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Esta obra está bajo una licencia Reconocimiento- No comercial- Sin Obra Derivada 3.0 España de Creative Com-
mons. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-nd/3.0/es/ o
envie una carta a Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

Reconocimiento- No Comercial- Sin Obra Derivada (by-nc-nd): No se permite un uso comercial de la obra original
ni la generación de obras derivadas.

Usted es libre de copiar, distribuir y comunicar públicamente la obra, bajo las condiciones siguientes:

Reconocimiento – Debe reconocer los créditos de la obra de la manera especificada por el licenciador:

Coordinadores: Rafael Gallego, Mariano Mateos (2021), Proceedings of the XXVI Congreso de Ecuaciones
Diferenciales y Aplicaciones / XVI Congreso de Matemática Aplicada. Universidad de Oviedo.
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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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Well-balanced algorithms for relativistic fluids on a Schwarzschild
background

Ernesto Pimentel-García1, Carlos Parés1, Philippe G. LeFloch2
1. University of Málaga, Spain

2. Laboratoire Jacques-Louis Lions, Sorbonne Université, Paris, France

Abstract
A class of well-balanced finite volume methods with first and higher order of accuracy is designed for two

spherical symmetric fluid models on a Schwarzschild curved background: the Burgers-Schwarzschild model and
the Euler-Schwarzschild model. We take advantage of the explicit or implicit forms available for the stationary
solutions of these models to design numerical methods that preserve them. These methods are then used to
investigate the late time behaviour of the flows.

1. Introduction
We are interested in the numerical approximation and the long time behaviour of relativistic compressible fluid
flows on a Schwarzschild black hole background. The flow is assumed to enjoy spherical symmetry and therefore we
deal with nonlinear hyperbolic systems of partial differential equations (PDEs) in one space variable. The objective
is two-fold: on the one hand, designing and testing numerically finite volume algorithms that are well-balanced; on
the other hand, to perform a thorough investigation of the behavior of the solutions and numerically infer definite
conclusions about the long-time behavior of such flows. Our study should provide first and useful insights for, on
the one hand, further development concerning the mathematical analysis of the models and, on the other hand,
further investigations to the same problem in higher dimensions without symmetry restriction.
We consider first the relativistic Burgers-Schwarzschild model (see [12, 13]):

𝑣𝑡 + 𝐹 (𝑣, 𝑟)𝑟 = 𝑆(𝑣, 𝑟), 𝑡 ≥ 0, 𝑟 > 2𝑀, (1.1a)

where 𝑣 = 𝑣(𝑡, 𝑟) ∈ [−1, 1] is the unknown function and the flux and source terms read

𝐹 (𝑣, 𝑟) =
(
1 − 2𝑀

𝑟

) 𝑣2 − 1
2

, 𝑆(𝑣, 𝑟) = 2𝑀
𝑟2
(𝑣2 − 1), (1.1b)

while the constant 𝑀 > 0 represents the mass of the black hole. The speed of propagation for this scalar balance
law reads

𝜕𝑣𝐹 (𝑣, 𝑟) =
(
1 − 2𝑀

𝑟

)
𝑣, (1.2)

which vanishes at the boundary 𝑟 = 2𝑀 , so that no boundary condition is required in order to pose the Cauchy
problem.
Next, we consider the relativistic Euler-Schwarzschild model (as it is called in [12, 13]):

𝑉𝑡 + 𝐹 (𝑉, 𝑟)𝑟 = 𝑆(𝑉, 𝑟), 𝑡 ≥ 0, 𝑟 > 2𝑀, (1.3a)

whose unknowns are the fluid density 𝜌 = 𝜌(𝑡, 𝑟) ≥ 0 and the normalized velocity 𝑣 = 𝑣(𝑡, 𝑟) ∈ (−1, 1). These
functions are defined for all 𝑟 > 2𝑀 and the limiting values 𝑣 = ±1 can be reached at the boundary 𝑟 = 2𝑀 only,
and

𝑉 =

(
𝑉0

𝑉1

)
=

©­­­«

1 + 𝑘2𝑣2
1 − 𝑣2 𝜌

1 + 𝑘2
1 − 𝑣2 𝜌𝑣

ª®®®¬
, 𝐹 (𝑉, 𝑟) =

©­­­«

(
1 − 2𝑀

𝑟

) 1 + 𝑘2
1 − 𝑣2 𝜌𝑣(

1 − 2𝑀
𝑟

) 𝑣2 + 𝑘2
1 − 𝑣2 𝜌

ª®®®¬
, (1.3b)

𝑆(𝑉, 𝑟) =
©­­­«

−2
𝑟

(
1 − 2𝑀

𝑟

) 1 + 𝑘2
1 − 𝑣2 𝜌𝑣

−2𝑟 + 5𝑀
𝑟2

𝑣2 + 𝑘2
1 − 𝑣2 𝜌 −

𝑀

𝑟2
1 + 𝑘2𝑣2
1 − 𝑣2 𝜌 + 2𝑟 − 2𝑀

𝑟2
𝑘2𝜌

ª®®®¬
, (1.3c)

with

𝑣 =
1 + 𝑘2 −

√︂
(1 + 𝑘2)2 − 4𝑘2

(
𝑉 1

𝑉 0

)2
2𝑘2 𝑉 1

𝑉 0

, 𝜌 =
𝑉1 (1 − 𝑣2)
𝑣(1 + 𝑘2) . (1.3d)
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Here, 𝑘 ∈ (−1, 1) denotes the (constant) speed of sound. The eigenvalues of the Jacobian of the flux function are

𝜇± =
(
1 − 2𝑀

𝑟

) 𝑣 ± 𝑘
1 ± 𝑘2𝑣 , (1.4)

so that the system is strictly hyperbolic. As usual, a state (𝜌, 𝑣), by definition, is said to be sonic if one of the
eigenvalues vanishes, i.e. if |𝑣 | = |𝑘 |, supersonic if both eigenvalues have the same sign, i.e. if |𝑣 | > |𝑘 |, or subsonic
if the eigenvalues have different signs, i.e. if |𝑣 | < |𝑘 |. Both eigenvalues 𝜇± vanish at the boundary 𝑟 = 2𝑀 , so that
no boundary condition is required in order to pose the Cauchy problem.
In order to be able of running reliable and accurate numerical simulations for these two models, we design

shock-capturing, high-order, and well-balanced finite volume methods of first- and second-order of accuracy (and
even third-order accurate for (1.1)). Specifically, we extend to the present problem the well-balanced methodology
proposed recently by Castro and Parés [7] for nonlinear hyperbolic systems of balance laws. For earlier work on
well-balanced schemes we also refer to [5,16,17] and, concerning the design of geometry-preserving schemes, we
refer for instance to [1–3,6, 8–10,15, 19] and the references therein.
The properties of the stationary solutions play a fundamental role in the design of well-balanced schemes, as well

as in the study of the long time behavior of solutions. We thus also built here upon earlier investigations by LeFloch
and collaborators [11–13] on the theory and approximation of the relativistic Burgers- and Euler-Schwarzschild
model (1.1) and (1.3). Remarkably, the stationary solutions to both models are available in explicit or implicit form.

2. Well-balanced methodology
Both problems of interest are of the form

𝑉𝑡 + 𝐹 (𝑉, 𝑟)𝑟 = 𝑆(𝑉, 𝑟), 𝑟 > 2𝑀, (2.1)

with unknown 𝑉 = 𝑉 (𝑡, 𝑟) ∈ R𝑁 and 𝑁 = 1 or 2. Systems of this form have non-trivial stationary solutions, which
satisfy the ODE

𝐹 (𝑉, 𝑟)𝑟 = 𝑆(𝑉, 𝑟). (2.2)

Our goal is to introduce a family of numerical methods that are well-balanced, i.e. that preserve the stationary
solutions in a sense to be specified. We follow the strategy in [7] to which we refer for further details and arguments
of proof.
We consider semi-discrete finite volume numerical methods of the form

𝑑𝑉𝑖
𝑑𝑡

= − 1
Δ𝑟

(
𝐹𝑖+ 12 − 𝐹𝑖− 12 −

∫ 𝑟
𝑖+ 12

𝑟
𝑖− 12

𝑆(P𝑡𝑖 (𝑟), 𝑟) 𝑑𝑟
)
, (2.3)

where the following notation is used.

• 𝐼𝑖 = [𝑟𝑖− 12 , 𝑟𝑖+ 12 ] denote the computational cells, whose length Δ𝑟 is assumed to be constant for simplicity.

• 𝑉𝑖 (𝑡) denotes the approximate average of the exact solution in the 𝑖th cell at the time 𝑡, that is,

𝑉𝑖 (𝑡) � 1Δ𝑟
∫ 𝑟

𝑖+ 12

𝑟
𝑖− 12

𝑉 (𝑟, 𝑡) 𝑑𝑟. (2.4)

• P𝑡𝑖 (𝑟) denotes the approximation of the solution in the 𝑖th cell given by a high-order reconstruction operator
based on the cell averages {𝑉𝑖 (𝑡)}, that is, P𝑡𝑖 (𝑟) = P𝑡𝑖 (𝑟; {𝑉 𝑗 (𝑡)} 𝑗∈S𝑖 ). Here, S𝑖 denotes the set of cell indices
associated with the stencil of the 𝑖th cell.

• The flux terms are denoted by 𝐹𝑖+ 12 = F

(
𝑉 𝑡 ,−
𝑖+ 12
, 𝑉 𝑡 ,+
𝑖+ 12
, 𝑟𝑖+ 12

)
, where 𝑉 𝑡 ,±

𝑖+ 12
are the reconstructed states at the

interfaces, i.e.
𝑉 𝑡 ,−
𝑖+ 12

= P𝑡𝑖 (𝑟𝑖+ 12 ), 𝑉 𝑡 ,+
𝑖+ 12

= P𝑡𝑖+1 (𝑟𝑖+ 12 ). (2.5)

Here, F is a consistent numerical flux, i.e. a continuous function F : R𝑁 ×R𝑁 × (2𝑀, +∞) → R𝑁 satisfying
F(𝑉,𝑉, 𝑟) = 𝐹 (𝑉, 𝑟) for all 𝑉, 𝑟.

Furthermore, given a stationary solution 𝑉∗ of (2.2), we use the following terminology.

• The numerical method (2.3) is said to be well-balanced for 𝑉∗ if the vector of cell averages of 𝑉∗ is an
equilibrium of the ODE system (2.3).
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• The reconstruction operator is said to be well-balanced for𝑉∗ if we have P𝑖 (𝑟) = 𝑉∗ (𝑟) for all 𝑟 ∈ [𝑟𝑖− 12 , 𝑟𝑖+ 12 ],
where P𝑖 is the approximation of 𝑉∗ obtained by applying the reconstruction operator to the vector of cell
averages of 𝑉∗.

It is easily checked that, if the reconstruction operator is well-balanced for a continuous stationary solution 𝑉∗ of
(2.2) then the numerical method is also well-balanced for 𝑉∗. The following strategy to design a well-balanced
reconstruction operator P𝑖 on the basis of a standard operator Q𝑖 was introduced in [5]:
Given a family of cell values {𝑉𝑖}, in every cell 𝐼𝑖 = [𝑟𝑖− 12 , 𝑟𝑖+ 12 ] we proceed as follows.

1. Seek, (whenever possible), a stationary solution 𝑉∗𝑖 (𝑥) defined in the stencil of cell 𝐼𝑖 (∪ 𝑗∈S𝑖 𝐼 𝑗 ) such that
1
Δ𝑟

∫ 𝑟
𝑖+ 12

𝑟
𝑖− 12

𝑉∗𝑖 (𝑟) 𝑑𝑟 = 𝑉𝑖 . (2.6)

If such a solution does not exist, take 𝑉∗𝑖 ≡ 0.
2. Apply the reconstruction operator to the cell values {𝑊 𝑗 } 𝑗∈S𝑖 given by

𝑊 𝑗 = 𝑉 𝑗 − 1Δ𝑟
∫ 𝑟

𝑗+ 12

𝑟
𝑗− 12

𝑉∗𝑖 (𝑟) 𝑑𝑟, 𝑗 ∈ S𝑖 , (2.7)

in order to obtain Q𝑖 (𝑟) = Q𝑖 (𝑟; {𝑊 𝑗 } 𝑗∈S𝑖 ). We consider the MUSCL reconstruction operator (see [18]) in
the second-order case and the CWENO3 (see [14]) in the third-order case.

3. Define finally
P𝑖 (𝑟) = 𝑉∗𝑖 (𝑟) + Q𝑖 (𝑟). (2.8)

It can be then easily shown that the reconstruction operator P𝑖 in (2.8) is well-balanced for every stationary
solution provided that the reconstruction operator Q𝑖 is exact for the zero function. Moreover, if Q𝑖 is conservative
then P𝑖 is conservative, in the sense that

1
Δ𝑟

∫ 𝑟
𝑖+ 12

𝑟
𝑖− 12

P𝑖 (𝑟) 𝑑𝑟 = 𝑉𝑖 , (2.9)

and P𝑖 has the same accuracy as Q𝑖 if the stationary solutions are sufficiently regular.
If a quadrature formula (whose order of accuracy must be greater or equal to the one of the reconstruction

operator) ∫ 𝑟
𝑖+ 12

𝑟
𝑖− 12

𝑓 (𝑥) 𝑑𝑥 ≈ Δ𝑟
𝑞∑︁
𝑙=0

𝛼𝑙 𝑓 (𝑟𝑖,𝑙)

where 𝛼0, . . . , 𝛼𝑞 , 𝑟𝑖,0, . . . , 𝑟𝑖,𝑞 represent the weights and the nodes of the formula, is used to compute the averages
of the initial condition, namely 𝑉𝑖,0 =

∑𝑞
𝑙=0 𝛼𝑙𝑉0 (𝑟𝑖,𝑙), the reconstruction procedure has to be modified to preserve

the well-balanced property: Steps 1 and 2 have to be replaced by the following ones

1. Seek, if possible, the stationary solution 𝑉∗𝑖 (𝑥) defined in the stencil of cell 𝐼𝑖 (∪ 𝑗∈S𝑖 𝐼 𝑗 ) such that
𝑞∑︁
𝑙=0

𝛼𝑙𝑉
∗
𝑖 (𝑟𝑖,𝑙) = 𝑉𝑖 . (2.10)

If this solution does not exist, take 𝑉∗𝑖 ≡ 0.
2. Apply the reconstruction operator to the cell values {𝑊 𝑗 } 𝑗∈S𝑖 given by

𝑊 𝑗 = 𝑉 𝑗 −
𝑞∑︁
𝑙=0

𝛼𝑙𝑉
∗
𝑖 (𝑟 𝑗 ,𝑙), 𝑗 ∈ S𝑖 .

For first- or second-order methods, if the midpoint rule is selected to compute the initial averages, i.e. 𝑉𝑖,0 = 𝑉0 (𝑟𝑖),
then at the first step of the reconstruction procedure, the problem (2.10) reduces to finding the stationary solution
satisfying

𝑉∗𝑖 (𝑟𝑖) = 𝑉𝑖 . (2.11)
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The well-balanced property of the method can be lost if the quadrature formula is used to compute the integral
appearing at the right-hand side of (2.3). In order to circumvent this difficulty, in [7] it is proposed to rewrite the
methods as follows:

𝑑𝑉𝑖
𝑑𝑡

= − 1
Δ𝑟

(
𝐹𝑖+ 12 − 𝐹

(
𝑉 𝑡 ,∗𝑖 (𝑟𝑖+ 12 ), 𝑟𝑖+ 12

)
− 𝐹𝑖− 12 + 𝐹

(
𝑉 𝑡 ,∗𝑖 (𝑟𝑖− 12 ), 𝑟𝑖− 12

))
+ 1
Δ𝑟

∫ 𝑟
𝑖+ 12

𝑟
𝑖− 12

(
𝑆(P𝑡𝑖 (𝑟), 𝑟) − 𝑆(𝑉 𝑡 ,∗𝑖 (𝑟), 𝑟)

)
𝑑𝑟,

(2.12)

where 𝑉 𝑡 ,∗𝑖 is the function selected in Step 1 for the 𝑖th cell at time 𝑡. In this equivalent form, a quadrature formula
can be applied to the integral without losing the well-balanced property, and this leads to a numerical method of
the form:

𝑑𝑉𝑖
𝑑𝑡

= − 1
Δ𝑟

(
𝐹𝑖+ 12 − 𝐹

(
𝑉 𝑡 ,∗𝑖 (𝑟𝑖+ 12 ), 𝑟𝑖+ 12

)
− 𝐹𝑖− 12 + 𝐹

(
𝑉 𝑡 ,∗𝑖 (𝑟𝑖− 12 ), 𝑟𝑖− 12

))

+
𝑞∑︁
𝑙=0

𝛼𝑙
(
𝑆(P𝑡𝑖 (𝑟𝑖,𝑙), 𝑟𝑖,𝑙) − 𝑆(𝑉 𝑡 ,∗𝑖 (𝑟𝑖,𝑙), 𝑟𝑖,𝑙)

)
.

(2.13)

First-order well-balanced methods are obtained by selecting the trivial constant piecewise reconstruction operator
as the standard one, i.e.

Q𝑖 (𝑟,𝑉𝑖) = 𝑉𝑖 , 𝑟 ∈ [𝑟𝑖− 12 , 𝑟𝑖+ 12 ] . (2.14)

It can be easily checked that the numerical method then reduces to
𝑑𝑉𝑖
𝑑𝑡

= − 1
Δ𝑟

(
𝐹𝑖+ 12 − 𝐹

(
𝑉 𝑡 ,∗𝑖 (𝑟𝑖+ 12 ), 𝑟𝑖+ 12

)
− 𝐹𝑖− 12 + 𝐹

(
𝑉 𝑡 ,∗𝑖 (𝑟𝑖− 12 ), 𝑟𝑖− 12

))
, (2.15)

where 𝐹𝑖+ 12 = F
(
𝑉∗𝑖 (𝑟𝑖+ 12 ), 𝑉

∗
𝑖+1 (𝑟𝑖+ 12 ), 𝑟𝑖+ 12

)
.

Notice that the implementation of these methods requires to find a stationary solution with prescribed average
at Step 1 of the reconstruction procedure. In the case of the Burgers-Schwarzschild model, the explicit expression
of the stationary solutions is available

𝑣∗ (𝑟) = ±
√︂
1 − 𝐾2

(
1 − 2𝑀

𝑟

)
, 𝐾 > 0. (2.16)

and it can be easily checked that (2.10) and (2.11) have always a unique solution. In the case of the Euler-
Schwarzschild model, the following implicit form of the stationary solutions is available

sgn(𝑣) (1 − 𝑣2) |𝑣 | 2𝑘
2

1−𝑘2 𝑟
4𝑘2
1−𝑘2(

1 − 2𝑀𝑟
) = 𝐶1, 𝑟 (𝑟 − 2𝑀)𝜌 𝑣

1 − 𝑣2 = 𝐶2, (2.17)

where 𝐶1, 𝐶2 are constants. Once the constants are fixed by imposing (2.11), a nonlinear system has to be solved
to evaluate the stationary solution at a point of the stencil. This system can have 0, 1, or 2 solutions. If there is no
solution the standard reconstruction is used. When there are two solutions, one of them is supersonic and the other
is subsonic: the one whose regime is equal to that of 𝑉𝑖 is selected.

3. Numerical tests
First-, second- and third-order methods for the Burgers-Schwarzschild and first- and second-order methods for
Euler-Schwarzschild have been implemented. Several numerical test are presented here to show the relevance of
the well-balanced property for the investigation of the asymptotic behaviour of the flows.

3.1. Burgers-Schwarzschild
We consider the spatial interval [2𝑀, 𝐿] with 𝑀 = 1 and 𝐿 = 4, a 256-point uniform mesh, and the CFL number
equal to 0.5. At 𝑟 = 2𝑀 , 𝐹− 12 = 0 is imposed. At 𝑟 = 𝐿, a transmissive boundary condition based on the use
ghost-cells is used. The following numerical flux is considered:

𝐹𝑖+ 12 = F(𝑣𝑖 , 𝑣𝑖+1, 𝑟𝑖+ 12 ) =
(
1 − 2𝑀

𝑟𝑖+ 12

)
𝑞2 (0; 𝑣𝑖 , 𝑣𝑖+1) − 1

2
,

where 𝑞(·; 𝑣𝐿 , 𝑣𝑅) is the self-similar solution of the Riemann problem for the standard Burgers equation with the
initial condition

𝑣0 (𝑟) =
{
𝑣𝐿 , 𝑟 < 0,
𝑣𝑅, 𝑟 > 0.

In order to check the relevance of the well-balanced property, the well-balanced methods will be compared with
standard ones based on the same numerical fluxes and the standard first-, second-, or third-order reconstructions.
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Positive stationary solution We consider the initial condition

𝑣0 (𝑟) =
√︂
3
4
+ 1
2𝑟

(3.1)

corresponding to a positive stationary solution. Table 1 shows the error in 𝐿1 norm between the initial condition and
the numerical solution at time 𝑡 = 50. Figure 1 compares the numerical solutions obtained with the well-balanced
and the non-well-balanced methods: it can be seen how the latter are unable to capture the stationary solution.
After a time that decreases with the order, the numerical solutions depart from the steady state.

Scheme (256 cells) Error (1st) Error (2nd) Error (3rd)
Well-balanced 1.13E-14 8.72Ee-17 7.22E-14
Non well-balanced 1.89 1.61 8.78E-02

Tab. 1Well-balanced versus non-well-balanced schemes: 𝐿1 errors at 𝑡 = 50 for the Burgers model with the initial condition
(3.1).

Fig. 1 Burgers-Schwarzschild model with the initial condition (3.1): first-, second-, and third-order well-balanced and not-
well-balanced methods at various times.

Perturbation of a steady shock solution In this test case we consider the initial condition:

𝑣̃0 (𝑟) = 𝑣0 (𝑟) + 𝑝𝐿 (𝑟), (3.2)

where 𝑣0 is the steady shock solution given by

𝑣0 (𝑟) =



√︂
3
4
+ 1
2𝑟
, 2 < 𝑟 < 3,

−
√︂
3
4
+ 1
2𝑟
, otherwise,

(3.3)

and

𝑝𝐿 (𝑟) =


−1
5
𝑒−200(𝑟−2.5)

2
, 2.2 < 𝑟 < 2.8,

0, otherwise.
(3.4)

The first-, second-, and third-order well-balanced methods have been applied to this problem. In Figure 2 it can be
observed that, after the wave generated by the initial perturbation leaves the computational domain, the stationary
solution (3.3) is not recovered: a different stationary solution is obtained whose shock is placed at a different
location. Observe that all the three methods capture the same stationary solution.
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Fig. 2 Burgers-Schwarzschild model with the initial condition (3.2)-(3.3)-(3.4): first-, second-, and third-order well-balanced
methods at selected times.

3.2. Euler-Schwarzschild
We consider the spatial interval [2𝑀, 𝐿] with 𝑀 = 1 and 𝐿 = 10, a 500-point uniform mesh, 𝑘 = 0.3, and the CFL
number equal to 0.5. At 𝑟 = 2𝑀 we impose 𝐹− 12 = 0 as boundary condition since

(
1 − 2𝑀𝑟

)
= 0. The boundary

conditions are the same as in the previous test case. A HLL-like numerical flux in PVM form (see [4]) will be used:

𝐹𝑖+ 12 =
1
2
(𝐹 (𝑉𝑖) + 𝐹 (𝑉𝑖+1)) − 12 (𝛼0 (𝑉𝑖+1 −𝑉𝑖) + 𝛼1 (𝐹 (𝑉𝑖+1) − 𝐹 (𝑉𝑖))) , (3.5)

with

𝛼0 =
𝜆2 |𝜆1 | − 𝜆1 |𝜆2 |

𝜆2 − 𝜆1
, 𝛼1 =

|𝜆2 | − |𝜆1 |
𝜆2 − 𝜆1

, (3.6)

where 𝜆1 and 𝜆2 are the eigenvalues of some intermediate matrix 𝐽𝑖+ 12 of the form

𝐽𝑖+ 12 =

(
1 − 2𝑀

𝑟𝑖+ 12

) 
0 1

𝑘2 − 𝑣2𝑚
1 − 𝑘2𝑣2𝑚

2(1 − 𝑘2)𝑣𝑚
1 − 𝑘2𝑣2𝑚


(3.7)

where 𝑣𝑚 is some intermediate value between 𝑣𝑛𝑖 and 𝑣
𝑛
𝑖+1.

Discontinuous stationary entropy weak solution We consider the initial condition

𝑉0 (𝑟) =
{
𝑉∗− (𝑟), 𝑟 ≤ 6,
𝑉∗+ (𝑟), otherwise,

(3.8)

where 𝑉∗− (𝑟) is the supersonic stationary solution such that

𝜌∗− (6) = 4, 𝑣∗− (6) = 0.6 (3.9)

and 𝑉∗+ (𝑟) is the subsonic one such that

𝜌∗+ (6) =
𝜌∗− (6) (𝑣∗− (6)2 − 𝑘4)
𝑘2 (1 − 𝑣∗− (6)2)

, 𝑣∗+ (6) =
𝑘2

𝑣∗− (6)
. (3.10)

𝑉0 is an entropy weak stationary solution of the system: see [12,13]. Table 2 shows the error in 𝐿1 norm between the
numerical solution at time 𝑡 = 50 and Figure 3 shows the comparison of the numerical results obtained with well-
balanced and non-well-balanced methods at selected times. The numerical results of this section put on evidence,
as for the Burgers-Schwarzschild system, the relevance of using well-balanced methods for the Euler-Schwarzschild
model.

Relation between the perturbation and the displacement of the shock In order to study the relationship
between the amplitude of the perturbation and the distance between the initial and the final shock locations, we
consider the family of initial conditions:

𝑉0 (𝑟) = 𝑉∗ (𝑟) + 𝛿(𝛼, 𝑟), (3.11)
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Scheme (500 cells) Error 𝑣 (1st) Error 𝜌 (1st) Error 𝑣 (2nd) Error 𝜌 (2nd)
Well-balanced 2.20E-13 1.25E-11 1.92E-13 1.03E-11
Non well-balance 0.89 3.94 0.89 3.92

Tab. 2Well-balanced versus non-well-balanced schemes: 𝐿1 errors at time 𝑡 = 50 for the Burgers-Schwarzschild model with
the initial condition (3.8)

Fig. 3Euler-Schwarzschildmodel with the initial condition (3.8): first- and second-order well-balanced and non-well-balanced
methods at selected times for the variable 𝑣 .

where 𝑉∗ is the steady shock solution given by (3.8)-(3.10) and

𝛿(𝛼, 𝑟) = [𝛿𝑣 (𝛼, 𝑟), 𝛿𝜌 (𝛼, 𝑟)]𝑇 =

{
[𝛼𝑒−200(𝑟−4)2 , 0]𝑇 , 3 < 𝑟 < 5,
[0, 0]𝑇 , otherwise,

(3.12)

with 𝛼 > 0. In this case we will also use a 2000-point uniform mesh. Figure 4 shows the numerical solution for
different values of 𝛼 and we observe that depending on the amplitude of the perturbation the numerical solutions
converge in time to different steady shock solutions.

Fig. 4 Euler-Schwarzschild model with the initial condition (3.11): first-order well-balanced method taking different values
of 𝛼 for variable 𝑣 .

4. Conclusions
The procedure introduced in [5] and recalled in [7] is extended to the relativistic fluid flows in the Schwarzschild
background. More precisely, we develop first and higher order well-balanced schemes for the relativistic Burgers
and Euler systems. Several numerical tests are used to validate the schemes and to highlight the relevance of
the well-balanced property when dealing with these relativistic flows. We also use these schemes to perform a
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systematic numerical study of these two PDE systems in order to be able to extract general conclusions about the
long time behavior of the flow. Such a study is expected to be a useful tool to direct the mathematical analysis of
the models and the study of more complex relativistic models.
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