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Foreword

It is with great pleasure that we present the Proceedings of the 26" Congress of Differential Equations and Appli-
cations / 16" Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEMA, which is held in Gijén, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Mélaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijén, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijén. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijon; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijén, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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A method to construct irreducible totally nonnegative matrices with a
given Jordan canonical form
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Abstract

Let A € R™ be an irreducible totally nonnegative matrix (ITN), that is, A is irreducible with all its minors
nonnegative. A triple (n,r, p) is called realizable if there exists an ITN matrix A € R™" with rank(A) = r
and p-rank(A) = p (recall that p-rank(A) is the size of the largest invertible principal submatrix of A). Each
ITN matrix A associated with a realizable triple (n,r, p) has p positive and distinct eigenvalues, and for the
zero eigenvalue it is verified that n — r and n — p are the geometric and the algebraic multiplicity, respectively.
Moreover, since rank(AP) = p, A has n — r zero Jordan blocks whose sizes are given by the Segre characteristic,
S=(51,80,....8n—r),Withs; < p,i=1,2,...,n—r.

We know the number of zero Jordan canonical forms of ITN matrices associated with a realizable triple
(n,r,p) and all these zero Jordan canonical forms. The following important question that we present in this
talk deals with how to construct an ITN matrix A associated with (n, r, p) and exactly with one of these Segre
characteristic S corresponding to the zero eigenvalue.

1. Introduction

A matrix A € R™" is called totally nonnegative if all its minors are nonnegative and it is abbreviated as TN. The
wide study of these matrices is due to the large number of applications in different branches of science, see for
instance [1,7-18]. Now, we recall some basic concepts that we will use throughout the paper:

1. The rank of A, denoted by rank(A), is the size of the largest invertible square submatrix of A. The principal
rank of A, denoted by p-rank(A), is the size of the largest invertible principal submatrix of A. It is clear that

0 < p-rank(A) <rank(A) <n

2. The characteristic polynomial of a matrix A is given by

n

qA(/l)=det(/lI—A)=/l"+Z(—l)k Z det(A[a]) | A" *

=1 vaeQ(k,n)

where Q(k,n) denotes the set of all increasing sequences of k natural numbers less than or equal to n, for
k,n e N, 1 <k <n,see[l]l. If e = (a1,2,...,) € Qrn and B = (B1,B2,...,0k) € Qi.n, Ale|B]
denotes the k X k submatrix of A lying in rows «@; and columns S;,i = 1,2, ..., k. The principal submatrix
Ala|a] is abbreviated as A[«].

If A is TN and p-rank(A) = p, the minors of the same order have the same sign or are zero, then there are
no cancelations in the summands and then,

ga) =7 (7 + 0 (-DF (Sygeqqn det(Alal)) 277
=A"P (AP =1 AP+ (1)Pey) .

Then, if A is a TN matrix with rank(A) = r and p-rank(A) = p, has p nonzero eigenvalues and the algebraic
and geometric multiplicities of the zero eigenvalue are equal to n — p and n — r, respectively.

3. A matrix A € R™", with n > 2, is an irreducible matrix if there is not a permutation matrix P such that

B C
T _
PAP' = o D

when a # 0.

} ,where O is an (n —r) X r zeromatrix (1 <r <n-1). If n = 1, A = (a) is irreducible

Fallat, Gekhtman and Johnson in [8] characterize the irreducible TN matrices as follows: a TN matrix
A = [a;j] € R is irreducible if and only if a;; > 0 for all 7, j such that |i — j| < 1 and they represent this
class of matrices by ITN.

CEDYA/CMA 352 ISBN 978-84-18482-21-2
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4. If there exists an ITN matrix A € R™" with rank(A) = r and p-rank(A) = p, then the triple (n,r, p) is
called realizable [8, p. 709], and A is considered as an ITN matrix associated with the triple (n,r, p). In

order to a triple (n, r, p) be realizable it is necessary that p < r < n — V —P }

4
5. If A is an associated matrix with a realizable triple (n, r, p) then, its p nonzero eigenvalues are positive and
distinct ( [8, Theorem 3.3]). Thatis, if A1, ...,4p, ... 4, are the eigenvalues of A, we have
/11>/12>...>/lp>0,and/lp+1=/lp+2=...=/ln=0, (].1)

Moreover, since the algebraic multiplicity of the zero eigenvalue is n — p and rank(A?) = p, the size of the
zero Jordan blocks of A is at most p.

Taking into account the above results, given a realizable triple (n, r, p) the following questions arises in a natutal
way:

First question: How many different zero Jordan canonical forms are associated with a realizable triple (n,r, p)?

As we have seen, the ITN matrices associated with a realizable triple (n, r, p) verify that the algebraic multiplicity
of the zero eigenvalue is n — p, the geometric one is n —r and the size of the Jordan blocks is maximum p. Therefore,
this problem is equivalent to the following in how many ways can we distribute n— p marbles in n —r bags, knowing
that all bags must have at least one marble and that at most each bag will fit p marbles.

In [6], by using Number Theory, the authors calculated this number (represented by p,(ﬂ)r (n—p)) and they gived

an algorithm to obtain it. For example, if we have the triple realizable (19, 14, 8) applying this algorithm we have
that p® (11) = 10
ps (11) =10.

Second question: Since we konw the number of different zero Jordan canonical forms associated with a realizable
triple (n, r, p), then what are these zero Jordan forms?

In [6], using properties and the full rank LU factorization of ITN matrices and the Flanders Theorem the authors
give and Procedure and the corresponding algorithm to compute the specific different zero Jordan canonical forms.
For example, for the realizable triple (19, 14, 8) we have obtained that there are 10 different zero Jordan canonical
forms and applying the new algorithm we obtain these specific zero Jordan structures, all of them have 5 zero
Jordan blocks of differents sizes. These structures are,

3

W W WwWahphphououd

DD W W N WD WN—
NN W~ N ===
N e
DO M = = = = = e = =

Remark 1.1 The sizes of the zero Jordan blocks of a matrix A are known as the Segre characteristic of A relative
to its zero eigenvalue. Given an ITN matrix A associated to a realizable triple (n, r, p), if we represent this Segre
sequence by S = (s1, 52, ..., Su—r) then, it is satisfied that

(D) s; <min{r —p+1, p}

(2) si <821, 1=2,3,...,n—7r (1.2)
(3) S si=a-p
Associated to the Segre characteristic S = (sy, $2,...,5,—) we have the Weyr characteristic of A relative to the
zero eigenvalue W = (wy, wa, ..., wy,), where w; = Car{k : s =i} fori=1,2,...,s; and

(1)  w;=dimKer(A)=n—r
(2 wi w1, 1=2,3,...,51

(3)  Xi;w, =dim Ker(A")

(4) Zjl:l w; =dim Ker(A") =n—-p

(1.3)

353
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Thirth question: Finally, knowing the number of zero Jordan canonical forms and the specific structures associated
with a realizable triple (n,r, p), the following question is the main goal of this work, how to construct an ITN
matrix associated with a realizable triple (n,r, p) and with n — r zero Jordan blocks whose sizes are given by the
Segre characteristic S = (s1, 82, . . ., Su—r) satisfying (1.2).

To answer this question, in the next section we first described a procedure that allow us to construct an upper
block echelon matrix U € R™", with rank(U) = r, p-rank(U) = p and n — r zero Jordan blocks whose sizes are
given by the Segre characteristic S satisfying (1.2). After that, from U we will obtain the desired ITN matrix A
associated with the realizable triple (n, r, p) and with the same zero Jordan structure that U as A = LU, where L is
a lower triangular matrix with all its nonzero entries equal to 1.

2. Constructing an upper block echelon TN matrix U with a zero Jordan canonical form

In this section we describe a procedure to construct an upper block echelon matrix U € R™", with rank(U) = r,
p-rank(U) = p and n — r zero Jordan blocks whose sizes are given by the Segre characteristic S satisfaying (1.2).

We recall that a matrix is upper block echelon if each nonzero block, starting from the left, is to the right of
the nonzero blocks below and the zero blocks are at the bottom. A matrix is a lower (block) echelon matrix if its
transpose is an upper (block) echelon matrix. In the Procedure 1 we use the nonsingular ITN matrix

[1 1 1 1 1
1 2 2 2
1 2 3 ... 3 3
Vo=l . . . S| = Imingi Y]
1 2 3 ... g-1 g-1
|1 2 3 ... g-1 q

and the following MatLab notation: A(Z, :) denotes the i-th row of A and A(:, j) denotes its j-th column; ones(n, m)
denotes the n X m matrix of ones; triu(ones(n, m)) denotes the upper triangular part of ones(n, m); zeros(n, m)
denotes the n X m zero matrix.

Note that if r = p the algebraic and geometric multiplicity of the zero eigenvalue Of U is the same, therefore U
has n — r zero Jordan blocks of size 1 X 1. In this case is easy to see that the matrix U can be the following

| triu(ones(p, n))
| zeros(n—p,n) |’

If p < r we construct a matrix U by blocks as follows

[ Uiy Ui Uiz Uy ... Upg-r Upg Ul,si+1
O O Uy Uy ... Uy Uy Us 5,41

O O O Uy ... Uggqa Usyg U3 5,41

0O 0 0 0 ... 0 Usiy Ugiss
o o o0 o0 .. o0 0 Us, 5141
0O o0 0 o ) 0 0

Each block and its size are given in the following procedure.

Procedure 1. Given a realizable triple (n, r, p) and the Segre characteristic S = (s1, 52, . . ., Sy, ) satisfying (1.2),
this procedure obtains an upper block echelon matrix U € R™", with rank(U) = r, p-rank(U) = p and n — r zero
Jordan blocks whose sizes are given by S.

Step 1. Obtain the conjugated sequence of S, W = (wy, wa,...,ws,) and from W define R = (0, ry, . ..,rs,), with
ri=w;,i=23,...,5].

Step 2. Calculate n; = p + 1 — 51 and construct

[ Un Ui Uiz ... Uy Ulg+ ]=triu(ones(n1,n))]

Step 3. Construct U3 = V41 and

[ O O Uy Uy ... Uys Upg+i ]
= [zeros(ry + 1,n1 +ry) Usz Ups(:,rp+ 1) = ones(l,n—ny —2ry — 1)]
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Step 4. Fori =3,4,...,s]

4.1. Ifr; = riy construct U; ;1 = Vy,41.

Vi1
4.2. If r; < r;—1 construct U; ;41 = Tit
i i—1 i,i+l 0nes(r,-_] — 1) % Vr,~+1 (ri " 1, :)
After, in both cases,
[0 ... O Ui Uiz ... Unsy Uiga |

= [zeros(ri-1 + 1,ny +ry + Zj'_:lz(rj +1)) Uiin1 Uiin1 i+ 1) xones(Ln—ny —ry = X5y (rj +1))]

Step 5. Finally, the last block is equal to

Sl—l
zeros ([n—n; — (rp+1) — Z(ri+l), n
i=2

]

In the answer to the second question we have seen that the realizable triple (19, 14, 8) has associated 10 different
zero Jordan canonical forms, being (4, 3,2, 1, 1) one of them. In the following example we construct an upper
block echelon TN matrix U with this Jordan canonical form using Procedure 1.

Example 2.1 Obtain a 19 X 19 upper block echelon TN matrix U, with rank(U) = 14, p-rank(U) = 8 and with 5
zero Jordan blocks of sizes S = (4,3,2,1,1).

Since r # p and s; = 4, following Procedure 1 we construct an upper block TN matrix

Ui U Uiz Uy Uss
O O Uy Uy U
0] (0] 0] Usy Uss
0] (0] 0] O Uss
0] (0] 0] (0] 0]

U=

Step 1. The conjugated sequence of S is W = (5, 3,2, 1) and then, R = (0, 3,2, 1).
Step2. np=p+1—-s5;=5and

[ Un U U Uy Us | =triuones(5,19)) =

1 1111111 11111111111

o11 11111111 11111111

oo0o11 1111111 11111111

oo0o011 11111 111111111

oo0o0o011 1111111111111
Step 3. Uy; = V4 and

[ 0o O U23 U24 U2,5 ] = [ZCI‘OS(4, 8) U23 U23(Z,4) * 01168(1,7)] =

O0o00O0OO0OOOOTT1TT1TTT1TTT1TT1T1TF1:1

O0o00O0OO0OO0OO0OO0OT122222272272:2

0o00O0OO0OO0OO0OO0OT1T?2333 33313133

00 00 0 O0O0O0OT1 2 3 4 4 4 4 4 4 4 4
Step 4. For i = 3, since r3 < rp, construct

V3

Uss = ones(l,l)‘*V3(3,:) -

—
[N N ST
W W N =
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and
[0 O O Uss Uss | =[zeros(4,12) Uss U34)(:,3) = ones(1,4)] =
0000O0O0OOOOOOOT1T1T1T1T1T1:1
0000O0O0OOOOOOOTL1 2222722
0 000O0O0OOOOOOGOT1 233333
0 000O0O0OOOOOOOT1 233333
Now, for i = 4 since r4 < r3, construct
1
_ V2 _
Uss = ones(1,1) = V»(2,:) |~ ;
and
[0 O O O Uss | =[zeros(3,15) Uss U45)(:,2) = ones(1,2)] =
0000O0O0OOOOOOOOO0OO0OT1T1T1:1
00 0O0O0OOOOOOOOOO0O0T1 222
00 0O0O0OO0OOOOOOOOO0O0T1 222

Step 5. The last zero block is

s1—1
[zeros (n —n—(rp+1)- Z(ri +1), n)l = [zeros(3,19)].

i=2

Therefore, the matrix U is

(1 1 1 1 11 1 11 1 1 1|1 1 1|1 1 1 1
o1 1111111 1 1141 1 1|1 1 11
oo0111jr 1111 1111 1|1 111
o0o0o011|1 111 1 1 11 1 1|1 111
oo0o0O0T1T(1 1 1}j1 1 1 1}1 1 11 1 11
00 0O0O0O|OO0OO0O|]7 1T1T1f1 1 1|1 111
000 O0O0O|0O0O0O|1 2 2 2|2 2 2|2 2 2 2
000O0O0O/O0O0O0O|]1 23 3(3 3 3|3 3 33
00 0 0 0|0 0 O0|1 2 3 4|4 4 4|4 4 4 4
0000 O0/0OO0O0O|0OO0OOfL 1T 1|1 111
000 O0O0O|0O0O0|O0OO0O0OO0O|1 222222
00 0O0O0OO0O0O0O|0O0 OO 2313 3 3 3
00 0O0O0OO0O0O0O0O|0 0 OO 233 3 3 3
00 0 O0O0O|0O0O0O[O0O0OOO0O0O0O|T 1 11
00 0O0O0O|0O0OO0O|O0O0OO0OO0|0O0O0OI1 222
000 O0O0O|0O0OO0|O0O0OO0OO0jO0 OOl 22 2
00 0 O0O0O|0O0O0O|O0O0OOOlO0OO0O0O|0O0O0OO0
00 0O0O0O|0O0O0O|O0O0OOO0OO0O0O|O0O0O0OO0
|0 000 0|]O O O[O OO OO 0 O0O|O O 0O

The following result proves that the matrix U constructed by Procedure 1 verifies the desired properties.

Theorem 2.2 [6, Theorem 1]
Consider the matrix U constructed by Procedure 1. Then the following properties hold:

1. U is a TN matrix with rank(U) = r and p-rank(U) = p.

2. U has n — r zeros Jordan blocks whose sizes are given by the sequence S = (81,52, ..., Sn—r)-
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3. Construct an ITN matrix with a prescribed zero Jordan structure

In this section we construct an ITN matrix A associated with the realizable triple (n, r, p) and with a zero Jordan
canonical form associated with this triple. For that, we use the procedure given in the previous section to construct
an upper block echelon TN matrix U of size n X n, with rank(U) = r, p-rank(U) = p and with a zero Jordan
canonical form associated with this triple. Now, we give the following procedure to compute the matrix A.

Procedure 2. Given a realizable triple (n, r, p) and the Segre characteristic S = (s, 52, . . ., S,—) satisfying (1.2),
this procedure obtains an ITN matrix A € R™*", associated with this triple and with n — r zero Jordan blocks whose
sizes are given by S.

Step 1. Apply Procedure 1 to construct the upper block matrix U.
Step 2. Construct the lower triangular TN matriz L = tril(ones(n, n)).

Step 3. Obtain A = L+ U.

The following result proves that the matrix A satisfies the prescribed conditions.

Theorem 3.1 [6, Proposition 1, Theorem 2]
The matrix A constructed by Procedure 2 satisfies the following conditions:

1. Ais a ITN matrix.
2. rank(A) =r.
3. p-rank(A) = p.

4. Matrices A and U have the same zero Jordan structure.

Example 3.2 Construct a 19 x 19 ITN matrix A, associated with the realizable triple (19, 14, 8) and with 5 zero
Jordan blocks of sizes S = (4,3,2, 1, 1).

Using the matrix U obtained in Example 2.1 and following Procedure 2, we have

A = tril(ones(n,n)) « U =
(1 1 1 1 1 1

NN AW
NN AW
(o) IV, TE SRS I (S I
(@) IV, TE SRS I (S R
(o) IV, TE SN OS I (S R
(o) IV, I SRS I (S R
(@) IV, T S NROS I (S R

oo
o]
o]
oo
o]
oo
o ¢]
[o¢]
o 2]
o 2]

10 11 1111 11 1111 11 11 11

14 15|16 16 16|16 16 16 16
12 14 15|17 18 18|18 18 18 18
12 14 15|18 20 21|21 21 21 21
12 14 15119 22 24 (24 24 24 24
12 14 15|19 22 24|25 25 25 25
12 14 15|19 22 24|26 27 27 27
12 14 15|19 22 2427 29 29 29
12 14 15|19 22 24|27 29 29 29
12 14 15|19 22 24|27 29 29 29
12 14 15|19 22 24|27 29 29 29 |

(S IV, IV, | RV, BV, IV, | LV, BV, BV, BV, ) RV, BV, BV, RO, | IV, I N O I \O R
DN | e h| b e W N =
O O OO O O[O O O VOO 0 JWn A~ W -
—
[\S)

e ) e e e e e e e e
W L WL W W L LW W W W LW WW W W

[V IRV, IR, RV, IV, BV, | RV, BV, RV, BNV, | RV, BV, BV, R, | iV, I SN UV I 9]

[NSRE\ORE S YN (RN (O RN (S J I (O (O RN (O I (O] I (O I (O \S I \O 1 [ (O I \O I \G ) \S]
B R A e e e e e s i o T i e WS
[V IV, I, | RV, IV, IV, | NV, BV, IV, BV, | LV, IV, BV RV, | RV, N SIS ]
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