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No comercial – No puede utilizar esta obra para fines comerciales.

Sin obras derivadas – No se puede alterar, transformar o generar una obra derivada a partir de esta obra.

© 2021 Universidad de Oviedo
© Los autores

Universidad de Oviedo
Servicio de Publicaciones de la Universidad de Oviedo
Campus de Humanidades. Edificio de Servicios. 33011 Oviedo (Asturias)
Tel. 985 10 95 03 Fax 985 10 95 07
http: www.uniovi.es/publicaciones
servipub@uniovi.es

ISBN: 978-84-18482-21-2

Todos los derechos reservados. De conformidad con lo dispuesto en la legislación vigente, podrán ser castigados
con penas de multa y privación de libertad quienes reproduzcan o plagien, en todo o en parte, una obra literaria,
artı́stica o cientı́fica, fijada en cualquier tipo de soporte, sin la preceptiva autorización.

2

http:// creativecommons.org/licenses/by-nc-nd/3.0/es/
www.uniovi.es/publicaciones


Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo

3



Scientific Committee

� Juan Luis Vázquez, Universidad Autónoma de Madrid

� Marı́a Paz Calvo, Universidad de Valladolid

� Laura Grigori, INRIA Paris
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Acosta-Soba D., Guillén-González F. and Rodrı́guez-Galván J.R. . . . . . . . . . . . . . . . . . . . . . . . 8

An optimized sixth-order explicit RKN method to solve oscillating systems
Ahmed Demba M., Ramos H., Kumam P. and Watthayu W. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

The propagation of smallness property and its utility in controllability problems
Apraiz J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Theoretical and numerical results for some inverse problems for PDEs
Apraiz J., Doubova A., Fernández-Cara E. and Yamamoto M. . . . . . . . . . . . . . . . . . . . . . . . . . 31

Pricing TARN options with a stochastic local volatility model
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Ollé M., Álvarez-Ramı́rez M., Barrabés E. and Medina M. . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Teaching experience in the Differential Equations Semi-Virtual Method course of the Tecnológico de
Costa Rica
Oviedo N.G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Nonlinear analysis in lorentzian geometry: the maximal hypersurface equation in a generalized
Robertson-Walker spacetime
Pelegrı́n J.A.S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Well-balanced algorithms for relativistic fluids on a Schwarzschild background
Pimentel-Garcı́a E., Parés C. and LeFloch P.G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Asymptotic analysis of the behavior of a viscous fluid between two very close mobile surfaces
Rodrı́guez J.M. and Taboada-Vázquez R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Convergence rates for Galerkin approximation for magnetohydrodynamic type equations
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Asymptotic aspects of the logistic equation under diffusion
José C. Sabina de Lis1, Sergio Segura de León2

1. Departamento de Análisis Matemático & IUEA, Universidad de La Laguna, Spain.
2. Departament d’Anàlisi Matemàtica, Universitat de València, Spain.

Abstract
This talk is devoted to describe the nontrivial solutions to{

−Δ𝑝𝑢 = 𝜆 |𝑢 |𝑝−2𝑢 − |𝑢 |𝑞−2𝑢 𝑥 ∈ Ω
𝑢 = 0 𝑥 ∈ 𝜕Ω.

Exponents satisfy 1 < 𝑝 < 𝑞 while 𝜆 > 0 is a bifurcation parameter. We are confining ourselves to the case
where Ω is a ball and solutions are radial. More importantly, we are discussing the asymptotic behavior of these
solutions as 𝑝 → 1+. We are further stating not only the existence of such limits but even introducing the limit
problem which such limits solve.

1. Introduction
This talk is firstly devoted to describe the nontrivial solutions to the nonlinear eigenvalue problem:{

−Δ𝑝𝑢 = 𝜆 |𝑢 |𝑝−2𝑢 − |𝑢 |𝑞−2𝑢, 𝑥 ∈ Ω,
𝑢 = 0, 𝑥 ∈ 𝜕Ω, (1.1)

where Ω ⊂ R𝑁 is a bounded smooth domain, 𝜈 is outer unit normal, 𝜆 is a positive (bifurcation) parameter and
Δ𝑝𝑢 = div ( |∇𝑢 |𝑝−2∇𝑢) is the p–Laplacian operator. The exponents 𝑝, 𝑞 are assumed to satisfy,

1 < 𝑝 < 𝑞. (1.2)

The case 𝑝 = 2 is the logistic problem, a well–known model in population dynamics (see [17], [6], also [8] for
related applications). As for the nonlinear diffusion regime 𝑝 ≠ 2, a detailed discussion of its positive solutions has
been performed in [10–12], [15] and [9], the latter specially concerned with the one–dimensional case. Regarding
the problem (1.1) observed in a 𝑁–dimensional domain Ω, see [13] for existence results on a closely related
problem.
A further feature we are going to address is the analysis of the limit perturbation of problem (1.1) as 𝑝 → 1.

Namely, 

−Δ1𝑢 = 𝜆

𝑢

|𝑢 | − |𝑢 |
𝑞−2𝑢, 𝑥 ∈ Ω,

𝑢 = 0, 𝑥 ∈ 𝜕Ω,
(1.3)

where Δ1𝑢 = div
( ∇𝑢
|∇𝑢 |

)
is the one–Laplacian operator. Such operator finds its natural applications in a broader

class of fields ranging from image processing ( [4], [18]) to torsion theory ( [16]).
Due to the fact that the 𝑁–dimensional versions of problems (1.1) and (1.3) are plagued of technical obstacles,

main emphasis here will be put on their radial versions. In such case, Ω = 𝐵(0, 𝑅) ⊂ R𝑁 is a 𝑁–dimensional ball
with 𝑁 ≥ 2. It should be remarked that the one–dimensional versions of (1.1) and (1.3),{

−(|𝑢𝑥 |𝑝−2𝑢𝑥)𝑥 = 𝜆 |𝑢 |𝑝−2𝑢 − |𝑢 |𝑞−2𝑢, 0 < 𝑥 < 𝑅,
𝑢(0) = 𝑢(𝑅) = 0,

(1.4)

and 

−

(
𝑢𝑥
|𝑢𝑥 |

)
𝑥

= 𝜆
𝑢

|𝑢 | − |𝑢 |
𝑞−2𝑢, 0 < 𝑥 < 𝑅,

𝑢(0) = 𝑢(𝑅) = 0,
(1.5)

have been recently studied in [21] (problem (1.4) goes back to [14]).
This note is organized as follows. Basic results, specially those concerning the limit problem (1.3) are reviewed

in Section 2. A global description of the set of nontrivial solutions to (1.1) in a ball is presented in Section 3. The
features on the limit behavior of solutions to (1.1) as 𝑝 → 1+ are described in Section 4.
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(pp. 332–338)
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2. Background results

By a (weak) solution 𝑢 ∈ 𝑊1, 𝑝
0 (Ω) ∩ 𝐿𝑞 (Ω) to (1.1) it is understood that equality∫

Ω
|∇𝑢 |𝑝−2∇𝑢∇𝑣 = 𝜆

∫
Ω
|𝑢 |𝑝−2𝑢𝑣 −

∫
Ω
|𝑢 |𝑞−2𝑢𝑣,

holds for every test function 𝑣 ∈ 𝐶1
0 (Ω). In fact it can be checked that such test functions can be allowed to belong

to𝑊1, 𝑝
0 (Ω) ( [22]).
Analysis of (1.1) in a ball 𝐵(0, 𝑅) is closely linked to the radial eigenvalues to{

−Δ𝑝𝑢 = 𝜆 |𝑢 |𝑝−2𝑢, 𝑥 ∈ 𝐵(0, 𝑅),
𝑢 = 0, 𝑥 ∈ 𝜕𝐵(0, 𝑅), (2.1)

which will be designated as,
0 < 𝜆1, 𝑝 < 𝜆2, 𝑝 < . . . .

We refer to [7], [23] and [20] for a detalied account (also [2] for an early source). Eigenvalues in the unit ball
𝐵(0, 1) are more conveniently expressed as 𝜆𝑛,𝑝 = 𝜔𝑝𝑛 for certain positive numbers 𝜔𝑛. Thus, eigenvalues in the
ball 𝐵(0, 𝑅) turn out to be 𝜆𝑛,𝑝 = 𝑅−𝑝𝜔𝑝𝑛 .
Following the nowadays well settled down approach in [3] and [4] we introduce the concept of a solution to

(1.3). Framework space is
𝐵𝑉 (Ω) = {𝑢 ∈ 𝐿1 (Ω) : 𝐷𝑢 ∈ 𝐶0 (Ω,R𝑁 ) ′},

that is, the space of functions in 𝐿1 (Ω) whose gradient 𝐷𝑢 is a vectorial zero order distribution, whose components
define finite Radon measures 𝐷𝑖𝑢, 1 ≤ 𝑖 ≤ 𝑁 (see [1] for a comprehensive source on this space).
To introduce the concept of weak solution to (1.3), the problematic term 𝐷𝑢

|𝐷𝑢 | must be conveniently replaced
with a suitable field z ∈ 𝐿∞ (Ω,R𝑁 ). On the other hand, the formulation of a Green identity is required in order to
test with functions 𝑣 ∈ 𝐵𝑉 (Ω). Anzellotti’s theory is instrumental for these purposes. A featured result in [5] is
the identity, ∫

Ω
(z, 𝐷𝑣) +

∫
Ω
𝑣 div z =

∫
𝜕Ω
𝑣 [z, 𝜈] 𝑑𝑠, (2.2)

which holds for every z ∈ 𝐿∞𝑞′ (Ω,R𝑁 ) := {z ∈ 𝐿∞ (Ω,R𝑁 ) : div z ∈ 𝐿𝑞′ (Ω)} and 𝑣 ∈ 𝐵𝑉𝑞 (Ω) := 𝐵𝑉 (Ω) ∩𝐿𝑞 (Ω).
To account for every term in (2.2) it is shown in [5] that the normal component [z, 𝜈] has a well–defined trace on
𝜕Ω which belongs to 𝐿∞ (𝜕Ω). In addition, the scalar product z · 𝐷𝑢 is extended as a bilinear mapping (z, 𝐷𝑢),
from 𝐶1 (Ω,R𝑁 ) ×𝑊1,1 (Ω) to 𝐿∞𝑞′ (Ω,R𝑁 ) × 𝐵𝑉𝑞 (Ω) in the following distributional way:

⟨(z, 𝐷𝑢), 𝜑⟩ = −
∫
Ω
𝑢 div (𝜑z), 𝜑 ∈ 𝐶∞0 (Ω).

It is shown in [5] that (z, 𝐷𝑢) defines a finite Radon measure in Ω such that

| (z, 𝐷𝑢) (𝐵) | ≤ ∥z∥∞ |𝐷𝑢 | (𝐵),

𝐵 ⊂ Ω being a Borelian and |𝐷𝑢 | standing for the total variation of 𝐷𝑢.
We are now ready for the next definition.

Definition 2.1 A function 𝑢 ∈ 𝐵𝑉𝑞 (Ω) defines a (weak) solution to (1.3) provided that there exist z ∈ 𝐿∞𝑞′ (Ω,R𝑁 ),
∥z∥∞ ≤ 1, 𝛽 ∈ 𝐿∞ (Ω), ∥𝛽∥∞ ≤ 1 such that,
i) − div z = 𝜆𝛽 − |𝑢 |𝑞−2𝑢, in D ′(Ω),
ii) 𝛽𝑢 = |𝑢 | and (z, 𝐷𝑢) = |𝐷𝑢 |, in D ′(Ω),
iii) [𝑧, 𝜈]𝑢 = −|𝑢 | on 𝐿1 (𝜕Ω), (boundary condition).

Remark 2.2 Boundary condition in iii) is suggested by two features. First one, the fact that the weak–∗ limit
𝑢 ∈ 𝐵𝑉 (Ω) of a sequence 𝑢𝑛 ∈ 𝑊1,1

0 (Ω) could eventually exhibits a nonzero trace on the boundary. Second one,
that solutions of (1.3) could be approximated as 𝑝 → 1 by corresponding solutions to (1.1).
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333



3. Radial solutions
A general view on the nontrivial solutions to (1.1) in a ball is contained in the next statement.

Theorem 3.1 Assume 1 < 𝑝 ≤ 2. Then, problem{
−Δ𝑝𝑢 = 𝜆 |𝑢 |𝑝−2𝑢 − |𝑢 |𝑞−2𝑢, 𝑥 ∈ 𝐵(0, 𝑅),
𝑢 = 0, 𝑥 ∈ 𝜕𝐵(0, 𝑅), (3.1)

exhibits the following features.
i) [Range and amplitude] Nontrivial solutions are only possible when 𝜆 > 𝜆1, 𝑝 while the normalized amplitude

𝛼 := 𝜆−
1
𝑞−𝑝 ∥𝑢∥∞,

satisfies 𝛼 < 1.
ii) [Positive solutions] There exists a unique positive (radial) solution 𝑢𝜆,1 for all 𝜆 > 𝜆1, 𝑝 , bifurcating from 𝑢 = 0
at 𝜆 = 𝜆1, 𝑝 while:

𝜆−
1
𝑞−𝑝 ∥𝑢𝜆,1∥∞ → 1 as 𝜆→∞.

iii) [Existence of branches] For all 𝑛 ≥ 2, a symmetric family ±𝑢𝜆,𝑛 (𝑟) of nontrivial radial solutions, exactly defined
for all 𝜆 > 𝜆𝑛,𝑝 , bifurcates from 𝑢 = 0 at 𝜆𝑛,𝑝 and,

𝜆−
1
𝑞−𝑝 ∥𝑢𝜆,𝑛∥∞ → 1 as 𝜆→∞.

iv) [Nodal properties] Every ±𝑢𝜆,𝑛 (𝑟) vanishes exactly at 𝑛 − 1 values 𝑟𝑘 ∈ (0, 𝑅).
v) [Continuity of the branches] Bifurcated branches ±𝑢𝜆,𝑛 define a continuous curve C𝑛 when parameterized by the
normalized amplitude 𝛼 = 𝜆−

1
𝑞−𝑝 ∥𝑢∥∞, 0 < 𝛼 < 1. More precisely, there exist continuous mappings 𝛼 ↦→ 𝜆𝑛 (𝛼),

𝛼 ↦→ 𝑢𝑛 (𝛼) ∈ 𝑊1, 𝑝
0 (𝐵(0, 𝑅)), 0 < 𝛼 < 1, such that,

±𝑢𝜆,𝑛 = ±𝑢𝑛 (𝛼), 𝜆 = 𝜆𝑛 (𝛼).

Proof (Sketch) The scaling 𝑢(𝑟) = 𝜆 1
𝑞−𝑝 𝑣(𝑡), 𝑡 = 𝜆 1

𝑝 𝑟 , transforms (3.1) into,



−(|𝑣𝑡 |𝑝−2𝑣𝑡 )𝑡 − 𝑁 − 1

𝑡
|𝑣𝑡 |𝑝−2𝑣𝑡 = |𝑣 |𝑝−2𝑣 − |𝑣 |𝑞−2𝑣, 0 < 𝑡 < 𝜆

1
𝑝 𝑅,

𝑣(0) = 𝛼, 𝑣𝑡 (0) = 0,
(3.2)

where:
max 𝑣 = 𝛼, 0 < 𝛼 < 1,

and 𝑣 must satisfies the boundary condition:
𝑣(𝜆 1

𝑝 𝑅) = 0.

The initial value problem (3.2) admits a unique 𝐶2 solution 𝑣 = 𝑣(·, 𝛼) which is defined in [0,∞) and satisfies
lim𝑡→∞ (𝑣(𝑡), 𝑣𝑡 (𝑡)) = (0, 0). Moreover, 𝑣 exhibits infinitely many simple zeros,

0 < 𝜃1 (𝛼) < 𝜃2 (𝛼) < · · · < 𝜃𝑛 (𝛼) < · · · , 𝜃𝑛 →∞.

Functions 𝜃𝑛 (𝛼) are shown to be continuous in 𝛼 ∈ (0, 1) and,

lim
𝛼→0+

𝜃𝑛 (𝛼) = 𝜔𝑛, lim
𝛼→1−

𝜃𝑛 (𝛼) = ∞,

where 𝜔𝑛 = 𝜆𝑛,𝑝 (𝐵(0, 1))
1
𝑝 .

To solve (3.1) amounts to:
𝜆

1
𝑝 𝑅 = 𝜃𝑛 (𝛼) ⇔ 𝜆 = 𝑅−𝑝𝜃𝑛 (𝛼) 𝑝 .

By setting this value of 𝜆 in the expression for 𝑢:

𝑢(𝑟) = 𝜆 1
𝑞−𝑝 𝑣(𝜆 1

𝑝 𝑟, 𝛼), 0 ≤ 𝑟 ≤ 𝑅,
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Fig. 1 Family C𝑛 of nontrivial solutions bifurcated from 𝑢 = 0 at 𝜆 = 𝜆𝑛,𝑝 . Only a half of C𝑛 has been depicted. That one
corresponding to 𝑢(0) > 0. It is stressed that its exact range of existence is [𝜆𝑛,𝑝 ,∞) .

the family 𝑢𝑛,𝜆 is obtained. Moreover by defining:

𝜆𝑛 (𝛼) = 𝑅−𝑝𝜃𝑛 (𝛼) 𝑝 , 𝑢𝑛 (𝑟, 𝛼) = 𝜆
1
𝑞−𝑝
𝑛 𝑣(𝜆

1
𝑝
𝑛 𝑟, 𝛼),

{𝑢𝜆,𝑛} is alternatively represented as a continuous curve (𝜆𝑛 (𝛼), 𝑢𝑛 (𝛼)) in R ×𝑊1, 𝑝
0 (𝐵(0, 𝑅)). It should be also

observed that 𝑢𝑛 (·, 𝛼) vanishes at the points,

𝑟𝑘 = 𝑅
𝜃𝑘 (𝛼)
𝜃𝑛 (𝛼) , 𝑘 = 1, . . . , 𝑛.

Assertion concerning the existence of the family 𝑢𝜆,𝑛 exactly at the interval [𝜆𝑛,𝑝 ,∞) is a consequence of the
estimate:

𝜃𝑛 (𝛼) > 𝜔𝑛, 0 < 𝛼 < 1.

The proof of this fact deserves a delicate proof and it is also omitted (see [22]). □

Remark 3.2 The existence of a global continuum C∗𝑛 bifurcating from zero at 𝜆 = 𝜆𝑛,𝑝 was stated in [12] (see
also [19]). Theorem 3.1 improves these results in two regards. Firstly, family of solutions 𝑢𝜆,𝑛 is shown to exists
exactly at the range 𝜆 > 𝜆𝑛,𝑝 . Secondly, ours is not a mere continuum C∗𝑛 but rather a global continuous curve C𝑛.

4. Limit behavior
The sequence,

0 < 𝜆̄1 < 𝜆̄2 < · · ·
of radial eigenvalues to −Δ1, 


−Δ1𝑢 = 𝜆

𝑢

|𝑢 | , 𝑥 ∈ 𝐵(0, 𝑅),
𝑢 = 0, 𝑥 ∈ 𝜕𝐵(0, 𝑅),

(4.1)

has been recently studied in [20]. Among other featured properties it is shown there that,

lim
𝑝→1

𝜆𝑛,𝑝 = 𝜆̄𝑛, for every 𝑛 ∈ N.

Our next result describes a set of distinguished nontrivial radial solutions to (1.3). Those ones obtained as the
limit of solutions to (1.1) as 𝑝 → 1. In addition this precise feature of the solutions is characterized by a suitable
energy condition. In the forthcoming statement, the reference zeros 𝜃𝑛 introduced in the proof of Theorem 3.1
are involved. It should be remarked that they also depends on 𝑝 > 1 and an important fact to be reported is the
existence of their limits 𝜃𝑛 as 𝑝 → 1+ (see ii) below). Figure 2 depicts this dependence through a simulation.

Theorem 4.1 The structure of the set of radial nontrivial solutions to



−div

( ∇𝑢
|∇𝑢 |

)
= 𝜆

𝑢

|𝑢 | − |𝑢 |
𝑞−2𝑢, 𝑥 ∈ 𝐵(0, 𝑅),

𝑢 = 0, 𝑥 ∈ 𝜕𝐵(0, 𝑅),
can be described as follows.
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Fig. 2 Profiles of 𝑣 (𝑡) and corresponding zeros 𝜃𝑛 for varying values of 𝑝 > 1. Simulation has been performed for 𝑁 = 3,
𝑞 = 3, 𝛼 = 0.7. Then, chosen values of 𝑝 are 𝑝 = 2, 𝑝 = 1.5, 𝑝 = 1.1 and 𝑝 = 1.01. Plots become steeper as 𝑝 decays to
unity.

i) [Normalized amplitude estimate] Nontrivial solutions are only possible if 𝜆 > 𝜆̄1. Moreover, the normalized
amplitude 𝛼 := 𝜆−

1
𝑞−1 ∥𝑢∥∞ of such solutions satisfies,

0 < 𝛼 < 1.

ii) [Limits of zeros] There exists a family of smooth functions 𝜃𝑛 (𝛼),

0 < 𝜃1 (𝛼) < 𝜃𝑛 (𝛼) < · · · ,

such that,
lim
𝑝→1

𝜃𝑛 (𝛼) = 𝜃𝑛 (𝛼), 0 < 𝛼 < 1.

iii) [Existence] To every radial eigenvalue 𝜆̄𝑛 there corresponds a symmetric family ±𝑢̄𝜆,𝑛 of nontrivial solutions
which bifurcates from 𝑢 = 0 at 𝜆̄𝑛. In addition, such family is defined for each 𝜆 > 𝜆̄𝑛 while the normalized
amplitude of its members satisfies,

lim
𝜆→∞

𝜆−
1
𝑞−1 ∥𝑢̄𝜆,𝑛∥∞ = 1.

iii) [Smoothness] Family ±𝑢̄𝜆,𝑛 constitutes a smooth curve C𝑛 in R × 𝐵𝑉 (𝐵(0, 𝑅)) when parameterized by the
normalized amplitude 0 < 𝛼 < 1. More precisely, a decreasing family of smooth positive functions 𝛼 ↦→ 𝛼̄𝑛 (𝛼)
exists such that by setting,

𝜆̄𝑛 (𝛼) = 𝑅−1𝜃𝑛 (𝛼), 𝑢̄𝑛 (·, 𝛼) = 𝜆̄
1
𝑞−1
𝑛

𝑛∑︁
𝑘=1
(−1)𝑘−1𝛼̄𝑘−1𝜒𝐼𝑘 ,

𝜒𝐼𝑘 being the characteristic function of the interval 𝐼𝑘 =
(
𝑅
𝜃𝑘−1 (𝛼)
𝜃𝑛 (𝛼)

, 𝑅
𝜃𝑘 (𝛼)
𝜃𝑛 (𝛼)

)
, then

±𝑢̄𝜆,𝑛 = 𝑢̄𝑛 (𝛼) for 𝜆 = 𝜆̄𝑛 (𝛼).

iv) [Convergence of branches] Let C𝑛 be the 𝑛–th curve of nontrivial solutions introduced in Theorem 3.1. Then

C𝑛 → C𝑛 as 𝑝 → 1+,

in the sense that,
lim
𝑝→1
(𝜆𝑛 (𝛼), 𝑢𝑛 (𝛼)) = (𝜆̄𝑛 (𝛼), 𝑢̄𝑛 (𝛼)) in R × 𝐵𝑉 (𝐵(0, 𝑅)),

for every 0 < 𝛼 < 1.
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Fig. 3 Convergence of branches as 𝑝 → 1+.

v) [Uniqueness] Every nontrivial solution 𝑢 to (4.1) fulfilling the ‘energy’ condition,

𝑑

𝑑𝑟

(
𝜆 |𝑢 | − |𝑢 |

𝑞

𝑞

)
= −𝑁 − 1

𝑟
|𝑢𝑟 | in D(0, 𝑅) ′. (4.2)

necessarily belongs to some of the previous families C𝑛 = {±𝑢̄𝜆,𝑛}.

Proof (Sketch) A first step of compactness nature is the following (subindex 𝑝 refers to dependence on 𝑝). Family
𝑣𝑝 (·, 𝛼) of solutions to (3.2) admits a subfamily, still denoted 𝑣𝑝 , while a function 𝑣1 ∈ 𝐵𝑉𝑙𝑜𝑐 (0,∞) exists so that,

𝑣𝑝 ⇀ 𝑣1 weakly in 𝐿𝑠 (0, 𝑏; 𝑡𝑁−1 𝑑𝑡) as 𝑝 → 1,

for every 𝑏 > 0 and 1 ≤ 𝑠 < ∞.
A second step consists in proving that 𝑣 = 𝑣1 (𝑡) solves in the sense of Definition 2.1 the initial value problem,



−

(
𝑣𝑡
|𝑣𝑡 |

)
𝑡

− 𝑁 − 1
𝑡

𝑣𝑡
|𝑣𝑡 | =

𝑣

|𝑣 | − |𝑣 |
𝑞−2𝑣, 𝑡 > 0,

𝑣(0+) = 𝛼, 𝑣𝑡 (0) = 0,
(4.3)

together with the energy condition,(
|𝑣 | − |𝑣 |

𝑞

𝑞

)
𝑡

= −𝑁 − 1
𝑡
|𝑣𝑡 | in D(0, 𝑅) ′. (4.4)

A third and crucial step is showing that problem (4.3) constrained with condition (4.4) exhibits a unique solution.
Moreover, such solution can be expressed in the exact form,

𝑣1 (𝑡) =
∞∑︁
𝑛=1
(−1)𝑛−1𝛼̄𝑛−1𝜒(𝜃𝑛−1 , 𝜃𝑛) (𝑡),

for a precisely computed pair 𝜆̄𝑛, 𝜃𝑛, of monotone sequences of positive numbers satisfying 𝜆̄𝑛 → 0 and 𝜃𝑛 →∞.
Final step is checking that family 𝑢̄𝜆,𝑛 can be defined as,

𝑢̄𝜆,𝑛 (𝑟) = 𝜆
1
𝑞−1 𝑣1 (𝜆𝑟), where 𝜆 = 𝑅−1𝜃𝑛.

To this purpose suitable candidates for z and 𝛽 in Definition 2.1 must be furnished.
A detailed account of the (lengthy) proofs of all these assertions is contained in [22]. □

Remark 4.2
a) Functions 𝜃𝑛 (𝛼) and 𝛼̄𝑛 (𝛼) can be recursively computed starting at 𝑛 = 0 with values 𝜃0 (𝛼) = 0, 𝛼̄0 (𝛼) = 𝛼.
b) Further families of nontrivial solutions to (4.1) not satisfying the energy condition (4.2) can be found. A
characteristic property of such solutions is that they vanish in nonempty interior regions.
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