
2020 IEEE International Conference on Big Data (Big Data)

Maintaining NoSQL Database Quality During
Conceptual Model Evolution

Pablo Suárez-Otero
Computer Science Department

University of Oviedo
Gijón, Spain

suarezgpablo@uniovi.es

Michael J. Mior
Department of Computer Science
Rochester Institute of Technology

Rochester, New York, USA
mmior@cs.rit.edu

Javier Tuya
Computer Science Department

University of Oviedo
Gijón, Spain

tuya@uniovi.es

Maria José Suárez-Cabal
Computer Science Department

University of Oviedo
Gijón, Spain

cabal@uniovi.es

Abstract—Database schemas evolve over time to satisfy
changing application requirements. If this evolution is not
performed correctly, some quality attributes are at risk such as
data integrity, functional correctness, or maintainability. To
help developer teams in the design of database schemas, several
design methodologies for NoSQL databases have proposed to
use conceptual models during this process. The use of an explicit
conceptual model can also help developers in the tasks of schema
evolution. In this work-in-progress paper, we propose a
framework that, given a change in the conceptual model,
identifies what must be modified in a NoSQL database schema
and the underlying data. We researched several open source
projects that use Apache Cassandra to study the benefits of
using a conceptual model during the schema evolution process
as well as to understand how these models evolve. In this first
work, we have focused on studying seven types of conceptual
model changes identified in these projects. For each change we
describe the transformation required in the database schema to
maintain the consistency between the schema and the model as
well as the migration of data required to the new schema
version.

Keywords—quality, database evolution, NoSQL, column-
oriented databases, conceptual model

I. INTRODUCTION

Data models such as conceptual models and database
schemas are designed to satisfy the requirements of software
applications. These requirements may change during the
lifetime of an application, also forcing changes to the schema
or the conceptual model that imply further changes in the data
that may jeopardize the integrity of the existing data if not
done correctly. These changes to the schema are referred as
schema evolution, which has been studied for both relational
databases [1][3] and NoSQL databases [6][10]. In the case of
NoSQL databases, the data model is different in each
database; some are considered schema-less in that they have a
flexible schema such as Neo4J and some others such as
Cassandra [21] have a stronger column-oriented schema
(similar to relational databases). Schema evolution in NoSQL
databases with strictly defined schemas presents problems
which are similar to those suffered by relational databases but
also influenced by the unique characteristics of NoSQL
databases. For instance, in the case of Cassandra, schema
design follows a query-driven approach [21]. This means that
if a single datum is queried using multiple criteria, this datum
may need to be stored in more than one table. Any evolution
of the schema that modifies one of these tables must also

consider the other tables where the datum is stored to maintain
data integrity.

In order to help developers design NoSQL databases,
several design methodologies recommend using a conceptual
model to create the database schema. For instance, Chebotkto
et al. [11] and Mior et al. [12] propose to obtain a schema for
the database Cassandra using both an explicit conceptual
model and the queries required by the client application. Even
without these methodologies, developers usually have in mind
an implicit conceptual model to design the schema. Without
such a conceptual model, it would be difficult to perform
schema management tasks such as its evolution. Changes to
the conceptual model imply a required evolution of the
database schema in order to maintain consistency with the
database schema and ensure its quality. Another problem is
that migration of data may be needed when changing the
conceptual model. Note that some of the data that must be
migrated to the new schema version may contradict new
constraints in the conceptual model such as a change of the
cardinality of a relationship. This last problem is not presented
in the aforementioned data model design methodologies, as
their objective was to create a new schema that did not require
any migration of data.

In this work, we address the aforementioned problems
regarding schema evolution when the conceptual model
changes. We define a framework that provides the
modifications required in the database schema to reflect the
conceptual model change and to maintain the consistency
between this schema and this model. Additionally, we
approach the migrations of data and change of the application
queries required after the schema change. In this first work,
we focus on column-oriented databases using Cassandra as the
main database for the case study selections. The main
contributions of this work are:

1. A study of open source projects that use Cassandra.
We analyze the evolution of the conceptual model in
these projects, how a conceptual model aids
evolution, and the identification of conceptual model
changes during the evolution process.

2. A framework that determines what needs to be
modified in the database schema to reflect a
conceptual model change as well as how to migrate
the data to the new schema version. It also suggests
possible changes to application queries in order to
adapt them to the new schema.

The remaining of this paper is structured as follows.
Section 2 details the related work. In Section 3, we study
several projects that use Cassandra and their evolution of the
schema. Section 4 presents our schema evolution framework.
Section 5 finishes with conclusions and future work.

II. RELATED WORK

Schema evolution research focused on relational databases
has approached several topics specific to these databases such
as how integrity constraints evolve [1], maintenance during
schema changes [2], how foreign key changes affect the
database [3], or recommendations to properly evolve the
schema [4]. Other works are focused on studying how the
schema must be modified after a change in the ontology
considering also the data stored in the database in this
modification [5]. Because these works are focused on
relational databases, it is difficult to use them for other
systems such as NoSQL databases.

Scherzinger et al. have analyzed different topics related to
schema evolution on NoSQL databases [6], [7], [8], [9], [10].
They propose a first approach to manage schema evolution [6]
that is then used to define an evolution schema framework
named ControVol [7]. They also defined the middleware
Darwin [8] that proposes mappings between versions of the
same schema, also calculating the monetary cost of these
migrations [9]. Finally, they present a self-adapting
methodology to choose the best strategy for migrating data
between different versions of the same NoSQL database [10].
These works have addressed several issues in both relational
and NoSQL databases but only consider direct changes to the
database schema.

Regarding schema design, there are several works that
have given a great importance to the conceptual model. To
obtain a database schema Chebotko et al. [11] proposed using
a conceptual model in addition to the queries by defining the
KDM (Kashlev Data Modeler) tool. Each query required by
the client application is transformed into a table of the logical
model (similar to the database but without data types) and then
to a table of the database schema using a set of transformation
rules. With the same objective, and also using a conceptual
model, Mior et al. [12] incorporate statistical information
about query frequency and expected data volume developing
the NoSE (NoSQL Schema Evaluator) tool. Following the
same research line, De la Vega et al. [13] use KDM and NoSE
as a starting point to devise the Mortadelo tool which
generalizes the generation of database schemas by also
addressing the schema design of document-oriented databases
such as MongoDB.

III. PROJECT ANALYSIS

In this section, we study the schema of several open source
projects using the Cassandra database and the evolution of
these schemas to determine what kind of changes happened
during their evolution and to understand how an explicit
conceptual model can help during this process. We detail this
information in the answers to the following questions:

1. Q1: Why and how can an explicit conceptual model help
when defining and evolving database schemas?

2. Q2: How do conceptual models evolve and how is this
evolution reflected in the schema?

In the next subsections, we briefly describe the case study
selection and answer both questions.

A. Case study selection

We found seven projects with updates in their schema
throughout successive versions in public repositories such as
GitHub and GitLab that we will use to answer Q1 and Q2:

• Thingsboard [14]: IoT platform for data collection.

• Minds[15]: Open source social network.

• Powsybl[16]: Framework to simplify development of
software for power system simulations and analysis.

• Wireapp[17]: Encrypted communication app.

• COVID-19[18]: Manages COVID-19 cases from Italy.

• Reviews-service[19]: Module for restaurant.

• Blobkeeper[20]: Distributed file-storage service.

TABLE I. displays a summary of these projects showing
the number of Cassandra tables of each project and how many
times each type of conceptual model change happened.

B. Q1:Why and how can an explicit conceptual model help
when defining and evolving database schemas?

None of the selected projects provide in their repositories
a conceptual model, but they could have used a conceptual
model during the application development. As mentioned in
the introduction, developers may have an implicit conceptual
model in mind when modeling the database schema. In these
projects we have found evidence of the use of such a
conceptual model like in the terminology used to name the
tables and the columns. All the projects follow the naming
conventions of the columns, where it is compound of the name
of the associated attribute and, in some cases, the entity of this
attribute as well. For instance, in table “comment” from the
project Minds we observe several of these columns such as
“access_id”, “container_guid” or “owner_guid”.

Another evidence that we have found regarding the use of
at least an implicit conceptual model is the consistency found
when implementing relationships. To ensure row uniqueness
every table that stores a relationship contains the columns that
are associated to the primary keys of the relationship entities.
For instance, we observe how particular columns are
constantly duplicated in several tables establishing several
relationships of a particular entity with others. The most
recurrent case of this are seem in the projects Minds and
Powsybl with the columns “user_guid” duplicated in 25 tables
and “networkUuid” duplicated in 16 tables.

These pieces of evidence show that an implicit conceptual
model has been used to create the schema. However, only
using an implicit model may make the evolution of the schema
more difficult, especially when it is done by a team. Note that
a Cassandra database may contain tens of tables such as the
Minds schema with 65 tables and it may be maintained by
more than one developer. Using an explicit conceptual model
facilitates the consistency of the model as well as its data
quality, especially when working in a team. It also helps the
automation of processes such as the determination of the
tables where the same modification of data must be performed
at the same to maintain the integrity of the data [24].

An explicit conceptual model also helps to avoid faulty
implementations of tables that store data related to
relationships such as omitting the columns associated to the
primary key of an entity if those attributes are not explicitly

queried. For example, suppose that a table is created to satisfy
a query that retrieves information of attributes that are not
keys. If when implementing the table only the query is
considered, developers can easily forget to implement
additional columns to ensure row uniqueness in the table. If
an explicit conceptual model is available, it is less probable
that the developer team will make these kinds of mistakes.

TABLE I. INFORMATION SUMMARY OF THE STUDIED PROJECTS

Conceptual model change type

Case studies

T
hi

ng
sb

oa
rd

M
in

ds

P
ow

sy
bl

w
ir

ea
pp

C
O

V
ID

-1
9

B
lo

bk
ee

pe
r

R
ev

ie
w

s-
Se

rv
ic

e

T
O

T
A

L

NUMBER OF TABLES 30 65 17 72 5 5 6 200

Entity 5 14 7 2 7 0 0 35

Add Entity 4 14 7 2 0 0 0 27

Update primary key of an entity* 1 0 0 0 7 0 0 8

Attribute 3 6 29 6 6 9 2 61

Add non-key attribute 3 5 26 6 6 5 2 53

Remove non-key attribute 0 0 3 0 0 4 0 7

Split non-key attribute* 0 1 0 0 0 0 0 1

Relationships 0 11 21 1 0 0 7 40

Add relationship 0 11 21 1 0 0 6 39

Update cardinality of relationship* 0 0 0 0 0 0 1 1

Total Changes 8 31 57 9 13 9 9 136

C. Q2: How do conceptual models evolve and how is this
evolution reflected in the schema?

To answer this question, we have studied every change of
the schema registered in each commit of the aforementioned
projects. As they only contain the database schema, we have
manually inferred the conceptual model and determined the
equivalent conceptual model change from each schema
change, which are displayed TABLE I. We have detected 7
types of these conceptual model changes and some of them
are very specific of NoSQL databases and were not detected
in the ontology of Noy et al. [5]. These last type of changes
are indicated with the symbol ‘*’ in TABLE I.

The most frequently detected changes are additions. In
particular, for the change “Add Entity” we have detected two
possible approaches: 1) the usual creation of a table with a
column associated to each conceptual attribute and 2) the more
novel definition of a type. This last approach was observed in
the project Powsybl for entities “vertex” or “terminalRef”,
which were implemented as custom types. On the other hand,
in the case of the change “Add Relationship”, the only
approach that we have detected is the creation of a new table
that stores the instances of the entities that have a relationship.
In the case of the changes “Add Attribute” the only detected
approach is the addition of a column associated to the attribute
in at least one table. In the case of the change “Remove
attribute” the detected approach is the removal of the columns
associated to the attribute.

When there is a change of type “Update primary key of an
entity”, we have identified that it implies further changes to
the primary key of tables that store information of this entity.
For instance, in the project “Thingsboard” we detected that
after the addition of the attribute “type” in the entity
“entity_view”, its associated column was added to the primary
key. A similar approach is used for the type of change “Update
cardinality of a relationship”. In what was probably a mistake

from the first conceptual model version in the project
“Reviews-Service”, the relationship “one review for several
restaurants” changed to “several reviews for one restaurant”.
The detected approach was the addition of a column
associated to the primary key of ‘Review’ to the table primary
key.

IV. SCHEMA EVOLUTION FRAMEWORK FOR CONCEPTUAL

MODEL CHANGES

In this section we describe our framework that determines
what actions a developer should perform in the database after
a change of the conceptual model. These actions include the
required changes in the schema, the data and the application
queries in order to maintain consistency between the model,
the schema, and the underlying data. In this work we focus on
describing the actions to perform after each of the detected
changes in the researched projects (see TABLE I.).

This framework takes as inputs: 1) the original conceptual
model; 2) the conceptual model change; 3) the original
database schema. The outputs are the required changes in the
database schemas and, if necessary, the modification of data
and changes of queries to be adapted to the new schema.

In each of the following subsections we discuss the
conceptual model changes that can be done against each
conceptual structure (entity, attribute and relationship). For
each change we describe the transformations required in the
database schema to maintain its consistency with the new
model. Additionally, when required, we describe the
modifications in both the data and the database queries of the
client application.

A. Schema transformation on changes to entities

Entities are the main conceptual structure representing an
independent object that can be differentiated to others. Both
the attributes and relationships exist to represent
characteristics of an entity and their interaction with other
entities. In a relational database, entities are usually
transformed into a new table, however in NoSQL databases
such as Cassandra, such transformations would only happen if
there is a query that retrieves all the data about an entity.

1) Add entity
Depending on client application queries, developers will

choose between creating a table or creating a custom type in
order to reflect the conceptual model change:

• Table: Developers will create a table when there is a
query that only retrieves the data of the new entity.
For each attribute of the new entity, the new table will
contain an associated column. The primary key of the
table will contain the columns associated to the
primary key of the entity.

• Custom type: Developers can opt to create a custom
type when there is no query that only retrieves the data
of the entity. This type will contain a non-key column
for each attribute of the entity. Note that a custom type
cannot be part of the primary key of a Cassandra table.
Therefore this option can only be used if the entity is
not part of any relationship that requires its primary
key to be part of the primary key of a table that stores
this relationship (see section IV.C.1))

2) Update primary key: Remove attribute from the PK
Modify the tables where the attribute is part of the primary

key. If these tables do not explicitly contain this attribute, then
the column associated with the attribute is removed, forcing
the creation of a new table.

Data from the original table must be migrated to the new
table.

Database operations that retrieve or modify data from the
transformed table should be modified to not include the
removes column.

3) Update primary key: Add attribute to the PK
The required transformations will depend on the stored

information, which can be the information of only the entity
or a relationship where the entity is involved.

a) Table stores a 1:1 relationship or a 1:n relationship
where the entity is the upper bound (cardinality 1) of the
relationship:

No change is required in the schema, data or queries.

b) Only the entity, a 1:n relationship where the entity
is the lower bound of the relationship (cardinality n) or a n:m
relationship

The primary key of the table will contain the column
associated to the added attribute. If the primary key of the table
does not originally contain this column as primary key, a new
table needs to be created with this column plus the original
ones.

If a new table is required, the data from the original table
must be migrated to the new table.

Database operations that retrieve or modify data from the
transformed table must also be modified to include the new
column.

B. Schema transformation on changes to attributes

An attribute represents a piece of information that belongs
to an entity or a relationship. In the case of the entities, the
attributes that are key are used to uniquely identify an instance
of an entity.

1) Add a non-key attribute
The developer will transform at least one table that stores

the primary key of the attribute’s entity by adding to this table
a column associated to the new attribute.

Database operations that retrieve or modify data from the
table should be modified to consider the new column.

2) Remove a non-key attribute
The developer will remove in every table the columns

associated to the removed attribute. If this column is part of
the primary key, a new table shall be created. If the partition
key of the original table is compound of only the removed
column, then at least one column from the original clustering
key will be partition key in the new table.

If a table is created, the data from the original table will be
migrated to the new table.

Database operations that retrieve or modify data from the
transformed table must remove the reference to the removed
columns.

3) Split non-key attribute in several new ones
The table will be transformed by replacing the column

associated to the original attribute with columns associated to
the new attributes.

Developers will migrate data from the original column to
the new ones. Because the data is migrated from one column
to two or more columns, the developer team must decide
which of the resulting columns data is migrated to.

Database operations that modify data of the transformed
tables should change the references to the original attribute
referencing the attributes created from the split.

C. Schema transformation on changes to relationships

Relationships are the connections between entities. One of
the most important components of a relationship is its
cardinality (1:1, 1:n or n:m). A developer must consider
cardinalities when implementing a table in order to ensure row
uniqueness in the table.

1) Addition of a relationship
Developers will create a new table to store the relationship

information. The columns that will compose the primary key
depend on the cardinality of the relationship:

• 1:1 relationship: Columns associated to the primary
key of at least one of the related entities.

• 1:n relationship: Columns associated to the primary
key of the entity of the lower-bound of the relationship
(cardinality n).

• n:m relationship: Columns associated to the primary
key of both entities.

The table will contain a non-key column for each non-key
attribute of the related entities that the developer wants to store
(none of them are required). Exceptionally, if one of the
entities has been implemented as a custom type, the table will
contain the following non-key columns depending on the
cardinality relationship:

• 1:1 relationship and 1:n relationship where the entity is
the upper bound of the relationship (cardinality 1). The
table will contain a non-key column with the data type
of the custom type.

• 1:n relationship, the entity is a weak entity. The
resulting table will contain a collection column of the
custom type (set, list or map) [22]

Note that a custom type implementation for an entity
cannot be used for creating a table that implements a
relationship that requires the primary key of both entities to be
part of the table primary key (e.g n:m relationships).

2) Update cardinality
a) 1:n to 1:1, n:m to 1:1, n:m to 1:n

No change is required in the schema. Regarding the data,
developers should check the data stored in the database as it
may contradict the new cardinality. A possible solution is to
create a copy of the original table to perform the future
operation in it, while conserving the original table with the
data contained before the change.

b) 1:1 to 1:n
To ensure row uniqueness, the tables that store the

relationship shall have in the primary key the columns

associated to the entity from the lower bound (entity with
bound n). If the primary key of the table does not originally
contain this column as PK, the developer must create a new
table adding this column to the PK.

If a new table is required, the data from the original table
must be migrated to the new table.

Database operations where the tables is involved should be
modified to include the new attribute in the primary key.

c) 1:1 to n:m, 1:n to n:m
To ensure row uniqueness, the table that stores the

relationship shall include in its primary key the columns
associated with the primary key of both entities. If the primary
key of the table is transformed, developers will need to create
a new table.

If a new table is created, the data from the original table
must be migrated to the new table. Additionally, the database
operations where the table is involved should be modified to
include the new attribute in the primary key.

V. CONCLUSIONS AND FUTURE WORK

In this work we proposed a framework that determines the
modifications in the database schema required to maintain
consistency given a change in a conceptual model. This
consistency ensures database quality during evolution by
assuring that the database schema evolves considering the
application requirements. Any loss of consistency may
provoke situations where the database loses properties such as
row uniqueness in tables due to an incorrect schema
definition. Additionally, we have also approached maintaining
data quality by describing data migrations that are required to
maintain integrity after a schema change.

As a result of having studied several real projects as the
basis for our framework, we ensured that the transformations
proposed for the database schema are real transformations and
not purely theoretical. This framework will help developer
teams to address the evolution of the conceptual model, easing
tasks related to schema evolution and ensuring that database
quality is maintained.

As future work, we want to extend our framework by
approaching conceptual model changes that were not detected
in the researched projects but were defined in the taxonomy of
Noy et al. [5]. We also plan to formalize our framework using
models and then automate it using these models in a model
transformation language such as ATL [23]. These models will
establish relationships between the conceptual model
components, the changes performed in them and the target
schema components to obtain the modifications to perform in
this schema.

Another line of research that we will approach in more
detail regards data integrity during schema evolution. When
the database schema changes, either after a direct modification
or after a change in the conceptual model, the data contained
in the database may lose its integrity. We plan to extend our
framework so that it automatically manages data to avoid the
loss of data integrity when there is a conceptual model change.

As we need a conceptual model for our framework, we
also want to address consistency between the conceptual
model and the database schema when this schema changes.
This would be the opposite direction from what we have
studied in this work.

ACKNOWLEDGMENT

This work was supported by the TestBUS project
(PID2019-105455GB-C32) and the TESTEAMOS project
(MINECO-17-TIN2016-76956-C3-1-R) of the Ministry of
Economy and Competitiveness, Spain. It has also been
supported by the project GRUPIN14-007 of the Principality
of Asturias and by the ERDF.

REFERENCES
[1] C.A., Curino, H.J. Moon, A. Deutsch, A and C. Zaniolo. "Update

rewriting and integrity constraint maintenance in a schema evolution
support system: PRISM++.", in Proceedings of the VLDB Endowment,
2010, vol. 4, no. 2, pp. 117-128.

[2] M. de Jong, A. van Deursen and A. Cleve. "Zero-downtime SQL
database schema evolution for continuous deployment." in IEEE/ACM
39th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), 2017, pp 143-152

[3] P. Vassiliadis, M.R. Kolozoff, M. Zerva and A.V. Zarras. "Schema
evolution and foreign keys: a study on usage, heartbeat of change and
relationship of foreign keys to table activity." Computing, vol 101, no
10, pp. 1431-1456, 2019

[4] J. Delplanque, A. Etien, N. Anquetil, S. Ducasse. "Recommendations
for Evolving Relational Databases." in CAiSE 2020-32nd International
Conference on Advanced Information Systems Engineering, 2020, pp
498-514.

[5] N. F. Noy, and M. Klein. "Ontology evolution: Not the same as schema
evolution." Knowledge and information systems, vol 6, no 4, pp 428-
440, 2004

[6] S. Scherzinger, M. Klettke and U. Störl. "Managing schema evolution
in NoSQL data stores." 2013. [Online]. Available: arXiv:1308.0514

[7] S. Scherzinger, T. Cerqueus and E. Cunha de Almeida. "Controvol: A
framework for controlled schema evolution in NoSQL application
development." In 2015 IEEE 31st International Conference on Data
Engineering, pp 1464-1467 2015.

[8] U. Störl, D- Müller, A. Tekleab, S. Tolale, J. Stenzel, M. Klettke and
S. Scherzinger.. “Curating variational data in application development”
in 2018 IEEE 34th International Conference on Data Engineering
(ICDE). pp. 1605-1608, 2018.

[9] A. Hillenbrand, M. Levchenko, U. Störl, S. Scherzinger and M.
Klettke. "MigCast: Putting a Price Tag on Data Model Evolution in
NoSQL Data Stores." in Proceedings of the 2019 International
Conference on Management of Data.pp-1925-1928, 2019.

[10] A. Hillenbrand, U. Störl, M. Levchenko, S.Nabiyev and M. Klettke.
"Towards Self-Adapting Data Migration in the Context of Schema
Evolution in NoSQL Databases." in 2020 IEEE 36th International
Conference on Data Engineering Workshops (ICDEW). Pp 133-138

[11] A. Chebotko, A. Kashlev, L. Andrey; S. Lu. “A big data modeling
methodology for Apache Cassandra” in 2015 IEEE International
Congress on Big Data. pp 238-245, 2015

[12] M. J. Mior, K. Salem, A. Aboulnaga and R. Liu. “NoSE: Schema
design for NoSQL applications”. IEEE Transactions on Knowledge
and Data Engineering, vol. 29, no 10, pp. 2275-2289, 2017

[13] A. de la Vega, D. García-Saiz, C. Blanco, M. Zorrilla, P. Sánchez.
“Mortadelo: Automatic generation of NoSQL stores from platform-
independent data models”. Future Generation Computer Systems, vol.
105, pp. 455-474, 2020

[14] “ThingsBoard”. GitHub.
https://github.com/thingsboard/thingsboard/blob/416c3fd10e0b58755
fcdcc297e3ebd9e4b04c7f1/dao/src/main/resources/cassandra/schema-
entities.cql (accesed Sep. 30, 2020)

[15] “Social Network Minds”. GitLab. https://gitlab.com/minds/engine/-
/blob/master/Core/Provisioner/Provisioners/cassandra-provision.cql
(accesed Sep. 30, 2020)

[16] “Powsybl”. GitHub. https://github.com/powsybl/powsybl-network-
store/blob/master/network-store-server/src/main/resources/iidm.cql
(accesed Sep. 30, 2020)

[17] “WireApp”. GitHub. https://github.com/wireapp/wire-
server/blob/develop/docs/reference/cassandra-schema.cql (accesed
Sep. 30, 2020)

[18] “COVID19”. GitHub. https://github.com/dilettalagom/COVID19sabd
(accesed Sep. 30, 2020)

[19] “Bon-app-etit”. GitHub. https://github.com/bon-app-etit/reviews-
service/tree/master (accesed Sep. 30, 2020)

[20] “Blobkeeper”. Github. https://github.com/sherman/blobkeeper/
(accesed Sep. 30, 2020)

[21] DataStax. “Data Modeling Concepts”.
https://docs.datastax.com/en/dse/6.8/cql/cql/ddl/dataModelingApproa
ch.html (accesed Sep. 30, 2020)

[22] DataStax. “Creating the set type”. https://docs.datastax.com/en/cql-
oss/3.3/cql/cql_using/useSet.html (accesed Sep. 30, 2020)

[23] F. Jouault, F. Allilaire, J. Bézivin and I. Kurtev. “ATL: A model
transformation tool”. Science of computer programming, vol. 72, no 1-
2, pp. 31-39, 2008

[24] P. Suárez-Otero, M. J. Suárez-Cabal and J. Tuya. “Leveraging
conceptual data models to ensure the integrity of Cassandra databases”.
Journal of Web Engineering, vol. 18, no. 6, pp. 257-286

