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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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New Galilean spacetimes to model an expanding universe
Daniel de la Fuente Benito
Universidad de Oviedo, Spain

Abstract
We introduce a new family relevant in the context of a generalized Newton-Cartan Theory: the Galilean

Generalized Robertson-Walker spacetimes. We study its geometrical structure and analyse the completeness of its
inextensible free falling observers. Additionally, we find some sufficient geometric conditions which guarantee a
global splitting of a Galilean spacetime as a Galilean Generalized Robertson-Walker spacetime.

1. Introduction
General Relativity is so far the most accurate and successful theory to describe the spacetime structure and the
gravitational phenomena. The evolution of the universe on a large scale was aptly described in the first half of the
20th century by means of the Robertson-Walker cosmological models (or fairly, Friedmann-Lemaître-Robertson-
Walker models). These models assume that the matter distribution and the “space relative to the family of observers
commovil with the matter” are homogeneous and isotropic. These hypotheses may be weakened in order to describe
a universe in a more accurate scale. With this objective, much more recently, new cosmological models have been
introduced, as the Generalized Robertson-Walker (GRW) spacetimes [5]. This kind of relativistic spacetimes has
been intensively studied from a mathematical perspective (see, for instance, [8], [12, 13], [15], [19, 20].)

However, the geometric formulation of the Newtonian’s Gravitation, firstly postulated by E. Cartan [10, 11],
after the appearance of the Einstein’s General Relativity Theory, is still of interest and significant for several reasons.

On one hand, it formulates the classical Newtonian gravitation as a covariant theory and shows that certain
results previously considered as characteristic or singular of the theory of Relativity are shared by the (geometric)
gravitational Newton-Cartan Theory. In fact, the Newtonian gravity also arises as a consequence of the curvature of
a connection in the spacetime, which does not come from any semi-Riemannian metric. Moreover, in the geometric
formulation of Newtonian’s Gravity Theory, the spacetime structure is dynamical in the sense that it participates
in the unfolding of physics rather than being a fixed backdrop against which it unfolds (see [16] and classical
references therein).

On the other hand, it allows to establish from an accurate and intrinsic way the limit relation between the
Newtonian theory of Gravitation and General Relativity.

The notion of symmetry is clearly basic in Physics. On a geometrical spacetime model, symmetry is usually
based on the assumption of the existence of a one-parameter group of transformations generated by a Killing or,
more generally, by a conformal vector field (see, [22]). Another important question is that a geometric approach
enables possible generalizations of Newtonian Theory, via the assumption of certain symmetries on Galilean
spacetimes (see Section 2), which are the geometrical “arena" for the Newton-Cartan gravitation. So, in [17] the
author studies the symmetry imposed on a Galilean spacetime by the cosmological principle, obtaining the Galilean
model analogous to the relativistic Robertson-Walker spacetimes.

In this work, we introduce a new family of Galilean geometrical models, which generalize the non-relativistic
Robertson-Walker spacetimes, in the same way as GRW spacetimes generalize the Friedmann-Lemaître-Robertson-
Walker spacetimes: the Galilean Generalized Robertson-Walker (GGRW) spacetimes (Sect. 3). A GGRW
spacetime possesses an infinitesimal symmetry given by the existence of a timelike irrotational conformally
Leibnizian (ICL) vector field. Several geometrical properties and physical interpretations for this family of
spacetimes are given in Section 3, as the possible existence of singularities or the completeness of its free falling
observers. Section 4 is devoted to the study of Galilean spacetimes admitting a timelike irrotational conformally
Leibnizian vector field . We show that an ICL Galilean spacetime must be locally a GGRW spacetime. Finally,
Section 5 is devoted to face the following kind of splitting problems: under what geometrical assumptions an ICL
spacetime globally decomposes as a GGRW spacetime.

2. Set up
Recall that a Leibnizian structure on a (non-relativistic) spacetime 𝑀 is a pair (Ω, 𝑔) consisting of a differential 1-
formΩ ∈ Λ1 (𝑀), nowhere null (Ω𝑝 ≠ 0, ∀𝑝 ∈ 𝑀) and a positive definite metric 𝑔 on its kernel. Specifically, let us
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XVI CONGRESO DE MATEMÁTICA APLICADA
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denote byAn(Ω) = {𝑣 ∈ 𝑇𝑀 , Ω(𝑣) = 0} the smooth 𝑛-distribution induced on𝑀 byΩ. If we denote by Γ(𝑇𝑀) the
set of smooth vector fields on 𝑀 , we may construct the subset Γ(An(Ω)) = {𝑉 ∈ Γ(𝑇𝑀) /𝑉𝑞 ∈ An(Ω), ∀𝑝 ∈ 𝑀}.
So, the map

𝑔 : Γ(An(Ω)) × Γ(An(Ω)) −→ 𝐶∞ (𝑀), (𝑉,𝑊) ↦→ 𝑔(𝑉,𝑊),
is smooth, bilinear, symmetric and positive definite. Hence, 𝑀 is endowed with a sub-Riemannian structure defined
on the bundle An(Ω), i.e., the annihilator of the degenerate metric Ω ⊗ Ω (see [6] and [7], for details). The triad,
(𝑀,Ω, 𝑔)) is called Leibnizian spacetime.
Points of 𝑀 are usually called events. The Euclidean vector space (An(Ω𝑝) , 𝑔𝑝) is called the absolute space

at 𝑝 ∈ 𝑀 , and the linear form Ω𝑝 is the absolute clock at 𝑝. A tangent vector 𝑣 ∈ 𝑇𝑝𝑀 is named spacelike if
Ω𝑝 (𝑣) = 0 and, otherwise, timelike. Additionally, if Ω𝑝 (𝑣) > 0 (resp. Ω𝑝 (𝑣) < 0), 𝑣 points out the future (resp.
the past).

An observer in a Leibnizian spacetime 𝑀 is a timelike future unit smooth curve 𝛾 : 𝐽 −→ 𝑀 , i.e., its velocity
𝛾′ satisfies that Ω(𝛾′(𝑠)) = 1 for all 𝑠 ∈ 𝐽. The parameter 𝑠 is called the proper time of the observer 𝛾. A vector
field 𝑍 ∈ Γ(𝑇𝑀) with Ω(𝑍) = 1 is called a field of observers, this is, its integral curves are observers.
When the smooth distribution An(Ω) is integrable (equivalently, if the absolute clock Ω satisfies Ω ∧ 𝑑Ω = 0),

the Leibnizian spacetime (𝑀,Ω, 𝑔) is said to be locally sincronizable, and making use of the Frobenius Theorem
(see [21]), it may be foliated by a family of spacelike hypersurfaces {F𝜆}. In this case, it is well-known that
each 𝑝 ∈ 𝑀 has a neighbourhood where Ω = 𝑓 𝑑𝑡, for certain smooth functions 𝑓 > 0, 𝑡, and the hypersurfaces
{𝑡 = constant} locally coincide with a leaf of the foliation F . Thus, any observer may be synchronized through the
“compromise time” 𝑡, obtained rescaling its proper time. In the more restrictive case 𝑑Ω = 0, then the Leibnizian
spacetime (𝑀,Ω, 𝑔) is called proper time locally synchronizable, and one has, locally, Ω = 𝑑𝑡. Now, observers are
synchronized directly by its proper time (up to a constant). WhenΩ is exact, Ω = 𝑑𝑡 for some function 𝑡 ∈ 𝐶∞ (𝑀),
which is called the absolute time function. In this case, any observer may be assumed to be parametrized by 𝑡.
Notice that the notion of (local and local proper time) synchronizability is intrinsic to the Leibnizian structure,
applicable for every observer, in contrast to the relativistic setting, where the analogous concepts have meanings
only for fields of observers.

According to [7], a field of observers is called Leibnizian if the stages Φ𝑠 of its local flows are Leibnizian
diffeomorphisms, that is, they preserve the absolute clock and space, i.e.,

Φ∗𝑠Ω = Ω, and Φ∗𝑠𝑔 = 𝑔.

On the other hand, the inertia principle must be codified through a connection on the spacetime. However, a
Leibnizian structure has not a canonical affine connection associated. Then, it is required to introduce a compatible
connection with the absolute clock Ω and the space metric 𝑔, i.e., a connection ∇ such that
(a) ∇Ω = 0 (equivalently, Ω(∇𝑋𝑌 ) = 𝑋 (Ω(𝑌 )) for any 𝑋,𝑌 ∈ Γ(𝑇𝑀)).
(b) ∇𝑔 = 0 (i.e., 𝑍 (𝑔(𝑉,𝑊)) = 𝑔(∇𝑍𝑉,𝑊) + 𝑔(∇𝑍𝑊,𝑉) for any 𝑍 ∈ Γ(𝑇𝑀) and 𝑉,𝑊 spacelike vector fields).
Such a connection is named Galilean. A Galilean spacetime (𝑀,Ω, 𝑔,∇) is a Leibnizian spacetime endowed
with a Galilean connection ∇. In addition, ∇ is said symmetric if its torsion vanishes identically (Tor∇ (𝑋,𝑌 ) =
∇𝑋𝑌 −∇𝑌 𝑋− [𝑋,𝑌 ] ≡ 0). From a physical point of view, a symmetric connection is desirable since it is completely
determined by its geodesics, i.e., by the free falling observers of 𝑀 . From now on, we will only consider symmetric
Galilean connections on the spacetime.

Given two Galilean spacetimes (𝑀,Ω, 𝑔,∇) and (𝑀 ′,Ω′, 𝑔′,∇′), a diffeomorphism 𝐹 : 𝑀 −→ 𝑀 ′ is said to
be Galilean if 𝐹∗Ω′ = Ω, 𝐹∗𝑔′ = 𝑔 and 𝐹∗∇′ = ∇, i.e., ∇′

𝑑𝐹 (𝑋 )𝑑𝐹 (𝑌 ) = ∇𝑋𝑌 .
For each fixed field of observers 𝑍 on aGalilean spacetime (𝑀,Ω, 𝑔,∇), the gravitational field induced by∇ in 𝑍

is given by the spacelike vector field G = ∇𝑍 𝑍 . The vorticity or Coriolis field of 𝑍 is the 2−form 𝜔(𝑍) = 1
2Rot(𝑍),

defined as
𝜔(𝑍) (𝑉,𝑊) = 1

2

(
𝑔(∇𝑉 𝑍,𝑊) − 𝑔(∇𝑊 𝑍,𝑉)

)
∀𝑉,𝑊 ∈ Γ(An(Ω)).

The main result of [7, Th.5.27] claims that, for a fixed field of observers 𝑍 on a Leibnizian spacetime (𝑀,Ω, 𝑔)
with 𝑑Ω = 0, the set of all symmetric Galilean connections is bijectively mapped onto

(
Γ(𝑇𝑀),Λ2 (An(Ω))

)
. Each

symmetric Galilean connection ∇ is mapped to
(
G(𝑍),Rot(𝑍)

)
. Thus, the gravitational field and the vorticity of a

field of observers determine a unique symmetric Galilean geometry of the spacetime.
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Additionally, a Leibnizian field of observers 𝑍 in a Galilean spacetime (𝑀,Ω, 𝑔,∇) is named Galilean if it is
affine for ∇, that is, 𝐿𝑍∇ = 0, where 𝐿 denotes the Lie derivative. Finally, a Galilean spacetime is said Newtonian
if the (symmetric) connection ∇ restricted to the spacelike vectors is flat, and it admits an irrotational Galilean field
of observers. This kind of spacetimes has traditionally represented the classical (non-relativistic) geometric model
of gravity.

3. Galilean Generalized Robertson-Walker spacetimes
In this section we introduce a new family of Galilean geometric models, which are the classical version of the
relativistic Generalized Robertson-Walker spacetimes defined in [5].

Definition 3.1 Let 𝐼 ⊆ R be a real interval, (𝐹, ℎ) a 𝑛-dimensional connectedRiemannianmanifold, and 𝑓 ∈ 𝐶∞ (𝐼)
a smooth positive function on 𝐼. A Galilean spacetime (𝑀,Ω, 𝑔,∇) is called Galilean Generalized Robertson-
Walker spacetime (GGRW) if 𝑀 = 𝐼 × 𝐹, Ω = 𝑑𝜋𝐼 , 𝑔 is the restriction to the bundle An(Ω) of the following
(degenerate) metric on 𝑀 ,

𝑔 = ( 𝑓 ◦ 𝜋𝐼 )2 𝜋∗𝐹 ℎ, (3.1)
where 𝜋𝐼 , 𝜋𝐹 are the canonical projections onto the open interval 𝐼 and the fiber 𝐹 respectively, and ∇ is the only
symmetric Galilean connection on 𝑀 such that

∇𝜕𝑡 𝜕𝑡 = 0, 𝑎𝑛𝑑 Rot 𝜕𝑡 = 0, (3.2)

where 𝜕𝑡 = 𝜕/𝜕𝑡 is the global coordinate vector field associated to 𝑡 := 𝜋𝐼 .
The vector field 𝜕𝑡 defines a field of observers in 𝑀 (Ω(𝜕𝑡 ) = 1), which we will call commovil observers, by the

similarity with the relativistic Robertson-Walker spacetimes. Then, the conditions (3.2) in above definition mean
that commovil observers are free falling and they do not rotate. Notice that from [7, Th.5.27], the conditions (3.2)
determine the (symmetric) Galilean connection on 𝑀 .

Example Let us consider a GGRW with 𝐼 = R and 𝐹 = R𝑛 endowed with the usual Euclidean metric. If
𝑓 (𝑡) = constant, then the Galilean connection coincides with the standard flat connection of the affine space R𝑛+1.
In addition, the commovil observers satisfy the necessary conditions to assure the Newtonian character of this
spacetime. More physically relevant examples are given in the next section.

3.1. Completeness of free falling observers in a GGRW spacetime
We now proceed to analyze when the inextensible free falling trajectories in a GGRW spacetime are complete.
Physically we are looking for geometric assumptions that guarantee that every free falling observer lives forever.
First, we have an analogous result to the geodesic normalization lemma in semi-Riemannian manifolds.

Lemma 3.2 Let 𝛾 be a geodesic in a GGRW spacetime. Then, Ω(𝛾′) is constant along the trajectory of 𝛾.

The relevant cases correspond with Ω(𝛾′) = 0 or 1. The first one (Ω(𝛾′) = 0) means that 𝛾 is spacelike and
contained in a leaf F𝑡 of the foliation of Ω. As ∇ coincides with the Levi-Civita connection of (F𝑡 , 𝑓 (𝑡)2 ℎ), the
completeness of this kind of geodesics is equivalent to the geodesic completeness of (𝐹, ℎ). Thus, from now on
we will deal with free falling observers (𝛾 geodesic with Ω(𝛾′) = 1).

Theorem 3.3 AGGRW spacetime is geodesically complete if and only if 𝐼 = R and the fiber (𝐹, ℎ) is (geodesically)
complete.

4. Irrotational conformally Leibnizian spacetimes
In this section we present a wider family of Galilean spacetimes which locally exhibit the structure of a GGRW
spacetime. As a previous step, we introduce the concept of conformally Leibnizian field of observers, generalizing
the well-known notion of Leibnizian observer.

Definition 4.1 Let (𝑀,Ω, 𝑔) be a Leibnizian spacetime. A vector field 𝑋 is called spatially conformally Leibnizian
vector field if

𝐿𝑋Ω = 𝜇Ω, (4.1)
and the Lie derivative of the absolute space metric satisfies

𝐿𝑋 𝑔 = 2𝜆 𝑔, (4.2)

for some smooth functions 𝜆, 𝜇 ∈ 𝐶∞ (𝑀). If, additionally, both functions coincide, i.e., 𝜆 = 𝜇, then 𝑋 is named
conformally Leibnizian vector field.

D. DE LA FUENTE

157



Note that a conformally Leibnizian vector field is Leibnizian if and only if the conformal factor 𝜆 is identically
zero [7].

Remark 4.2 Condition (4.1) may be also expressed as

𝑑Ω(𝑋,𝑌 ) + 𝑌 (Ω(𝑋)) = 𝜇Ω(𝑌 ), ∀𝑌 ∈ Γ(𝑇𝑀),

and means that distribution An(Ω) is invariant along the flow of vector field 𝑋 . So, if this distribution is integrable,
the flow of 𝑋 carries each leaf of the foliation to another one. Analogously, assumption (4.2) is equivalent to

𝑋 (𝑔(𝑉,𝑊)) = 𝜆 𝑔(𝑉,𝑊) + 𝑔( [𝑋,𝑉],𝑊) + 𝑔( [𝑋,𝑊], 𝑉), ∀𝑉,𝑊 ∈ Γ(An(Ω)).

The following result shows that GGRW spacetimes admit a timelike conformally Leibnizian vector field.

Proposition 4.3 Let (𝑀 = 𝐼 × 𝐹,Ω = 𝑑𝑡, 𝑔,∇) be a GGRW spacetime with scale factor 𝑓 ∈ 𝐶∞ (𝐼). Then, the
vector field 𝐾 := ( 𝑓 ◦ 𝜋𝐼 ) 𝜕𝑡 is irrotational and conformally Leibnizian and, consequently, it satisfies the identity

∇𝑋𝐾 = ( 𝑓 ′ ◦ 𝜋𝐼 ) 𝑋, ∀𝑋 ∈ Γ(𝑇𝑀). (4.3)

Definition 4.4 Let (𝑀,Ω, 𝑔,∇) be a Galilean spacetime, whose absolute clock is closed (𝑑Ω = 0). If 𝑀 admits a
timelike vector field 𝐾 ∈ Γ(𝑇𝑀) satisfying

∇𝑋𝐾 = 𝜌 𝑋, ∀𝑋 ∈ Γ(𝑇𝑀), 𝑤ℎ𝑒𝑟𝑒 𝜌 ∈ 𝐶∞ (𝑀), (4.4)

𝑀 is called Irrotational Conformally Leibnizian spacetime (ICL).

Remark 4.5 Notice that condition (4.4) directly implies that 𝐾 is conformally Leibnizian and Rot(𝐾) (𝑉,𝑊) = 0,
for all spacelike vector fields 𝑉,𝑊 .

As a first consequence of Definition 4.4, we obtain that functions Ω(𝐾) and 𝜌 are constant on each leaf of the
foliation induced by Ω.

Lemma 4.6 Let (𝑀,Ω, 𝑔,∇) be a ICL spacetime with irrotational conformally Leibnizian vector field 𝐾 and
conformal factor 𝜌. Then

𝑉
(
Ω(𝐾)) = 0 𝑎𝑛𝑑 𝑉 (𝜌) = 0, ∀𝑉 ∈ Γ(An(Ω)).

We have just seen that each GGRW is an ICL spacetime. Next theorem ensures that any ICL spacetime is locally
a GGRW spacetime.

Theorem 4.7 Let (𝑀,Ω, 𝑔,∇) be an ICL spacetime. For each 𝑝 ∈ 𝑀 , there exist an open neighbourhood of 𝑝,U,
and a Galilean diffeomorphism Ψ : 𝑁 −→ U, where 𝑁 is a GGRW spacetime.

5. Global GGRW decompositions
We know that an ICL spacetime is locally a GGRW spacetime. Now, our aim here consists in looking for additional
assumptions on the geometry of an ICL spacetime which lead to a global splitting as a GGRW spacetime. This type
of question has been yet discussed several times in the relativistic setting (see for instance, [8], [14], [15] and [4]),
i.e., under what conditions on the geometry of a relativistic spacetime, this admits a global decomposition as a
warped product space or, in particular, as a GRW spacetime.

Theorem 5.1 A Gailean spacetime
(
𝑀,Ω, 𝑔,∇) , whose 1-form Ω is exact, admits a global decomposition as a

GGRW spacetime if and only if it is an ICL spacetime with a timelike irrotational conformally vector field 𝐾 , such
that the flow of the associated field of observers, 𝑍 := 1

Ω(𝐾 )𝐾 , is well defined and onto in a domain 𝐼 × F for some
interval 𝐼 ⊆ R and some leaf of the foliation F induced by Ω.

Remark 5.2 (i) Note that the hypothesis on the absolute clockΩ automatically holds when the spacetime is simply
connected. (ii) Observe that the assumption on the flow of 𝑍 trivially holds when 𝑍 is complete.

Taking into account the previous Remark, we can assert
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Corollary 5.3 Let
(
𝑀,Ω, 𝑔,∇) be an ICL spacetime with timelike irrotational conformally Leibnizian vector field

𝐾 . If the absolute clock Ω is exact and 1
Ω(𝐾 )𝐾 is complete, then 𝑀 globally splits as a GGRW spacetime.

To end this work, we present a global splitting result when the spacetime is spatially compact, that is, when the
leaves of the spacelike foliation are compact.

Theorem 5.4 Let
(
𝑀,Ω, 𝑔,∇) be an ICL spacetime with Ω exact. If the leaves of the foliation induced by Ω are

compact, then 𝑀 is a GGRW spacetime.

Acknowledgements
The author was partially supported by Spanish MINECO and ERDF project MTM2016-78807-C2-1-P.

References
[1] David Hilbert. Ueber die nothwendigen und hinreichenden covarianten Bedingungen für die Darstellbarkeit einer binären Form als
vollständiger Potenz. Math. Ann., 27(1):158–161, 1886.

[2] Donald E. Knuth. Tau Epsilon Chi, a system for technical text. American Mathematical Society, Providence, R.I., 1979. Revised version
of Stanford Computer Science report number STAN-CS-78-675.

[3] Laurent Schwartz. Généralisation de la notion de fonction, de dérivation, de transformation de Fourier et applications mathématiques et
physiques. Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N.S.), 21:57–74 (1946), 1945.

[4] J.A. Aledo, A. Romero and R.M. Rubio, The existence and uniqueness of standard static splitting, Classical Quant. Grav., 32 (2015),
105004 (1–9).

[5] L.J. Alías, A. Romero and M. Sánchez, Uniqueness of complete spacelike hypersurfaces of constant mean curvature in Generalized
Robertson-Walker spacetimes, Gen. Relat. Gravit., 27 (1995), 71–84.

[6] A.N. Bernal, M. López, M. Sánchez, Fundamental units of length and time, Found. Phys., 32 (2002), 77–108.

[7] A.N. Bernal, M. Sánchez, Leibnizian, Galilean and Newtonian structures of space-time J. Math. Phys., 44 (2003), 1129–1149.

[8] M. Caballero, A. Romero and R.M. Rubio, Constant mean curvature spacelike hypersurfaces in Lorentzian manifolds with a timelike
gradient conformal vector field, Class. Quantum Grav., 28 (2011), 145009–145022.

[9] A.M. Candela, A. Romero and M. Sánchez, Completeness of the trajectories of particles coupled to a general force field, Arch. Rational
Mech. Anal., 208 (2013), 255–274.

[10] E. Cartan, Les variètés a conexion affine, Ann. Ec. Norm. Sup., 40 (1923), 1–25.

[11] E. Cartan, Les variètés a conexion affine (suite), Ann. Ec. Norm. Sup., 41 (1924), 325–412.

[12] D. De la Fuente, J.A. S. Pelegrín, R.M. Rubio, On the geometry of stationary Galilean spacetimes, Gen. Relativ. Grav., 538 (2021), 1–15.

[13] J.L Flores, M. Sánchez, Geodesic connectedness and conjugate points in GRW space-times, J. Geom. Phys., 36 (2000), 285–314.

[14] J.L. Flores, The Riemannian and Lorentzian splitting theorems, Atlantis Trans. Geom., Springer 1 (2017), 1–20.

[15] M. Gutierrez and B. Olea, Global decomposition of a Lorentzian manifold as a Generalized Robertson-Walker spacetime, Diff. Geom.
Appl., 27 (2009), 146–156.

[16] D. B. Malament, Topic in the Formulations of General Relativity and Newtonian Gravitation Theory, Chicago lectures in Physics,
University of Chicago Press, 2012.

[17] F. Müler-Hoissen, The cosmological principle and a generalization of Newton’s theory of gravitation, Gen. Relat. Gravitation, 15 (1983),
1051–1066.

[18] B. O’Neill, Semi–Riemannian Geometry with Applications to Relativity, Pure Appl. Math., 103, Academic Press, New York, 1983.

[19] M. Sánchez, On the geometry of generalized Robertson-Walker spacetimes: geodesics Gen. Relat. Gravitation 30 (1998), 915–932.

[20] M. Sánchez, On the geometry of generalized Robertson-Walker spacetimes: curvature and Killing fields. J. Geom. Phys., 31 (1999),
1—15.

[21] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Grad. Texts Math., Springer-Verlag, 1983.

[22] E. Zafiris, Irreducible decomposition of Einstein’s equations in spacetimes with symmetries, Ann. Phys. 263 (1998), 155–78.

D. DE LA FUENTE

159




