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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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� José Antonio Langa, Universidad de Sevilla

� Mikel Lezaun, Euskal Herriko Unibersitatea

� Peter Monk, University of Delaware

� Ira Neitzel, Universität Bonn
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Hernández-Verón M.A., Magreñán A.A., Martı́nez E. and Sukhjit S. . . . . . . . . . . . . . . . . . . . . . 242

6



CONTENTS

Recent developments in modeling free-surface flows with vertically-resolved velocity profiles using
moments
Koellermeier J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Stability of a one degree of freedom Hamiltonian system in a case of zero quadratic and cubic terms
Lanchares V. and Bardin B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Minimal complexity of subharmonics in a class of planar periodic predator-prey models
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Different Approximations of the Parameter for Low-Order Iterative
Methods with Memory

Francisco I. Chicharro1, Neus Garrido1, Íñigo Sarría1, Lara Orcos2
1. Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, Spain

2. Facultad de Educación, Universidad Internacional de La Rioja, Spain

Abstract

A technique for generating iterative methods for solving nonlinear equations with memory can be constructed
from a method without memory that includes a parameter, provided the parameter is present in the error equation.
Generally, the parameter depends on the evaluation of the function and its derivatives in the solution. However,

this information is not available. So this parameter is approximated using interpolation techniques, taking the
current iterate 𝑥𝑘 and the previous iterates 𝑥𝑘−1, 𝑥𝑘−2, . . .
In this paper we explore different interpolation techniques to obtain both the convergence order of the new

methods and their stability characteristics.

1. Introduction
Many phenomena in applied sciences do not respond to a linear pattern. Nonlinearities are present in most fields,
such as physics, fluid mechanics, economics or ecology, among others. In this case, these phenomena can be
modeled by means of a nonlinear equation 𝑓 (𝑥) = 0, 𝑓 : 𝐼 ⊆ R → R, or by means of a system of nonlinear
equations 𝐹 (𝑥) = 0, 𝐹 : 𝐷 ⊆ R𝑛 → R𝑛. The desired solution 𝑥∗ of these problems is a closed-form analytic
expression. However, there are problems whose analytic solution is hardly available. Obtaining approximate
solutions becomes an alternative, by applying numerical methods based on iterative algorithms.
Numerical methods for solving nonlinear equations can be sorted by different criteria. Single-step methods

respond to the scheme 𝑥𝑘+1 = 𝜙(𝑥𝑘 ), while multi-step methods are those that match with 𝑦𝑘 = 𝜙1 (𝑥𝑘 ), 𝑥𝑘+1 =
𝜙2 (𝑥𝑘 , 𝑦𝑘 ). A quantitative comparison between methods can be perfomed by the order of convergence 𝑝 and the
efficiency index [17] 𝐼 = 𝑝1/𝑑 , where 𝑑 stands for the number of functional evaluations in each step. Kung-Traub’s
conjecture [15] states that there exists an upper bound for the order of convergence that is 𝑝 ≤ 2𝑑−1; thus, the
iterative method is optimal when 𝑝 = 2𝑑−1. There is an interesting overview of these methods in [12].
Kung-Traub’s conjecture sets an upper bound for the order of convergence in numerical methods without

memory. However, this restriction can be overcome by using iterative methods with memory. These kind of
methods are defined as

𝑥𝑘+1 = 𝜙(𝑥𝑘 , 𝑥𝑘−1, . . . , 𝑥𝑘−𝑚).
In other words, the current iterate is calculated taking into account the last 𝑚 + 1 iterates. This idea was introduced
by Traub [23], including memory from Steffensen’s method. In the last years, many schemes of iterative methods
with memory have been presented. A key overview can be found in [18, 19].
One technique for the design of a method with memory consists of the inclusion of an accelerating parameter

in the expression of a method without memory. This technique has been widely adopted in the research of this kind
of methods for both nonlinear equations [5, 6, 10], and nonlinear systems of equations [7, 16, 20].
Once the parameter has been included in the iterative expression, the next step is the analysis of the error

equation. When the parameter is present in the lower term of this equation, the goal is the replacement of the
parameter by an expression that cancels this error term. There are different techiques for the approximation of the
parameter.
In this paper, we analyze the most common techniques of replacing the parameter, as well as other novel

techniques. In [4] the authors introduced the general form of one-step iterative methods using the weight function
technique given by

𝑥𝑘+1 = 𝑥𝑘 − 𝐻 (𝑡𝑘 ), 𝑘 = 0, 1, 2, . . . , (1.1)

where 𝑡𝑘 = 𝑓 (𝑥𝑘 )/ 𝑓 ′(𝑥𝑘 ). Family (1.1) has quadratic convergence when 𝐻 (𝑡) satisfies 𝐻 (0) = 0, 𝐻 ′(0) = 1 and
|𝐻 ′′(0) | < ∞. The error equation of members of family (1.1) is

𝑒𝑘+1 =
(
𝑐2 − 𝐻

′′(0)
2

)
𝑒2𝑘 + O(𝑒3𝑘 ), (1.2)

XXVI CONGRESO DE ECUACIONES DIFERENCIALES Y APLICACIONES
XVI CONGRESO DE MATEMÁTICA APLICADA
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where 𝑒𝑘 = 𝑥𝑘 − 𝑥∗ and 𝑐 𝑗 = 𝑓 ( 𝑗) (𝑥∗)
𝑗! 𝑓 ′ (𝑥∗) , 𝑗 ≥ 2. Note that 𝐻 (𝑡) = 𝑡 + 𝛼 𝑡22 satisfies the conditions of quadratic

convergence of (1.1) for 𝐻 (𝑡), resulting in

𝑥𝑘+1 = 𝑥𝑘 − 𝑓 (𝑥𝑘 )
𝑓 ′(𝑥𝑘 ) − 𝛼

𝑓 2 (𝑥𝑘 )
2( 𝑓 ′(𝑥𝑘 ))2

, (1.3)

and its error equation is
𝑒𝑘+1 =

(
𝑐2 − 𝛼2

)
𝑒2𝑘 + O(𝑒3𝑘 ). (1.4)

For 𝛼 = 2𝑐2, the second order error term vanishes. However, the value of 𝑐2 = 𝑓 ′′ (𝑥∗)
2 𝑓 ′ (𝑥∗) is not known. Therefore,

some approximations of 𝑓 ′(𝑥∗) and 𝑓 ′′(𝑥∗) must be applied.

2. The approximations of 𝑓 and the convergence analysis
In order to obtain an approximation of 𝑓 , we compare the approximation of different interpolatory structures. The
most of papers apply Newton’s interpolation polynomial of different degrees [11, 14, 24]. Let us denote by 𝑁 (𝑡)
the interpolation polynomial of Newton of second degree, whose expression is

𝑁 (𝑡) = 𝑓 (𝑥𝑘 ) + 𝑓 [𝑥𝑘−1, 𝑥𝑘 ] (𝑡 − 𝑥𝑘 ) + 𝑓 [𝑥𝑘−2, 𝑥𝑘−1, 𝑥𝑘 ] (𝑡 − 𝑥𝑘 ) (𝑡 − 𝑥𝑘−1), (2.1)

where 𝑓 [·, ·] and 𝑓 [·, ·, ·] are the divided differences of orders one and two. The lower degree of the polynomial in
order to avoid that 𝑁 ′′(𝑡) vanishes is two. Approximating{

𝑓 ′(𝑥∗) = 𝑓 ′(𝑥𝑘 ),
𝑓 ′′(𝑥∗) = 𝑁 ′′(𝑥𝑘 ),

the value of the parameter is

𝛼𝑘 = 2
𝑓 [𝑥𝑘−2, 𝑥𝑘−1, 𝑥𝑘 ]

𝑓 ′(𝑥𝑘 ) . (2.2)

Then, parameter 𝛼𝑘 is replaced in (1.3), resulting in an iterative method with memory. Note that this method
requires the knowledge of three previous iterates and two new functional evaluations.
The Taylor expansion of a function can also give an approximation for the value of 𝛼. From the regressive

Taylor expansion at node 𝑥𝑘−1 of order O((𝑥𝑘−1 − 𝑥𝑘 )2) the parameter can be approximated by

𝛼𝑘 =
2

(𝑥𝑘−1 − 𝑥𝑘 )2
(
𝑓 (𝑥𝑘−1) − 𝑓 (𝑥𝑘 )

𝑓 ′(𝑥𝑘 ) − (𝑥𝑘−1 − 𝑥𝑘 )
)
. (2.3)

In this case, the method requires the value of the two last iterates, and three evaluations of 𝑓 .
Another option for the approximation of the parameter is the use od Padé’s approximant. It has been applied

for solving nonlinear equations [9, 21], but –up to our knowledge– it has not been used for methods with memory.
Let 𝑃(𝑡) be the Padé’s approximant

𝑃(𝑡) = 𝑎0 + 𝑎1 (𝑡 − 𝑥𝑘 )
1 + 𝑎2 (𝑡 − 𝑥𝑘 ) . (2.4)

The values of 𝑎0, 𝑎1 and 𝑎2 can be obtained when (2.4) satisfies


𝑃(𝑥𝑘 ) = 𝑓 (𝑥𝑘 ),
𝑃(𝑥𝑘−1) = 𝑓 (𝑥𝑘−1),
𝑃′(𝑥𝑘 ) = 𝑓 ′(𝑥𝑘 ).

The approximation of the parameter in this case has the expression

𝛼𝑘 =
𝑃′′(𝑥𝑘 )
𝑓 ′(𝑥𝑘 ) = 2

𝑓 ′(𝑥𝑘 ) ( 𝑓 (𝑥𝑘−1 − 𝑓 (𝑥𝑘 ) + 𝑓 ′(𝑥𝑘 ) (𝑥𝑘 − 𝑥𝑘−1))
( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘−1) (𝑥𝑘 − 𝑥𝑘−1) . (2.5)

The resulting method only requires two iterates for the approximation of the parameter and three functional
evaluations.
Theorem 2.1 gathers the analysis of the 𝑅-order of convergence of the previous methods.

Theorem 2.1 Let 𝑥∗ be a simple zero of a sufficiently differentiable function 𝑓 : 𝐼 ⊆ R→ R in an open interval 𝐼.
If 𝑥0 is close enough to 𝑥∗ and 𝛼0 is given, then the R-orders of method (1.3) replacing 𝛼𝑘 by expressions (2.2),
(2.3) and (2.5) are 1 +

√
2.

Table 1 collects the comparison of the main values of each technique.
Let us remark from Table 1 that every method has the same order of convergence, while the number of functional

evaluations is lower for Taylor and Padé’s approximant.
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Technique Newton Taylor Padé
Iterates 3 2 2
𝑑 4 3 3
𝑝 1 +

√
2 1 +

√
2 1 +

√
2

Tab. 1 Quantitative comparison of the parameter approximation

3. Real multidimensional dynamical analysis
The dynamics of an iterative method analyses their stability in terms of the amount of initial guesses that converge
to the expected solution. Some fundamentals about dynamics of iterative methods without memory can be found
in [1, 13], while for the iterative methods with memory the basics are in [2, 3].
The fixed points, for real multidimensional dynamics, involves the definition of an auxilary function 𝐺 : R2 →

R2 such that
𝐺 (𝑧, 𝑥) = (𝑥, 𝑔(𝑧, 𝑥)),

where 𝑔 : R2 → R is the iterative expression 𝑥𝑘+1 = 𝑔(𝑥𝑘−1, 𝑥𝑘 ), 𝑧 = 𝑥𝑘−1 and 𝑥 = 𝑥𝑘 . Therefore, the fixed points
are defined as 𝐺 (𝑧𝐹 , 𝑥𝐹 ) = (𝑧𝐹 , 𝑥𝐹 ). Fixed points that does not match with the roots of 𝑓 are named strange
fixed points. They affect the unstability of the method. A 𝑇-periodic point is defined as 𝐺𝑇 (𝑧𝑇 , 𝑥𝑇 ) = 𝐺 (𝑧𝑇 , 𝑥𝑇 ),
satisfying 𝐺𝑡 (𝑧𝑇 , 𝑥𝑇 ) ≠ (𝑧𝑇 , 𝑥𝑇 ), 𝑡 < 𝑇 ; note that for 𝑇 = 1, the periodic point is a fixed point. The asymptotical
behavior of 𝑇-periodic points is defined in [22]. Theorem 3.1 collects the asymptotical behavior for 𝑇 = 1.

Theorem 3.1 Let 𝐺 : R2 → R2 be C2. Let `1, `2 be the eigenvalues of the Jacobian matrix 𝐺 ′ on a fixed point
(𝑧𝐹 , 𝑥𝐹 ). Then

1. If |`1 | < 1 and |`2 | < 1, then (𝑧𝐹 , 𝑥𝐹 ) is attracting.
2. If |`1 | > 1 and |`2 | > 1, then (𝑧𝐹 , 𝑥𝐹 ) is repelling.
3. If |`1 | < 1 and |`2 | > 1, or |`1 | > 1 and |`2 | < 1, then (𝑧𝐹 , 𝑥𝐹 ) is unstable.
The attracting fixed points are denoted by (𝑧+, 𝑥+). The basin of attraction of an attracting fixed pointA(𝑧+, 𝑥+)

is the set of points that satisfy

A(𝑧+, 𝑥+) = {(𝑧, 𝑥) ∈ R2 : 𝐺𝑛 (𝑧, 𝑥) → (𝑧+, 𝑥+), 𝑛→∞}.

The dynamical analysis is performed applying the expressions of 𝛼 on (1.3) for the solution of 𝑓 (𝑥) = 𝑥2 − _.
In order to make a reasonable comparison, we are analysing the resulting methods of Taylor’s and Padé’s

approximations of 𝛼. Note that these methods only require the two last iterates, while Newton’s approximation
requires three previuos iterates.
The comparison is performed via the representation of the basins of attraction, in a similar manner as described

in [8]. In this particular case, the basins of (𝑧+, 𝑥+) = √_(1, 1) are represented in orange, the basins of (𝑧+, 𝑥+) =
−√_(1, 1) are represented in blue, and the convergence to a different point than (𝑧+, 𝑥∗) = ±√_(1, 1) is represented
in black. The fixed attracting points are represented with white stars.

3.1. Taylor’s approximation
Replacing (2.3) in (1.3), the auxiliary function is

𝑇 (𝑧, 𝑥) =
(
𝑥,
3𝑥4 + 6𝑥2_ − _2

8𝑥3

)
.

There are two fixed attracting points (𝑧+, 𝑥+) = ±√_(1, 1) and two unstable points (𝑧, 𝑥) = ±
√︃
_
5 (1, 1).

Figure 1 represents the basins of attraction of 𝑇 (𝑧, 𝑥) for different values of _. Since 𝑇 (𝑧, 𝑥) does not have
dependence on the value of 𝑧 = 𝑥𝑘−1, the dynamical planes are vertical bands. Note that every initial guess converge
to an attracting fixed point, and bands are wider as the value of _ increases.
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Fig. 1 Dynamical planes using Taylor’s approximation of 𝛼

3.2. Padé’s approximation
Replacing (2.5) in (1.3), the auxiliary function is

𝑃(𝑧, 𝑥) = ©«
𝑥,
𝑥2 − (𝑥2−_)2𝑥+𝑧 + _

2𝑥
ª®¬
.

There are two fixed attracting points (𝑧+, 𝑥+) = ±√_(1, 1) and two unstable points (𝑧, 𝑥) =
(
−1 ±

√
1 + _

)
(1, 1).

Figure 2 represents the basins of attraction of 𝑃(𝑧, 𝑥) for different values of _. In this case, 𝑃(𝑧, 𝑥) depends on
both 𝑧 = 𝑥𝑘−1 and 𝑥 = 𝑥𝑘 , so dynamical planes are not vertical bands. There are regions of convergence to the roots
of 𝑓 , but there are other regions that diverge or converge to another point, as black areas represent. Moreover, as _
increases, the width of black central region also does.

Padé
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Fig. 2 Dynamical planes using Padé’s approximation of 𝛼

4. Conclusions
Three new techniques have been introduced for the approximation of the self-accelerating parameter in a low-order
iterative method. The order of convergence for the three cases have increased from 2 to 1 +

√
2. In order to

make a reasonable comparison for the stability counterpart, two approximations that involve the same number of
previous iterates have been taken. Taylor’s approximation results in vertical dynamical planes, because of the
independence of 𝑇 (𝑧, 𝑥) with 𝑧. In addition, Taylor’s approximation results in more stable dynamical planes than
Padé’s approximation.
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