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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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High-order well-balanced methods for systems of balance laws based on
collocation RK ODE solvers

I. Gómez-Bueno1, M.J. Castro1, C. Parés1, G. Russo2
1. University of Málaga, Spain
2. University of Catania, Italy

Abstract
The aim of this work is to develop high-order well-balanced schemes for 1d systems of balance laws. A

general methodology for developing such numerical methods was proposed by two of the authors that requires
the computation, at every cell and at every time step, of the stationary solution whose cell average is equal to the
numerical approximation already obtained. Since solving these problems can be difficult and expensive, our goal
is to introduce a general procedure that can be applied to any one-dimensional system of balance laws based on
the application of collocation RK methods to approximate the stationary solution with given cell-average.

1. Introduction
Let us consider 1d systems of balance laws of the form

𝑈𝑡 + 𝐹 (𝑈)𝑥 = 𝑆(𝑈)𝐻𝑥 , (1.1)

where 𝑈 (𝑥, 𝑡) takes value in Ω ⊂ R𝑁 , 𝐹 : Ω → R𝑁 is the flux function; 𝑆 : Ω → R𝑁 ; and 𝐻 is a known
function from R→ R (possibly the identity function 𝐻 (𝑥) = 𝑥), which is supposed to be continuous. We suppose
that system (1.1) is strictly hyperbolic, i.e., the Jacobian 𝐽 (𝑈) of the flux function has 𝑁 real distinct eigenvalues
𝜆1 (𝑈), · · · , 𝜆𝑁 (𝑈) and associated eigenvectors 𝑟1 (𝑈), · · · , 𝑟𝑁 (𝑈). Moreover, we suppose that 𝜆𝑖 (𝑈) ≠ 0, 𝑖 =
1, . . . , 𝑁 .
The system (1.1) has nontrivial stationary solutions that satisfy the ODE system:

𝐹 (𝑈)𝑥 = 𝑆(𝑈)𝐻𝑥 , (1.2)

or
𝐽 (𝑈)𝑈𝑥 = 𝑆(𝑈)𝐻𝑥 . (1.3)

A numerical method is said to be well-balanced if it preserves (in some sense) stationary solutions. This
property is important when the waves generated by small perturbations of an equilibrium are to be simulated:
numerical errors should not break the equilibrium. The research on the idea of constructing numerical schemes
that preserve some equilibria has been developed by many authors: see, for instance, [2] , [1], [3], [11], [16], [18],
[20], [21], [22], [24], [14], [8], [15], [9], [7]. See [6] and their references for a recent review on this topic.
We consider high-order finite-volume numerical methods for (1.1) of the form:

𝑑𝑈𝑖
𝑑𝑡

= − 1
Δ𝑥

(
𝐹𝑖+ 12 (𝑡) − 𝐹𝑖− 12 (𝑡)

)
+ 1
Δ𝑥
𝑆𝑖 , (1.4)

where:

• 𝑈𝑖 (𝑡) is the approximation of the average of the exact solution at the 𝑖th cell, 𝐼𝑖 =
[
𝑥𝑖− 12 , 𝑥𝑖+ 12

]
, at time 𝑡:

𝑈𝑖 (𝑡) � 1Δ𝑥
∫ 𝑥

𝑖+ 12

𝑥
𝑖− 12

𝑈 (𝑥, 𝑡) 𝑑𝑥,

where the length of the cells Δ𝑥 is supposed to be constant for simplicity;

• 𝐹𝑖+ 12 = F(𝑈𝑡 ,−
𝑖+ 12
,𝑈𝑡 ,+

𝑖+ 12
), where F is a consistent numerical flux and 𝑈𝑡 ,±

𝑖+ 12
are the reconstructed states at the

intercells:
𝑈𝑡 ,−
𝑖+ 12

= 𝑃𝑡𝑖 (𝑥𝑖+ 12 ), 𝑈𝑡 ,+
𝑖+ 12

= 𝑃𝑡𝑖+1 (𝑥𝑖+ 12 ).
Here 𝑃𝑡𝑖 (𝑥) is the approximation of the solution at the 𝑖th cell given by a reconstruction operator of order 𝑝
applied to the sequence of cell values {𝑈𝑖 (𝑡)}:

𝑃𝑡𝑖 (𝑥) = 𝑃𝑖 (𝑥; {𝑈 𝑗 (𝑡)} 𝑗∈S𝑖 ),
where S𝑖 denotes the set of indices of the cells belonging to the stencil of the cell 𝐼𝑖;
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• finally,

𝑆𝑖 ≈
∫ 𝑥

𝑖+ 12

𝑥
𝑖− 12

𝑆(𝑃𝑡𝑖 (𝑥))𝐻𝑥 (𝑥) 𝑑𝑥. (1.5)

Given a function𝑈, the following notation

𝑈̄𝑖 =
1
Δ𝑥

∫ 𝑥𝑖+1/2

𝑥𝑖−1/2
𝑈 (𝑥) 𝑑𝑥, 𝑈𝑖 ≈ 𝑈̄𝑖 , 𝑈𝑖+1/2 ≈ 𝑈 (𝑥𝑖+1/2), ∀𝑖,

is used to denote its cell averages, the approximations to its cell averages and its point values at the intercells,
respectively.

2. Well-balanced numerical methods
The key point in [4], [5] is to transfer the well-balanced property to the reconstruction operator:

Definition 2.1 Given a stationary solution𝑈∗, the reconstruction operator is said to be well-balanced for𝑈∗ if

𝑃𝑖 (𝑥) = 𝑈∗ (𝑥), ∀𝑥 ∈ [𝑥𝑖− 12 , 𝑥𝑖+ 12 ], ∀𝑖, (2.1)

where 𝑃𝑖 is the approximation of𝑈∗ given by the reconstruction operator from the vector {𝑈̄∗𝑖 } of cell-averages of
𝑈∗.

One can easily prove that the numerical method (1.4) with

𝑆𝑖 =
∫ 𝑥

𝑖+ 12

𝑥
𝑖− 12

𝑆(𝑃𝑡𝑖 (𝑥))𝐻𝑥 (𝑥) 𝑑𝑥, (2.2)

is exactly well-balanced if the reconstruction operator is well-balanced for every stationary solution 𝑈∗, which
means that the vector of its cell-averages {𝑈̄∗𝑖 } (or its approximations {𝑈∗𝑖 } if a quadrature formula is used to
compute them) is an equilibrium of (1.4).
However, in general a standard reconstruction operator is not expected to be well-balanced. The following

algorithm allows us to design a well-balanced reconstruction operator 𝑃𝑖 on the basis of a standard operator 𝑄𝑖 ,
provided that 𝑄𝑖 is exact for the null function (see [4]):

Algorithm 2.2 Given a family of cell values {𝑈̄𝑖}, at every cell 𝐼𝑖:
1. Find, if possible, the stationary solution𝑈∗𝑖 (𝑥) in the stencil of cell 𝐼𝑖 such that:

1
Δ𝑥

∫ 𝑥
𝑖+ 12

𝑥
𝑖− 12

𝑈∗𝑖 (𝑥) 𝑑𝑥 = 𝑈̄𝑖 . (2.3)

Otherwise, take𝑈∗𝑖 ≡ 0.
2. Apply the reconstruction operator to the cell values {𝑉 𝑗 } 𝑗∈𝑆𝑖 given by

𝑉 𝑗 = 𝑈̄ 𝑗 − 1Δ𝑥
∫ 𝑥

𝑗+ 12

𝑥
𝑗− 12

𝑈∗𝑖 (𝑥) 𝑑𝑥, 𝑗 ∈ S𝑖 ,

to obtain:
𝑄𝑖 (𝑥) = 𝑄𝑖 (𝑥; {𝑉 𝑗 } 𝑗∈S𝑖 ).

3. Define
𝑃𝑖 (𝑥) = 𝑈∗𝑖 (𝑥) +𝑄𝑖 (𝑥). (2.4)

Another difficulty may come from the use of quadrature formulas to compute the cell-averages and the integral
of the source term at the right-hand side of (1.4). In this case, the numerical method is still well-balanced if:

• the quadrature formula is also applied to compute the integrals appearing in the first two steps of Algorithm
2.2;
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• 𝑆𝑖 is computed as follows:

𝑆𝑖 = 𝐹
(
𝑈𝑡 ,∗𝑖 (𝑥𝑖+ 12 )

)
− 𝐹

(
𝑈𝑡 ,∗𝑖 (𝑥𝑖− 12 )

)
+ Δ𝑥

𝑠∑︁
𝑚=1

𝑏𝑚
(
𝑆(𝑃𝑡𝑖 (𝑥𝑚𝑖 )) − 𝑆(𝑈𝑡 ,∗𝑖 (𝑥𝑚𝑖 ))

)
𝐻𝑥 (𝑥𝑚𝑖 ), (2.5)

where 𝑈𝑡 ,∗𝑖 is the stationary solution found in the first step of the reconstruction procedure at the 𝑖th cell
and time 𝑡, and 𝑥𝑚𝑖 , 𝑏𝑚, 𝑚 = 1, . . . , 𝑠 are respectively the nodes and the weights of the selected quadrature
formula, whose order of accuracy is bigger or equal than 𝑝.

Notice that, at every cell and at every time step, the following nonlinear problem has to be solved:
Find𝑈 such that

𝐽 (𝑈)𝑈𝑥 = 𝑆(𝑈)𝐻𝑥 , 1
Δ𝑥

∫ 𝑥𝑖+1/2

𝑥𝑖−1/2
𝑈 (𝑥) 𝑑𝑥 = 𝑈𝑖 , (2.6)

where 𝑈𝑖 is an approximation of the cell-average at the 𝑖th cell of the solution of (1.1) that we are looking for. In
addition, once the solution 𝑈∗𝑖 of (2.6) has been found, one has to solve two Cauchy problems in order to extend
it to the cells belonging to the stencil. Specifically, (1.3) with initial condition 𝑈 (𝑥𝑖+1/2) = 𝑈∗ (𝑥𝑖+1/2) has to be
solved forward in space and (1.3) with final condition𝑈 (𝑥𝑖−1/2) = 𝑈∗ (𝑥𝑖−1/2) backward in space.
Solving these local nonlinear problems can be difficult if the analytic expression of the solutions of (1.3) are not

known either in explicit or implicit form. We propose here to approximate their solutions by solving the following
numerical problems:

Problem 2.3 (Local problem (LP)) Given an index 𝑖 and a state𝑈𝑖 ∈ Ω, find approximations

𝑈∗,𝑚𝑖, 𝑗 , 𝑚 = 1, . . . , 𝑠, 𝑗 ∈ S𝑖; 𝑈∗,𝑖±1/2𝑖 ;

of the values
𝑈∗𝑖 (𝑥𝑚𝑗 ), 𝑚 = 1, . . . , 𝑠, 𝑗 ∈ S𝑖; 𝑈∗𝑖 (𝑥𝑖±1/2);

where𝑈∗𝑖 is the stationary solution that satisfies
𝑠∑︁
𝑚=1

𝑏𝑚𝑈
∗
𝑖 (𝑥𝑚𝑖 ) = 𝑈𝑖 . (2.7)

The numerical methods issues from this strategy are not expected to be exactly well-balanced, but they will be
well-balanced according to the following definition:

Definition 2.4 The numerical method (1.4) is said to be well-balanced with order 𝑞 ≥ 𝑝 if for every stationary
solution𝑈∗ of (1.1) and for every Δ𝑥, there exists an equilibrium {𝑈∗Δ𝑥,𝑖} of (1.4) such that

𝑈̄∗𝑖 = 𝑈
∗
Δ𝑥,𝑖 +𝑂 (Δ𝑥𝑞), ∀𝑖. (2.8)

The sequence {𝑈∗Δ𝑥,𝑖} is said to be a discrete stationary solution.

3. RK Collocation methods
We propose here to solve the local problems (LP) using a RK collocation method with Butcher tableau

𝑐1 𝑎1,1 . . . 𝑎1,𝑠
𝑐2 𝑎2,1 . . . 𝑎2,𝑠
...

...
. . .

...
𝑐𝑠 𝑎𝑠,1 . . . 𝑎𝑠,𝑠

𝑏1 . . . 𝑏𝑠 .

Remember that, given a Cauchy problem {
𝑈𝑥 = 𝐺 (𝑥,𝑈),
𝑈 (𝑥𝑖0−1/2) = 𝑈𝑖0−1/2,

(3.1)

and a uniform mesh of nodes 𝑥𝑖+1/2 = 𝑥𝑖−1/2 + Δ𝑥, 𝑖 = 𝑖0, 𝑖0 + 1, . . . , the numerical solutions are computed as
follows:

𝑈𝑖+1/2 = 𝑈𝑖−1/2 + Δ𝑥ΦΔ𝑥 (𝑈𝑖−1/2), 𝑖 = 𝑖0, 𝑖0 + 1, . . . (3.2)
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where

ΦΔ𝑥 (𝑈𝑖−1/2) =
𝑠∑︁
𝑗=1

𝑏 𝑗𝐾
𝑗
𝑖 .

𝐾1𝑖 , . . . , 𝐾
𝑠
𝑖 solve the nonlinear system

𝐾
𝑗
𝑖 = 𝐺

(
𝑥
𝑗
𝑖 ,𝑈

𝑖−1/2 + Δ𝑥
𝑠∑︁
𝑙=1

𝑎 𝑗 ,𝑙𝐾
𝑙
𝑖

)
, 𝑗 = 1, . . . , 𝑠, (3.3)

where
𝑥
𝑗
𝑖 = 𝑥𝑖−1/2 + 𝑐 𝑗Δ𝑥, 𝑗 = 1, . . . , 𝑠. (3.4)

Gauss-Legendremethods will be considered here, in which 𝑥1𝑖 , . . . , 𝑥
𝑠
𝑖 and 𝑏1, . . . , 𝑏𝑠 are respectively the quadrature

points and the weights of the Gauss quadrature formula in the interval [𝑥𝑖−1/2, 𝑥𝑖+1/2]. This quadrature formula will
be used to compute the averages at the cells.
The key-point of collocation methods is that they can be interpreted as follows:

𝑈𝑖+1/2 = 𝑃𝑖 (𝑥𝑖+1/2),
where 𝑃𝑖 is the only polynomial of degree 𝑠 that satisfies:{

𝑃𝑖 (𝑥𝑖−1/2) = 𝑈𝑖−1/2,
𝑃′𝑖 (𝑥 𝑗𝑖 ) = 𝐺 (𝑥

𝑗
𝑖 , 𝑃𝑖 (𝑥

𝑗
𝑖 )), 𝑗 = 1, . . . , 𝑠. (3.5)

Because of this interpretation, it can be shown that these methods are symmetric or reversible in the following sense
(see [13]):

ΦΔ𝑥 ◦Φ−Δ𝑥 = 𝐼𝑑, or equivalently ΦΔ𝑥 = Φ−1−Δ𝑥 . (3.6)

Let us describe how these methods are used to solve the local problems. Given a cell 𝐼𝑖 , let us suppose that its
stencil is

S𝑖 = {𝑖 − 𝑙, . . . , 𝑖 + 𝑟}.
The local problem solver based on the collocation RK methods is then as follows:

Algorithm 3.1 Numerical solver for the local problems (LP) using collocation RK methods.

• Find𝑈𝑖−1/2, 𝐾1𝑖 , . . . , 𝐾
𝑠
𝑖 such that




𝐽
(
𝑈𝑚𝑖

)
𝐾𝑚𝑖 = 𝑆

(
𝑈𝑚𝑖

)
𝐻𝑥 (𝑥𝑚𝑖 ), 𝑚 = 1, . . . , 𝑠,

𝑠∑︁
𝑚=1

𝑏𝑚𝑈
𝑚
𝑖 = 𝑈𝑖 ,

where

𝑈𝑚𝑖 = 𝑈𝑖−1/2 + Δ𝑥
𝑠∑︁
𝑘=1

𝑎𝑚,𝑘𝐾
𝑘
𝑖 , 𝑚 = 1, . . . , 𝑠.

• Compute:

𝑈𝑖+1/2 = 𝑈𝑖−1/2 + Δ𝑥
𝑠∑︁
𝑚=1

𝑏𝑚𝐾
𝑚
𝑖 .

• The approximated solution is then obtained at the rest of the stencil from the values at the intercell by applying
the RK collocation method backward and forward in space.

The output of the local solver with the notation of (LP) is then:

𝑈∗,𝑚𝑖, 𝑗 = 𝑈𝑚𝑗 , 𝑚 = 1, . . . , 𝑠, 𝑗 = 𝑖 − 𝑙, . . . 𝑖 + 𝑟; 𝑈∗,𝑖−1/2𝑖 = 𝑈𝑖−1/2, 𝑈∗,𝑖+1/2𝑖 = 𝑈𝑖+1/2.

It can be shown that the approximations of Cauchy problems (3.1) with 𝐺 (𝑥,𝑈) = 𝐽 (𝑈)−1𝑆(𝑈)𝐻𝑥 using
the RK collocation method are discrete stationary solution of the numerical schemes, what proves that they are
well-balanced with order 2𝑠. The reversibility of RK collocation methods plays a crucial role in the proof. Notice
that there are not explicit methods which have this property.
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Method Error (𝑖 = 1) Error (𝑖 = 2) Error (𝑖 = 3)
SM𝑖 1.34E-3 2.43E-6 1.74E-8

CDWBM𝑖 5.37E-15 5.15E-16 2.51E-14

Tab. 1 Test 1. Errors in 𝐿1 norm for SM𝑖 and CDWBM𝑖 (𝑖 = 1, 2, 3) with respect to the stationary solution for the 200-cell
mesh at time 𝑡 = 5𝑠.

4. Numerical experiments
The following choices have been made in order to build the well-balanced schemes introduced in this paper:

• For the first and second order well-balanced numerical schemes, the second-order 1-stage Gauss-Legendre
collocation method is applied, whereas the 2-stage Gauss-Legendre collocation method is used for the third
order schemes.

• The midpoint rule is considered for first and second order schemes, and the 2-point Gauss quadrature rule
for third order schemes.

• The Rusanov numerical flux is considered.

• We apply the trivial reconstruction operator for the first order scheme; the MUSCL reconstruction for the
second order scheme (see [23]); and the CWENO reconstruction for the third order scheme (see [17], [10]).

• First, second and third order TVD Runge-Kutta methods are used for solving the ODE system (1.4): see [12].

The following notation is introduced to denote the methods considered:

• SM𝑖, 𝑖 = 1, 2, 3: numerical method of order 𝑖 based on the Rusanov flux and the standard, not well-balanced,
reconstruction operators.

• CDWBM𝑖, 𝑖 = 1, 2, 3: numerical method of order 𝑖 based on the Rusanov flux and the well-balanced
reconstruction operator in which the discrete stationary solutions and local problems are obtained by applying
the Gauss-Legendre collocation method as described in the previous section.

The numerical experiments have been performed in a computer equipped with Intel(R) Xeon(R) CPU E3-1220
v3 @ 3.10GHz with 8Mb cache using one single core.

4.1. Test 1: Burgers equation with a nonlinear source term
We consider the Burgers equation with the non-linear source term 𝑆(𝑈) = sin(𝑈):



𝑈𝑡 +

(
𝑈2

2

)
𝑥

= sin(𝑈), 𝑥 ∈ R, 𝑡 > 0,
𝑈 (𝑥, 0) = 𝑈0 (𝑥).

(4.1)

We consider 𝑥 ∈ [−1, 1], 𝑡 ∈ [0, 5] and CFL= 0.9. As initial condition, we consider the stationary solution
which solves the Cauchy problem 


𝑑𝑈

𝑑𝑥
=
sin(𝑈)
𝑈

,

𝑈 (−1) = 2.
𝑈 (−1, 𝑡) = 2 is imposed at 𝑥 = −1 and free boundary conditions are considered at 𝑥 = 1.
Table 1 shows the errors corresponding to SM𝑖 and CDWBM𝑖, 𝑖 = 1, 2, 3 respectively for a 200-cell mesh. As

expected, only the well-balanced methods preserve the stationary solutions.

4.2. Test 2: shallow water equations with Manning friction
Let us consider the shallow water equations with Manning friction:



ℎ𝑡 + 𝑞𝑥 = 0,
𝑞𝑡 +

(
𝑞2

ℎ
+ 1
2
𝑔ℎ2

)
𝑥

= 𝑔ℎ𝐻𝑥 − 𝑘𝑞 |𝑞 |
ℎ𝜂

.
(4.2)

This system is used to model the flow of water in a one-dimensional channel,with a bottom that applies a friction
force on the water. Here, the variable 𝑥 makes reference to the axis of the channel and 𝑡 is the time; 𝑞(𝑥, 𝑡) and
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(a) SM𝑖, 𝑖 = 1, 2, 3. 𝑡 = 0.015𝑠.
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(b) CDWBM𝑖, 𝑖 = 1, 2, 3. 𝑡 = 0.015𝑠.
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(c) SM𝑖, 𝑖 = 1, 2, 3.. 𝑡 = 2𝑠.
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(d) CDWBM𝑖, 𝑖 = 1, 2, 3.. 𝑡 = 2𝑠.

Fig. 1 Test 2. Differences between the stationary solution and the reference and numerical solutions at times 𝑡 = 0.015, 2𝑠
for ℎ. Number of cells: 100.

ℎ(𝑥, 𝑡) are the discharge and the thickness, respectively; 𝑢 = 𝑞/ℎ is the depth-averaged velocity; 𝑔 is the gravity;
𝐻 (𝑥) is the depth function measured from a fixed reference level; 𝑘 is the Manning friction coefficient; and 𝜂 is a
parameter equal to 73 .
Following [19], we consider 𝑥 ∈ [0, 1], 𝑘 = 0.01 and the depth function

𝐻 (𝑥) = 1 − 1
2
𝑒cos(4𝜋𝑥) − 𝑒−1

𝑒 − 𝑒−1 . (4.3)

The initial condition𝑈0 (𝑥) = [ℎ0 (𝑥), 𝑞0 (𝑥)]𝑇 is

ℎ0 (𝑥) =


ℎ∗ (𝑥) + 0.05, if 𝑥 ∈

[
2
7
,
3
7

]
∪

[
4
7
,
5
7

]
,

ℎ∗ (𝑥), otherwise,
𝑞0 (𝑥) =



𝑞∗ (𝑥) + 0.5, if 𝑥 ∈

[
2
7
,
3
7

]
∪

[
4
7
,
5
7

]
,

𝑞∗ (𝑥), otherwise,
(4.4)

where 𝑈∗ (𝑥) = [ℎ∗ (𝑥), 𝑞∗ (𝑥)]𝑇 is the supercritical stationary solution that satisfies 𝑞(0) = 1 and ℎ(0) = 0.3. The
numerical simulation is run until 𝑡 = 2𝑠 using a uniform mesh with 100 cells.
Figure 1 shows the differences between the stationary solution and the numerical solutions at times 𝑡 = 0.015

and 2𝑠 with SM𝑖, 𝑖 = 1, 2, 3 and CDWBM𝑖, 𝑖 = 1, 2, 3 for ℎ (the graphs are similar for 𝑞). A reference solution
has been computed with a first order well-balanced scheme on a fine mesh (1600 cells). As expected, only the
well-balanced methods are able to recover the stationary solutions. This is clear in Table 2 where the errors in 𝐿1
norm with respect to the stationary solution at time 𝑡 = 2𝑠 are shown for the 100-cell mesh.
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Method Error (𝑖 = 1) Error (𝑖 = 2) Error (𝑖 = 3)
ℎ 𝑞 ℎ 𝑞 ℎ 𝑞

SM𝑖 2.42 6.12 3.57E-3 4.87E-3 1.39E-3 4.30E-4
CDWBM𝑖 3.73E-16 3.60E-16 1.80E-15 1.99E-15 2.64E-15 8.93E-15

Tab. 2 Test 2. Errors in 𝐿1 norm for SM𝑖 and CDWBM𝑖 (𝑖 = 1, 2, 3) with respect to the stationary solution for the 100-cell
mesh at time 𝑡 = 2𝑠.

5. Conclusions
Following the methodology introduced in [4], we have described a general strategy in order to build a family of
high-order well-balanced numerical methods that can be applied to general 1d systems of balance laws. Due to
the difficulty of solving the ODE satisfied by the stationary solutions, sometimes the first step of the reconstruction
procedure is required to be numerically solved: the application of the collocation RK methods to deal with these
problems have been detailed in this work. The numerical methods have been applied to some systems of balance
laws what allows us to check that the well-balanced property is fulfilled.
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