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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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Gómez-Molina P., Sanz-Lorenzo L. and Carpio J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

On iterative schemes for matrix equations
Hernández-Verón M.A. and Romero N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

A predictor-corrector iterative scheme for improving the accessibility of the Steffensen-type methods
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Recent developments in modeling free-surface flows with
vertically-resolved velocity profiles using moments

Julian Koellermeier1
julian.koellermeier@kuleuven.be KU Leuven, Belgium

Abstract

Shallow water moment models are non-linear PDEs in balance law form for free-surface flows that allow for
vertical variations in the horizontal velocity. The models are extensions of the standard shallow water equations.
However, the models in their original form lack global hyperbolicity. The loss of hyperbolicity already occurs
for small vertical variations of the velocity and this leads to instabilities in numerical test cases. We review two
recently developed hyperbolic shallow water moment models, which are based on two different linearizations
during the derivation. Recently, the models have been extended to consider sediment transport and bottom
topographies, for which new well-balanced numerical schemes based on analytical derivation of steady states can
be constructed. We summarize the recent developments focusing on analytical properties of the models and their
derivation.

1. Introduction
The well-known Shallow Water Equations (SWE), sometimes also called Saint-Venant equations, are a simplified
model for free-surface flows and are commonly used to model different physical phenomena. However, the main
deficiency of these models is that they assume a constant velocity profile of the horizontal velocity. In fact, the
model only takes into account the mean velocity averaged along the vertical axis. This limits the applicability of
the SWE model for complex flows and situations in which bottom friction plays an important role such as sediment
transport.
One option to include vertical variations of the velocity is the use of multiple layers with piecewise constant

velocities [2] leading to a system of equations that is coupled via the interfaces. However, the analysis of the model
is difficult and no analytical eigenvalues can be obtained. Additionally, many layers are necessary to accurately
describe varying profiles.
A polynomial velocity ansatz was used in [9] and the system of equations for the coefficients can be obtained

by projection onto orthogonal test functions. This can be seen as an extension of the standard SWE model using an
extended set of variables, so-called moments. These new Shallow Water Moment Equations (SWME) have been
applied to several test cases which showed the accuracy and flexibility of the approach.
The main drawback of the SWME model in its original version is that the model looses hyperbolicity even

for small variations of the velocity profile, as shown in [7]. This can lead to oscillations and a breakdown of the
solution during simulations, which was exemplified using a dam-break test case.
Hyperbolicity was restored using two different linearization of the model in [7] and [6]. We will summarize the

derivations of both models in this paper and outline the different analytical properties.
While hyperbolicity is a main ingredient for a stable numerical simulation, different physical phenomena need

to be modeled by means of special friction terms or additional equations. We show a recently developed example
of sediment transport [3].

2. Shallow Water Moment Models
The standard shallow water equations (SWE) for a Newtonian fluid in one horizontal direction 𝑥 for water height ℎ
and mean velocity 𝑢𝑚 using a flat bottom topography are given by

𝜕𝑡

(
ℎ
ℎ𝑢𝑚

)
+ 𝜕𝑥

(
ℎ𝑢𝑚

ℎ𝑢2𝑚 + 12𝑔ℎ2
)
= − 𝜈

𝜆

(
0
𝑢𝑚

)
, (2.1)

where 𝜆 and 𝜈 denote the slip length and the kinematic viscosity, respectively.
While the SWE model is efficient to compute approximate solutions of simple flows in very shallow conditions,

the model is inaccurate in case of horizontal variations of the vertical velocity. This is due to the fact that only
the average velocity 𝑢𝑚 is a variable of the model. In [9], the Shallow Water Moment Equations (SWME) were
developed to overcome this problem. The derivation is based on two main ideas:
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• The first idea is to scale vertical position variable 𝜁 (𝑡, 𝑥) as

𝜁 (𝑡, 𝑥) := 𝑧 − ℎ𝑏 (𝑡, 𝑥)
ℎ𝑠 (𝑡, 𝑥) − ℎ𝑏 (𝑡, 𝑥) =

𝑧 − ℎ𝑏 (𝑡, 𝑥)
ℎ(𝑡, 𝑥) ,

with ℎ(𝑡, 𝑥) = ℎ𝑠 (𝑡, 𝑥) − ℎ𝑏 (𝑡, 𝑥) the water height from the bottom ℎ𝑏 to the surface ℎ𝑠 . This transforms the
vertical 𝑧-direction from a physical space to a projected space 𝜁 : [0, 𝑇] × R→ [0, 1], see [9].

• The second idea assumes a polynomial expansion of the velocity variable, in the transformed vertical direction.
We thus expand 𝑢 : [0, 𝑇] × R × [0, 1] → R as

𝑢(𝑡, 𝑥, 𝜁) = 𝑢𝑚 (𝑡, 𝑥) +
𝑁∑︁
𝑗=1
𝛼 𝑗 (𝑡, 𝑥)𝜙 𝑗 (𝜁), (2.2)

where 𝑢𝑚 : [0, 𝑇] × R → R is the mean velocity and 𝜙 𝑗 : [0, 1] → R are the scaled Legendre polynomials
of degree 𝑗 defined by

𝜙 𝑗 (𝜁) = 1
𝑗!
𝑑 𝑗

𝑑𝜁 𝑗
(𝜁 − 𝜁2) 𝑗 . (2.3)

Note that the basis polynomials fulfill 𝜙 𝑗 (0) = 1 and they are orthogonal basis functions as∫ 1

0
𝜙𝑚𝜙𝑛𝑑𝜁 =

1
2𝑛 + 1𝛿𝑚𝑛, (2.4)

with Kronecker delta 𝛿𝑚𝑛 [9].
With 𝛼 𝑗 : [0, 𝑇] × R → R for 𝑗 ∈ [1, 2, . . . , 𝑁] we denote the corresponding basis coefficients at time 𝑡

and position 𝑥. These coefficients are also called moments. Different values of the coefficients describe different
horizontal velocity profiles, which allows for more complex flows and extends the standard SWE (2.1), where the
horizontal velocity is constant. In the expansion, 𝑁 ∈ N is the order of the velocity expansion and at the same
time the maximum degree of the Legendre polynomials. A larger 𝑁 typically enables the representation of more
complex flows, whereas 𝑁 = 0 corresponds to the constant velocity profile of the standard SWE (2.1).
To derive evolution equations for the basis coefficients, the expansion is inserted into theNavier-Stokes equations,

which have been properly transformed to the new 𝜁 (𝑡, 𝑥) variable, see [9] for details. Then, the equations are
projected onto the Legendre polynomials of degree 𝑖 = 1, . . . , 𝑁 , by multiplication with 𝜙 𝑗 and integration over
𝜁 , which gives one additional equation for each coefficient in the expansion. The arising integrals of the basis
polynomials 𝐴𝑖 𝑗𝑘 , 𝐵𝑖 𝑗𝑘 , 𝐶𝑖 𝑗 are denoted as follows

𝐴𝑖 𝑗𝑘 = (2𝑖 + 1)
∫ 1

0
𝜙𝑖𝜙 𝑗𝜙𝑘 𝑑𝜁, (2.5)

𝐵𝑖 𝑗𝑘 = (2𝑖 + 1)
∫ 1

0
𝜕𝜁 𝜙𝑖

(∫ 𝜁

0
𝜙 𝑗 𝑑𝜁

)
𝜙𝑘 𝑑𝜁, (2.6)

𝐶𝑖 𝑗 =
∫ 1

0
𝜕𝜁 𝜙𝑖 𝜕𝜁 𝜙 𝑗 𝑑𝜁 . (2.7)

More details can be found in [6, 9].
The model with variables𝑈 = (ℎ, ℎ𝑢, ℎ𝛼1, . . . , ℎ𝛼𝑁 )𝑇 ∈ R𝑁+2 can be written in compact form as

𝜕𝑡𝑈 + 𝜕𝐹
𝜕𝑈

𝜕𝑥𝑈 = 𝑄𝜕𝑥𝑈 + 𝑆, (2.8)

where the conservative flux Jacobian 𝜕𝐹𝜕𝑈 is given by

𝜕𝐹

𝜕𝑈
=

©­­­­­­­­­­­­­­­­«

0 1 0 . . . 0

𝑔ℎ − 𝑢2 −
𝑁∑︁
𝑖=1

𝛼𝑖
2𝑖 + 1 2𝑢 2𝛼1

2·1+1 . . . 2𝛼𝑁
2𝑁+1

−2𝑢𝛼1 −
𝑁∑︁
𝑗 ,𝑘=1

𝐴1 𝑗𝑘𝛼 𝑗𝛼𝑘 2𝛼1 2𝑢𝛿11 + 2
𝑁∑︁
𝑘=1

𝐴11𝑘𝛼𝑘 . . . 2𝑢𝛿1𝑁 + 2
𝑁∑︁
𝑘=1

𝐴1𝑁 𝑘𝛼𝑘

...
...

...
. . .

...

−2𝑢𝛼𝑁 −
𝑁∑︁
𝑗 ,𝑘=1

𝐴𝑁 𝑗𝑘𝛼 𝑗𝛼𝑘 2𝛼𝑁 2𝑢𝛿𝑁 1 + 2
𝑁∑︁
𝑘=1

𝐴𝑁 1𝑘𝛼𝑘 . . . 2𝑢𝛿𝑁𝑁 + 2
𝑁∑︁
𝑘=1

𝐴𝑁𝑁 𝑘𝛼𝑘

ª®®®®®®®®®®®®®®®®¬

,

RECENT DEVELOPMENTS IN MODELING FREE-SURFACE FLOWS

248



and the non-conservative matrix 𝑄 reads

𝑄 =

©­­­­­­­­­­­­«

0 0 0 . . . 0
0 0 0 . . . 0

0 0 𝑢𝛿11 +
𝑁∑︁
𝑘=1

𝐵11𝑘𝛼𝑘 . . . 𝑢𝛿1𝑁 +
𝑁∑︁
𝑘=1

𝐵1𝑁 𝑘𝛼𝑘

...
...

...
. . .

...

0 0 𝑢𝛿𝑁 1 +
𝑁∑︁
𝑘=1

𝐵𝑁 1𝑘𝛼𝑘 . . . 𝑢𝛿𝑁𝑁 +
𝑁∑︁
𝑘=1

𝐵𝑁𝑁 𝑘𝛼𝑘

ª®®®®®®®®®®®®¬

.

The friction term on the right-hand side 𝑆 = (0, 𝑆0, 𝑆1, . . . , 𝑆𝑁 )𝑇 ∈ R𝑁+2 is defined in [9] as 𝑆0 = 0 and

𝑆𝑖 = − (2𝑖 + 1) 𝜈
𝜆

©­«
𝑢 +

𝑁∑︁
𝑗=1

(
1 + 𝜆

ℎ
𝐶𝑖 𝑗

)
𝛼 𝑗

ª®¬
, 𝑖 = 0, . . . , 𝑁. (2.9)

The model (2.8) can also be written in the form of

𝜕𝑡𝑈 + 𝐴(𝑈)𝜕𝑥𝑈 = 𝑆(𝑈), (2.10)

where the combined transport matrix 𝐴 = 𝜕𝐹
𝜕𝑈 − 𝑄 can easily be obtained from conservative flux Jacobian and the

non-conservative terms.
The new SWME model was used for simulation of smooth waves and dam-break scenarios in [9]. The model

was more accurate than the standard SWE model and converged towards a reference solution with increasing
number of moments/coefficients 𝑁 .

3. Hyperbolic Regularization
As already noted in [9], the SWME model is not hyperbolic for values 𝑁 > 1. Loosing hyperbolicity may or may
not lead to instabilities and non-physical values during numerical simulations. In [7], the hyperbolicity was studied
in more detail and a breakdown of hyperbolicity inducing instable oscillations in time could be found for standard
simulations.
Two hyperbolic models have recently been developed. The first one called the Hyperbolic Shallow Water

Moment Equations (HSWME) from [7] is based on insights from moment models for rarefied gases [1, 5, 8]. The
second one called the ShallowWater Linearized Moment Equations (SWLME) from [6] is based on the assumption
of small deviations from equilibrium and neglecting small terms in the derivation. Both models are hyperbolic. We
will outline the main ideas and state the model equations following both approaches in the next two subsections.

3.1. Hyperbolic Shallow Water Moment Equations
The Hyperbolic Shallow Water Moment Equations (HSWME) [7] overcome the loss of hyperbolicity using a
linearization of the SWME model around linear velocity deviations, denoted by the case 𝑁 = 1. This leads to
setting all other coefficients 𝛼𝑖 = 0 for 𝑖 = 2, . . . , 𝑁 in the SWME model matrices. Note that the model is still
non-linear and includes the dependencies on all other variables ℎ, 𝑢𝑚, 𝛼1 on the dynamics of the other coefficients.
The HSWME system from [7] is written in the same non-conservative form as (2.10) as

𝜕𝑡𝑈 + 𝐴𝐻 (𝑈)𝜕𝑥𝑈 = 𝑆(𝑈), (3.1)

with regularized hyperbolic system matrix 𝐴𝐻 (𝑈) ∈ R(𝑁+2)×(𝑁+2) given by

𝐴𝐻 (𝑈) =

©­­­­­­­­­«

0 1
𝑔ℎ − 𝑢2𝑚 − 13𝛼21 2𝑢𝑚 2

3𝛼1
−2𝑢𝑚𝛼1 2𝛼1 𝑢𝑚

3
5𝛼1

− 23𝛼21 0 1
3𝛼1 𝑢𝑚

. . .

. . .
. . . 𝑁+1

2𝑁+1𝛼1
𝑁−1
2𝑁−1𝛼1 𝑢𝑚

ª®®®®®®®®®¬

. (3.2)

In [7], it was shown up to a certain 𝑁 , that the model has real eigenvalues and is therefore hyperbolic, for all
variable states. The proof was recently extended to arbitrary order in [4] which yields the following theorem
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Theorem 3.1 The HSWME model (3.1) of arbitrary order 𝑁 is globally hyperbolic and the eigenvalues are

𝜆1,2 = 𝑢𝑚 ±
√︃
𝑔ℎ + 𝛼21,

𝜆𝑖+2 = 𝑢𝑚 + 𝑟𝑖,𝑁𝛼1, 𝑖 = 1, 2, . . . , 𝑁,

where 𝑟𝑖,𝑁 ∈ R is the 𝑖-th root of the real polynomial 𝑝𝑁 (𝑧) of degree 𝑁 , defined by the recursion 𝑝𝑘 (𝑧) =
𝑧𝑝𝑘−1 (𝑧) − 𝑏𝑘 𝑝𝑘−2 (𝑧), for 2 ≤ 𝑘 ≤ 𝑁 , 𝑝1 (𝑧) = 1, 𝑏𝑘 = (𝑘−1) (𝑘+1)

(2𝑘−1) (2𝑘+1) .

3.2. Shallow Water Linearized Moment Equations
The second hyperbolic model called Shallow Water Linearized Moment Equations (SWLME) derived in [6] is
based on a careful investigation of non-linear terms in the underlying model equations. One example is the term∫ 1

0
𝜙𝑖𝑢

2 𝑑𝜁 .

Using the polynomial velocity expansion (2.2), this terms can be computed according to [6] as

∫ 1

0
𝜙𝑖𝑢

2 𝑑𝜁 =
∫ 1

0
𝜙𝑖

©­«
𝑢𝑚 +

𝑁∑︁
𝑗=1
𝛼 𝑗𝜙 𝑗

ª®¬
2

𝑑𝜁 (3.3)

= 𝑢2𝑚

∫ 1

0
𝜙𝑖 𝑑𝜁 +

𝑁∑︁
𝑗=1
2𝑢𝑚𝛼 𝑗

∫ 1

0
𝜙𝑖𝜙 𝑗 𝑑𝜁 +

𝑁∑︁
𝑗 ,𝑘=1

2𝛼 𝑗𝛼𝑘
∫ 1

0
𝜙𝑖𝜙 𝑗𝜙𝑘 𝑑𝜁 (3.4)

= 0 + 2
2𝑖 + 1𝑢𝑚𝛼𝑖 +

1
2𝑖 + 1

𝑁∑︁
𝑗 ,𝑘

𝐴𝑖 𝑗𝑘𝛼 𝑗𝛼𝑘 . (3.5)

Now the model assumes small deviations from a constant profile, i.e., 𝛼𝑖 = O (𝜖), such that the last term containing
the coefficient coupling 𝛼 𝑗𝛼𝑘 = O (

𝜖2
)
can be neglected in comparison to the first term. The result is the simpler

expression ∫ 1

0
𝜙𝑖𝑢

2 𝑑𝜁 ≈ 2
2𝑖 + 1𝑢𝑚𝛼𝑖 .

Based on this strategy, the SWLME model includes fewer terms than the original (2.10) and reads

𝜕𝑡

©­­­­­­«

ℎ
ℎ𝑢𝑚
ℎ𝛼1
...

ℎ𝛼𝑁

ª®®®®®®¬
+ 𝜕𝑥

©­­­­­­«

ℎ𝑢𝑚
ℎ𝑢2𝑚 + 𝑔 ℎ

2

2 + 13 ℎ𝛼21 + . . . + 1
2𝑁+1 ℎ𝛼

2
𝑁

2ℎ𝑢𝑚𝛼1
...

2ℎ𝑢𝑚𝛼𝑁

ª®®®®®®¬
= 𝑄𝜕𝑥

©­­­­­­«

ℎ
ℎ𝑢𝑚
ℎ𝛼1
...

ℎ𝛼𝑁

ª®®®®®®¬
+ 𝑃, (3.6)

where the non-conservative term simplifies to

𝑄 = (0, 0, um, . . . , um),
and the combined transport system matrix of the new SWLME can be written as

𝐴𝑁 =

©­­­­­­­­«

0 1 0
... 0

𝑔ℎ − 𝑢2𝑚 −
𝛼21
3 − . . . −

𝛼2𝑁
2𝑁+1 2𝑢𝑚 2𝛼1

3 . . . 2𝛼𝑁
2𝑁+1

−2𝑢𝑚𝛼1 2𝛼1 𝑢𝑚
...

...
. . .

−2𝑢𝑚𝛼𝑁 2𝛼𝑁 𝑢𝑚

ª®®®®®®®®¬
∈ R(𝑁+2)×(𝑁+2) . (3.7)

It was shown in the following theorem from [6] that the eigenvalues of the SWLME model are indeed real such
that the model is hyperbolic

Theorem 3.2 The SWLME system matrix 𝐴𝑁 ∈ R(𝑁+2)×(𝑁+2) (3.7) has the following characteristic polynomial

𝜒𝐴𝑁 (𝜆) = (𝑢𝑚 − 𝜆)
[
(𝜆 − 𝑢𝑚)2 − 𝑔ℎ −

𝑁∑︁
𝑖=1

3𝛼2𝑖
2𝑖 + 1

]
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and the eigenvalues are given by

𝜆1,2 = 𝑢𝑚 ±
√√√
𝑔ℎ +

𝑁∑︁
𝑖=1

3𝛼2𝑖
2𝑖 + 1 and 𝜆𝑖+2 = 𝑢, for 𝑖 = 1, . . . , 𝑁. (3.8)

The system is thus hyperbolic.

3.3. Steady states of SWLME
Another main benefit of the SWLME model is the possibility of obtaining analytical steady states that generalize
the standard SWE Rankine-Hugoniot conditions. According to [6] the steady states can be derived as follows for
flat bottom 𝜕𝑥𝑏 = 0 and zero friction:

𝜕𝑥 (ℎ𝑢𝑚) = 0 (3.9)

𝜕𝑥

(
ℎ𝑢2𝑚 +

1
2
𝑔ℎ2 + 1

3
ℎ𝛼21 + . . . +

1
2𝑁 + 1 ℎ𝛼

2
𝑁

)
= 0 (3.10)

𝜕𝑥 (2ℎ𝑢𝑚𝛼1) = 𝑢𝑚𝜕𝑥 (ℎ𝛼1) (3.11)
... (3.12)

𝜕𝑥 (2ℎ𝑢𝑚𝛼𝑁 ) = 𝑢𝑚𝜕𝑥 (ℎ𝛼𝑁 ) , (3.13)

which first leads to

ℎ𝑢𝑚 = 𝑐𝑜𝑛𝑠𝑡, (3.14)

𝑢𝑚 = 0 or
𝛼𝑖
ℎ

= 𝑐𝑜𝑛𝑠𝑡, for 𝑖 = 1, . . . , 𝑁. (3.15)

The Rankine-Hugoniot conditions for a shock from a given state
(
ℎ0, ℎ0𝑢𝑚,0, ℎ0𝛼1,0, . . . , ℎ0𝛼𝑁 ,0

)
to a state

(ℎ, ℎ𝑢𝑚, ℎ𝛼1, . . . , ℎ𝛼𝑁 ) then read

(ℎ − ℎ0)
[
−
𝑢2𝑚,0
𝑔ℎ0
+ 1
2

((
ℎ

ℎ0

)2
+

(
ℎ

ℎ0

))
+

𝑁∑︁
𝑖=1

1
2𝑖 + 1

𝛼2𝑖,0
𝑔ℎ0

((
ℎ

ℎ0

)3
+

(
ℎ

ℎ0

)2
+

(
ℎ

ℎ0

))]
= 0. (3.16)

Introducing the dimensionless flow numbers

𝐹𝑟 =
𝑢𝑚,0√︁
𝑔ℎ0

, (3.17)

(𝑀𝛼)𝑖 =
𝛼𝑖,0
𝑢𝑚,0

, for 𝑖 = 1, . . . , 𝑁 (3.18)

and writing 𝑦 = ℎ
ℎ0
, leads to the non-dimensional solutions

ℎ = ℎ0 ∨ −𝐹𝑟2 + 12
(
𝑦2 + 𝑦

)
+

𝑁∑︁
𝑖=1

1
2𝑖 + 1 (𝑀𝛼)

2
𝑖 𝐹𝑟

2
(
𝑦3 + 𝑦2 + 𝑦

)
= 0. (3.19)

This gives rise to a new dimensionless number 𝑀𝛼2 :=
∑𝑁
𝑖=1

1
2𝑖+1 (𝑀𝛼)2𝑖 . According to [6], 𝑀𝛼 measures the

total deviation from equilibrium. Note, that there is at least one non-trivial solution for non-zero 𝐹𝑟 and 𝑀𝛼.
It is also possible to derive steady states for smooth and frictionless flows including bottom topographies that

can later be used to derive well-balanced schemes. In the momentum equation, this requires

𝜕𝑥

(
1
2
𝑢2𝑚 + 𝑔(ℎ + 𝑏) +

3
2

𝑁∑︁
𝑖=1

1
2𝑖 + 1𝛼

2
𝑖

)
= 0, (3.20)

where 𝑏(𝑥) is the bottom topography term.
The full non-trivial steady state solution is then computed by solving

ℎ𝑢𝑚 = 𝑐𝑜𝑛𝑠𝑡, (3.21)

1
2
𝑢2𝑚 + 𝑔(ℎ + 𝑏) +

3
2

𝑁∑︁
𝑖=1

1
2𝑖 + 1𝛼

2
𝑖 = 𝑐𝑜𝑛𝑠𝑡, (3.22)

𝛼𝑖
ℎ

= 𝑐𝑜𝑛𝑠𝑡, for 𝑖 = 1, . . . , 𝑁. (3.23)

The analytically computed equations to determine steady-states are used within a well-balanced numerical
scheme to conserve certain steady-states numerically. We refer to [6] for detailed examples.
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4. Sediment transport and friction models
In [3], the HSWMEmodel was coupled to an Exner equation [11], modeling sediment transport at the bottom. This
means that the bottom topography 𝑏(𝑡, 𝑥) is also a function of time and evolves according to

𝜕𝑡𝑏 + 𝜕𝑥𝑄𝑏 = 0, (4.1)

where 𝑄𝑏 is the solid transport discharge that can be modeled by the Meyer-Peter & Müller formula [10].
It was shown in [3] that the eigenvalues of the coupled model are a generalization of the eigenvalues of the

standard SWE model coupled to the Exner equation. The additional eigenvalues are real such that the model is
again hyperbolic. The model leads to a much more realistic sediment transport. Unlike as for the SWE model, the
velocity at the bottom is not the same as the average velocity 𝑢𝑚, which means that the coupled sediment equation
(4.1) is correctly transported with the bottom velocity according to the polynomial expansion (2.2).

5. Summary and future work
In this paper, recent developments in modeling free-surface flows with vertically resolved velocity profiles were
summarized and compared. Based on a polynomial expansion of the velocity profile, the derivation of the Shallow
Water Moment Equations was outlined. Two hyperbolic regularizations based on different linearizations of the
model are described and the results for the eigenvalues and steady states are given. As one application, a sediment
transport model that builds up on the previously discussed models is described.
The recently developed models are a major step forward for the simulation of complex free-surface flows.

The models open up a lot of possibilities for future work. Firstly, the inclusion of a coriolis force term and the
analytical investigation of wave properties is necessary for applications and to understand the structure of the
models. Additional efforts should focus on the numerical simulation of the model equation, e.g., regarding the
implementation of wet-dry fronts or asymptotic-preserving schemes for the limits of large friction terms. Lastly, the
inclusion of more realistic friction terms of Savage-Hutter type [11] to model granular flows, e.g., for avalanches,
land slides, or mud flows would be beneficial for real-world applications.
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