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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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KPZ equation approximated by a nonlocal equation
Alexis Molino

Universidad de Almería, Spain

Abstract
Our main concern is the study of several aspects related with solutions of nonlocal problems whose prototype

is 


𝑢𝑡 =
∫
R𝑁

𝐽 (𝑥 − 𝑦) (𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡))G (
𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡))𝑑𝑦 in Ω × (0, 𝑇) ,

𝑢(𝑥, 0) = 𝑢0 (𝑥) in Ω ,

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡) in (R𝑁 \Ω) × (0, 𝑇) .
where we take, as the most important instance, G(𝑠) ∼ 1 + 𝜇2 𝑠

1+𝜇2𝑠2 with 𝜇 ∈ R as well as 𝑢0 ∈ 𝐿1 (Ω), 𝐽 is
a smooth symmetric function with compact support and Ω is a bounded smooth subset of R𝑁 , with nonlocal
Dirichlet boundary condition ℎ(𝑥, 𝑡).
The results deal with existence, uniqueness and comparison principle. The main motivation for dealing with

these types of equations is that, under a kernel G rescaled in a suitable way, the unique solution of the above
problem converges to a solution of the deterministic Kardar-Parisi-Zhang equation.

1. Introduction
We present some partial results from [15] concerning to the Dirichlet problem. Concretely, existence, uniqueness,
comparison principle and rescaling kernel for the following nonlinear parabolic equation with nonlocal diffusion,




𝑢𝑡 (𝑥, 𝑡) =
∫
R𝑁

𝐽 (𝑥 − 𝑦) (𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡))G (
𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡))𝑑𝑦 in Ω × (0, 𝑇) ,

𝑢(𝑥, 0) = 𝑢0 (𝑥) in Ω ,

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡) in (R𝑁 \Ω) × (0, 𝑇) ,

(1.1)

for an appropriate functions 𝐽 and G (see below (𝐽) and (G)), and its relationship with the deterministic KPZ
equation 



𝑢𝑡 − Δ𝑢 = 𝜇 |∇𝑢 |2 in Ω × (0, 𝑇) ,

𝑢(𝑥, 0) = 𝑢0 (𝑥) in Ω ,

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡) on 𝜕Ω × (0, 𝑇) ,

(1.2)

where

1. Ω is a bounded smooth subset of R𝑁 adding the boundary condition 𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡) in (R𝑁 \ Ω) × (0, 𝑇)
for ℎ sufficiently smooth;

2. 𝑇 > 0 (possibly infinite) and 𝜇 ∈ R;
3. 𝑢0 is a smooth enough datum.

1.1. Local problem
The equation 𝑢𝑡 − Δ𝑢 = 𝜇 |∇𝑢 |2 , at least for 𝜇 > 0, is known in the literature as the deterministic Kardar-Parisi-
Zhang (KPZ) equation. The KPZ equation was proposed in [13] in the physical theory of growth and roughening
of surfaces. Further developments on physical applications of the KPZ equation can be found in [5] (for a survey
on more recent aspects we refer to [19]). The deterministic case corresponds to the smoothing from an initially
rough surface to a flat one.
The Kardar–Parisi–Zhang equation has given rise to a rich mathematical theory which has had a spectacular

recent progress (see [10,11]). From the point of view of Partial Differential Equations, equations having a gradient
term with the so-called natural growth have been largely studied in the last decades by many mathematicians: in
addition to the classical reference [14] let us just mention the pioneer paper by Aronson and Serrin [3] and also the
result due to Boccardo, Murat and Puel [6].

XXVI CONGRESO DE ECUACIONES DIFERENCIALES Y APLICACIONES
XVI CONGRESO DE MATEMÁTICA APLICADA
Gijón, 14-18 junio 2021
(pp. 277–283)

CEDYA/CMA 277 ISBN 978-84-18482-21-2



1.2. Nonlocal problem
Nonlocal evolution equations have been extensively studied to model diffusion processes. The prototype example
in this framework is the following one

𝑢𝑡 (𝑥, 𝑡) =
∫
R𝑁
𝐾 (𝑥, 𝑦) (𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡))𝑑𝑦, (1.3)

where the kernel 𝐾 : R𝑁 × R𝑁 → R is a nonnegative smooth function (not necessarily symmetric) satisfying∫
R𝑁
𝐾 (𝑥, 𝑦)𝑑𝑥 = 1 for any 𝑦 ∈ R𝑁 (or variations of it, see for instance [2]). If 𝑢(𝑦, 𝑡) is thought of as a density at

location 𝑦 at time 𝑡 and 𝐾 (𝑥, 𝑦) as the probability distribution of jumping from place 𝑦 to place 𝑥, then the rate at
which individuals from any other location go to the place 𝑥 is given by

∫
R𝑁
𝐾 (𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦. On the other hand,

the rate at which individuals leave the location 𝑥 to travel to all other places is −
∫
R𝑁
𝐾 (𝑦, 𝑥)𝑢(𝑥, 𝑡)𝑑𝑦 = −𝑢(𝑥, 𝑡).

In the absence of external sources this implies that the density must satisfy equation (1.3).
We are especially interested in symmetric kernels that have compact support; it means that the individuals can

jump from a place to other, but they cannot go “too far away”. On the contrary, for instance, nonlocal operators
that allow “long jumps”correspond to a different choice of kernels. It is the case of the fractional Laplacian that
involves a kernel that is singular and that does not have compact support (see, for instance [18] for a survey on this
latter class of processes and [1] for the KPZ equation in fractional framework).
In particular, we consider 𝐽 : R𝑁 → R as a nonnegative radial symmetric function such that

𝐽 ∈ C𝑐 (R𝑛), with
∫
R𝑁

𝐽 (𝑧) 𝑑𝑧 = 1.

Choosing the kernel as 𝐾 (𝑥, 𝑦) = 𝐽 (𝑥 − 𝑦), equation (1.3) changes into a diffusion equation of convolution type,
namely

𝑢𝑡 (𝑥, 𝑡) = (𝐽 ∗ 𝑢 − 𝑢) (𝑥, 𝑡) =
∫
R𝑁
𝐽 (𝑥 − 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 − 𝑢(𝑥, 𝑡), in Ω × (0, 𝑇) (1.4)

(see for instance [4, 7, 9]).

1.3. Background
One of the most important features of nonlocal equations is that they can be rescaled to approximate local ones.
In [8] (see also [16] and [17] for the same type of result in a more general case) it has been proved that, under

an appropriate rescaling kernel, solutions of (1.4) converge uniformly to solutions of heat equation. To be more
specific, solutions of

𝑢𝜀𝑡 (𝑥, 𝑡) =
𝐶

𝜀2

[∫
R𝑁
𝐽𝜀 (𝑥 − 𝑦)𝑢𝜀 (𝑦, 𝑡)𝑑𝑦 − 𝑢𝜀 (𝑥, 𝑡)

]
in Ω × (0, 𝑇) (1.5)

converge uniformly (when 𝜖 → 0 ) to solutions of
𝑣𝑡 = Δ𝑣 in Ω × (0, 𝑇) ,

where 𝐶−1 =
1
2

∫
R𝑁

𝐽 (𝑧)𝑧2𝑁 𝑑𝑧 and 𝐽𝜀 (𝑠) =
1
𝜀𝑁

𝐽
( 𝑠
𝜀

)
.

Let us mention that results in this direction, with the presence of a gradient term of convection type can be
found, for instance, in [12]: in such a case the equation is the sum of two terms, one corresponding to the diffusion
one, the other to the convection term.
In general, we consider nonlocal problems of the type

𝑢𝑡 (𝑥, 𝑡) =
∫
R𝑁
𝐽 (𝑥 − 𝑦) (𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡)) G (

𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡)) 𝑑𝑦, (1.6)

where G : R → R is a suitable continuous function. For instance, if G ≡ 1, then we recover problem (1.4). Let
us mention that the case G(𝑠) = |𝑠 |𝑝−2, with 𝑝 ≥ 2 has been treated in [2] where it is proved that solutions to the
rescaled nonlocal problem converge to solutions of the Dirichlet problem for the 𝑝–Laplacian evolution equation.
On the contrary, the kind of kernels G we consider does not have the same structure of the previous ones, since

they are bounded and do not satisfy any symmetry assumptions (neither odd nor even).
With this background, it is not surprising that problem (1.2) can be approximated by nonlocal equations. The

question is to identify what kind of nonlocal equation approximates, under rescaling, problem (1.2).
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1.4. Main results
To conclude this introduction we want to state the most relevant results of this work. In order to not enter in
technicalities, let us fix a family of kernels G𝜇 that are the easiest (not trivial) example we can consider: for 𝜇 ∈ R
let

G𝜇 (𝑠) = 1 + 𝜇𝑠

2(1 + 𝜇2𝑠2) , 𝑠 ∈ R , 𝜇 ∈ R,

and the corresponding family of nonlocal Dirichlet problems




𝑢𝑡 (𝑥, 𝑡) =
∫
R𝑁

𝐽 (𝑥 − 𝑦) (𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡)) G𝜇 (𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡)) 𝑑𝑦 in Ω × (0, 𝑇) ,
𝑢(𝑥, 0) = 𝑢0 (𝑥) in Ω ,

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡) in (R𝑁 \Ω) × (0, 𝑇) .

(1.7)

with Ω a bounded domain and 𝑢0 and ℎ smooth enough (see Definition 2.1 and Definition 2.4 for more precise
hypotheses).

After have proved the existence, uniqueness (see Theorem 2.3) and a Comparison Principle (see Theorem 2.5)
for solutions of (1.7), we face the problem of rescaled kernels.

The result we prove, in this model case, reads like this.

Let 𝑢 be the unique smooth solution to (1.2), with suitable initial data 𝑢0 and smooth enough boundary
condition 𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡) on 𝜕Ω × (0, 𝑇). Then there exists a family of functions {𝑢𝜀}, 𝜀 > 0, such that 𝑢𝜀 solves
the approximating nonlocal problem




𝑢𝜀𝑡 (𝑥, 𝑡) =
𝐶

𝜀2

∫
Ω𝐽𝜀

𝐽𝜀 (𝑥 − 𝑦)
[ (
𝑢𝜀 (𝑦, 𝑡) − 𝑢𝜀 (𝑥, 𝑡)) + 𝜇

2

(
𝑢𝜀 (𝑦, 𝑡) − 𝑢𝜀 (𝑥, 𝑡))2

1 + 𝜇2 (𝑢𝜀 (𝑦, 𝑡) − 𝑢𝜀 (𝑥, 𝑡))2
]
𝑑𝑦 in Ω × (0, 𝑇),

𝑢𝜀 (𝑥, 0) = 𝑢0 (𝑥) in Ω,

𝑢𝜀 (𝑥, 𝑡) = ℎ(𝑥, 𝑡) in (Ω𝐽𝜀\Ω) × (0, 𝑇),

with 𝐶 a suitable constant, Ω𝐽𝜀 = Ω + supp 𝐽𝜀 and the family {𝑢𝜀} satisfies

lim
𝜀→0

sup
𝑡 ∈[0,𝑇 ]




𝑢𝜀 (𝑥, 𝑡) − 𝑢(𝑥, 𝑡)



𝐿∞ (Ω)

= 0 .

2. Statement of the results
Let us consider the following equation:

𝑢𝑡 (𝑥, 𝑡) =
∫
R𝑁
𝐽 (𝑥 − 𝑦)𝑢(𝑦; 𝑥, 𝑡) G(𝑥, 𝑢(𝑦; 𝑥, 𝑡)) 𝑑𝑦, (2.1)

where 𝐽 : R𝑁 → R is a nonnegative radial symmetric function such that

𝐽 ∈ C𝑐 (R𝑛), with
∫
R𝑁

𝐽 (𝑧) 𝑑𝑧 = 1, (𝐽)

and where, here and throughout, we denote by 𝑢(𝑦; 𝑥, 𝑡) := 𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡) and by

𝐶 (𝐽) :=
∫
R𝑁
𝐽 (𝑧)𝑧2𝑁 𝑑𝑧 < ∞, 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑁 ).

As far as the function G is concerned, we assume that G : R𝑁 ×R→ R is a nonnegative Carathéodory function
(namely, G(·, 𝑠) is measurable for every 𝑠 ∈ R and G(𝑥, ·) is continuous for almost every 𝑥 ∈ R𝑁 ) satisfying

∃ 𝛼2 ≥ 𝛼1 > 0 : 𝛼1 ≤ G(𝑥, 𝑠)𝑠 − G(𝑥, 𝜎)𝜎
𝑠 − 𝜎 ≤ 𝛼2, ∀𝑠, 𝜎 ∈ R 𝑠 ≠ 𝜎 , and for a.e. 𝑥 ∈ R𝑁 . (G)

Let us first point out that the above condition implies that G is a positive bounded function, since taking 𝜎 = 0
in (G), we get

0 < 𝛼1 ≤ G(𝑥, 𝑠) ≤ 𝛼2, for any 𝑠 ∈ R and for a.e. 𝑥 ∈ R𝑁 .
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Moreover observe that the above condition relies to be a sort of uniform ellipticity for the operator, while (G)
corresponds to a strong monotonicity.
Anyway, let us stress again that, in contrast with all the known results about nonlocal equations of the above

type, in our case we do not require any symmetry (neither odd nor even) assumption on G.

The prototype of G we have in mind (we will come back on this example later) is the following one:

G𝜇 (𝑥, 𝑠) = 1 + 𝜇(𝑥) 𝑠
2(1 + 𝜇(𝑥)2𝑠2) , 𝑥 ∈ Ω, 𝑠 ∈ R ,

where 𝜇 : Ω → R stands for a measurable function. Notice that this function satisfies G𝜇 (𝑥, 0) = 0 and
𝑑
𝑑𝑠G𝜇 (𝑥, 0) = 𝜇(𝑥).
The first kind of results we want to stablish deals with the existence and uniqueness of solutions. More precisely,

consider the following problem in a bounded domain Ω ⊂ R𝑁 , 𝑁 ≥ 1.



𝑢𝑡 (𝑥, 𝑡) =
∫
R𝑁
𝐽 (𝑥 − 𝑦)𝑢(𝑦; 𝑥, 𝑡) G(𝑥, 𝑢(𝑦; 𝑥, 𝑡)) 𝑑𝑦, in Ω × (0, 𝑇)

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡), in (R𝑁 \Ω) × (0, 𝑇),
𝑢(𝑥, 0) = 𝑢0 (𝑥), in Ω,

with ℎ ∈ 𝐿1 ((R𝑁 \Ω) × (0,∞)) and 𝑢0 ∈ 𝐿1 (Ω).
Let us first observe that the integral expression vanishes outside of Ω𝐽 = Ω + supp(𝐽). In this way, ℎ has only

to be prescribed, in fact, in Ω𝐽 \Ω and we can rewrite the above problem as



𝑢𝑡 (𝑥, 𝑡) =
∫
Ω𝐽
𝐽 (𝑥 − 𝑦)𝑢(𝑦; 𝑥, 𝑡) G(𝑥, 𝑢(𝑦; 𝑥, 𝑡)) 𝑑𝑦, in Ω × (0, 𝑇),

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡), in (Ω𝐽 \Ω) × (0, 𝑇),
𝑢(𝑥, 0) = 𝑢0 (𝑥), in Ω,

(𝑃)

where 𝑇 > 0 may be finite or +∞.
We give now two definitions of solution.

Definition 2.1 Assume that 𝐽 and G satisfy (𝐽) and (G), respectively.
For ℎ(𝑥, 𝑡) ∈ 𝐿1 ((Ω𝐽 \ Ω) × (0, 𝑇)) and 𝑢0 (𝑥) ∈ 𝐿1 (Ω), we define a weak solution of problem (𝑃) as a function
𝑢 ∈ C([0, 𝑇); 𝐿1 (Ω)) such that:

𝑢(𝑥, 𝑡) =
∫ 𝑡

0

∫
Ω𝐽
𝐽 (𝑥 − 𝑦)𝑢(𝑦; 𝑥, 𝜏)G(𝑥, 𝑢(𝑦; 𝑥, 𝜏)) 𝑑𝑦 𝑑𝜏 + 𝑢0 (𝑥), for a.e. x ∈ Ω, 𝑡 ∈ (0, 𝑇), (2.2)

𝑢(𝑦, 𝑡) = ℎ(𝑦, 𝑡) for a.e. 𝑦 ∈ Ω𝐽 \Ω and 𝑡 ∈ (0, 𝑇)
lim
𝑡→0+
‖𝑢(𝑥, 𝑡) − 𝑢0 (𝑥)‖𝐿1 (Ω) = 0 .

Moreover, if ℎ(𝑥, 𝑡) ∈ C((Ω𝐽 \Ω) × (0, 𝑇)) and 𝑢0 (𝑥) ∈ C(Ω), we define a regular solution of problem (𝑃) as
a function 𝑢 ∈ C([0,∞);C(Ω)) such that:

𝑢(𝑥, 𝑡) =
∫ 𝑡

0

∫
Ω𝐽
𝐽 (𝑥 − 𝑦)𝑢(𝑦; 𝑥, 𝜏)G(𝑥, 𝑢(𝑦; 𝑥, 𝜏)) 𝑑𝑦 𝑑𝜏 + 𝑢0 (𝑥), for any x ∈ Ω, 𝑡 ∈ (0, 𝑇),

𝑢(𝑦, 𝑡) = ℎ(𝑦, 𝑡) for any 𝑦 ∈ Ω𝐽 \Ω and 𝑡 ∈ (0, 𝑇)
lim
𝑡→0+
‖𝑢(𝑥, 𝑡) − 𝑢0 (𝑥)‖C(Ω) = 0 .

Some more remarks about the meaning of weak and regular solutions are now in order.

Remark 2.2

i) Observe that, in addition to the different smoothness of the boundary condition and/or the initial datum,
the main difference lies on the prescription of data on 𝜕Ω. Indeed, for weak solutions, ℎ is prescribed in
(Ω𝐽 \Ω) × (0, 𝑇) and 𝑢0 in Ω, while for regular solutions, ℎ is prescribed in (Ω𝐽 \Ω) × (0, 𝑇) and 𝑢0 in Ω.
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ii) As already noticed in [7] (in a different context) the boundary conditions are not understood in a classical
way, i.e. it is not true that the solutions of problem (𝑃) pointwise coincide with the prescribed boundary data
ℎ(𝑥, 𝑡). This is due to the fact that the value at any point (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) depends both on the values of
𝑢 inside Ω × [0, 𝑇] and on the boundary datum ℎ(𝑥, 𝑡), since

𝑢(𝑥, 𝑡) =
∫ 𝑡

0

∫
Ω∩supp𝐽

𝐽 (𝑥 − 𝑦)𝑢(𝑦; 𝑥, 𝜏) G (
𝑥, 𝑢(𝑦, 𝜏) − 𝑢(𝑥, 𝜏)) 𝑑𝑦 𝑑𝜏

+
∫ 𝑡

0

∫
Ω𝑐∩supp𝐽

𝐽 (𝑥 − 𝑦) (ℎ(𝑦, 𝜏) − 𝑢(𝑥, 𝜏)) G (
𝑥, ℎ(𝑦, 𝜏) − 𝑢(𝑥, 𝜏)) 𝑑𝑦 𝑑𝜏 + 𝑢0 (𝑥) .

Consequently, in contrast with the local case, the equation is solved up to the boundary, depending, near 𝜕Ω,
also of the prescribed boundary condition.

iii) Let us stress that the regularity required in the definition of weak solutions is the less restrictive in order to
give sense to the formulation, and to the boundary and initial conditions. Anyway from (2.2) we deduce that
the time derivative 𝑢𝑡 (𝑥, 𝑡) of 𝑢 also belongs to C((0,∞); 𝐿1 (Ω)).
Let us also point out that the weak solution framework is the more natural one in order to prove the existence
of a solution. Indeed we only require an 𝐿1 regularity to prove the existence of a solution.
Finallywewant to underline that the nonlocal operator involved in such equation does not have the regularizing
effect that is typical of the Laplacian, but leaves unchanged the regularity of the initial and boundary data.

In this framework, the existence result is the following:

Theorem 2.3 [Existence] Consider problem (𝑃) and suppose that (𝐽) and (G) are in force. Then:
i) For any 𝑢0 ∈ 𝐿1 (Ω) and ℎ ∈ 𝐿1 ((Ω𝐽 \Ω) × (0, 𝑇)) there exists a unique weak solution;
ii) For any 𝑢0 ∈ C(Ω) and ℎ ∈ C((Ω𝐽 \ Ω) × [0, 𝑇)) there exists a unique regular solution and moreover its

time derivative belongs to C(Ω × (0, 𝑇)).
Once we have deduced the existence of a solution, one important tool is to compare two solutions, or, more

generally a sub and a supersolution. Here we recall what we mean by those concepts in our setting.

Definition 2.4 A function 𝑢 ∈ C(Ω×[0, 𝑇]) is a regular subsolution to problem (𝑃) if it satisfies 𝑢𝑡 ∈ C(Ω×(0, 𝑇))
and 



𝑢𝑡 (𝑥, 𝑡) ≤
∫
Ω𝐽
𝐽 (𝑥 − 𝑦)𝑢(𝑦; 𝑥, 𝑡) G(𝑥, 𝑢(𝑦; 𝑥, 𝑡)) 𝑑𝑦, in Ω × (0, 𝑇),

𝑢(𝑥, 𝑡) ≤ ℎ(𝑥, 𝑡), in (Ω𝐽 \Ω) × (0, 𝑇),
𝑢(𝑥, 0) ≤ 𝑢0 (𝑥), in Ω,

(2.3)

with 𝑢0 (𝑥) ∈ C(Ω) and ℎ(𝑥, 𝑡) ∈ C((Ω𝐽 \Ω) × (0, 𝑇)).
As usual, a regular supersolution is defined analogously by replacing “≤" with “≥". Clearly, a regular solution is
both a regular subsolution and a regular supersolution.

Next, we state the comparison principle:

Theorem 2.5 [Comparison Principle] Let 𝑢 and 𝑣 be a regular subsolution and a regular supersolution of
problem (𝑃), respectively, with boundary data ℎ1 (𝑥, 𝑡) and ℎ2 (𝑥, 𝑡) and initial data 𝑢0 (𝑥) and 𝑣0 (𝑥), respectively.
If ℎ1 (𝑥, 𝑡) ≤ ℎ2 (𝑥, 𝑡) in Ω𝐽 \Ω and 𝑢0 (𝑥) ≤ 𝑣0 (𝑥) in Ω, then 𝑢 ≤ 𝑣 in Ω × [0, 𝑇].

Remark 2.6 The existence, uniqueness and comparison principle are also true relaxing the hypotheses on the
kernel 𝐽 (𝑥 − 𝑦) by considering a more general one of the form 𝐾 : R𝑁 × R𝑁 → R+ with compact support in
Ω × 𝐵(0, 𝜌), with 𝜌 > 0 such that

0 < sup
𝑦∈𝐵 (0,𝜌)

𝐾 (𝑥, 𝑦) = 𝑅(𝑥) ∈ 𝐿∞ (Ω).
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The next result we want to state relates solutions of local and nonlocal equations. In order to do it, let us fix a
Hölder continuous function 𝜇 : Ω→ R with exponent 𝛼 ∈ (0, 1), and consider

G𝜇 (𝑥, 𝑠) = 1 + 𝜇(𝑥) 𝑠
2(1 + 𝜇(𝑥)2𝑠2) , (𝑥, 𝑠) ∈ Ω × R. (2.4)

The local problem we are interested in is the following




𝑣𝑡 (𝑥, 𝑡) = Δ𝑣(𝑥, 𝑡) + 𝜇(𝑥) |∇𝑣(𝑥, 𝑡) |2 in Ω × (0, 𝑇),
𝑣(𝑥, 𝑡) = ℎ0 (𝑥, 𝑡) on 𝜕Ω × (0, 𝑇),
𝑣(𝑥, 0) = 𝑣0 (𝑥) in Ω .

(2.5)

Observe that if, for the same 0 < 𝛼 < 1, we have 𝜕Ω ∈ C2+𝛼, 𝑣0 ∈ C1+𝛼 (Ω), ℎ ∈ C1+𝛼,1+𝛼/2 (𝜕Ω × [0, 𝑇])
with 𝑣0 and ℎ compatible (namely, they are globally 𝐶1+𝛼,1+𝛼/2 functions of the parabolic boundary of the
cylinder) and the equation holds up to the boundary, then Theorem 6.1 of Chapter V in [14] provides a solution
𝑣 ∈ C2+𝛼,1+𝛼/2 (Ω × (0, 𝑇]).
Such a result becomes trivial if we assume 𝜇(𝑥) = 𝜇 ∈ R, after the Hopf–Cole transformation, since solutions

of the heat equation satisfy the required regularity.

We set here the definition of classical solution and then we state our convergence result.

Definition 2.7 We say that 𝑣 ∈ C(Ω × [0, 𝑇]) ∩ C2+𝛼,1+𝛼/2 (Ω × (0, 𝑇)) is a classical solution to the Dirichlet
problem (2.5) if it satisfies both the equations and the boundary and initial conditions in a pointwise sense.

Finally, themain result of this work establishes that solutions of the deterministic equation KPZ can be uniformly
approximated by solutions of nonlocal problems by means of a suitable kernel rescaled.

Theorem 2.8 Let Ω be a C2+𝛼, with 𝛼 ∈ (0, 1), bounded domain of R𝑁 , 𝑁 ≥ 1, and let 𝑣 be a classical solution of
the quasilinear problem (2.5) with ℎ ∈ C1+𝛼 (

Ω𝐽𝜀\Ω × (0, 𝑇]
)
such that ℎ

��
𝜕Ω×(0,𝑇 ) = ℎ0 (𝑥, 𝑡) and 𝑣0 ∈ C1+𝛼 (Ω).

Assume that 𝐽 satisfies (𝐽) and that for a.e. 𝑥 in Ω, G(𝑥, 𝑠) is a C1+𝛼 function with respect to the 𝑠 variable such
that that (G) holds true. For any 𝜀 > 0, let 𝑢𝜀 denote the unique solution to




𝑢𝜀𝑡 (𝑥, 𝑡) =
𝐶 (𝑥)
𝜀2

∫
Ω𝐽𝜀

𝐽𝜀 (𝑥 − 𝑦)𝑢𝜀 (𝑦; 𝑥, 𝑡)G(𝑥, 𝑢𝜀 (𝑦; 𝑥, 𝑡))𝑑𝑦 in Ω × (0, 𝑇),
𝑢𝜀 (𝑥, 𝑡) = ℎ(𝑥, 𝑡) in (Ω𝐽𝜀 \Ω) × (0, 𝑇),
𝑢𝜀 (𝑥, 0) = 𝑣0 (𝑥) in Ω,

(2.6)

with 𝐶 (𝑥)−1 = 1
2𝐶 (𝐽)G(𝑥, 0) and 𝜇(𝑥) =

2G′𝑠 (𝑥, 0)
G(𝑥, 0) for any a.e. 𝑥 ∈ Ω.

Then we have:
lim
𝜀→0

sup
𝑡 ∈[0,𝑇 ]




𝑢𝜀 (𝑥, 𝑡) − 𝑣(𝑥, 𝑡)



𝐿∞ (Ω)

= 0 .
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