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Abstract—Database schemas evolve over time to satisfy 
changing application requirements. If this evolution is not 
performed correctly, some quality attributes are at risk such as 
data integrity, functional correctness, or maintainability. To 
help developer teams in the design of database schemas, several 
design methodologies for NoSQL databases have proposed to 
use conceptual models during this process. The use of an explicit 
conceptual model can also help developers in the tasks of schema 
evolution. In this work-in-progress paper, we propose a 
framework that, given a change in the conceptual model, 
identifies what must be modified in a NoSQL database schema 
and the underlying data. We researched several open source 
projects that use Apache Cassandra to study the benefits of 
using a conceptual model during the schema evolution process 
as well as to understand how these models evolve. In this first 
work, we have focused on studying seven types of conceptual 
model changes identified in these projects. For each change we 
describe the transformation required in the database schema to 
maintain the consistency between the schema and the model as 
well as the migration of data required to the new schema 
version. 

Keywords—quality, database evolution, NoSQL, column-
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I. INTRODUCTION 

Data models such as conceptual models and database 
schemas are designed to satisfy the requirements of software 
applications. These requirements may change during the 
lifetime of an application, also forcing changes to the schema 
or the conceptual model that imply further changes in the data 
that may jeopardize the integrity of the existing data if not 
done correctly. These changes to the schema are referred as 
schema evolution, which has been studied for both relational 
databases [1][3] and NoSQL databases [6][10]. In the case of 
NoSQL databases, the data model is different in each 
database; some are considered schema-less in that they have a 
flexible schema such as Neo4J and some others such as 
Cassandra [21] have a stronger column-oriented schema 
(similar to relational databases). Schema evolution in NoSQL 
databases with strictly defined schemas presents problems 
which are similar to those suffered by relational databases but 
also influenced by the unique characteristics of NoSQL 
databases. For instance, in the case of Cassandra, schema 
design follows a query-driven approach [21]. This means that 
if a single datum is queried using multiple criteria, this datum 
may need to be stored in more than one table. Any evolution 
of the schema that modifies one of these tables must also 

consider the other tables where the datum is stored to maintain 
data integrity. 

In order to help developers design NoSQL databases, 
several design methodologies recommend using a conceptual 
model to create the database schema. For instance, Chebotkto 
et al. [11] and Mior et al. [12] propose to obtain a schema for 
the database Cassandra using both an explicit conceptual 
model and the queries required by the client application. Even 
without these methodologies, developers usually have in mind 
an implicit conceptual model to design the schema. Without 
such a conceptual model, it would be difficult to perform 
schema management tasks such as its evolution. Changes to 
the conceptual model imply a required evolution of the 
database schema in order to maintain consistency with the 
database schema and ensure its quality. Another problem is 
that migration of data may be needed when changing the 
conceptual model. Note that some of the data that must be 
migrated to the new schema version may contradict new 
constraints in the conceptual model such as a change of the 
cardinality of a relationship. This last problem is not presented 
in the aforementioned data model design methodologies, as 
their objective was to create a new schema that did not require 
any migration of data.  

In this work, we address the aforementioned problems 
regarding schema evolution when the conceptual model 
changes. We define a framework that provides the 
modifications required in the database schema to reflect the 
conceptual model change and to maintain the consistency 
between this schema and this model. Additionally, we 
approach the migrations of data and change of the application 
queries required after the schema change. In this first work, 
we focus on column-oriented databases using Cassandra as the 
main database for the case study selections. The main 
contributions of this work are: 

1. A study of open source projects that use Cassandra.
We analyze the evolution of the conceptual model in
these projects, how a conceptual model aids
evolution, and the identification of conceptual model
changes during the evolution process.

2. A framework that determines what needs to be
modified in the database schema to reflect a
conceptual model change as well as how to migrate
the data to the new schema version. It also suggests
possible changes to application queries in order to
adapt them to the new schema.



The remaining of this paper is structured as follows. 
Section 2 details the related work. In Section 3, we study 
several projects that use Cassandra and their evolution of the 
schema. Section 4 presents our schema evolution framework. 
Section 5 finishes with conclusions and future work. 

II. RELATED WORK

Schema evolution research focused on relational databases 
has approached several topics specific to these databases such 
as how integrity constraints evolve [1], maintenance during 
schema changes [2], how foreign key changes affect the 
database [3], or recommendations to properly evolve the 
schema [4]. Other works are focused on studying how the 
schema must be modified after a change in the ontology 
considering also the data stored in the database in this 
modification [5]. Because these works are focused on 
relational databases, it is difficult to use them for other 
systems such as NoSQL databases.  

Scherzinger et al. have analyzed different topics related to 
schema evolution on NoSQL databases [6], [7], [8], [9], [10]. 
They propose a first approach to manage schema evolution [6] 
that is then used to define an evolution schema framework 
named ControVol [7]. They also defined the middleware 
Darwin [8] that proposes mappings between versions of the 
same schema, also calculating the monetary cost of these 
migrations [9]. Finally, they present a self-adapting 
methodology to choose the best strategy for migrating data 
between different versions of the same NoSQL database [10]. 
These works have addressed several issues in both relational 
and NoSQL databases but only consider direct changes to the 
database schema.  

Regarding schema design, there are several works that 
have given a great importance to the conceptual model. To 
obtain a database schema Chebotko et al. [11] proposed using 
a conceptual model in addition to the queries by defining the 
KDM (Kashlev Data Modeler) tool. Each query required by 
the client application is transformed into a table of the logical 
model (similar to the database but without data types) and then 
to a table of the database schema using a set of transformation 
rules. With the same objective, and also using a conceptual 
model, Mior et al. [12] incorporate statistical information 
about query frequency and expected data volume developing 
the NoSE (NoSQL Schema Evaluator) tool. Following the 
same research line, De la Vega et al. [13] use KDM and NoSE 
as a starting point to devise the Mortadelo tool which 
generalizes the generation of database schemas by also 
addressing the schema design of document-oriented databases 
such as MongoDB. 

III. PROJECT ANALYSIS

In this section, we study the schema of several open source 
projects using the Cassandra database and the evolution of 
these schemas to determine what kind of changes happened 
during their evolution and to understand how an explicit 
conceptual model can help during this process. We detail this 
information in the answers to the following questions:  

1. Q1: Why and how can an explicit conceptual model help 
when defining and evolving database schemas?

2. Q2: How do conceptual models evolve and how is this
evolution reflected in the schema?

In the next subsections, we briefly describe the case study 
selection and answer both questions. 

A. Case study selection

We found seven projects with updates in their schema
throughout successive versions in public repositories such as 
GitHub and GitLab that we will use to answer Q1 and Q2:  

• Thingsboard [14]: IoT platform for data collection.

• Minds[15]: Open source social network.

• Powsybl[16]: Framework to simplify development of
software for power system simulations and analysis.

• Wireapp[17]: Encrypted communication app.

• COVID-19[18]: Manages COVID-19 cases from Italy.

• Reviews-service[19]: Module for restaurant.

• Blobkeeper[20]: Distributed file-storage service.

TABLE I. displays a summary of these projects showing
the number of Cassandra tables of each project and how many 
times each type of conceptual model change happened.  

B. Q1:Why and how can an explicit conceptual model help
when defining and evolving database schemas?

None of the selected projects provide in their repositories
a conceptual model, but they could have used a conceptual 
model during the application development. As mentioned in 
the introduction, developers may have an implicit conceptual 
model in mind when modeling the database schema. In these 
projects we have found evidence of the use of such a 
conceptual model like in the terminology used to name the 
tables and the columns. All the projects follow the naming 
conventions of the columns, where it is compound of the name 
of the associated attribute and, in some cases, the entity of this 
attribute as well. For instance, in table “comment” from the 
project Minds we observe several of these columns such as 
“access_id”, “container_guid” or “owner_guid”. 

Another evidence that we have found regarding the use of 
at least an implicit conceptual model is the consistency found 
when implementing relationships. To ensure row uniqueness 
every table that stores a relationship contains the columns that 
are associated to the primary keys of the relationship entities. 
For instance, we observe how particular columns are 
constantly duplicated in several tables establishing several 
relationships of a particular entity with others. The most 
recurrent case of this are seem in the projects Minds and 
Powsybl with the columns “user_guid” duplicated in 25 tables 
and “networkUuid” duplicated in 16 tables. 

These pieces of evidence show that an implicit conceptual 
model has been used to create the schema. However, only 
using an implicit model may make the evolution of the schema 
more difficult, especially when it is done by a team. Note that 
a Cassandra database may contain tens of tables such as the 
Minds schema with 65 tables and it may be maintained by 
more than one developer. Using an explicit conceptual model 
facilitates the consistency of the model as well as its data 
quality, especially when working in a team. It also helps the 
automation of processes such as the determination of the 
tables where the same modification of data must be performed 
at the same to maintain the integrity of the data [24]. 

An explicit conceptual model also helps to avoid faulty 
implementations of tables that store data related to 
relationships such as omitting the columns associated to the 
primary key of an entity if those attributes are not explicitly 



queried. For example, suppose that a table is created to satisfy 
a query that retrieves information of attributes that are not 
keys. If when implementing the table only the query is 
considered, developers can easily forget to implement 
additional columns to ensure row uniqueness in the table. If 
an explicit conceptual model is available, it is less probable 
that the developer team will make these kinds of mistakes. 

TABLE I. INFORMATION SUMMARY OF THE STUDIED PROJECTS 

Conceptual model change type 
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NUMBER OF TABLES 30 65 17 72 5 5 6 200

Entity 5 14 7 2 7 0 0 35

Add Entity 4 14 7 2 0 0 0 27

Update primary key of an entity*  1 0 0 0 7 0 0 8 

Attribute 3 6 29 6 6 9 2 61

Add non-key attribute 3 5 26 6 6 5 2 53

Remove non-key attribute 0 0 3 0 0 4 0 7 

Split non-key attribute* 0 1 0 0 0 0 0 1 

Relationships 0 11 21 1 0 0 7 40

Add relationship 0 11 21 1 0 0 6 39

Update cardinality of relationship* 0 0 0 0 0 0 1 1 

Total Changes 8 31 57 9 13 9 9 136

C. Q2: How do conceptual models evolve and how is this
evolution reflected in the schema?

To answer this question, we have studied every change of
the schema registered in each commit of the aforementioned 
projects. As they only contain the database schema, we have 
manually inferred the conceptual model and determined the 
equivalent conceptual model change from each schema 
change, which are displayed TABLE I. We have detected 7 
types of these conceptual model changes and some of them 
are very specific of NoSQL databases and were not detected 
in the ontology of Noy et al. [5]. These last type of changes 
are indicated with the symbol ‘*’ in TABLE I.  

The most frequently detected changes are additions. In 
particular, for the change “Add Entity” we have detected two 
possible approaches: 1) the usual creation of a table with a 
column associated to each conceptual attribute and 2) the more 
novel definition of a type. This last approach was observed in 
the project Powsybl for entities “vertex” or “terminalRef”, 
which were implemented as custom types. On the other hand, 
in the case of the change “Add Relationship”, the only 
approach that we have detected is the creation of a new table 
that stores the instances of the entities that have a relationship. 
In the case of the changes “Add Attribute” the only detected 
approach is the addition of a column associated to the attribute 
in at least one table. In the case of the change “Remove 
attribute” the detected approach is the removal of the columns 
associated to the attribute. 

When there is a change of type “Update primary key of an 
entity”, we have identified that it implies further changes to 
the primary key of tables that store information of this entity. 
For instance, in the project “Thingsboard” we detected that 
after the addition of the attribute “type” in the entity 
“entity_view”, its associated column was added to the primary 
key. A similar approach is used for the type of change “Update 
cardinality of a relationship”. In what was probably a mistake 

from the first conceptual model version in the project 
“Reviews-Service”, the relationship “one review for several 
restaurants” changed to “several reviews for one restaurant”. 
The detected approach was the addition of a column 
associated to the primary key of ‘Review’ to the table primary 
key. 

IV. SCHEMA EVOLUTION FRAMEWORK FOR CONCEPTUAL 

MODEL CHANGES

In this section we describe our framework that determines
what actions a developer should perform in the database after 
a change of the conceptual model. These actions include the 
required changes in the schema, the data and the application 
queries in order to maintain consistency between the model, 
the schema, and the underlying data. In this work we focus on 
describing the actions to perform after each of the detected 
changes in the researched projects (see TABLE I. ). 

This framework takes as inputs: 1) the original conceptual 
model; 2) the conceptual model change; 3) the original 
database schema. The outputs are the required changes in the 
database schemas and, if necessary, the modification of data 
and changes of queries to be adapted to the new schema. 

In each of the following subsections we discuss the 
conceptual model changes that can be done against each 
conceptual structure (entity, attribute and relationship). For 
each change we describe the transformations required in the 
database schema to maintain its consistency with the new 
model. Additionally, when required, we describe the 
modifications in both the data and the database queries of the 
client application. 

A. Schema transformation on changes to entities

Entities are the main conceptual structure representing an
independent object that can be differentiated to others. Both 
the attributes and relationships exist to represent 
characteristics of an entity and their interaction with other 
entities. In a relational database, entities are usually 
transformed into a new table, however in NoSQL databases 
such as Cassandra, such transformations would only happen if 
there is a query that retrieves all the data about an entity. 

1) Add entity
Depending on client application queries, developers will

choose between creating a table or creating a custom type in 
order to reflect the conceptual model change: 

• Table: Developers will create a table when there is a
query that only retrieves the data of the new entity.
For each attribute of the new entity, the new table will
contain an associated column. The primary key of the
table will contain the columns associated to the
primary key of the entity.

• Custom type: Developers can opt to create a custom
type when there is no query that only retrieves the data 
of the entity. This type will contain a non-key column
for each attribute of the entity. Note that a custom type 
cannot be part of the primary key of a Cassandra table. 
Therefore this option can only be used if the entity is
not part of any relationship that requires its primary
key to be part of the primary key of a table that stores
this relationship (see section IV.C.1))



2) Update primary key: Remove attribute from the PK
Modify the tables where the attribute is part of the primary 

key. If these tables do not explicitly contain this attribute, then 
the column associated with the attribute is removed, forcing 
the creation of a new table. 

Data from the original table must be migrated to the new 
table.  

Database operations that retrieve or modify data from the 
transformed table should be modified to not include the 
removes column. 

3) Update primary key: Add attribute to the PK
The required transformations will depend on the stored

information, which can be the information of only the entity 
or a relationship where the entity is involved.  

a) Table stores a 1:1 relationship or a 1:n relationship
where the entity is the upper bound (cardinality 1) of the 
relationship:  

No change is required in the schema, data or queries. 

b) Only the entity, a 1:n relationship where the entity
is the lower bound of the relationship (cardinality n) or a n:m 
relationship 

The primary key of the table will contain the column 
associated to the added attribute. If the primary key of the table 
does not originally contain this column as primary key, a new 
table needs to be created with this column plus the original 
ones. 

If a new table is required, the data from the original table 
must be migrated to the new table.  

Database operations that retrieve or modify data from the 
transformed table must also be modified to include the new 
column. 

B. Schema transformation on changes to attributes

An attribute represents a piece of information that belongs
to an entity or a relationship. In the case of the entities, the 
attributes that are key are used to uniquely identify an instance 
of an entity. 

1) Add a non-key attribute
The developer will transform at least one table that stores

the primary key of the attribute’s entity by adding to this table 
a column associated to the new attribute. 

Database operations that retrieve or modify data from the 
table should be modified to consider the new column. 

2) Remove a non-key attribute
The developer will remove in every table the columns

associated to the removed attribute. If this column is part of 
the primary key, a new table shall be created. If the partition 
key of the original table is compound of only the removed 
column, then at least one column from the original clustering 
key will be partition key in the new table. 

If a table is created, the data from the original table will be 
migrated to the new table. 

Database operations that retrieve or modify data from the 
transformed table must remove the reference to the removed 
columns. 

3) Split non-key attribute in several new ones
The table will be transformed by replacing the column

associated to the original attribute with columns associated to 
the new attributes. 

Developers will migrate data from the original column to 
the new ones. Because the data is migrated from one column 
to two or more columns, the developer team must decide 
which of the resulting columns data is migrated to. 

Database operations that modify data of the transformed 
tables should change the references to the original attribute 
referencing the attributes created from the split. 

C. Schema transformation on changes to relationships

Relationships are the connections between entities. One of
the most important components of a relationship is its 
cardinality (1:1, 1:n or n:m). A developer must consider 
cardinalities when implementing a table in order to ensure row 
uniqueness in the table.  

1) Addition of a relationship
Developers will create a new table to store the relationship

information. The columns that will compose the primary key 
depend on the cardinality of the relationship: 

• 1:1 relationship: Columns associated to the primary
key of at least one of the related entities.

• 1:n relationship: Columns associated to the primary
key of the entity of the lower-bound of the relationship
(cardinality n).

• n:m relationship: Columns associated to the primary
key of both entities.

The table will contain a non-key column for each non-key 
attribute of the related entities that the developer wants to store 
(none of them are required). Exceptionally, if one of the 
entities has been implemented as a custom type, the table will 
contain the following non-key columns depending on the 
cardinality relationship: 

• 1:1 relationship and 1:n relationship where the entity is
the upper bound of the relationship (cardinality 1). The 
table will contain a non-key column with the data type
of the custom type.

• 1:n relationship, the entity is a weak entity. The
resulting table will contain a collection column of the
custom type (set, list or map) [22]

Note that a custom type implementation for an entity 
cannot be used for creating a table that implements a 
relationship that requires the primary key of both entities to be 
part of the table primary key (e.g n:m relationships). 

2) Update cardinality
a) 1:n to 1:1, n:m to 1:1, n:m to 1:n

No change is required in the schema. Regarding the data,
developers should check the data stored in the database as it 
may contradict the new cardinality. A possible solution is to 
create a copy of the original table to perform the future 
operation in it, while conserving the original table with the 
data contained before the change. 

b) 1:1 to 1:n
To ensure row uniqueness, the tables that store the 

relationship shall have in the primary key the columns 



associated to the entity from the lower bound (entity with 
bound n). If the primary key of the table does not originally 
contain this column as PK, the developer must create a new 
table adding this column to the PK. 

If a new table is required, the data from the original table 
must be migrated to the new table.  

Database operations where the tables is involved should be 
modified to include the new attribute in the primary key. 

c) 1:1 to n:m, 1:n to n:m
To ensure row uniqueness, the table that stores the 

relationship shall include in its primary key the columns 
associated with the primary key of both entities. If the primary 
key of the table is transformed, developers will need to create 
a new table. 

If a new table is created, the data from the original table 
must be migrated to the new table. Additionally, the database 
operations where the table is involved should be modified to 
include the new attribute in the primary key. 

V. CONCLUSIONS AND FUTURE WORK

In this work we proposed a framework that determines the 
modifications in the database schema required to maintain 
consistency given a change in a conceptual model. This 
consistency ensures database quality during evolution by 
assuring that the database schema evolves considering the 
application requirements. Any loss of consistency may 
provoke situations where the database loses properties such as 
row uniqueness in tables due to an incorrect schema 
definition. Additionally, we have also approached maintaining 
data quality by describing data migrations that are required to 
maintain integrity after a schema change.  

As a result of having studied several real projects as the 
basis for our framework, we ensured that the transformations 
proposed for the database schema are real transformations and 
not purely theoretical. This framework will help developer 
teams to address the evolution of the conceptual model, easing 
tasks related to schema evolution and ensuring that database 
quality is maintained.  

As future work, we want to extend our framework by 
approaching conceptual model changes that were not detected 
in the researched projects but were defined in the taxonomy of 
Noy et al. [5]. We also plan to formalize our framework using 
models and then automate it using these models in a model 
transformation language such as ATL [23]. These models will 
establish relationships between the conceptual model 
components, the changes performed in them and the target 
schema components to obtain the modifications to perform in 
this schema. 

Another line of research that we will approach in more 
detail regards data integrity during schema evolution. When 
the database schema changes, either after a direct modification 
or after a change in the conceptual model, the data contained 
in the database may lose its integrity. We plan to extend our 
framework so that it automatically manages data to avoid the 
loss of data integrity when there is a conceptual model change. 

As we need a conceptual model for our framework, we 
also want to address consistency between the conceptual 
model and the database schema when this schema changes. 
This would be the opposite direction from what we have 
studied in this work. 
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