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Monte-Carlo methods are the basis for solving many computational problems using repeated random 

sampling in scenarios that may have a deterministic but very complex solution from a computational 

point of view. In recent years, researchers are using the same idea to solve many problems through the 

so-called Monte-Carlo Tree Search family of algorithms, which provide the possibility of storing and 

reusing previously calculated results to improve precision in the calculation of future outcomes. 

However, developers and researchers working in this area tend to have to carry out software 

developments from scratch in order to use their designs or improve designs previously created by other 

researchers. This makes it difficult to see improvements in current algorithms as it takes a lot of hard 

work. This work presents JGraphs, a toolset implemented in the Java programming language that will 

allow researchers to avoid having to reinvent the wheel when working with Monte-Carlo Tree Search. 

In addition, it will allow testing experiments carried out by others in a simple way, reusing previous 

knowledge. 

Keywords: Monte-Carlo; Monte-Carlo Tree Search, Best-first search algorithm, Combinatorial game, 

Tic-Tac-Toe, JGraphs 

1.   Introduction 

Monte-Carlo (MC) methods are algorithms that rely on repeated random simulations to 

provide generally approximate solutions. The main idea is to use randomness to solve 

problems that may be deterministic but that are too big to be calculated1. MC can be applied 

in many domains such as decision support systems2 or learning analytics3. In fact, within 

the Artificial Intelligence community, MCTS has received increasing attention in the last 

years4. 
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The accuracy and utility of MC simulations can be improved using tree-based search, 

leading to the Monte-Carlo Tree Search (MCTS). MCTS is a best-first search algorithm 

based on heuristics where pseudorandom simulations guide the solution of a problem. The 

goal is to find optimal decisions in a specific domain of knowledge by generating random 

samples in the decision space, at the same time that a search tree is generated according to 

the obtained results5.  

 

MCTS has been successfully applied in many contexts related to games such as: 1) Two-

player games, being one of the greatest successes the 100-0 victory of AlphaGo Zero 

against AlphaGo, that had been the first program to defeat a world champion in the game 

of Go6; 2) Single-player games, proposed as a variant called Single-Player Monte-Carlo 

Tree Search (SP-MCTS) when first applied to the SameGame puzzle7; 3) Multi-player 

games, proposed as a variant called Multi-Player Monte-Carlo Tree Search Solver (MP-

MCTS-Solver) when first applied to the Focus and Chinese Checkers games8; 4) Real-time 

games such as the NaïveMCTS algorithm applied to strategy games with good results 

compared to other alternatives when the branching factor grows9; or 5) Nondeterministic 

games, like in the case of Poker, with expected reward distributions10. 

 

However, MCTS has also been applied to other areas such as11: 1) combinatorial 

optimization; 2) constraint satisfaction; 3) scheduling problems; 4) sample-based planning; 

or 5) procedural content generation5, to mention some of the most representative ones. The 

application areas grow continuously in all kinds of works but with special impetus in topics 

where artificial intelligence or the internet of things play an important role. 

 

The motivation of this work is based on the premise that current libraries to work with 

MCTS are generally focused on very specific domain of knowledges like videogames (e.g., 

FUEGO12 or Centurio13), material (e.g., MDTS14) or chemistry  (e.g. ChemTS15) and lack 

of tools that facilitate analysis, debugging, visualization or interoperability of the solutions 

made by the researchers.  

 

This works presents JGraphs, a toolset to work with MCTS-based algorithms. JGraphs is 

an extensible framework that allows developers to create applications based on MCTS in 

an agile and simple way. It provides several utilities that facilitate analysis, debugging, 

visualization and interoperability between applications, while offering some default 

implementations as well as extension mechanisms to make it easier for developers to tailor 

the code to their specific needs. With JGraph, developers will be able to focus on solving 

MCTS-based problems, which are already very complex, rather than reinventing the wheel 

repeatedly. In addition, the code is distributed openly, allowing new developments to be 

incorporated in the future. 

 

The rest of this work is structured as follows: Section 2 introduces the main concepts to 

understand the proposal. Section 3 explains our proposal called JGraphs. Section 4 defines 

the use case scenario used to test the proposal. Section 5 applies the proposal to the use 

case scenario and shows how it works. Section 6 briefly compares JGraphs to other works. 

Finally, Section 7 indicates our conclusions and future work to be done. 

2.   Background 



García-Díaz et al. 

 

4 

Although there are many implementations and hundreds of variations for MCTS, they share 

the basic idea of 4 different steps carried out cyclically5 as shown in Fig. 1. 

 

Fig. 1. Monte Carlo Tree Search general scheme 

The following paragraphs explain what each of the main steps may consist of, as well as 

their importance in the implementation of a solution for MCTS. It is important to note that 

all the steps are executed if there is still computational budget. Such a budget can be based 

on any aspect of the system such as number of predefined iterations, memory, CPU usage 

or elapsed time. The fundamental idea is that the more iterations are performed, the more 

closely adjusted and close to reality the results will be. 

2.1.   Selection policy 

The selection step is intended to find the best expandable node. A node is expandable if it 

is a non-terminal node and still has unvisited children. To find the best expandable node, 

there are different algorithms that go recursively from the root node (the current situation 

in the tree of states) to an expandable node. The most popular algorithm is called the Upper 

Confidence Bound for Trees (UCT)16, that tries to address the exploration-exploitation 

dilemma in MCTS and provides good results in most contexts. However, there are other 

alternatives to carried out the selection policy such as the multi-objective variation 

presented in MO-MCTS17.  

 

This step is represented in the following snippet of pseudocode:  

 

 
  function selectionPolicy(n): 

     while n is non-terminal do 

Selection Expansion Simulation Backpropagation

While computational budget
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        if n is not expanded then 

           expansionPolicy(n) 

        else 

           nnext  arg 𝑚𝑎𝑥
𝑛′𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑛

𝑅(𝑛′)

𝑉(𝑛′)
+ 𝐶√

2 𝑥 𝐿𝑛 𝑉(𝑛)

𝑉(𝑛′)
  

     return nnext 

    

where R(n’) is the obtained total reward moving through a child node n’ from the point of 

view of a specific participant, V(n’) is the total number of times the child node n’ was 

visited during the process, V(n) is the total number of times the current node n was visited 

during the process, nnext is the next node to which the algorithm will be recursively applied 

until reaching the best expandable node, and C is a constant that needs to be adjusted 

empirically.  

2.2.   Expansion policy 

The expansion step consists of adding a new node to the tree whenever we reach a non-

terminal node with at least a child that has not yet been added to the tree. The nodes are 

added following some rules that may be included in the definition of the solution, trying to 

include first the most promising nodes. The definition of the most promising node depends 

on the context, although the most common way is to generate the different successors from 

a node and select each of them randomly. Thus, the expansion step is useful to expand the 

tree according to some actions.  

2.3.   Simulation policy 

The simulation step is used to perform a simulation that reaches a terminal state to obtain 

a reward output value Δ, starting the process from the new node created with the expansion 

policy. The types of simulations can vary from random steps to sophisticated solutions 

based on different algorithms like Artificial Neural Networks18 (ANN).  

2.4.   Propagation policy 

The backpropagation step is intended to update the values of the node that initialized the 

simulation and its predecessors according to the reward value Δ obtained after the 

simulation. The reward value may be a discrete value, a continuous value, or multiple 

values depending on the domain. This step is represented in the following snippet of 

pseudocode: 

 
function propagationPolicy(n, Δ): 

     while n is not null do 

   R(n)  R(n) + Δ 

        V(n)  V(n) + 1 

   n  n’’ 

where n’’ is the parent of node n, R(n) is the total accumulated reward for node n, and V(n) 

is the total number of times the node n was visited during the process.  

3.   Proposal 
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Fig. 2 shows an overview of JGraphs architecture, our proposal to provide a toolset for 

working with MCTS related problems, allowing researchers to focus on the specific 

problems instead of on the underlying technology to solve them. The following sections 

explain the different modules. 

 

 
Structure Node State Situation Participant

 Manager MCTS Backtracking

 

 

Comparator Statistics Traceability

Logger Profiler Serialization Persistence

Visualizer

 
Permutations... TicTacToe ...

APPS

SUBSYSTEMS

ALGORITHMS

CORE

UTILS

Configuration
Dependency 

Injection

 

Fig. 2. JGraphs overview 

3.1.   Core  

The Core refers to the main module, on which the others rely on. It is currently made up of 

5 components. 

3.1.1.   Structure 

This component is responsible for creating the skeleton on which the algorithms and 

solutions created with the framework will be based. Basically, an AbstractStructure 

class implements some basic methods to manage and store the nodes that will be inserted 

in graphs or trees. There are 4 different classes to work with graphs and trees: 

• Tree and Graph. Default classes to work with trees and graphs respectively.  

• PTree and PGraph. Parallelized version of the default classes. 
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• SilentTree and SilentGraph. Light versions (e.g., not storing nodes for 

further tree analysis) of the default classes. 

• SilentPTree and SilentPGraph. Light and parallelized version of the 

default classes for performance improvement. 

3.1.2.   Node 

This component is responsible for creating and managing the elements that will make up 

the structures, that is, the nodes. All the nodes store their predecessor and successor nodes 

and provide several methods to simplify the development. All the Node objects have a 

state. 

3.1.3.   State 

This component gives dynamic information about the changes undergone in a node. All 

the State objects store a group of Participant objects (i.e., external agents that 

interact with the state), along with scores for each of the participants, the number of times 

that the state was visited and the situation, that is a domain-specific representation of the 

state. The class is completely generic to be adapted to any Situation object. 

3.1.4.   Situation 

This component is useful to represent a specific situation in the development of events. For 

example, when playing chess, it would be a board with the position of the pieces. It 

provides a graphical representation together with information such as what will be the 

following possible situations from a given one (e.g., next possible movements in the chess 

game), or when the process is finished (e.g., when checkmate or draw occurs). By default, 

IntArraySituation and IntTableSituation are provided to represents 

situations through an array of integers or a bidimensional array of integers. But new 

constructions can be easily added. 

3.1.5.   Participant 

This component is responsible for managing the different agents that can interact in a 

process, as well as the turns of intervention. For example, it may be a process where there 

is only one participant (SingleParcipantManager) or a game for two players 

(TwoParticpantsManager). 

3.2.   Algorithms 

The Algorithms module includes a manager, which facilitates working with the different 

algorithms that could be implemented. Currently, Backtracking (a basic depth-first search 

algorithm) and MCTS (the goal of this work) have been implemented. 

 

3.2.1.   Manager 

To execute any algorithm, it is necessary to use an AbstractManager that is going to 

be in charge of different actions such as managing visualizers, statistics or traceability. It 
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also provides some utilities such as storing current solutions, or the number of steps 

performed until some point.  

3.2.2.   Backtracking 

It provided a basic implementation of a brute force algorithm based on depth-first search. 

BacktrackingOne gives the first solution for any problem and BacktrackingAll 

gives all the solutions. These classes are mainly used for testing and benchmarking 

purposes. 

3.2.3.   MCTS 

It provides a standard implementation of MCTS (MCTS) and a parallelized one (PMCTS) 

based on the Fork/Join Framework19, along with various utility classes. 

 

The IBudgetManager allows to specify the way to check when to stop a MCTS step. 

The default implementation DefaultBudgetManager considers number of iterations, 

memory used and/or time in seconds. Like almost everything in the system, it can be 

configured through code or through an external properties file. 

 

There are many default implementations to define different policies for the MCTS 

algorithm. For example: 

• The UCBSelectionPolicy implements the Upper Confidence Bound 

(UCB)16 to determine which node will be the next one chosen in the tree, trying 

to get the best movement for a specific participant considering that each 

participant may have different scores for a same situation. It is based on the 

ISelectionPolicy interface. 

• The GeneralAllExpensionPolicy creates a list with all the children of a 

given node and link them in order to maintain the order in the data structure. It is 

based on the IExpansionPolicy interface. 

• The RandomMovementSimulationPolicy performs a simulation from a 

node to a final state in a random way. There may be many variations of this 

implementation that include, for example, heuristics for a certain domain of 

knowledge or even simulations performed with neural networks. All of them may 

be based on the ISimulationPolicy interface. 

• The UpdateAllPropagationPoliy propagates the score after a simulation 

to the previously visited nodes in the tree. With the default implementation, nodes 

may have different scores depending on whether they resulted in a successful 

situation, an unsuccessful situation, or a neutral situation. In addition, it can 

consider that nodes may have different points of view depending on the 

participant (i.e., what is good for a participant may be bad for another one).  It is 

based on the IPropagationPolicy interface. 

3.3.   Apps 

The Apps module includes implementation for different scenarios. To begin with, we have 

implemented two scenarios used to test the utility of the different algorithms. A 



 A Toolset to Work with Monte Carlo Tree Search-Based Algorithms 

 

9 

permutations generator to work with Backtracking-based algorithms and a Tic-Tac-Toe20 

game engine to work with MCTS-based algorithms.  

 

The TicTacToe game is going to be used as a use case in this work for working with MCTS. 

Besides, the Backtracking-based algorithm is not used to solve problems of a certain size, 

since it relies on what is known as brute force to search among all the possible alternatives 

through the search tree, offering complexities that are typically exponential or factorial. 

These complexities are not adequate for most board games, even those that at first glance 

seem affordable. 

3.4.   Utils 

The Utils module provides some basic functionality that is useful for the different 

components. For example, a configuration subsystem is included to standardize the way in 

which applications are set up by developers. By default, it includes 4 modes of operation: 

• Basic: To work with graphs, trees, nodes and states. 

• Basic parallelized: To work with a parallelized version of the basic mode. 

• Silent basic: To work with light versions (e.g., not storing nodes for further tree 

analysis) of graphs, trees, nodes and states. 

• Silent basic parallelized: To work with a parallelized version of the silent basic 

mode. 

In addition, it provides some utilities for dependency injection and configuration of the 

different subsystems through external properties text files.  

3.5.   Subsystems 

The Subsystems module is responsible for the different components that provide advanced 

functionality in the system. 

3.5.1.   Logger subsystem 

A logger subsystem is provided to standardize the way in which the logs created by 

developers are stored, including different levels and multiple possible configurations. The 

underlying technology is based on the Simple Logging Facade for Java (SLF4J)21 and the 

Apache Log4j API22. The DefaultLogger class implements the ILogger interface, 

which allows 5 levels of severity (error, warn, info, debug, trace).  

3.5.2.   Profiler subsystem 

A profiler subsystem is provided to standardize the way in which dynamic program 

analysis is carried out by developers, including time measurements to perform different 

tasks and the creation of textual and time series database recorders. The underlying 

technology is based on the SLF4J profilers. The DefaultProfiler class extends the 

AbstractProfiler class and implements the IProfiler interface. 

3.5.3.   Serialization subsystem 

A serialization subsystem in provided to standardize the way in which graphs are converted 

to a textual representation. We have decided to use the de-facto industry standard, 

JavaScript Object Notation (JSON)23, to provide the ability to create graph representations 
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that can be persisted, manually inspected, or later processed with another tool. 

AbstractSerializer serializes and deserializes most of the data automatically, 

regardless of the application case. Developers only must indicate the specific data 

structures they use in their situations (if they are not already included in 

IntArraySituation or in IntTableSituation). 

3.5.4.   Persistence subsystem 

A persistence subsystem is provided to standardize the way in which graphs are stored for 

further manipulation. By default, MemoryPersistence, FilePersistence or 

H2Persistence are already provided to allow storing structures in memory, a text file 

or in a data base. H224 is a relational database management system written in Java, that can 

be embedded in applications or run in client-server mode. As in the case of the serialization 

subsystem, this operation can be performed at any time during execution, which can be a 

powerful debugging or interoperation tool. 

3.5.5.   Comparator subsystem 

A comparator subsystem is provided to standardize the way in which graphs are compared 

to see the differences between them. The underlying technology is based on the 

implementation of RFC 6902 JSON Patch carried out by ZjsonPatcha. That is a standard 

format for describing changes to a JSON document. For example, it can be used to see the 

changes or to avoid manipulating a whole document when only a small part has changed. 

The DefaultComparator class implements the IComparator interface. 

3.5.6.   Statistics subsystem 

A statistics subsystem is provided to facilitate developers to obtain information about the 

graph in a direct way. Developers can use a checkpointEvent in any moment to 

generate statistics about what is happening in the graph. All statistics will be stored in time 

series. The stored information includes: 1) total elapsed time; 2) depth of the tree; 3) width 

of the tree; 4) width of the explored tree; 5) number of nodes; 6) number of explored nodes; 

7) number of nodes that have not been explored; 8) number of visits; 9) visits per node; 10) 

visits per explored node; 11) top visited nodes; and 12) top ranked nodes. 

3.5.7.   Traceability subsystem 

A traceability subsystem is provided to allow developers to run algorithms step by step, 

making it possible to stop executions and display data deemed appropriate during stops. 

The DefaultTraceability class implements the ITraceability interface, 

which allows to stop executions at any point.  

3.5.8.   Visualizer subsystem 

A visualizer subsystem is provided to graphically or textually represent the graphs/trees 

created during an execution. The IVisualizer interface has 3 methods, which are used 

 
a zjsonPatch: https://github.com/flipkart-incubator/zjsonpatch (last visited at April 13, 2020). 
b graphviz-java: https://github.com/nidi3/graphviz-java (last visited at April 13, 2020). 

https://github.com/flipkart-incubator/zjsonpatch
https://github.com/nidi3/graphviz-java
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to make visualizations at different times (in each iteration, in each movement and when the 

process ends). The underlying technology for graphical representation is based on the 

Graphviz open source graph visualization software25 and its implementation for Java 

through the graphviz-javab library. 

4.   Use case definition 

We will show the framework through a classic use case: the Tic-Tac-Toe game20. It is a 

combinatorial game that represents the group of problems to which MCTS has been most 

often applied26. Like Tic-Tac-Toe, combinatorial games have the following properties27: 

• Two players. There are typically only considered two players, although may not be the 

case. 

• Zero-sum. The gain or loss of a player is exactly balanced by the loss or gain of the 

other player. 

• Perfect information. The state of the game is fully observable to the players. 

• Deterministic. There is no randomness in the development of future states. 

• Sequential. Players move sequentially and in turns. 

• Finite. The number of movements must be always finite. 

4.1.   Tic-Tac-Toe game 

The Tic-Tac-Toe game (a.k.a. noughts and crosses, or Xs and Os) is a popular paper-and-

pencil game for two players who, in turns, place Xs and Os respectively on a board that 

typically has a size of 3x3 cells. The player who is first able to place his marks along an 

entire row, an entire column or one of the main diagonals, wins the game. Fig. 3 shows an 

example of a game with 7 moves in which the player with Xs wins. 

 

 

Fig. 3. Example of complete Tic-Tac-Toe game 

It is a very simple game that is used for pedagogical uses and as a benchmark in artificial 

intelligence28. In this game, if both players play perfectly, the result of the game will be a 

draw. In total, there can be a total of 765 different situations on the board, with a total of 

26,830 different possible games, given the different alternative movements that can be 

done. 

4.2.   Using JGraphs for solving the Tic-TacToe game 

With JGraphs, designing any MCTS-based solution is a very simple task in which we only 

must consider 3 main actions (the complete source code is included in the project): 

4.2.1.   Module configuration 

Since MCTS-based architectures can be setup in multiple ways, we created a 

TicTacToeModule class file in which we define our configuration by just overriding 

1 2 3 4 5 6 7
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the configure() method. That class extends DefaultModuleConfiguration to 

provide specific configuration for any problem. For this, some of the classes that are 

already included are used. However, others could be used, or new implementations could 

be created by extending the existing ones. 

 

Fig. 4 shows all the code that is needed to configure the following items: 

• The selection policy is UCBSelectionPolicy. 

• The expansion policy is GenerateAllExpansionPolicy. 

• The simulation policy is RandomMovementSimulationPolicy. 

• The propagation policy is UpdateAllPropagationPolicy. 

• The budget manager is DefaultBudgetManager. 

• The participant manager is TwoParticipantsManager. 

• The max value node is ScoreMaxValueNode. 

 

 

Fig. 4. Example module configuration for the Tic-Tac-Toe game 

4.2.2.   Situation definition 

Since every problem is going to be different, it is necessary to define how each of the 

situations in the development of the process is going to be presented. For this case, we 

provide a TicTacToeSituation class that extends the IntTableSituation 

abstract class. The abstract class already provides all the necessary infrastructure to 

represent any problem with numbers inserted in a bidimensional structure, so, we only had 

to override 3 methods with less than 70 lines of code in total. 

• createNewSituation(). It relies on the super class to create a copy of a game 

situation, that is, copying the values of its attributes. 

• nextSituations(). It creates a list of possible new situations from a given 

situation. That is, the possible next movements in the game from a given position. 

• checkStatus(). It gives a value to indicate the status of a situation with the 

following possibilities: 1) one of the players has won; 2) the game ends with a draw; 

or 3) the game is in progress. 

4.2.3.   Serialization definition 

Some actions such as serialization or persistence of graphs require some information that 

is specific to each situation in the graph. However, in most cases it will be enough to rely 

on the core JGraph structure. For example, to play Tic-Tac-Toe, the 
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TicTacToeSerializer is created extending the abstract class 

IntTableSerializer. In this case, the abstract class already provides all the 

necessary infrastructure to serialize any problem with numbers inserted in a bidimensional 

structure, so, we only need to create a constructor with 1 line of code initializing an instance 

of TicTacSituation. 

5.   Use case execution 

We intend to show an example simple enough to facilitate understanding of how the 

platform works. We have created a game by training the two players at the same time, using 

only 3 iterations for each movement/execution and with a random simulation policy. A 

different configuration of the framework with more iterations and other policies would 

result in perfect games, but it would make more difficult to understand the behavior. Fig. 5 

shows how the pseudo-random game played between the two participants has been carried 

out. 

 
1 2 3 4 5 6 7

 

Fig. 5. Pseudo-random game played with JGraphs with 3 iterations per movement 

5.1.   Logger 

Fig. 9 shows an example of the output with the DefaultLogger class. It allows to directly 

inspect and view anything in the graph: all the nodes, a specific node, a specific state or a 

specific situation. In this example, the content of the last node of the game is shown. Since 

it is a final state, it has not successors but a predecessor. It also has a state in which the 

player 1 is moving, with only 1 visit (the last movement) and the corresponding score for 

each player. In Addition, the situation of the game for that state is shown. It is the level 7 

(seventh movement of the game), with a status of 1, that means that the player 1 won. 

 

 

Fig. 6. Last node information printed with the logger 
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5.2.   Profiler 

Fig. 7 shows an example of the output with the DefaultProfiler class. It allows to 

dynamically analyze the execution of the program and get information such as that the 

initialization of the process was carried out in 392 milliseconds and the execution of the 

game in 55. The whole process took less than half a second. 

 

 

Fig. 7. Execution information obtained from the profiler 

5.3.   Serialization 

Fig. 8 shows an example of the output with the TicTacToeSerializer class. The 

serializer is intended to create a JSON of the entire graph so that it can be used by other 

internal tools (such as the persistence subsystem) or other tools external to the toolset. The 

example represents just the first node in the game, which still has no movement made. 

When the game ends this node has been visited a total of 21 times and after all the 

simulations it has registered 14 points for player 1 and 7 for player 2, giving the first player 

the clear favorite. This node has 9 possible successors that correspond to the 9 squares in 

which player 1 can start by placing the X. 
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Fig. 8. First node information serialized 

5.4.   Persistence 

Fig. 9 shows a part of what can be seen with the H2 database management system for the 

graph created as an example. Like the other classes that can also persist the graph 

information both in memory and on disk, the H2Persistence class is based on the 

TicTacToeSerializer serializer. Nothing more is required to persist the data in the 

different alternatives.  
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Fig. 9. Information persisted in the H2 database 

5.5.   Comparator 

Fig. 10 shows an example of the output with the DefaultComparator class that 

implements the RFC 6902 JSON Patch. We compared two nodes where the only difference 

can be seen marked with a circle in the situations: 

• In the new situation, the level is 6 instead of 7. In the output we can see the change 

with the op “replace”. 

• In the new situation, one of the values in the table is 0 instead of 1. From the point of 

view of the comparator that fact is seen as the inclusion of a new element 0 and the 

deletion of an element 1. 

Using the RFC 6902 JSON Patch, JGraph automatically provides a standardized way to 

compare different graphs, allowing to carry out studies and debugging in a simple and 

independent way, regardless of the problem. 

 

 

Fig. 10. Comparison between 2 different situations 
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5.6.   Statistics 

Fig. 11 shows some interesting statistics about the process carried out. It includes the depth 

and width of the tree, together with information such as the number of nodes, the visits and 

the best nodes after the simulations from the point of view of both participants. As 

expected, the nodes in the first levels of the tree are the most visited and ranked ones.  

 

 

Fig. 11. Statistics about the performed process 

5.7.   Traceability 

The basic traceability subsystem just allows to stop the process at any point during the 

development. That way, the developer can take note of the information that can be obtained 

with other subsystems and take time to understand what is happing during the process. 

Pressing the space bar, the process continues. 

5.8.   Visualizer 

It is possible to visualize movements with different levels of granularity, depending on the 

needs. For example, Fig. 12 shows how JGraphs automatically creates a trace of what 

happens in each iteration of a given movement. In case (a), the MCTS algorithm randomly 

generated one of the possible descendants placing the X just in the center, since at the 

beginning of the game, X (player 1) could be placed in any place. After that, a random play 

is done, and the result is a tie (result = 0). According to the configuration of the algorithm, 

given a tie, both players get 0.5 points. In case (b), the algorithm randomly placed X in the 

upper-left corner of the board. After the random play, player 2 wins, so she receives 1 point. 

In case (c), the algorithm tries another option but player 1 loses again after the random 

******************************STATISTICS******************************
Depth of the tree: 8
Width of the tree: 9
Width of the explored tree: 3
Number of different situations: 43
Number of nodes: 43
Number of explored nodes: 22
Number of nodes that have not been explored: 21
Number of visits: 105
Visits per node: 2,441860
Visits per explored node: 4,772727
Top visited nodes

Node: Node1 (1603abd3-c3e5-4923-b2a7-064ad2b8df33)  Visits: 21  Scores: [14.0 7.0 ]  Total scores: 21,000000
Node: Node2 (a60c70b1-ce9d-4279-8e39-a83694e0b061)  Visits: 19  Scores: [13.5 5.5 ]  Total scores: 19,000000
Node: Node11 (dc8162d0-b505-4ad7-8a21-d756b0e834bf)  Visits: 16  Scores: [11.5 4.5 ]  Total scores: 16,000000
Node: Node20 (6e2e5fca-1368-4115-b54e-07d912b8319c)  Visits: 13  Scores: [10.5 2.5 ]  Total scores: 13,000000
Node: Node31 (112e62a6-e604-4326-b073-002c8d4c837e)  Visits: 10  Scores: [8.0 2.0 ]  Total scores: 10,000000
Node: Node34 (bbc9fb96-9363-4cc4-9f6d-4d83873dc0bc)  Visits: 7  Scores: [7.0 0.0 ]  Total scores: 7,000000
Node: Node37 (6a392eb7-1980-421e-8f03-72c8dabe90b2)  Visits: 4  Scores: [4.0 0.0 ]  Total scores: 4,000000
Node: Node3 (60c842e3-4669-4ce6-b99b-f8d1bf669984)  Visits: 1  Scores: [0.0 1.0 ]  Total scores: 1,000000
Node: Node4 (c488d3c6-3284-4c30-bc8b-5ed9ea0ea4eb)  Visits: 1  Scores: [0.5 0.5 ]  Total scores: 1,000000
Node: Node12 (6140f300-a793-4f35-a700-f921857aed1f)  Visits: 1  Scores: [0.0 1.0 ]  Total scores: 1,000000

Top ranked nodes
**Participant 1
Node: Node1 (1603abd3-c3e5-4923-b2a7-064ad2b8df33)  Visits: 21  Scores: [14.0 7.0 ]  Total scores: 21,000000
Node: Node2 (a60c70b1-ce9d-4279-8e39-a83694e0b061)  Visits: 19  Scores: [13.5 5.5 ]  Total scores: 19,000000
Node: Node11 (dc8162d0-b505-4ad7-8a21-d756b0e834bf)  Visits: 16  Scores: [11.5 4.5 ]  Total scores: 16,000000
Node: Node20 (6e2e5fca-1368-4115-b54e-07d912b8319c)  Visits: 13  Scores: [10.5 2.5 ]  Total scores: 13,000000
Node: Node31 (112e62a6-e604-4326-b073-002c8d4c837e)  Visits: 10  Scores: [8.0 2.0 ]  Total scores: 10,000000
Node: Node34 (bbc9fb96-9363-4cc4-9f6d-4d83873dc0bc)  Visits: 7  Scores: [7.0 0.0 ]  Total scores: 7,000000
Node: Node37 (6a392eb7-1980-421e-8f03-72c8dabe90b2)  Visits: 4  Scores: [4.0 0.0 ]  Total scores: 4,000000
Node: Node17 (b89e197c-8522-4eaa-8fa7-e564d3fbd264)  Visits: 1  Scores: [1.0 0.0 ]  Total scores: 1,000000
Node: Node21 (45b59018-ed7b-4e54-a0ca-cde8de741ebd)  Visits: 1  Scores: [1.0 0.0 ]  Total scores: 1,000000
Node: Node26 (aec02f03-ee84-4e17-90b5-3bc56ab82207)  Visits: 1  Scores: [1.0 0.0 ]  Total scores: 1,000000
**Participant 2
Node: Node1 (1603abd3-c3e5-4923-b2a7-064ad2b8df33)  Visits: 21  Scores: [14.0 7.0 ]  Total scores: 21,000000
Node: Node2 (a60c70b1-ce9d-4279-8e39-a83694e0b061)  Visits: 19  Scores: [13.5 5.5 ]  Total scores: 19,000000
Node: Node11 (dc8162d0-b505-4ad7-8a21-d756b0e834bf)  Visits: 16  Scores: [11.5 4.5 ]  Total scores: 16,000000
Node: Node20 (6e2e5fca-1368-4115-b54e-07d912b8319c)  Visits: 13  Scores: [10.5 2.5 ]  Total scores: 13,000000
Node: Node31 (112e62a6-e604-4326-b073-002c8d4c837e)  Visits: 10  Scores: [8.0 2.0 ]  Total scores: 10,000000
Node: Node3 (60c842e3-4669-4ce6-b99b-f8d1bf669984)  Visits: 1  Scores: [0.0 1.0 ]  Total scores: 1,000000
Node: Node12 (6140f300-a793-4f35-a700-f921857aed1f)  Visits: 1  Scores: [0.0 1.0 ]  Total scores: 1,000000
Node: Node19 (61b96f67-7e3d-45db-9680-48e5f49a883b)  Visits: 1  Scores: [0.0 1.0 ]  Total scores: 1,000000
Node: Node4 (c488d3c6-3284-4c30-bc8b-5ed9ea0ea4eb)  Visits: 1  Scores: [0.5 0.5 ]  Total scores: 1,000000
Node: Node27 (8ed2e671-7826-4b95-898c-926eb1075fe1)  Visits: 1  Scores: [0.5 0.5 ]  Total scores: 1,000000

**********************************************************************
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play, so player 2 receives another point in that node. Finally, after the 3 iterations, player 

1 decides to move to the best available option, that in that case is just to Node6 (it has a 

total of 0.5 points while in the other options have 0 points). 

 

In this case, we are using just the default visualization, so the developer does not need to 

do anything to get it. However, developers may decide to change the way they see the 

generated nodes and their information.  

 

a) First Iteration b) Second Iteration

c) Third Iteration d) Final movement  

Fig. 12. State of the graph during the first movement 

 



 A Toolset to Work with Monte Carlo Tree Search-Based Algorithms 

 

19 

After the final movement of player 1, now player 2 should move. Fig. 13 shows just the final 

second movement. In that case, since we are using just 3 iterations (a very low value) and 

since player 1 started in a good position (just in the center), the 3 random plays 

(simulations) estimate that player 1 is going to be the winner regardless of the movement 

of player 2. So, player 2 selects Node11 but she may take Node12 or Node13 since all of 

them offer the same result.  

 

Fig. 13. State of the graph at the end of the second movement 

6.   Related Work 

JGraphs is an open source software that allows to facilitate the development of new 

research in MCTS-related contexts. It reduces the learning curve and the enormous effort 

developers must make to start working in this field if they must develop all the code from 

scratch without reusing state of the art knowledge. It is intended to be a base from which 

to develop, test, and run new and old algorithms. 

 

Although there are other works that may have similar goals, to the best of our knowledge, 

all of them are usually closely linked to the context for which they were created and do not 

offer the JGraph functionalities previously described, making the comparison very 

complex. Some of the most well-known libraries for working with MCTS are commented 

below. 
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FUEGO12 is an open source framework since 2008, that is intended for developing game 

engines for full-information two-player board games, focusing on the Go game. The code 

is written in C++ and is based on 5 different components: 1) GTPEngine, that is a game-

independent implementation of a text-based protocol for controlling a Go engine; 2) 

SMARTGAME, that is a set of useful game-independent functionality for two-player 

games on square boards, including an implementation of the alpha-beta search and the 

MCTS search algorithms, assuming both of them that player moves can be represented by 

positive integer values; 3) GO, that is mainly an implementation of a Go game board, 

keeping the history of all moves played; 4) Opening book, that includes functions to read 

opening positions from a data file and match the book against the current position; and 5) 

Other libraries and applications for playing Go. Focusing on the implementation of MCTS 

in Fuego, it includes the UCT and the Rapid Action Value Estimation29 (RAVE) 

algorithms. They also provide some statistics such as the number of simulations per second 

of the length of the simulations, that may be included in JGraph in the future. However, 

Fuego is strongly focused on Go. Thus, MCTS is specifically implemented for playing Go 

with domain-specific policies and heuristics.  

 

Centurio13  is a general game open-source playing system that based on Java, including 

different strategies based on MCTS. Centurio is focused on multi-theading as well as 

cluster-computing. It uses the Answer Set Programming (ASP), that is a declarative 

problem-solving paradigm to encode a game as a logic program. At the time of writing this 

work, Centurio does not appear to be available anymore. 

 

ChemTS15 is a Python library that explores the chemical space by combining MCTS and 

ANNs. The library is focused on the design of molecules without any predetermine 

fragments and with some specific properties such as gap or energy. The library can be 

extended to obtain other functionalities such as designing molecules to target specific 

proteins.  

 

MDTS14 (Materials Design using Tree Search) is another Python library that is intended 

for automatic materials design. As in ChemTS, the library is fully accessible to be extended 

providing new functionalities. MDTS solves structure determination of substitutional 

alloys with composition constraints. Authors compare MCTS and an efficient Bayesian 

optimization implementation.  

7.   Conclusions and Future Work 

In this work, we presented JGraphs, a toolset to make work easier with MCTS-based 

algorithms. JGraphs is an extensible framework with several utilities that facilitate analysis, 

debugging, visualization and interoperability between applications, while providing some 

default implementations as well as extension points to adapt the source code to specific 

needs. The main goal is for developers to focus on the problems instead of the code to solve 

them. To the best of our knowledge, this is the first general purpose framework offered to 

help solving problems in a field that has been booming lately, and for which developers 

ended up creating developments from scratch in most cases. 

 

The source code of this project is distributed openly and can be found at 

https://github.com/vicegd/jgraphs. We think that open-source software can accelerate 

https://github.com/vicegd/jgraphs
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research on this field. We will continue working on this project to incorporate new options 

and functionalities. Thus, future work will be focused on further developing JGraphs, with 

new algorithms and new use cases not just restricted to games. For example, we will deal 

with how to use it in real-time industrial scenarios. For that, one of our priorities is to design 

a mechanism to dynamically define what is the “best expandable node”, changing the 

implementation to recalculate it without stopping the system.  
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