
Proceedings

of the

XXVI Congreso de Ecuaciones
Diferenciales y Aplicaciones

XVI Congreso de Matemática Aplicada
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No comercial – No puede utilizar esta obra para fines comerciales.

Sin obras derivadas – No se puede alterar, transformar o generar una obra derivada a partir de esta obra.

© 2021 Universidad de Oviedo
© Los autores

Universidad de Oviedo
Servicio de Publicaciones de la Universidad de Oviedo
Campus de Humanidades. Edificio de Servicios. 33011 Oviedo (Asturias)
Tel. 985 10 95 03 Fax 985 10 95 07
http: www.uniovi.es/publicaciones
servipub@uniovi.es

ISBN: 978-84-18482-21-2

Todos los derechos reservados. De conformidad con lo dispuesto en la legislación vigente, podrán ser castigados
con penas de multa y privación de libertad quienes reproduzcan o plagien, en todo o en parte, una obra literaria,
artı́stica o cientı́fica, fijada en cualquier tipo de soporte, sin la preceptiva autorización.

2

http:// creativecommons.org/licenses/by-nc-nd/3.0/es/
www.uniovi.es/publicaciones


Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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An arbitrary high order ADER Discontinous Galerking (DG) numerical
scheme for the multilayer shallow water model with variable density

E. Guerrero Fernández 1, M.J. Castro Díaz1, M. Dumbser2, T. Morales de Luna3
1. Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos S/N, 29081 Málaga, Spain.

2. Department of Civil, Environmental and Mechanical Engineering, Via Mesiano, 77 - 38123 Trento, Italy.
3. Departamento de Matemáticas, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain.

Abstract

In this work, an arbitrary high order numerical discretization for a density dependent multilayer shallow-water
model is presented. The model can be written as a system of hyperbolic PDE equations and it is especially
suited for simulations of density driven gravity currents within the shallow-water framework. The proposed
discretization is composed by an unlimited high order accurate (ADER) Discontinuous Galerkin (DG) method,
which is then limited a posteriori with the MOOD paradigm, resulting in great resolution capabilities in smooth
regions alongside a robust and accurate respond for strong gradients or discontinuities. A numerical strategy to
preserve non-trivial stationary solutions is also discussed. Some numerical results are shown including density
driven currents where laboratory data is available.

1. Introduction
A wildly used model for the simulation of geophysical flows is shallow-water (or Saint-Venant) model. In shallow-
water flows, the vertical component of the velocity is neglected and the horizontal component is assumed to be
constant along the vertical direction. In thisway, the dimension of the problem is reduced by one, allowing to improve
dramatically the computational times for large scale simulations. This approach has been successfully used in many
practical applications (see [10, 18, 19]). However, the horizontally constant velocity hypothesis can seriously limit
the amount of information that the model is able to provide and that may be relevant for the problem. To address
this issue, multilayer shallow-water models are developed, where the vertical direction is subsequently divided
in computational layers and the shallow-water hypotheses are performed in each layer individually (see [4, 5]).
This allows, for instance, to recover a detailed vertical profile of the velocity and the cost of a slightly higher
computational times. Of course, some mechanism for the interaction between layers must be considered. For
instance, [7, 17] assume immiscible layers meanwhile for multilayer shallow-water systems considered in [3, 15],
a continuous mass and momentum exchange between the layers is considered. The incorporation of the mass and
momentum transfer between layers is performed via non-conservative terms. The multilayer shallow-water model
considered in this work includes density effects throughout density dependent pressure terms. A full description of
the derivation of the model can be found at [16] and [2].
The Discontinuous Galerkin (DG) method itself dates back to the early work by Reed and Hill in [21]. This

methods allows to easily reach high order in space. In more recent work, it is combined with an arbitrary high
order derivatives (ADER) procedure, which allows to reach arbitrary high order in time (see [12]). The ADER
approach is based on the approximated solution of Riemann problems by means of a fixed point algorithm in each
element locally. This combination leads naturally to high order, single step and fully discrete numerical schemes.
However, this approach is unlimited, in the sense that there is no mechanism to prevent the apparition of spurious
oscillations near strong gradients or discontinuities. As a limiting technique, we use a multi-dimensional optimal
order detection (MOOD) (see [13]), which is a posteriori approach to the problem of limiting. The unlimited
solution of the ADER-DG scheme is tested to study its admissibility in terms of spurious oscillations but also other
physical criteria like positivity. If the solution is found inadequate, then the MOOD technique will switch to a
robust second order accurate finite volume method in order to compute the limited solution.
Another issue of paramount importance for the long time numerical stability of the numerical scheme are the

ability of the scheme to preserve stationary solutions ( [6,9]). Indeed, many practical applications often consist on
a perturbation of an equilibria state, and thus exactly preserving this state is of great importance. Here, we propose
a procedure to exactly preserve non-trivial stationary solutions in the ADER-DG framework.
Due to space restrictions, these techniques will be presented in a non-exhaustivemanner. However, the interested

reader has references available throughout the text.
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2. Model description
Here, we briefly present the density dependent multilayer shallow-water model considered in this work. A full
description and derivation of the model can be found at [16]. The full system of equations for the model in one
dimension is,
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where ℎ is the total height of the water column, [ = ℎ + 𝑧𝑏 is the free surface, and 𝑧𝑏 is the bathymetry function.
Additionally, 𝑢𝛼 refers to the horizontal velocity while \𝛼 is the relative density of the fluid in the 𝛼-layer. Finally,
𝐺𝛼± 12 𝛼 = 1, . . . , 𝑀 , are the mass transference terms between layers.
System (2.1) is obtained under the closure hypothesis that the layer thickness is proportional to the total height,
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We assume no mass transference at the bottom and free surface, 𝐺1/2 = 𝐺𝑀+1/2 = 0, and \𝛼+1/2 and 𝑢𝛼+1/2 are
some approximations of 𝑢 and \ at the layers interfaces, for example a simple arithmetic mean. Note that the full
system (2.1) reduces to the standard shallow water equations for the particular case 𝑀 = 1 and \ = 1.
The full PDE system (2.1) has an infinity number of stationary solutions. Indeed, the standard shallow-water

stationary solutions with constant free surface [ are also solution of the system (2.1) if a homogeneous density
profile is considered,

\𝛼 = cte, 𝑢𝛼 = 0, for 𝛼 = 1, . . . , 𝑀, [ = cte.

However, system (2.1) also admits lake-at-rest stationary solutions corresponding to non-trivial density profiles.
Stationary solutions with 𝑢𝛼 = 0, 𝛼 = 1, . . . , 𝑀 for the system (2.1) correspond to the solutions of the following
ODE system,

𝑃𝛼 := 𝑔ℎ\𝛼𝜕𝑥[ + 𝑔𝑙𝛼2 (ℎ𝜕𝑥 (ℎ\𝛼) − ℎ\𝛼𝜕𝑥ℎ) + 𝑔
𝑀∑︁

𝛽=𝛼+1
𝑙𝛽

(
ℎ𝜕𝑥 (ℎ\𝛽) − ℎ\𝛼𝜕𝑥ℎ

)
= 0. (2.3)

Once the free surface is fixed, this equation can be solved iteratively by solving first the upper layer and sequentially
going downwards throughout the lower layers. In particular we are interested in those with a constant free surface
and a vertically stratified density profile, that is,

[(𝑥) = ℎ(𝑥) + 𝑧𝑏 (𝑥) = cte, \ (𝑧) = \𝑠𝑢𝑟 𝑓 𝑎𝑐𝑒 + 𝛾([ − 𝑧). (2.4)

Unfortunately, due to the numerical discretization performed on the full system of PDE equations (2.1), this profile
is not a stationary solution of (2.3) and cannot be directly preserved unless the bathymetry is the constant function.
However, system (2.3) can be solved recursively, which results into a stratified density profile that could be seen
as an approximation of (2.4) associated to the multilayer approach. In particular, those solutions are given by the
following expression,

𝑢𝛼 = 0, [(𝑥) = 𝑧𝑏 (𝑥) + ℎ(𝑥) = cte,
\𝑀 (𝑥) = \̄𝑀 ≥ 1,

\𝛼 (𝑥) = \̄𝛼 ℎ2(𝑀−𝛼) (𝑥) +
𝑀∑︁

𝛽=𝛼+1
𝑆2(𝑀−𝛽) (𝑀 − 𝛼 + 1)\̄𝛽 ℎ2(𝑀−𝛽) (𝑥),

(2.5)
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with

𝑆𝛽 (𝛼) = (𝛽 + 1) · 𝐴 𝛽+2
2 +1
(𝛼),

𝐴𝑝 (𝑘) =

{
1 if 𝑝 ≥ 𝑘,
(𝑝 − 1)∏𝑘−𝑝

𝛾=2 (1 + (𝑝 − 2)𝐶𝛾−1) if 𝑝 < 𝑘,

𝐶𝛾 = 𝐶𝛾−1 − 1
𝑄𝛾

,

𝑄𝛾 = 𝑄𝛾−1 + 𝛾 + 1,
𝐶0 = 𝑄0 = 1,

where \̄𝛼 is a free choice constant fixed by the initial conditions, that determines the vertical profile of the density.
For more details relative to this model, we refer the reader to [16].

3. Numerical discretization
In this section we provide brief description of the numerical scheme used on (2.1). If the interested reader wants
to know more we refer them to [13, 14].
System (2.1) may be written as follows,

𝜕𝑡𝒘 + 𝜕𝑥𝑭𝐶 (𝒘) + 𝑷(𝒘, 𝜕𝑥𝒘, 𝜕𝑥[) − 𝑻 (𝒘, 𝜕𝑥𝒘) = 0, (3.1)

where 𝒘 is the vector of the conserved variables,

𝒘 = (ℎ | ℎ\𝛼 | ℎ\𝛼𝑢𝛼)𝑇 ∈ R2𝑀+1, (3.2)

the physical convective flux 𝐹𝐶 (𝒘) is given by,

𝐹𝐶 (𝒘) =
(
ℎ𝑢𝛼 | ℎ\𝛼𝑢𝛼 | ℎ\𝛼 𝑢2𝛼

)𝑇
∈ R2𝑀+1, (3.3)

and 𝑷(𝒘, 𝜕𝑥𝒘, 𝜕𝑥[) corresponds to the pressure term, which depends on the relative density \𝛼 and the free surface
[, and has the following form,

𝑷(𝒘, 𝜕𝑥𝒘, 𝜕𝑥[) = (0 | 0 | 𝑃𝛼) ∈ R2𝑀+1, (3.4)

where

𝑃𝛼 = 𝑔ℎ\𝛼𝜕𝑥[ + 𝑔 𝑙𝛼2 (ℎ𝜕𝑥 (ℎ\𝛼) − ℎ\𝛼𝜕𝑥ℎ) + 𝑔
𝑀∑︁

𝛽=𝛼+1
𝑙𝛽 (ℎ𝜕𝑥 (ℎ\𝛽) − ℎ\𝛼𝜕𝑥ℎ). (3.5)

Finally, the term 𝑻 (𝒘, 𝜕𝑥𝒘) corresponds to the mass, density, and momentum exchange between layers:

𝑻 (𝒘, 𝜕𝑥𝒘) = (
0
��� 1
𝑙𝛼

(
\𝛼+ 12𝐺𝛼+ 12 − \𝛼− 12𝐺𝛼− 12

) ��� 1
𝑙𝛼

(
𝑢𝛼+ 12 \𝛼+ 12𝐺𝛼+ 12 − 𝑢𝛼− 12 \𝛼− 12𝐺𝛼− 12

))𝑇
∈ R2𝑀+1. (3.6)

The system of equations (3.1) is solved by applying the family of pure Discontinuous Galerkin methods P𝑁P𝑁 .
The numerical scheme is formulated as a predictor-corrector method: in the first step, a predictor solution, which
consist on a high order approximation of the solution at the following time step, is computed by means of a local
Cauchy problem, without interaction with the neighbours states. In the next step, the corrector will make use of
these predictor solution to compute a high order in space and time approximation of the solution of system (2.1) at
the next time step.
The usual one dimensional considerations relative to the domain discretizations into non-overlaping conforming

set of elements are considered. The computation domain Ω is discretized into 𝑇𝑖 = [𝑥𝑖− 12 , 𝑥𝑖+ 12 ], 𝑖 = 1, . . . , 𝑁𝑠
elements, where 𝑁𝑠 is the total number of cells with a constant length Δ𝑥 = 𝑥𝑖+ 12 − 𝑥𝑖− 12 .
We will make use of the following notation: for any variable 𝑓 defined on a volume 𝑇𝑖 , we will denote by 𝑓𝑖± 12

the values at the interface, depending on whether it is the right or left side of the cell. However, when the values
correspond to projected states into the interface, it will be generally denoted with the super index 𝑓 ±, depending
on whether they correspond to the left or to the right side of the intercell.
In the following, the discrete solution of the PDE system (3.1) at time 𝑡𝑛 is denoted by 𝒘ℎ (𝑥, 𝑡𝑛) and is defined

in terms of piecewise polynomials of degree 𝑁 on the spatial direction. We shall denote by Uℎ the space of
piecewise polynomials up to degree 𝑁 so that 𝒘ℎ (·, 𝑡𝑛) ∈ Uℎ . In this work, a nodal basis defined by the Lagrange
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interpolation polynomials over the (𝑁 +1) Gauss-Legendre quadrature nodes on the element𝑇𝑖 is adopted. As usual
in the discontinuous Galerkin (DG) approach, the discrete solution 𝒘ℎ may be discontinuous across the intercells,
as in finite volume methods. At each cell 𝑇𝑖 , the discrete solution is written in terms of the nodal spatial basis
functions Φ𝑙 (𝑥) and some unknown degrees of freedom �̂�𝑛𝑖,𝑙 ,

𝒘ℎ (𝑥, 𝑡𝑛) =
∑︁
𝑙

�̂�𝑛𝑖,𝑙Φ𝑙 (𝑥) := �̂�𝑛𝑖,𝑙Φ𝑙 (𝑥), for 𝑥 ∈ 𝑇𝑖 , (3.7)

where the Einstein summation convention over two repeated indices has been considered. The spatial basis functions
are defined on the reference interval [0, 1].
The ADER-DG method results from multiplying the governing PDE system (3.1) with a test functionΦ𝑘 ∈ Uℎ

and integrate over the space-time control volume 𝑇𝑖 × [𝑡𝑛, 𝑡𝑛+1]. This results in the expression,
∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇𝑖

Φ𝑘𝜕𝑡𝒘 𝑑𝑥𝑑𝑡 +
∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇𝑖

Φ𝑘 (𝜕𝑥𝑭𝐶 (𝒘) 𝑑𝑥𝑑𝑡 + 𝑷(𝒘, 𝜕𝑥𝒘, 𝜕𝑥[) − 𝑻 (𝒘, 𝜕𝑥𝒘)) 𝑑𝑥𝑑𝑡 = 0. (3.8)

The discrete solution 𝒘ℎ (𝑥, 𝑡𝑛) is allowed to jump across element interfaces, which means that the resulting jump
terms have to be properly taken into account. In our scheme this is achieved via numerical flux functions in the
form of approximate Riemann solvers that follows the path-conservative approach that was developed by Parés
and collaborators in the finite volume framework [8, 20] and which has later been extended to the discontinuous
Galerkin finite element framework in [11, 22]. The Riemann solver used in this work is detailed in [16].
In the ADER-DG framework, the higher order in time is achieved with the use of an element-local space-time

predictor, denoted by qℎ (𝑥, 𝑡) in the following, and which will be discussed in more detail later. Using (3.7), and
after some computation on (3.8), we arrive to the following weak formulation,

(∫
𝑇𝑖

Φ𝑘Φ𝑙 𝑑𝑥

) (
�̂�𝑛+1𝑖,𝑙 − �̂�𝑛𝑖,𝑙

)
−

∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇 ◦𝑖
(𝜕𝑥Φ𝑘 · 𝑭𝐶 (qℎ)) 𝑑𝑥𝑑𝑡

+
∫ 𝑡𝑛+1

𝑡𝑛
Φ𝑘,𝑖+ 12D

−
𝑖+ 12

(
q−
ℎ,𝑖+ 12

, q+
ℎ,𝑖+ 12

, 𝑧𝑏
−
ℎ,𝑖+ 12

, 𝑧𝑏
+
ℎ,𝑖+ 12

)
+Φ𝑘,𝑖− 12D

+
𝑖− 12

(
q−
ℎ,𝑖− 12

, q+
ℎ,𝑖− 12

, 𝑧𝑏
−
ℎ,𝑖− 12

, 𝑧𝑏
+
ℎ,𝑖− 12

)
𝑑𝑡

+
∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇 ◦𝑖

Φ𝑘 (𝑷(qℎ , 𝜕𝑥qℎ , 𝜕𝑥[ℎ) − 𝑻 (qℎ , 𝜕𝑥qℎ)) 𝑑𝑥𝑑𝑡 = 0, (3.9)

where 𝑇◦𝑖 corresponds to the interior of 𝑇𝑖 and 𝑓ℎ stands for the projection of 𝑓 onto the spaceUℎ . Moreover,D±𝑖± 12
are the numerical flux at the cell interface given by the Riemann solver.

3.1. ADER-DG space-time predictor
We focus now on the computation of the predictor solution qℎ (𝑥, 𝑡), based on a weak formulation of the governing
PDE system in space-time. The PDE system (2.1) is approximated with a so-called Cauchy problem in the small, i.e.
without considering the interaction with the neighbour elements. Again, a similar space-time basis is considered
to expand the predictor solution,

qℎ (𝑥, 𝑡) =
∑︁
𝑙

\𝑙 (𝑥, 𝑡)q̂𝑖𝑙 := \𝑙 (𝑥, 𝑡)q̂𝑖𝑙 , (3.10)

with themulti-index 𝑙 = (𝑙0, 𝑙1) andwhere the space-time basis functions \𝑙 (𝑥, 𝑡) = 𝜑𝑙0 (𝜏)𝜑𝑙1 (b) are again generated
from the same one-dimensional nodal basis functions as before. Proceeding now similarly to the system (3.9), we
multiply (3.1) by a space-time function and integrate over the space-time control volume 𝑇𝑖 × [𝑡𝑛, 𝑡𝑛+1]. However,
since we are only interested in an element local predictor solution, without interactions with the neighbor elements,
the jump terms across interfaces are not taken into account. This leads to,

∫
𝑇𝑖

\𝑘 (𝑥, 𝑡𝑛+1)qℎ (𝑥, 𝑡𝑛+1) 𝑑𝑥 −
∫
𝑇𝑖

\𝑘 (𝑥, 𝑡𝑛)q0ℎ (𝑥, 𝑡𝑛) 𝑑𝑥 −
∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇𝑖

𝜕𝑡\𝑘 (𝑥, 𝑡)qℎ (𝑥, 𝑡) 𝑑𝑥𝑑𝑡

= −
∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇𝑖

\𝑘 (𝑥, 𝑡) (𝜕𝑥𝑭𝐶 (qℎ) + 𝑷(qℎ , 𝜕𝑥qℎ , 𝜕𝑥[ℎ) − 𝑻 (qℎ , 𝜕𝑥qℎ)) 𝑑𝑥𝑑𝑡. (3.11)

Using the local space-time ansatz (3.10), Eq. (3.11) becomes a local nonlinear system for the unknown degrees of
freedom q̂𝑖𝑙 of the space-time polynomials qℎ . The solution to the system can be found via a fixed point algorithm,
that will converge, at most, in 𝑁 + 1 iterations for linear homogeneous systems. The initial guess q0ℎ (𝑥, 𝑡) for the
iterative algorithm is simply set as the solution at time 𝑡𝑛, 𝒘ℎ (𝑥, 𝑡𝑛).
This completes the description of the unlimited high order accurate and fully discrete ADER-DG schemes.
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3.2. Preserving stationary solutions in the ADER-DG framework
We describe now the techniques developed to construct arbitrary high order ADER-DG numerical schemes that
preserve exactly a set of stationary solutions corresponding to a stationary stratified fluid.
The first step consist on determining a local stationary solution 𝒖𝑒,𝑖 (𝑥), 𝑥 ∈ 𝑇𝑖 of the family (2.5) at each time

step. Although the stationary solution is calculated at each time step, we subsequentially drop the time dependence
to simplify the notation. Notice that the family of stationary solutions (2.5) with 𝑢𝛼,𝑒,𝑖 = 0, 1 ≤ 𝛼 ≤ 𝑀 are fully
determined by setting ℎ𝑒,𝑖 and \1,𝑒,𝑖 , . . . \𝑀,𝑒,𝑖 . Particularly, [̄𝑖 ,

[̄𝑖 =
1
Δ𝑥

∫ 𝑥
𝑖+ 12

𝑥
𝑖− 12

(ℎℎ (𝑥, 𝑡𝑛) + 𝑧𝑏ℎ (𝑥)) 𝑑𝑥,

where again we have denoted by 𝑓ℎ the discrete representation of 𝑓 onto the polynomial spaceUℎ . Similarly, the
constants \1,𝑒,𝑖 , . . . \𝑀,𝑒,𝑖 are computed solving,

1
Δ𝑥

∫ 𝑥
𝑖+ 12

𝑥
𝑖− 12

(ℎ\)𝛼,𝑒,𝑖 (𝑥, [̄𝑖 , \̄𝛼,𝑖 , · · · , \̄1,𝑖) 𝑑𝑥 = 1
Δ𝑥

∫ 𝑥
𝑖+ 12

𝑥
𝑖− 12

(ℎ\)ℎ,𝛼 (𝑥, 𝑡𝑛) 𝑑𝑥, 1 ≤ 𝛼 ≤ 𝑀.

Using these constant, we are able to compute the stationary solution 𝒖𝑒,𝑖 (𝑥). Note that this local stationary solutions
satisfy the pressure terms (2.3) at each cell,

𝑷(𝒖𝑒,𝑖 , 𝜕𝑥𝒖𝑒,𝑖 , 𝜕𝑥 [̄𝑖) = 0. (3.12)

Now, we could replace the numerical scheme (3.9) by the following well-balanced ADER-DG equivalent
numerical scheme,

©«
∫
𝑇𝑖

Φ𝑘Φ𝑙 𝑑𝑥
ª®®¬
(
�̂�𝑛+1𝑖,𝑙 − �̂�𝑛𝑖,𝑙

)
−

∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇 ◦𝑖
(𝜕𝑥Φ𝑘 · 𝑭𝐶 (qℎ)) 𝑑𝑥𝑑𝑡

+
∫ 𝑡𝑛+1

𝑡𝑛
Φ𝑘,𝑖+ 12D

−
𝑖+ 12

(
q−
ℎ,𝑖+ 12

, q+
ℎ,𝑖+ 12

, 𝑧𝑏
−
ℎ,𝑖+ 12

, 𝑧𝑏
+
ℎ,𝑖+ 12

)
+Φ𝑘,𝑖− 12D

+
𝑖− 12

(
q−
ℎ,𝑖− 12

, q+
ℎ,𝑖− 12

, 𝑧𝑏
−
ℎ,𝑖− 12

, 𝑧𝑏
+
ℎ,𝑖− 12

)
𝑑𝑡

+
∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇 ◦𝑖

Φ𝑘 (𝜕𝑥𝑭𝐶 (qℎ) − 𝑻 (qℎ , 𝜕𝑥qℎ)) 𝑑𝑥𝑑𝑡

+
∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇 ◦𝑖

Φ𝑘
(
𝑷(qℎ , 𝜕𝑥qℎ , 𝜕𝑥[ℎ) − 𝑷((𝒖𝑒,𝑖)ℎ , 𝜕𝑥 (𝒖𝑒,𝑖)ℎ , 𝜕𝑥 ([𝑒,𝑖)ℎ)

)
𝑑𝑥𝑑𝑡 = 0, (3.13)

Moreover, the extrapolated values at the intercells, denoted by q±
ℎ,𝑖± 12

, are computed in the following way,

q−
ℎ,𝑖+ 12

= 𝒖𝑒,𝑖 (𝑥𝑖+ 12 ) + �̂�
−
ℎ,𝑖+ 12

,

where �̂�−
ℎ,𝑖+ 12

is the extrapolation on the cell interface of the fluctuation (𝒒ℎ,𝑖 − (𝒖𝑒,𝑖)ℎ), that is,

�̂�−
ℎ,𝑖+ 12

= (𝒒ℎ,𝑖 − (𝒖𝑒,𝑖)ℎ) (𝑥𝑖+ 12 ).

Similarly,
q+
ℎ,𝑖+ 12

= 𝒖𝑒,𝑖+1 (𝑥𝑖+ 12 ) + �̂�
−
ℎ,𝑖+ 12

,

where
�̂�+
ℎ,𝑖+ 12

= (𝒒ℎ,𝑖+1 − (𝒖𝑒,𝑖+1)ℎ) (𝑥𝑖+ 12 ).
A similar procedure is applied in the ADER step, where a high order local approximation of the solution

𝒘ℎ (𝑥, 𝑡𝑛+1) is computed by considering a fluctuation with respect to the local stationary solution 𝒖𝑒,𝑖 (𝑥).
Finally, to clean possible spurious oscillations due to the absence of numerical viscosity in a stationary solution,

we could perform the following procedure: first we compute the average of the fluctuation with respect to the local
stationary solution,

𝒘ℎ,𝑖 =
1
Δ𝑥

∫ 𝑥
𝑖+ 12

𝑥
𝑖− 12

𝒘ℎ (𝑥, 𝑡𝑛) − 𝒖𝑒,𝑖 (𝑥) 𝑑𝑥.

if
��𝒘ℎ,𝑖 �� is less than a small threshold, then 𝒘ℎ (𝑥, 𝑡𝑛) is redefined as follows,

𝒘ℎ (𝑥, 𝑡𝑛) = 𝒖𝑒,𝑖 (𝑥) + 𝒘ℎ,𝑖 .
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4. Numerical test
We briefly demonstrate the capacity of the numerical scheme for preserving stationary solutions and to provide
accurate results for complex density-driven flows. We first began considering a small perturbation of a lake-at-rest
stationary solution with 𝑀 = 3 and with the following non-constant bathymetry and free surface functions,

[(𝑥, 0) = 2 + 1
10
𝑒−5 𝑥

2
, 𝑧𝑏 (𝑥) = 12 𝑒

−𝑥2 ,

defined in the channel with 𝑥 ∈ [−5, 5] with just 50 elements and a forth order in space and time numerical scheme.
Wall type boundary conditions are set and the initial condition for the relative density is given by equation (2.5)
with the constant \̄1 = 1.01, \̄2 = 0.02 and \̄3 = 0. Figures 1 to 2 depicts the solution. As expected, a new stratified
density profile is reached once a new free surface is achieved, and this new stationary solution is kept for long
simulation times.
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Fig. 1 Perturbation of a lake-at-rest steady state with non-constant density profile at 𝑡 = 0 seconds. Left: free surface and
bottom. Right: density profile.
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Fig. 2 Perturbation of a lake-at-rest steady state with non-constant density profile. Left: difference of relative densities
between times 𝑡 = 500 and 𝑡 = 0 seconds. Right: velocity at time 𝑡 = 500 seconds.

Finally, we show a simulation where a comparison with experimental laboratory data presented in [1]. We
consider a flat channel 𝑥 ∈ [0, 3] and a lock exchange of relative density between two fluids with density 𝜌0 =
1000Kg/m3 and 𝜌1 = 1034Kg/m3. The fluid with density 𝜌1 is within a gatebox of 0.1 meters placed on the left
of the channel, which is then released into the fluid 𝜌1. The total height of the water is 0.3 meters. Figure 3 (left)
depict the initial condition through a heat map of the relative density for a simulation with 𝑀 = 30 layers and just
80 discretization points. To mimic the laboratory experiment in [1], wall-type boundary conditions are considered.
Figure 3 (right) shows the simulation at final time 𝑡 = 25 seconds, whereas figure 4 and 5 shows the evolution of
the front position as the number of layers 𝑀 increase. As we can see, we reach outstanding data agreement at
approximately 𝑀 = 30 layers.
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Fig. 3 Lock-exchange experiment in a flat channel: initial condition (left) and relative density at final time 𝑡 = 25 seconds.
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Fig. 4 Lock-exchange experiment in a flat channel: comparison on the evolution of the front position computed with the
numerical scheme versus the laboratory data for 20 layers (left) and 25 layers (right).
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Fig. 5 Lock-exchange experiment in a flat channel: comparison on the evolution of the front position computed with the
numerical scheme versus the laboratory data for 30 layers (left) and 40 layers (right).

5. Conclusions
We have briefly presented a novel discretization based on an ADER-DG numerical scheme for a shallow water
model with a density dependent pressure term. The numerical scheme is arbitrary high order in space and time
and exhibits great accuracy at smooth regions, while providing great results near strong discontinuities thanks to
the MOOD strategy combined with a robust path-conservative solver. Finally, a novel strategy for preserving non-
trivial stationary solutions in the ADER-DG framework has been presented. The numerical results are promising,
showing excellent data agreement, and will help to increase our knowledge of density driven currents.
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