co	ntenido ——		
Resumen de proyecto	os y resultados				2
Parámetros generales	s, Características del conj	unto FV, Pérdidas del sistem	าล		3
Definición del sombro	ITE	de iso-sombreados			/
Resultados principale	S	ue 150-501110160005			0
Diagrama de pérdida					0
Gráficos especiales					11

07/06/21

Evaluación P50 - P90

_12

Proyecto: Guatemala

Variante: Simulación con batería final

Isotron S.A.U. (Spain)

					P	arámetr	os gene	erales					
Sistema	a conect	ado a la i	red		Sistema	a de con	strucció	n					
Orienta	ción can	npo FV											
Orientac	ción				Configu	ración de	cobertizo	s		Modelo	s usados		
Planos fij	jos 3	orientacio	nes							Transpo	sición	F	Perez
Inclin./az	imuts	10	/ 21 °							Difuso		Impo	rtado
		10 / -	159 °							Circunso	olar	sepa	irado
		11	/ -8 °										
Horizon	nte				Sombre	eados ce	rcanos			Necesi	dades de	el usuari	o
Altura pro	omedio		5.2 °		Según la	s cadenas	6			Ext. defi	nida como	archivo	
					Efecto el	éctrico		100 %		PARAM	S_Hourly_	Paramete	er_Template.csv
Almace	enamient	o											
Tipo			A	utoconsun	no								
Sin reiny	ección de	red											
Estrateg	jia de carg	ga			Estrateg	ia de des	carga						
Cuando I	hay un exo	ceso de po	tencia sola	ar	Tan pron	ito como s	e necesite	potencia					
Ene.	Feb.	Mar.	Abr.	Mayo	Jun.	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Año	
4257351	3737989	4497756	4381496	4513097	4454715	4687539	4655076	4403412	4009938	3984490	4244762	*827620	kWh

	Características	s del conjunto FV 🛛 —	
Módulo FV		Inversor	
Fabricante	First Solar	Fabricante	Power Electronics
Modelo	FS-6440A Dec2017	Modelo	FS3350K_630V_20201022_2MPPT
(Definición de parámetros pe	ersonalizados)	(Definición de parámetro	os personalizados)
Unidad Nom. Potencia	440 Wp	Unidad Nom. Potencia	3465 kWca
Número de módulos FV	8538 unidades	Número de inversores	1 Unidad
Nominal (STC)	3757 kWp	Potencia total	3465 kWca
Conjunto #1 - Cubierta Orient. mixta			
#1/2: 213/213 cadenas			
Inclinación/Azimut	10/21 °		
	10/-159 °		
Número de módulos FV	2556 unidades	Número de inversores	1 * MPPT 0.30 0.3 unidades
Nominal (STC)	1125 kWp	Potencia total	1044 kWca
Módulos	426 Cadenas x 6 En series		
En cond. de funcionam. (50)°C)	Voltaje de funcionamiento	891-1500 V
Pmpp	1034 kWp	Proporción Pnom (CC:CA)	1.08
U mpp	1006 V		
l mpp	1028 A		
Conjunto #2 - Suelo 3			
Orientación	#3		
Inclinación/Azimut	11/-8 °		
Número de módulos FV	5982 unidades	Número de inversores	1 * MPPT 0.70 0.7 unidades
Nominal (STC)	2632 kWp	Potencia total	2421 kWca
Módulos	997 Cadenas x 6 En series		
En cond. de funcionam. (50)°C)	Voltaje de funcionamiento	891-1500 V
Pmpp	2421 kWp	Proporción Pnom (CC:CA)	1.09
U mpp	1006 V		
l mpp	2406 A		

Variante: Simulación con batería final

PVsyst V7.2.2 VC3, Fecha de simulación: 07/06/21 08:41 con v7.2.2

Isotron S.A.U. (Spain)

Características del conjunto FV

Módulo FV		Inversor	
Fabricante	First Solar	Fabricante	Power Electronics
Modelo	FS-6440A Dec2017	Modelo	FS2235K_630V_20201022
(Definición de parámetros	personalizados)	(Definición de parámetros pe	ersonalizados)
Unidad Nom. Potencia	440 Wp	Unidad Nom. Potencia	2310 kWca
Número de módulos FV	11964 unidades	Número de inversores	2 unidades
Nominal (STC)	5264 kWp	Potencia total	4620 kWca
Conjunto #3 - Suelo 2			
Orientación	#3		
Inclinación/Azimut	11/-8°		
Número de módulos FV	5982 unidades	Número de inversores	1 Unidad
Nominal (STC)	2632 kWp	Potencia total	2310 kWca
Módulos	997 Cadenas x 6 En series		
En cond. de funcionam. (50°C)	Voltaje de funcionamiento	891-1500 V
Pmpp	2421 kWp	Proporción Pnom (CC:CA)	1.14
U mpp	1006 V		
l mpp	2406 A		
Conjunto #4 - Suelo 1			
Orientación	#3		
Inclinación/Azimut	11/-8 °		
Número de módulos FV	5982 unidades	Número de inversores	1 Unidad
Nominal (STC)	2632 kWp	Potencia total	2310 kWca
Módulos	997 Cadenas x 6 En series		
En cond. de funcionam. (50°C)	Voltaje de funcionamiento	891-1500 V
Pmpp	2421 kWp	Proporción Pnom (CC:CA)	1.14
U mpp	1006 V		
l mpp	2406 A		
Potencia FV total		Potencia total del inversor	
Nominal (STC)	9021 kWp	Potencia total	8085 kWca
Total	20502 módulos	Núm. de inversores	3 unidades
Área del módulo	50744 m ²	Proporción Pnom	1.12
Área celular	46494 m ²		
Almacenamiento de bater	ría		
Batería			
Fabricante	Pylontech		
Modelo	US2000B_50Ah		
Paquete de baterías		Características del paquete de	baterías
Núm. de unidades	13 en series	Voltaje	624 V
	x 26 en paralelo	Capacidad nominal	1316 Ah (C10)
Descarga mín. SOC	2.0 %	Temperatura	Fijo 20 °C
Energía almacenada	804.5 kWh		
Cargador de entrada de bate	ería		
Modelo	Genérico		
Máx. potencia de carga	500.0 kWcc		
Eficiencia máx./Euro	97.0/95.0 %		
Inversor batería a red			
Modelo	Genérico		
Máx. potencia descarga	40.0 kWca		
Eficiencia máx./Euro	97.0/95.0 %		

Proyecto: Guatemala

Variante: Simulación con batería final

Isotron S.A.U. (Spain)

			– Pérdie	das del conj	unto —			
Pérdidas de	suciedad o	lel conjunto	Factor de pe	érdida térmic	a	Pérdida d	e calidad mó	dulo
Fracción de pé	rdida	2.0 %	Temperatura r	nódulo según ir	radiancia	Fracción de	e pérdida	-1.3 %
			Uc (const)	2	0.0 W/m²K			
			Uv (viento)		0.0 W/m²K/m/s			
Pérdidas de	desajuste	de módulo	Pérdidas de	desajuste de	e cadenas			
Fracción de pé	rdida	2.0 % en MPP	Fracción de pe	érdida	0.1 %			
Efecto de incid	encia (IAM) [.]	Perfil definido por el	usuario					
	30°	55°	60°	65°	70°	75°	80°	90°
0° 1.000	30° 1.000	55° 0.990	60° 0.980	65° 0.960	70° 0.920	75° 0.850	80° 0.720	90° 0.000
0° 1.000	30° 1.000	55° 0.990	60° 0.980	65° 0.960	70° 0.920	75° 0.850	80° 0.720	90° 0.000
0° 1.000 Corrección e Modelo FirstSo	30° 1.000 espectral	55° 0.990	60° 0.980	65° 0.960	70° 0.920	75° 0.850	80° 0.720	90° 0.000
0° 1.000 Corrección e Modelo FirstSo Agua precipital	30° 1.000 espectral lar	55° 0.990 a partir de la humeo	60° 0.980	65° 0.960	70° 0.920	75° 0.850	80° 0.720	90° 0.000
0° 1.000 Corrección e Modelo FirstSo Agua precipitab Co	30° 1.000 espectral lar ble estimada	55° 0.990 a partir de la humeo	60° 0.980 lad relativa C0	65° 0.960 C1	70° 0.920 C2	75° 0.850 C3	80° 0.720 C4	90° 0.000 C5

		Pérdidas d	le cableado CC	
Res. de cableado global Fracción de pérdida	2.0 mΩ 1.5 % en STC			
Conjunto #1 - Cubierta			Conjunto #2 - Suelo 3	
Res. conjunto global		16 mΩ	Res. conjunto global	6.9 mΩ
Fracción de pérdida		1.5 % en STC	Fracción de pérdida	1.5 % en STC
Conjunto #3 - Suelo 2			Conjunto #4 - Suelo 1	
Res. conjunto global		6.9 mΩ	Res. conjunto global	6.9 mΩ
Fracción de pérdida		1.5 % en STC	Fracción de pérdida	1.5 % en STC

Pérdidas del sistema.

Pérdidas auxiliares Proporcional a la potencia 3.0 W/kW

0.0 kW del umbral de potencia

Pérdidas de cableado CA

Línea de salida del inv. ha	asta transfo MV	
Voltaje inversor	630 Vca tri	
Fracción de pérdida	0.03 % en STC	
Inversores: FS3350K_630V_	20201022_2MPPT, FS2235K_630V_2	20201022
Sección cables (3 Inv.)	Cobre 3 x 3 x 2500 mm ²	
Longitud media de los cables	5 m	
Línea MV hasta inyecciór	1	
Voltaje MV	34.5 kV	
Cables	Alu 3 x 70 mm ²	
Longitud	892 m	
Fracción de pérdida	0.30 % en STC	

Variante: Simulación con batería final

Isotron S.A.U. (Spain)

PVsyst V7.2.2 VC3, Fecha de simulación: 07/06/21 08:41 con v7.2.2

Pérdidas de CA en transformadores

Transfo MV	
Voltaje de red	34.5 kV
Pérdidas operativas en STC	
Potencia nominal en STC	8891 kVA
Pérdida de hierro (desconexión nocturna)	8.89 kW
Fracción de pérdida	0.10 % en STC
Resistencia equivalente de bobinas	3 x 0.45 mΩ
Fracción de pérdida	1.00 % en STC

Variante: Simulación con batería final

Isotron S.A.U. (Spain)

PVsyst V7.2.2 VC3, Fecha de simulación: 07/06/21 08:41 con v7.2.2

Definición del horizonte												
Altura promed		Factor Albedo			0.87							
Factor difuso		0.99		Fracci	ón de albeo	do	100 %					
Perfil del horizonte												
Azimut [°]	-180	-173	-165	-158	-150	-143	-135	-128	-120	-113	-105	-90
Altura [°]	12.2	10.7	10.3	10.7	8.4	6.9	5.3	3.1	2.3	2.3	1.1	1.1
Azimut [°]	-83	-75	-68	-60	-53	-45	-38	-30	-23	-15	-8	0
Altura [°]	1.5	2.3	2.7	2.3	1.5	2.3	1.5	1.9	2.3	2.7	3.1	3.8
Azimut [°]	8	15	23	30	38	45	75	83	90	98	105	113
Altura [°]	4.2	3.1	2.3	1.5	1.9	3.8	3.8	4.6	4.6	6.1	6.9	8.4
Azimut [°]	120	128	135	143	150	158	165	173	180			
Altura [°]	9.2	7.6	8.4	8.8	11.1	12.2	12.6	12.6	12.2			

Recorridos solares (diagrama de altura / azimut)

Variante: Simulación con batería final

Isotron S.A.U. (Spain)

PVsyst V7.2.2 VC3, Fecha de simulación: 07/06/21 08:41 con v7.2.2

Diagrama de iso-sombreados

Variante: Simulación con batería final

PVsyst V7.2.2 VC3, Fecha de simulación: 07/06/21 08:41 con v7.2.2

Isotron S.A.U. (Spain)

Resultados principales

Producción del sistema		
Energía producida	16567 MWh/año	Produce
		Proporc
		Fracció
Envejecimiento de la batería (Esta	ido de desgaste)	
Ciclos SOW	95.6 %	
SOW estático	80.0 %	
Duración de vida de batería	5.0 años	

Producciones normalizadas (por kWp instalado)

roducción específica roporción de rendimiento (PR) racción solar (SF) 1837 kWh/kWp/año 79.55 % 30.15 %

Proporción de rendimiento (PR)

Balances y resultados principales

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_User	E_Solar	EUnused	EFrGrid
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	MWh	MWh	MWh
Enero	164.2	39.96	21.07	182.9	174.5	1425	4257	1291	91.0	2966
Febrero	162.0	41.02	23.56	174.2	167.2	1352	3738	1190	121.6	2548
Marzo	199.1	53.59	22.65	205.8	198.2	1601	4498	1442	111.8	3056
Abril	198.2	66.11	26.26	197.4	189.9	1532	4381	1391	96.9	2991
Мауо	194.5	80.50	27.43	188.8	181.2	1478	4513	1374	62.5	3139
Junio	187.7	76.29	27.09	179.8	172.4	1419	4455	1351	27.8	3104
Julio	202.0	75.25	25.74	194.0	186.1	1538	4688	1459	35.5	3229
Agosto	203.2	65.85	26.62	199.9	192.3	1572	4655	1485	41.2	3170
Septiembre	170.1	77.24	26.76	172.7	165.8	1365	4403	1290	36.0	3114
Octubre	143.3	70.00	24.23	149.5	142.6	1183	4010	1044	105.7	2966
Noviembre	147.0	46.04	22.87	161.3	154.2	1253	3984	1109	107.1	2876
Diciembre	151.6	42.45	24.43	170.8	162.6	1317	4245	1200	78.0	3044
Año	2122.8	734.29	24.90	2177.2	2087.1	17035	51828	15624	915.2	36203

Leyendas

GlobHor	Irradiación horizontal global	EArray	Energía efectiva a la salida del conjunto
DiffHor	Irradiación difusa horizontal	E_User	Energía suministrada al usuario
T_Amb	Temperatura ambiente	E_Solar	Energía del sol
GlobInc	Global incidente plano receptor	EUnused	Energía no utilizada (batería llena, sin inyección de red)
GlobEff	Global efectivo, corr. para IAM y sombreados	EFrGrid	Energía de la red

Proyecto: Guatemala

Variante: Simulación con batería final

Isotron S.A.U. (Spain)

Diagrama de pérdida 2123 kWh/m² Irradiación horizontal global +2.6% Global incidente plano receptor -0.30% Sombreados lejanos / Horizonte -0.52% Sombreados cercanos: perdida de irradiancia -1.37% Factor IAM en global -2.00% Factor de pérdida de suciedad 2087 kWh/m² * 50744 m² colect. Irradiancia efectiva en colectores eficiencia en STC = 17.78% Conversión FV Conjunto de energía nominal (con efic. STC) 18827 MWh -0.97% Pérdida FV debido al nivel de irradiancia 9.30% Pérdida FV debido a la temperatura. +3.29% Corrección espectral -0.40% Sombreados: pérdida eléctrica según las cadenas ∢ +1.25% Pérdida calidad de módulo ⇒ -2.10% Pérdidas de desajuste, módulos y cadenas ⇒-1.19% Pérdida óhmica del cableado → -0.02% Orientación mixta pérdida de desajuste 17037 MWh Energía virtual del conjunto en MPP 9 -1.42% Pérdida del inversor durante la operación (eficiencia) ♦ 0.00% Pérdida del inversor sobre potencia inv. nominal ♦ 0.00% Pérdida del inversor debido a la corriente de entrada máxima ♦ 0.00% Pérdida de inversor sobre voltaje inv. nominal ♦ 0.00% Pérdida del inversor debido al umbral de potencia Pérdida del inversor debido al umbral de voltaje → -0.01% ♦ 0.00% Consumo nocturno 16792 MWh Energía disponible en la salida del inversor → -0.30% Auxiliares (ventiladores, otros ...) → -0.02% Pérdidas óhmicas CA € -0.84% Pérdida de transfo de voltaje medio → -0.19% Pérdida óhmica de línea MV Batería IN, pérdida de cargador →-0.05% Uso directo Almacenado Almacenamiento de batería 1.3% 98.7% Pérdida global de la batería →-0.06% red (5.05% de la contribución de la batería) consumo Batería OUT, pérdida del inversor -0.05% 87.5% del tiempo -5.53% Energía no utilizada (batería llena, sin inyección de red) 36203 15624 MWh Usuario: desde solar y desde red al usuario al usuario de la red de solar

Proyecto: Guatemala

Variante: Simulación con batería final

Isotron S.A.U. (Spain)

Variante: Simulación con batería final

Isotron S.A.U. (Spain)

PVsyst V7.2.2 VC3, Fecha de simulación: 07/06/21 08:41 con v7.2.2

Evaluación P50 - P90 **Datos meteo PVGIS** api TMY Fuente de datos meteo TMY, multianual Tipo Variabilidad año a año(Varianza) 0.5 % Desviación especificada 0.0 % Cambio climático Variabilidad global (meteo y sistema)

valiabilidad global (illeteo y sistellia)	
Variabilidad (Suma cuadrática)	1.9 %

Incertidumbres sobre la simulación y los parámetros Modelado/parámetros del módulo FV 1.0 % 0.5 % Incertidumbre eficiencia inversor 1.0 % Incertidumbres de suciedad y desajuste Incertidumbre de degradación 1.0 %

Probabilidad de producción anual

Variabilidad	310 MWh
P50	16567 MWh
P90	16170 MWh
P95	16058 MWh

Distribución de probabilidad