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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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Homoclinic bifurcations in the unfolding of the nilpotent singularity of
codimension 4 in R4

Pablo S. Casas1, Fátima Drubi2, Santiago Ibáñez2
1. pabloscasas@uniovi.es Universidad de Oviedo, Spain

2. Universidad de Oviedo, Spain

Abstract

The rich variety of homoclinic phenomena exhibited by the limit family of any generic unfolding of a four-
dimensional nilpotent singularity of codimension-four is discussed. Specifically, numerical techniques based
on the Taylor integrator and the expansion of the invariant manifolds were designed for this family. A partial
bifurcation diagram which includes, besides a suggestive catalogue of local bifurcations of equilibria, folds and
period doublings of periodic orbits is also given. These results are certainly the first steps towards a much more
ambitious goal: to achieve a general understanding of these codimension-four unfoldings.

1. Introduction
Let 𝑋 be a 𝐶∞ vector field on R𝑛 with 𝑋 (0) = 0 and 1-jet at 0 linearly conjugate to ∑𝑛−1

𝑖=1 𝑥𝑖+1 𝜕/𝜕𝑥𝑖 . Vector fields
satisfying this assumption make up a set of codimension 𝑛 in the space of germs of singularities in R𝑛 (see [19] for
definitions). As argued in [8], working with appropriate coordinates, 𝑋 can be written as the following differential
equation {

𝑥 ′𝑖 = 𝑥𝑖+1 for 𝑖 = 1, . . . , 𝑛 − 1,
𝑥 ′𝑛 = 𝑓 (𝑥),

with 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑓 (𝑥) = 𝑂 (‖𝑥‖2). We say that 0 (or 𝑋 itself) is a 𝑛-dimensional nilpotent singularity of
codimension 𝑛 when the condition

𝜕2 𝑓

𝜕𝑥21
(0) ≠ 0

is satisfied.
Consider now a 𝐶∞-family of vector fields 𝑋a , with a = (a1, . . . , a𝑛) ∈ R𝑛, such that 𝑋0 is a 𝑛-dimensional

nilpotent singularity of codimension 𝑛. As proved in [8], under generic assumptions, 𝑋a can be written as follows{
𝑥 ′𝑖 = 𝑥𝑖+1 for 𝑖 = 1, . . . , 𝑛 − 1,
𝑥 ′𝑛 = a1 + a2𝑥2 + . . . + a𝑛𝑥𝑛 + 𝑥21 + ℎ(a, 𝑥),

where a1, . . . , a𝑛 and the coefficient in front of 𝑥21 represent exact coefficients in a Taylor expansion with respect to
𝑥 and ℎ is of order 𝑂 (‖(a, 𝑥)‖2) and 𝑂 (‖(𝑥2, . . . , 𝑥𝑛)‖2).
As proved in [1], when rescaling parameters and variables by the equations

a1 = Y2𝑛 ā1,
a𝑘 = Y𝑛−𝑘+1 ā𝑘 for 𝑘 = 2, . . . , 𝑛,
𝑥𝑘 = Y𝑛+𝑘−1𝑥𝑘 for 𝑘 = 1, . . . , 𝑛,

(1.1)

with Y > 0 and ā21 + . . . + ā2𝑛 = 1, 𝑋a becomes the system{
𝑥 ′𝑖 = 𝑥𝑖+1 for 𝑖 = 1, . . . , 𝑛 − 1,
𝑥 ′𝑛 = ā1 + ā2𝑥2 + . . . + ā𝑛𝑥𝑛 + 𝑥21 +𝑂 (Y),

after division by Y. Variable 𝑥 = (𝑥1, . . . , 𝑥𝑛) can be assumed to belong to any arbitrarily large compact in R𝑛.
Understanding the bifurcation diagram of the limit family (Y = 0) is essential to study the dynamics emerging

from the singularity, that is, its unfolding. The limit family when 𝑛 = 2 is a key piece in the study of the Bogdanov-
Takens bifurcation ( [3,20]). The limit family corresponding to the case 𝑛 = 3was studied in [11–14]. Among other
results, it was proved in [14] that any generic unfolding of the 3-dimensional nilpotent singularity of codimension
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XVI CONGRESO DE MATEMÁTICA APLICADA
Gijón, 14-18 junio 2021
(pp. 122–129)
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3 exhibits strange attractors. Finally, the limit family corresponding to the 4-dimensional nilpotent singularity of
codimension four 



𝑥 ′1 = 𝑥2,
𝑥 ′2 = 𝑥3,
𝑥 ′3 = 𝑥4,
𝑥 ′4 = ā1 + ā2𝑥2 + ā3𝑥3 + ā4𝑥4 + 𝑥21,

(1.2)

was studied in [1, 2, 8]. Most notably, it was proved in [1] that any generic unfolding of the singularity contains a
bifurcation hypersurface corresponding to bifocal homoclinic orbits. Even so, all the mentioned papers only offer
very preliminary results. Consequently, the study of the dynamics exhibited by the limit family in the 4-dimensional
case continues to be an interesting and enormous challenge.
In this work we delve into the study of (1.2). In Section 2 we propose directional rescalings that facilitate

the study. The numerical methods employed along the paper are described in Section 3. The core of this paper
is Section 4 where we provide results related to the existence of homoclinic connections. In addition, a first
approximation to the complex structure of bifurcations of periodic orbits displayed in the family is presented in
Section 5. We conclude with a brief discussion on related topics of interest.

2. Directional rescalings and reversible case
In what follows, we consider the family (1.2). When ā1 > 0, it can be proven that the function

𝐿 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑥4 − ā2𝑥1 − ā3𝑥2 − ā4𝑥3
is strictly increasing along orbits. Therefore, there are no bounded orbits when ā1 > 0 and the interesting dynamics
only emerges for ā1 ≤ 0. When ā1 = 0, there is a unique equilibrium point at the origin and for ā1 < 0 there exist
two equilibrium points at 𝑝± = (±

√−ā1, 0, 0, 0).
On the other hand, family (1.2) is invariant with respect to the transformation:

(ā1, ā2, ā3, ā4, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑡) ↦−→ (ā1,−ā2, ā3,−ā4, 𝑥1,−𝑥2, 𝑥3,−𝑥4,−𝑡).
This allows to restrict the study to the case ā4 ≤ 0. In particular, the divergence of each vector field in the

family is given by ā4 so the existence of repellors is not feasible for ā4 6 0 and attractors also do not exist when
ā4 = 0. Additionally, the vector fields are time-reversible when ā2 = ā4 = 0. As argued in [1, 2, 8], understanding
the dynamics for the subfamily of time-reversible vector fields becomes essential. The dynamics of the linear part
is simple around 𝑝+ and richer around 𝑝− (see [1]). The linear part at 𝑝+ always have a pair of real eigenvalues and
a pair of complex eigenvalues with non-zero real part. However, the linear part at 𝑝− has

• a double zero eigenvalue and a pair of pure imaginary eigenvalues when ā3 = −1 and ā1 = ā2 = ā4 = 0 (we
denote this bifurcation point as HBT),

• two double pure imaginary eigenvalues ±𝑖(−ā3/2)1/2 when ā23 − 8
√−ā1 = 0, ā3 < 0 and ā2 = ā4 = 0 (we

denote this bifurcation point as HH),

• two double real eigenvalues ±(a3/2)1/2 when ā23 − 8
√−ā1 = 0, ā3 > 0 and ā2 = ā4 = 0 (we denote this

bifurcation point as BD),

• a double zero eigenvalue and eigenvalues ±1 when ā3 = 1 and ā1 = ā2 = ā4 = 0 (we denote this bifurcation
point as BT).

In between bifurcation points HBT and HH on the circumference ā21 + ā23 = 1, the linear part at 𝑝− has four pure
imaginary eigenvalues ±𝜔𝑘𝑖, with 𝑘 = 1, 2, and 𝜔1 ≠ 𝜔2. For parameter values between bifurcation points HH
and BD, it has four complex eigenvalues 𝜌 ± 𝜔𝑖 and −𝜌 ± 𝜔𝑖 with non-zero real part (𝜌 ≠ 0). Finally, in between
bifurcation points BD and BT, all eigenvalues are real.

Remark 2.1 1. Since ā1 = 0 at the bifurcation points HBT and BT, 𝑝± = (0, 0, 0, 0) is the only equilibrium.
2. Although the linearization at the origin has a double zero eigenvalue for the point BT, it is not a generic
Bogdanov-Takens point because the vector field is conservative. In the same way, it occurs at the point HBT,
where the linearization at the origin matches with a Hopf-Bogdanov-Takens point. Despite this, it should be
notice that these bifurcations are generically unfolded in the original family.

3. As the item above suggests, the notation was chosen based on the type of linearization at the equilibrium
point. In this sense, the linearization at 𝑝− is related to a Hopf-Hopf bifurcation at the point HH and to a
Belyakov-Devaney bifurcation at the point BD.
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As usual, when dealing with limit families, it can be more convenient to consider directional rescalings. Namely,
we can take ā𝑖 = +1 (or ā𝑖 = −1) and (ā1, . . . , ā𝑖−1, ā𝑖+1, . . . , ā𝑛) ∈ R𝑛−1 in (1.1). Bearing in mind the study of
(1.2) close to the time-reversible subfamily, we consider a directional rescaling with ā1 = −1 to get the family




𝑥 ′1 = 𝑥2,
𝑥 ′2 = 𝑥3,
𝑥 ′3 = 𝑥4,
𝑥 ′4 = −1 + ā2𝑥2 + ā3𝑥3 + ā4𝑥4 + 𝑥21,

(2.1)

with (ā2, ā3, ā4) ∈ R3.

Remark 2.2 To obtain a complete picture, directional rescalings with ā3 = ±1 may be useful. This means to look
at the limit family from the bifurcation points BT and HBT.

To compare with results previously obtained in the literature it is better to translate the equilibrium point
𝑝− = (−1, 0, 0, 0) to the origin and rescale variables and parameters as follows:

𝑥1 =
𝑥1 + 1
2

, 𝑥2 =
𝑥2

25/4
, 𝑥3 =

𝑥3

23/2
, 𝑥4 =

𝑥4

27/4
, [2 =

ā2

23/4
, [3 =

ā3

21/2
, [4 =

ā4

21/4
,

to obtain the expression: 


𝑥 ′1 = 𝑥2,
𝑥 ′2 = 𝑥3,
𝑥 ′3 = 𝑥4,
𝑥 ′4 = −𝑥1 + [2𝑥2 + [3𝑥3 + [4𝑥4 + 𝑥21,

(2.2)

after division by 21/4. As already explained, we only have to study the dynamics of system (2.2) around the origin
varying ([2, [3, [4) ∈ R3 with [4 6 0.
In system (2.2), we first restrict parameters to the reversibility set:

T =
{([2, [3, [4) ∈ R3 | [2 = [4 = 0}

which, taking 𝑢 = 𝑥1 and 𝑃 = −[3, is equivalent to the fourth order ODE:

𝑢 (4) + 𝑃𝑢′′ + 𝑢 − 𝑢2 = 0. (2.3)

This ODE arises, for instance, in applications to elasticity or fluid problems, and has been widely studied [4–6]. In
this case, (2.3) can be expressed by means of Hamilton’s equations with Hamiltonian [4]:

𝐻 =
1
2
𝑥21 −

1
3
𝑥31 −

[3
2
𝑥22 + 𝑥2𝑥4 −

1
2
𝑥23 . (2.4)

At the same time, (2.3) is a time-reversible system, with reversor:

𝑅(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥1,−𝑥2, 𝑥3,−𝑥4)

such that 𝑅 ◦ 𝜙𝑡 = 𝜙−𝑡 ◦ 𝑅, being 𝜙𝑡 the flow associated to (2.3). When 𝑃 < 2, the origin is an hyperbolic stationary
solution, meanwhile it is non-hyperbolic for 𝑃 > 2. The point 𝑃 = 2 (respectively, 𝑃 = −2) corresponds to the
bifurcation point HH (respectively, BD).
We have reproduced numerically some findings of previous works concerning homoclinic orbits of (2.3). The

set
Fix(𝑅) = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ R4 | 𝑥2 = 𝑥4 = 0}

plays an important role in their computation. Note that in the hyperbolic case (𝑃 < 2), when one of the invariant
manifolds

𝑊 𝑠 (0) =
{
𝑥 ∈ R4 | lim

𝑡→∞ 𝜙𝑡 (𝑥) = 0
}
or 𝑊𝑢 (0) =

{
𝑥 ∈ R4 | lim

𝑡→−∞ 𝜙𝑡 (𝑥) = 0
}

intersects transversally Fix(𝑅) at 𝑥0, the orbit through 𝑥0 is homoclinic to the origin [6]. We use this property to
locate homoclinic trajectories. We describe below the numerical procedures.
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3. Numerical approach
3.1. Numerical integration
Equation (2.3), or more generally system (2.2), is integrated in time by means of Taylor method [16]. We apply
it by restricting errors bellow 10−15, which consequently impose the order of the Taylor polynomial used in every
time step. In the reversible case (2.3), 𝐻 in (2.4) is a conserved quantity. We use this fact as a test for the numerical
integration. In addition, homoclinic orbits belong to the set of zero energy, {𝐻 = 0}, since 𝐻 (0) = 0.
Another important fact is the selection of a proper Poincaré section, in order to classify orbits. We choose

Σ = {𝑥2 = 0} as the main Poincaré section in our computations.

3.2. Invariant manifolds approximation
In the reversible equation (2.3), 𝑅(𝑊 𝑠 (0)) = 𝑊𝑢 (0) and dim(𝑊𝑢 (0)) = dim(𝑊 𝑠 (0)) = 2 hold for 𝑃 < 2
(see [6]). In the general system (2.2), we still have dim(𝑊𝑢 (0)) = dim(𝑊 𝑠 (0)) = 2 for ([2, [3, [4) close to the
line {(0, [3, 0) | [3 > −2}. For this reason, we can consider each of the invariant manifolds, say 𝑊 , expressed as
follows

𝑊 =
{(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ R4 | 𝑥3 = 𝑎(𝑥1, 𝑥2), 𝑥4 = 𝑏(𝑥1, 𝑥2)}

for certain unknown functions, 𝑎 and 𝑏, smooth enough. We use the Taylor’s expansion in power series around the
origin:

𝑥3 =
∞∑︁
𝑀=1

𝑀∑︁
𝑖=0

𝑎𝑀−𝑖,𝑖𝑥𝑀−𝑖1 𝑥𝑖2 and 𝑥4 =
∞∑︁
𝑀=1

𝑀∑︁
𝑖=0

𝑏𝑀−𝑖,𝑖𝑥𝑀−𝑖1 𝑥𝑖2 (3.1)

where 𝑎𝑀−𝑖,𝑖 , 𝑏𝑀−𝑖,𝑖 are coefficients corresponding to degree 𝑀 , to be determined. As𝑊 is an invariant manifold,
we can impose (3.1) to satisfy system (2.2). With standard but lengthy computations, we obtain a 2(𝑀+1)×2(𝑀+1)
system in the unknowns 𝑎𝑀−𝑠,𝑠 , 𝑏𝑀−𝑠,𝑠 , for each 𝑀 = 1, 2, . . . and 𝑠 = 0, 1, . . . , 𝑀:




∑𝑀
𝑘=1 𝑎𝑘−1,1𝑎𝑀−𝑘+1,0 = 𝑏𝑀,0
(𝑀 − 𝑠 + 1)𝑎𝑀−𝑠+1,𝑠−1 + 𝑐𝑀−𝑠,𝑠 = 𝑏𝑀−𝑠,𝑠 𝑠 = 1, . . . , 𝑀∑𝑀
𝑘=1 𝑏𝑘−1,1𝑎𝑀−𝑘+1,0 = [3𝑎𝑀,0 + [4𝑏𝑀,0 − 𝛿𝑀1 + 𝛿𝑀2
(𝑀 − 𝑠 + 1)𝑏𝑀−𝑠+1,𝑠−1 + 𝑑𝑀−𝑠,𝑠 = [3𝑎𝑀−𝑠,𝑠 + [4𝑏𝑀−𝑠,𝑠 + [2𝛿𝑀𝑠1 𝑠 = 1, . . . , 𝑀

(3.2)

with

𝑐𝑀−𝑠,𝑠 =
𝑀∑︁
𝑘=1

𝐿𝑘∑︁
𝑖=𝑙𝑘

𝑖𝑎𝑘−𝑖,𝑖𝑎𝑀−𝑘+𝑖−𝑠,𝑠+1−𝑖 and 𝑑𝑀−𝑠,𝑠 =
𝑀∑︁
𝑘=1

𝐿𝑘∑︁
𝑖=𝑙𝑘

𝑖𝑏𝑘−𝑖,𝑖𝑎𝑀−𝑘+𝑖−𝑠,𝑠+1−𝑖

where 𝑙𝑘 = max{𝑠 + 𝑘 − 𝑀, 1}, 𝐿𝑘 = min{𝑠 + 1, 𝑘} and 𝛿𝑥𝑦 = 𝛿𝑥𝑦𝑧 = 1 only when 𝑥 = 𝑦 = 𝑧 but 0 otherwise.
Those systems are solved in increasing order for 𝑀 = 1, 2, . . .. Once we compute 𝑎𝑀−𝑠,𝑠 and 𝑏𝑀−𝑠,𝑠 , we can only
evaluate (3.1) on a certain disk of convergence centered at (0, 0), in the plane defined by (𝑥1, 𝑥2). Accordingly, in
order to approximate a point in an invariant manifold𝑊 , we fix (𝑥1, 𝑥2) not very distant to (0, 0). Using the series
(3.1) up to a certain order 𝑀 , we finally find 𝑥3 and 𝑥4 such that (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝑊 , up to the truncation error.

4. Time-reversible case
In this section we restrict our study to the time-reversible case, i.e. [2 = [4 = 0, [3 ∈ R in (2.2). We apply the tools
described above, namely: numerical integrator for system (2.2) and approximation of the invariant manifolds𝑊 at
the origin. Because 𝑊 is invariant by the flow 𝜙𝑡 , an orbit Γ is included in 𝑊 , provided there exists 𝑥0 ∈ Γ ∩𝑊 .
By means of the Taylor series (3.1), we approximate 𝑥0 = (𝑥01, 𝑥02, 𝑎(𝑥01, 𝑥02), 𝑏(𝑥01, 𝑥02)) ∈ 𝑊 (with 𝑎 and 𝑏 defined
in the above section) and, using the numerical integrator, we estimate Γ(𝑥0). In Figure 1, we represent different
orbits Γ(𝑥0 (\)) for

𝑥0 (\) = (𝑥1, 𝑥2, 𝑎(𝑥1, 𝑥2), 𝑏(𝑥1, 𝑥2)), 𝑥1 = 𝑟 cos \, 𝑥2 = 𝑟 sin \, \ ∈ [0, 2𝜋), and 𝑟 = 1/10. (4.1)

The value of 𝑟 is chosen so that series (3.1) are convergent. In fact, the system (3.2) for 𝑀 = 1 gives rise to two
solutions corresponding, respectively, to the stable and unstable manifolds.
Homoclinic solutions for ODE (2.3) were analyzed in [4–6]. As stated in the final part of §2, homoclinic orbits

corresponds to trajectories with a point in Fix(𝑅) ∩𝑊 . In order to find an orbit Γ ⊂ 𝑊 such that Γ∩Fix(𝑅) ≠ ∅, we
consider initial conditions 𝑥0 (\) as in (4.1). First, we find 𝑡 = 𝑡 (\) so that 𝜙𝑡 (𝑥0 (\)) = (𝑥1, 𝑥2, 𝑥3, 𝑥4) (\, 𝑡) crosses
the Poincaré section Σ = {𝑥2 = 0} for a fixed number of times, 𝑘 . If 𝑥4 (\, 𝑡) = 0, then 𝜙𝑡 (𝑥0 (\)) ∈ Fix(𝑅) and the
orbit through 𝑥0 (\) is homoclinic. Otherwise, we apply a secant method on \ to vanish 𝑥4 (\, 𝑡 (\)). In Figure 2, we
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Fig. 1 Different orbits in family (2.2) which make up the stable (blue) and unstable (red) invariant manifolds, close to the
origin for [3 = 1.8 and projected on the plane (𝑥2, 𝑥4) .
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Fig. 2 Homoclinic orbits in family (2.2) for values of [3 specified by colors. Each orbit starts at Fix(𝑅) for 𝑡 = 0. Half of the
orbit is missing by symmetry. For a given color, different coordinates of the same orbit are shown on the left and right plots.
Points in the vertical axis (𝑡 = 0) on the left panel are in correspondence with points on 𝑥4 = 0 on the right panel.

present different homoclinic orbits varying [3 ∈ [−1.9, 2.1], for 𝑘 = 1. Since we are in the time-reversible case,
we have 𝑅 ◦ 𝜙𝑡 = 𝜙−𝑡 ◦ 𝑅. If the initial condition 𝑥0 ∈ Fix(𝑅), then:

𝑅𝜙𝑡 (𝑥0) = 𝜙−𝑡 (𝑅(𝑥0)) = 𝜙−𝑡 (𝑥0)
and the orbit is 𝑅-symmetric. For this reason, we only plot values for 𝑡 > 0 in Figure 2.
To improve the plot of the invariant manifolds in Figure 1, we present the curve 𝑊𝑢 (0) ∩ Σ in Figure 3 (left).

Each intersection of this curve with Fix(𝑅) (in red) leads to a homoclinic orbit, which is represented in Figure 3
(right). Particularly, the 11 depicted homoclinic orbits cross Σ a variable number 𝑘 = 1, . . . , 5 of times. The
findings for these homoclinics may not be exhaustive, but they give an idea of the dynamics complexity.
All the homoclinic orbits in the time-reversible case belong to the hypersurface {𝐻 = 0}. Taking initial

conditions 𝑥0 ∉ {𝐻 = 0}, it is not difficult to meet another kind of invariant orbits. For instance, we obtain the
solutions plotted in Figure 4 which correspond to invariant tori.

5. Insights in the non-zero divergence case
In the above section, we have analyzed numerically part of the homoclinic phenomena arising in family (2.2) when
[2 = [4 = 0. In particular, we used the Taylor integrator and the expansion of the invariant manifolds that we
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Fig. 3 Invariant manifolds and homoclinic orbits in family (2.2). Left: Curve𝑊 𝑢 (0) ∩Σ projected on the plane (𝑥1, 𝑥4) . The
red line depicts Fix(𝑅) . Right: 11 different homoclinic orbits starting at the respective initial conditions on𝑊 𝑢 (0) ∩Fix(𝑅) ,
located in the left figure as crosses with Fix(𝑅) .
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Fig. 4 Quasiperiodic orbits close to periodic, represented on the (𝑥1, 𝑥3) plane, for family (2.2). Left: Each point of the orbit
is only plotted when it crosses Σ. Right: The whole orbit at discrete time values is represented. As a reference, Σ is likewise
in this plot, traced on its left side as two little blue curves.

designed specifically for this model. To study the bifurcation diagram around that axis, we can also use numerical
continuation methods.
A first overview of the bifurcation complexity is shown in the two bifurcation diagrams in Figure 5, that we

obtained using MATCONT [7]. For this analysis, we fix ā3 = −3 and ā2 = −0.6 in family (2.1) and find a Hopf
bifurcation at 𝑝− = (−1, 0, 0, 0) when ā4 = −0.3. The continuation of the limit cycle arising at 𝑝− is shown
in Figure 5 (left panel, at the bottom). First, an attracting limit cycle emerges from the Hopf bifurcation and
loses its stability at a period doubling bifurcation. The periodic orbit recovers stability through another period
doubling bifurcation, but loses stability again at a Neimark-Sacker bifurcation where an attracting invariant torus
emerges. Finally, the limit cycle disappears at a Hopf bifurcation which occurs at the other equilibrium point
𝑝+ = (+1, 0, 0, 0).
The Hopf bifurcation curve occurring at 𝑝− and the continuation of the Neimark-Sacker bifurcation are repre-

sented in Figure 5 (right). Above all, both period doubling bifurcation points belong to the same bifurcation curve,
as depicted in Figure 5 (right) where we show a solid red line consisting of two loops.
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Fig. 5 Left: Continuation of periodic orbits in family (2.1) with ā3 = −3 and ā2 = −0.6. On the one hand, continuation of
a periodic orbit emerging from a Hopf bifurcation when ā4 = −0.3 (at the bottom). On the other hand, continuation of a
periodic orbit emerging at a period doubling bifurcation (at the top). Right: Partial bifurcation diagram of family (2.1) with
ā3 = −3 fixed.

In Figure 5 (left panel, at the top), we also show the continuation of the limit cycle with doubled period that
emerges from the period doubling bifurcation point placed on the right side of the continuation curve at the bottom.
The attracting limit cycle loses its stability almost immediately due to a period doubling bifurcation. Along the
curve we see two fold bifurcation points (black) which belong to the double loop bifurcation curve displayed in
Figure 5 (right panel, dashed black line). The limit cycle in between the fold points and the period doubling
bifurcation points closer to them is an attractor. These two period doubling points belong to the double loop shown
in Figure 5 (right panel, dashed red line).
Additionally, Figure 5 (right) includes a fold bifurcation curve that joins two generalized period doubling

bifurcation points (green). Other codimension-two points are the cusp bifurcations of periodic orbits (cyan) and
the two point of resonance 1 : 2 (black). A description of the bifurcations mentioned can be found in [17].

6. Discussion
In conclusion, there exist thorough studies [4–6] regarding the complex tangle of homoclinic orbits exhibited by
system (2.2) when [2 = [4 = 0. Nevertheless, an exhaustive picture is not yet available (see conjectures in [5]).
Numerical techniques, which we take advantage of to explore the intersections of the invariant manifolds with a
transverse section, are tools that, perhaps for technical reasons, have not been fully exploited in the literature. In
this case, despite the fact that the scenario is quite different, our numerical study revives an old paper [18] where
the heteroclinic connections unfolded in a reversible three-dimensional system with two equilibrium points of
saddle-focus type and different stability indices were studied. Ultimately, the analysis of the traces left by invariant
manifolds in a cross section is our most immediate interest. Techniques used in [15] to study Poincaré return maps
around a homoclinic orbit to bifocus equilibrium will be useful to describe the geometry of such intersections.
Beyond the homoclinic framework, it is fundamental to analyze the conservative dynamics. In particular, the one

that emerges in family (2.2) when [2 = [4 = 0 and [3 < −2, that is, when the equilibrium point 𝑝− = (−1, 0, 0, 0)
is a Hopf-Hopf singularity. In this context, it is also crucial to delve into the dynamics of the family around the
point HBT as well as in the surroundings of the point HH. However, these are longer-term goals. In fact, the
study of generic unfoldings of Hopf-Bogdanov-Takens singularities has started very recently [9,10]. Furthermover,
we must recall that the limit family is not a generic unfolding of the HBT singularity. The process of reaching a
complete theoretical support seems too involved and long. Therefore, all the information that we can collect with
continuation tools such as those illustrated in this study will be very useful.
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