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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo

3



Scientific Committee

� Juan Luis Vázquez, Universidad Autónoma de Madrid

� Marı́a Paz Calvo, Universidad de Valladolid

� Laura Grigori, INRIA Paris
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Flux-corrected methods for chemotaxis equations
Alba M. Navarro Izquierdo1, M. Victoria Redondo Neble1, J. Rafael Rodríguez Galván1

Universidad de Cádiz, Spain

Abstract

The aim of this work is to review flux correction methods for chemotaxis equations with special emphasis
in two directions. Firstly, to study a possible extension to the Keller–Segel equations of some recent research
available on literature about well-posedness and error order of flux correction schemes. And secondly, to test the
validity of the low order scheme in some practical numerical examples.

1. Introduction
The importance of mathematics to understand biological processes and the number of mathematicians studying
biological and medical phenomena has been continuously increasing in recent years. In particular, for chemotaxis
phenomena, which model the property of living organisms to migrate in response to chemical gradients. The
celebrated classical chemotaxis model was introduced in [8, 9] and, together with all its numerous variants, has
attracted significant interest from the theoretical point of view (see e.g. the compilations [4, 7]).
On the other hand, whereas there are very few numerical results in the literature, mathematical modeling of

chemotaxis is a challenging task and it has developed into a relatively large and diverse discipline. In fact, the
solutions exhibit interesting mathematical properties which are not easily adapted to a classical discrete methods for
solving partial differential equations (EDP) like finite elements or other Galerkin methods. For instance, solutions
to the Keller–Segel equations satisfy lower bounds (positivity) and enjoy an energy law, which is obtained by
testing the equations against non linear functions. Generally speaking, cross-diffusion mechanisms governing the
chemotactic phenomena makes them difficult to analyze not only theoretically but also numerically.

2. Setting of the Problem
In this work we focus on the numerical analysis and simulation of some discrete schemes for the classical Keller-
Segel system on chemotaxis, which is given by the following equations:




𝑢𝑡 = 𝛼0Δ𝑢 − 𝛼1∇ · (𝑢∇𝑣), 𝑥 ∈ Ω, 𝑡 > 0,
𝑣𝑡 = 𝛼2Δ𝑣 − 𝛼3𝑣 + 𝛼4𝑢, 𝑥 ∈ Ω, 𝑡 > 0,
∇𝑢 · n = ∇𝑣 · n = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,
𝑢(𝑥, 0) = 𝑢0 (𝑥), 𝑣(𝑥, 0) = 𝑣0 (𝑥), 𝑥 ∈ Ω.

(2.1)

Here 𝑢 and 𝑣 are non-negative functions in Ω × [0, 𝑇] representing the density of cells and chemical-signal,
respectively, 𝑇 > 0 is a fixed time, and Ω is a bounded domain in R𝑑 , 𝑑 = 2 or 𝑑 = 3, where the boundary 𝜕Ω is
Lipschitz and n is the unit outward normal vector.
A lot of research on this topic has been recently made from an analytical point of view (see e.g. [4, 7] and

references therein). Global in time existence and boundedness of the solution has been show if the initial data is
small enough, while blow-up in some solutions of (2.1) occurs in many other interesting cases.
The following well-known properties can be higlighted: positivity,

𝑢(𝑥, 𝑡) > 0, (𝑥, 𝑡) ∈ Ω × [0, 𝑇], (2.2)

and conservtion of the total mass, ∫
Ω
𝑢(𝑥, 𝑡) 𝑑𝑥 =

∫
Ω
𝑢0 (𝑥) 𝑑𝑥. (2.3)

Developing numerical schemes which satisfy the discrete versions of these properties has been the object of many
authors, most of whom have focused on finite volume schemes, that in principle fit well with the chemotactic cross
difusion term present in (2.1). Among them we can stand out the works of Saad and coworkers [1, 12] and also of
Kurganov [5] and coworkers. Some works also use Galerkin discrete schemes, for instance discontinuous Galerkin
methods (Kurganov and Epshtyn [6]) and standard finite elements (Saito [13]). In all cases, the strategy is to
introduce some linearization of the chemotaxis term in (2.1) and then to use some upwind technique to preserve
property (2.2).

XXVI CONGRESO DE ECUACIONES DIFERENCIALES Y APLICACIONES
XVI CONGRESO DE MATEMÁTICA APLICADA
Gijón, 14-18 junio 2021
(pp. 289–294)
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In this work we focus in the flux correction technique for the following time-stepping numerical scheme that
uncouple cells equation from chemical-signal equation: guive a partition of the time interval [0, 𝑇] into subintervals
of size 𝑘 > 0, at each time step 𝑡𝑚+1, we approximate 𝑢(𝑡𝑚+1) and 𝑣(𝑡𝑚+1) as follows:{

(1/𝑘)𝑣𝑚+1 − Δ𝑣𝑚+1 + 𝑣𝑚+1 = (1/𝑘)𝑣𝑚 + 𝑢𝑚
(1/𝑘)𝑢𝑚+1 − Δ𝑢𝑚+1 + ∇ · (𝑢𝑚+1∇𝑣𝑚+1) = (1/𝑘)𝑢𝑚.

(2.4)

Note that, for the sake of simplicty, we have taken 𝛼0 = 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 1 and also a semi-implicit Euler
scheme is introduced, altough some results will generalized to Crank-Nicolson.
Flux correction (see e.g. [11] and references therein) has been investigated for decades for transport equations

with the name of FCT (flux-corrected transport). These schemes have applied in many other context like the
discretization of time-dependent convection–diffusion or turbulent flows. Also they have been applied specifically
to chemotaxis equations [14–16]. But, the difficulty for practical implementation on standard finitite elements
libraries and and specifically the lack of solid analytical results for existence of solution and a priori error estimates
have made this methods little used excepting a small circle of computer scientists. This situation may have changed
because a theory has started to be developed in recent years in a serie of papers of Barrenechea et al [2,3]. Although
this theory covers only the steady time-independent case for divergence-free convection-diffusion equations, the
purpose of this work has been its exploration and testing the low order solutions in the framework of chemotaxis
equations.

3. Algebraic Flux Correction in Chemotaxis
At each time iteration, the system of algebraic equations (2.4) consists of two decoupled subproblems for the
unknowns 𝑣𝑚+1 and 𝑢𝑚+1: [

𝑴 + 𝑘𝑳 + 𝑘𝑴]
𝑣𝑚+1 = 𝑴𝑣𝑚 + 𝑘𝑴𝑢𝑚, (3.1)[

𝑴 + 𝑘𝑳 + 𝑘𝑲 (𝜷𝑚+1)]𝑢𝑚+1 = 𝑴𝑢𝑚, (3.2)

where 𝑴, 𝑳 and 𝑲 (𝜷𝑚+1) are respectively the mass, diffusion and convection matrices with elements defined as

𝑚𝑖 𝑗 =
∫
Ω
𝜑𝑖𝜑 𝑗 𝑑𝑥, 𝑙𝑖 𝑗 =

∫
Ω
∇𝜑𝑖∇𝜑 𝑗 𝑑𝑥, 𝑘𝑖 𝑗 (𝜷𝑚+1) = −

∫
Ω
𝜑 𝑗𝜷

𝑚+1∇𝜑𝑖 𝑑𝑥.

We denote 𝜷𝑚+1 = ∇𝑣𝑚+1 and 𝜑𝑖 is a 𝑃1 piecewise-polynomial basis. The algebraic flux correction technique
consists of a conservative manipulation of the matrices 𝑴 and 𝑲 (𝜷𝑚+1) in order to enforce at the discrete level the
positivity of the system (3.1)–(3.2). Specifically, the consistent mass matrix 𝑴 is approximated by the diagonal
matrix 𝑴𝐿 using the well-know mass lumping technique:

𝑴𝐿 = diag(𝑚𝑖), 𝑚𝑖 :=
∑︁
𝑗

𝑚𝑖 𝑗 .

On the other hand, negative off-diagonal elements of 𝑲 (𝜷𝑚+1) are eliminated by adding an artificial diffusion
operator 𝑫, defined as the symmetric matrix with elements

𝑑𝑖 𝑗 = max{−𝑘𝑖 𝑗 , 0,−𝑘 𝑗𝑖}, 𝑗 ≠ 𝑖, 𝑑𝑖𝑖 = −
∑︁
𝑗≠𝑖

𝑘𝑖 𝑗 .

The result is a low order positivity-preserving discretization which, in the 1D case, transforms the linear finite
element convection system (3.2) into a first-order upwind difference [10]. The 2D case is much more complicated
although error estimates have been recently derived for the steady case [2]. If we denote 𝑨𝑣 = 𝑴 + 𝑘𝑳 + 𝑘𝑴 and
𝑨𝑢 = 𝑴 + 𝑘𝑳 + 𝑘𝑲 (𝜷𝑚+1), this low-order system corresponds to

[𝑨𝑣 + 𝑫𝑣 ] 𝑣𝑚+1 = 𝑴𝑣𝑚 + 𝑘𝑴𝑢𝑚 (3.3)
[𝑨𝑢 + 𝑫𝑢] 𝑢𝑚+1 = 𝑴𝑢𝑚 (3.4)

with 𝑫𝑣 = 𝑴𝐿 − 𝑴, 𝑫𝑢 = 𝑴𝐿 − 𝑴 + 𝑘𝑫. And, since the row sums of the matrix 𝑫 vanish, the error with respect
to the original consistent system (3.1)–(3.2) can be written in terms of two vectors

𝑓 𝑣𝑖 =
∑︁
𝑗≠𝑖

𝑓 𝑣𝑖 𝑗 𝑓 𝑢𝑖 =
∑︁
𝑗≠𝑖

𝑓 𝑢𝑖 𝑗

where the anti-diffusive fluxes 𝑓 𝑣𝑖 𝑗 and 𝑓
𝑢
𝑖 𝑗 are computed from the mass lumping and the artificial diffusion received

by each node 𝑖: ((𝑴 − 𝑴𝐿)𝑢𝑚+1
)
𝑖 =

∑︁
𝑗≠𝑖

𝑚𝑖 𝑗 (𝑢 𝑗 − 𝑢𝑖),
(
𝑫𝑢𝑚+1

)
𝑖 =

∑︁
𝑗≠𝑖

𝑑𝑖 𝑗 (𝑢 𝑗 − 𝑢𝑖). (3.5)
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Fig. 1 Chemotatic migration towards fixed chemical concentration. Low order scheme.

Now, instead of adding this fluxes to the right hand side of (3.3), (3.4) and thus obtain the original consistent
system, the idea of algebraic flux correction schemes is to limit those anti-diffusive fluxes 𝑓𝑖 𝑗 that would otherwise
get back to the original high order solution and cause spurious oscillations. Each flux is multiplied by a solution-
dependent correction factor 𝛼𝑖 𝑗 ∈ [0, 1]. The original Galerkin discretization correspond to selecting 𝛼𝑖 𝑗 = 1 and
may be applied where the solution is smooth, while 𝛼𝑖 𝑗 = 0 may be set in the neighborhood of steep fronts, where
adding diffusion is appropriate. We impose 𝛼𝑖 𝑗 = 𝛼 𝑗𝑖 to guarantee that the scheme is conservative.
Thus the final form of the algebraic flux correction scheme corresponds to the following system of nonlinear

equations:

𝑨𝑣𝑣
𝑚+1
𝑖 +

𝑁∑︁
𝑗=1
(1 − 𝛼𝑣𝑖 𝑗 )𝑑𝑣𝑖 𝑗 (𝑣𝑚+1𝑗 − 𝑣𝑚+1𝑖 ) = 𝑴𝑣𝑚𝑖 + 𝑘𝑴𝑢𝑚𝑖 , 𝑖 = 1, . . . , 𝑁, (3.6)

𝑨𝑢𝑢
𝑚+1
𝑖 +

𝑁∑︁
𝑗=1
(1 − 𝛼𝑢𝑖 𝑗 )𝑑𝑢𝑖 𝑗 (𝑢𝑚+1𝑗 − 𝑢𝑚+1𝑖 ) = 𝑴𝑢𝑚𝑖 , 𝑖 = 1, . . . , 𝑁, (3.7)

where 𝑑𝑣𝑖 𝑗 and 𝑑
𝑢
𝑖 𝑗 are respectively the entries of 𝑫

𝑢 and 𝑫𝑣 while 𝛼𝑣𝑖 𝑗 = 𝛼𝑣𝑖 𝑗 (𝑣𝑚+1) and 𝛼𝑢𝑖 𝑗 = 𝛼𝑢𝑖 𝑗 (𝑢𝑚+1) are in
[0, 1], being 𝛼𝑣𝑖 𝑗 = 𝛼𝑣𝑗𝑖 and 𝛼𝑢𝑖 𝑗 = 𝛼𝑢𝑗𝑖 .
For the choice of the flux limiters 𝛼𝑢𝑖 𝑗 and 𝛼

𝑣
𝑖 𝑗 , we are going to us consider the widely used Zalesak limiters (see

e.g. [2,10,11,17]). Other appropriate limiters can be set, see e.g. [3]. At the present time, the authors of this work
claim that, under some restrictions in the time and space discretization, the following result can be shown:

Theorem 3.1 Assuming 𝑢0 ≥ 0 and 𝑣0 ≥ 0:
1. The low order discrete solution (𝑢𝑚+1, 𝑣𝑚+1) (obtained from 𝛼𝑢𝑖 𝑗 = 𝛼

𝑣
𝑖 𝑗 = 0) is positive for all 𝑚 ≥ 0.

2. If 𝛼𝑢𝑖 𝑗 , 𝛼
𝑣
𝑖 𝑗 are the Zalesak limiters

(a) There exists a solution of the nonlinear problem (3.6)–(3.7).
(b) The high order solution (𝑢𝑚+1, 𝑣𝑚+1) is positive for all 𝑚 ≥ 0.

3. The approximate solutions (𝑢𝑚+1, 𝑣𝑚+1) converge to the exact solution (𝑢, 𝑣) with at least suboptimal error
order.

4. Numerical Tests
4.1. Chemotactic transport
In our first numerical test we take a static (non time-dependent) chemical source 𝑣 and study the migration of
the biological organisms 𝑢 toward high gradients of 𝑣. Specifically, the domain Ω is taken as the rectangle
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Fig. 2 Chemotatic migration towards fixed chemical concentration. High order scheme.

[0, 5] × [−1, 1]. we introduce an unstructured mesh with size ℎ ' 0.01. The time interval [0, 50] is discretized so
that the CFL condition 𝑘/ℎ < 1 is verified. On the other hand, 𝑣 is set as the gaussian function

𝑣(𝑥, 𝑡) = 𝑣(𝑥) = 𝑒−𝐶 ( (𝑥−4)2+𝑦2) ,
with 𝐶 = 50, which approximately verifies ∇𝑣 · n = 0 on 𝜕Ω, and 𝑢 is the solution of (2.1)𝑎 with the less favorable
no diffusion condition 𝛼0 = 0, 𝛼1 = 1. On the other hand, ∇𝑢 ·n = 0 on 𝜕Ω and the following initial state is chosen:

𝑢0 (𝑥) = 𝑒−𝐶 ( (𝑥−1)2+𝑦2) .
Figure 1 shows the result obtained at times 𝑡 = 0, 𝑡 = 11.20, 𝑡 = 27.80 and 𝑡 = 50 with the low order scheme
(𝛼𝑢𝑖 𝑗 = 𝛼𝑣𝑖 𝑗 = 0). This initial state is transported toward maximum concentration of 𝑣. Positivity of solution is
maintained strictly and no spurious ripples appear. Figure 2 shows the same test but the high-order scheme (Zalesak
limiters) is introduced. In this case, fixed point iterations are introduced to avoid nonlinearity of the scheme. The
results are similar although lesser diffusion can be appreciated at intermediate time steps.

4.2. Neuroblast Migration in the Brain
Secondly, we show a numerical test dealing with the migration of neuroblasts (precursor cells of neurons) in the
adult brain. This test is part of a project we are working in, together with researchers of Universidad de Sevilla and
Universidad de Cádiz. In recent decades, it has been known that neuroblasts are born in a specific part of the adult
brain (the Subventricular Zone, SVZ) migrate to other zones: to the Olfactory Bulb (OB) and eventually to lesions
in the brain). Some specific parts of the brain (the Corpus Callosum) influences the migration, obstructing it. This
process can be modeled by a chemotaxis-like process.
A low order flux correction scheme has been applied in this context (together with other numerical schemes, all

of which will be published in a forthcoming work). The results for different time steps are presented in Figure 3,
where a source of neuroblasts starts from the SVZ and, bording the Corpus Callosum (represented as a light spot)
goes to the OB, located at the left side of the brain.

4.3. Blow up for Keller–Segel System
One of themore challenging characteristics of Keller–Segel equations (2.1) is the fact that finite-time blow-up occurs
in many interesting cases, for 2D and 3D, if initial data is not small enough [4]. It has been deeply investigated
and many authors have worked in obtaining numerical schemes that maintain positivity and are free of spurious
oscillations in blow-up regime. In particular, flux correction and chemotaxis have been studied in [14–16].
Here we just show a validation focused on the low order scheme, which can be programmed in standard finite

element libraries without too much additional difficulty. In particular, the low order scheme avoids the necessity of
solving nonlinear scheme and its much less computing demanding, Making feasible the use of finer meshes.
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Fig. 3 Chemotatic migration towards fixed chemical concentration. Different time steps (from top left to bottom right). Low
order scheme.

Specifically, we consider the numerical test studied in [5], where the domain Ω = (−1/2, 1/2)2 is meshed with
ℎ ≈ 1/100, ℎ ≈ 1/200 and ℎ ≈ 1/400. System (2.1) is solved with 𝛼0 = 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 1 and

𝑣0 = 0, 𝑢0 = 1000𝑒−100(𝑥
2+𝑦2) .

The blow up which, according to the theoretical results, is expected for this initial data, is conjectured to occur at
some 𝑡∗ ∈ (4.4 × 10−5, 10−4), where maximum values of 𝑢 are around 104 or 105.
Our numerical test with the low-order scheme, maintain the positivity of 𝑢 and 𝑣 and reaches the following

values:

• At 𝑡 = 4.4 × 10−5: max(𝑢) = 2.58586𝑒 + 04, min(𝑢) = 1.41495𝑒 − 18, max(𝑣) = 4.95975𝑒 + 02, min(𝑣) =
1.41495𝑒 − 18.

• At 𝑡 = 10 × 10−4: max(𝑢) = 1.27965𝑒 + 05, min(𝑢) = 6.35863𝑒 − 18, max(𝑣) = 4.92729𝑒 + 02, min(𝑣) =
6.35863𝑒 − 18.

It is interesting no observe that mass is conserved, with a constant value of 3.14159𝑒 + 01 for 𝑢 in Ω.
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