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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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Arregui I. and Ráfales J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

XVA for American options with two stochastic factors: modelling, mathematical analysis and
numerical methods
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Fractionary iterative methods for solving nonlinear problems
Giro Candelario1, Alicia Cordero2, Juan R. Torregrosa2, María P. Vassileva1

1. Instituto Tecnológico de Santo Domingo, Dominican Republic
2. Universitat Politècnica de València, Spain

Abstract

In recent years, some point-to-point fractional Newton-type methods have been proposed to find roots of
nonlinear equations using fractional derivatives. We present several Newton-type methods based on Caputo
fractional derivative. For each case, the order of convergence of the proposed methods is stated, and some
numerical tests are carried out in order to observe their performance, in practice. Convergence to different roots
depending on the order of the derivative is observed and also differences among the methods in terms of the
percentage of converging starting points.

1. Introduction
Leibnitz and L’Höpital created the concept of the semi-derivative at 1695, giving birth to fractional calculus.
Also Riemann, Liouville and Euler were interested in this idea. From then, fractional calculus has evolved from
theoretical aspects to the applications in many real world problems (see [2, 5, 8, 10, 12]): medicine, mechanical
engineering, economics, ... In numerical analysis, we are focused in the area of research of iterative methods for
solving nonlinear equations 𝑓 (𝑥) = 0. A large amount of these procedures are Newton-like, that is, they involve
in their iterative expressions the evaluation of the nonlinear function 𝑓 and its first derivative 𝑓 ′ at each iterate. In
this context, we question ourselves how would affect to the convergence order 𝑝 of these schemes the replacement
of integer derivatives by fractional ones. In particular, we introduce the Caputo fractional derivative, and study the
convergence of these fractional methods. We would like to answer this and other questions for both point-to-point
and multipoint schemes.
For the sake of completeness, we introduce in what follows some concepts about fractional derivatives and the

series developments necessary to prove the convergence results.

1.1. Preliminary concepts
Now, we introduce some general concepts such as the Caputo fractional derivative [10,11] and the fractional Taylor
series [4, 9].
The first concept that we define is the Gamma function, as:

Γ(𝑥) =
∫ +∞

0
𝑢𝑥−1𝑒−𝑢𝑑𝑢,

whenever 𝑥 > 0. This function is a generalization of the factorial function to the complex plane, taking into account
that Γ(1) = 1 and Γ(𝑛 + 1) = 𝑛!, when 𝑛 ∈ N. As we will see in the following section, it appears in the iterative
expressions of fractional iterative methods, being necessary for reaching the order of convergence of the iterative
scheme.

Definition 1.1 (Caputo fractional derivative of order 𝛼) Let 𝑓 : 𝐼 ⊆ R→ R be an element of 𝐶+∞ ( [𝑎, 𝑥]) (−∞ <
𝑎 < 𝑥 < +∞), with 𝛼 ≥ 0 and 𝑛 = [𝛼] + 1, being [𝛼] the integer part of 𝛼. Then, the Caputo fractional derivative
of order 𝛼 of 𝑓 (𝑥) is defined as follows:

(𝑐𝐷𝛼𝑎 ) 𝑓 (𝑥) =



1
Γ(𝑛 − 𝑎)

∫ 𝑥

𝑎

𝑑𝑛 𝑓 (𝑡)
𝑑𝑡𝑛

𝑑𝑡

(𝑥 − 𝑡)𝛼−𝑛+1 , 𝛼 ∉ N,

𝑑𝑛−1 𝑓 (𝑥)
𝑑𝑥𝑛−1

, 𝛼 = 𝑛 − 1 ∈ N ∪ {0}.
(1.1)

Moreover, to prove the order of convergence of the iterative fractional methods, a generalization of the classical
Taylor series expansion of 𝑓 (𝑥) around the zero of the nonlinear function, 𝑥, is needed. Further on, this development
also uses the Caputo fractional derivatives, see [9] (with 𝜌 = 1).
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Theorem 1.2 (Taylor series expansion by using Caputo fractional derivatives [9]) Let us suppose that 𝑐𝐷 𝑗 𝛼
𝑎 𝑓 (𝑥) ∈

C([𝑎, 𝑏]), for 𝑗 = 1, 2, . . . , 𝑛 + 1, where 𝛼 ∈ (0, 1], then we have

𝑓 (𝑥) =
𝑛∑︁
𝑖=0

𝑐𝐷𝑖𝛼𝑎 𝑓 (𝑎) (𝑥 − 𝑎)
𝑖𝛼

Γ(𝑖𝛼 + 1) + 𝑐𝐷
(𝑛+1)𝛼
𝑎 𝑓 (𝜉) (𝑥 − 𝑎)

(𝑛+1)𝛼

Γ((𝑛 + 1)𝛼 + 1) , (1.2)

with 𝑎 ≤ 𝜉 ≤ 𝑥, for all 𝑥 ∈ (𝑎, 𝑏] where 𝑐𝐷𝑛𝛼𝑎 = 𝑐𝐷𝛼𝑎 · 𝑐𝐷𝛼𝑎 · · · 𝑐𝐷𝛼𝑎 (n times composition).

We develop the work in the following order. In Section 2 we state our iterative methods and expose their
convergence results. In the next section, numerical tests are performed, paying special attention to the convergence
rates and the roots the methods converge to. Finally, expose the conclusions obtained and some open questions.

2. Iterative methods designed by using fractional derivatives
In this section, we introduce high-order one-point and multi-point fractional iterative methods based on the
methods of Newton and Traub methods, stating the conditions that must be assued in order to achieve their order
of convergence, which depend on the order of the fractional derivative.

Theorem 2.1 ( [1]) Let 𝑓 : 𝐷 ⊂ R → R be a continuous function whose fractional derivatives of order 𝑘𝛼 are
defined for any positive integer 𝑘 and any 𝛼, 0 < 𝛼 < 1, on the interval 𝐷 containing the zero 𝑥 of 𝑓 (𝑥) and let the
fractional derivatives of Caputo type, 𝑐𝐷𝛼𝑎 𝑓 (𝑥), be continuous and non-singular at 𝑥. Also, let us suppose that 𝑥0
is an initial approximation close enough to 𝑥. Then the order of local convergence of Newton’s fractional method

𝑥𝑘+1 = 𝑥𝑘 − Γ(𝛼 + 1) 𝑓 (𝑥𝑘 )
𝑐𝐷𝛼𝑎 𝑓 (𝑥𝑘 )

, 𝑘 = 0, 1, . . . , (2.1)

of Caputo type is at least 2𝛼, where 0 < 𝛼 ≤ 1, with the error equation

𝑒𝑘+1 =
Γ(2𝛼 + 1) − (Γ(𝛼 + 1))2

(Γ(𝛼 + 1))3 𝐶2𝑒
2𝛼
𝑘 +𝑂 [𝑒3𝛼𝑘 ).

We denote the iterative method (2.1) as CFN1. However, another kind of fractional iterative method can be
designed, fixing the order of convergence to be at least one, as can be seen in the following result.

Theorem 2.2 ( [3]) Let 𝑓 : 𝐷 ⊂ R → R be a continuous function with fractional derivatives of order 𝑘𝛼 defined
for any positive integer 𝑘 and 𝛼 ∈ (0, 1] defined on the open interval 𝐷 containing the zero 𝑥 of 𝑓 (𝑥). Additionally,
let us suppose that 𝑐𝐷𝛼𝑎 𝑓 (𝑥) is continuous and not zero at 𝑥. Then, the order of convergence of the Caputo type
fractional Newton method with iterative scheme

𝑥𝑘+1 = 𝑥𝑘 −
(
Γ(𝛼 + 1) 𝑓 (𝑥𝑘 )

𝑐𝐷𝛼𝑎 𝑓 (𝑥𝑘 )

)1/𝛼
, 𝑘 = 0, 1, 2, . . . (2.2)

(denoted by CFN2) is at least 𝛼 + 1, and its error equation is

𝑒𝑘+1 =
Γ(2𝛼 + 1) − (Γ(𝛼 + 1))2

𝛼(Γ(𝛼 + 1))2 𝐶2𝑒
𝛼+1
𝑘 +𝑂 [𝑒2𝛼+1𝑘 ] .

On the other hand, higher-order iterative schemes can be designed, following this structure. A Traub-type
fractional-order method can be defined also bymeans of Caputo derivatives. In the following result, the convergence
conditions and its fractional order of convergence are stated.

Theorem 2.3 ( [3]) Let 𝑓 : 𝐷 ⊂ R → R be a the continuous function with fractional derivatives of order 𝑘𝛼, for
any positive integer 𝑘 and 𝛼 ∈ (0, 1], in the open interval 𝐷 holding the zero of 𝑓 (𝑥), denoted by 𝑥. Let us suppose
𝑐𝐷𝛼𝑎 𝑓 (𝑥) is continuous and not null at 𝑥. Additionally, let us consider an initial estimation 𝑥0, close enough to 𝑥.
Therefore, the local convergence order of CFT method with iterative expression

𝑥𝑘+1 = 𝑦𝑘 −
(
Γ(𝛼 + 1) 𝑓 (𝑦𝑘 )

𝑐𝐷𝛼𝑎 𝑓 (𝑥𝑘 )

)1/𝛼
, 𝑘 = 0, 1, . . . , (2.3)

where 𝑦𝑘 is obtained using (2.2), being 𝛼2 + 2𝛼 + 1 < 3𝛼 + 1, is at least 2𝛼 + 1. Its error equation is

𝑒𝑘+1 = − Γ(2𝛼 + 1)
𝛼2 (Γ(𝛼 + 1))2

(Γ(𝛼 + 1))2 − Γ(2𝛼 + 1)
(Γ(𝛼 + 1))2 𝐶22𝑒

2𝛼+1
𝑘 +𝑂 [𝑒𝛼2+2𝛼+1𝑘 ] .
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3. Numerical results
In the following section, the numerical performance of these schemes is tested. We are going to test a nonlinear
function in order to make a comparison between the presented methods. It is important to point out that in any case
a comparison is being made with the classical methods (when 𝛼 = 1).
To get these results, we have used Matlab R2018b with double precision arithmetics, |𝑥𝑘+1 − 𝑥𝑘 | < 10−8 or

| 𝑓 (𝑥𝑘+1) | < 10−8 as stopping criteria, and a maximum of 500 iterations. For the calculation of the gamma function,
Γ(𝑥), we use the program presented in [6], where gamma function is calculated with 15 digits of accuracy along
the real axis and 13 elsewhere in C. Moreover, in all the numerical tests, we used 𝑎 = 0.
Our test function is 𝑓 (𝑥) = −12.84𝑥6 − 25.6𝑥5 + 16.55𝑥4 − 2.21𝑥3 + 26.71𝑥2 − 4.29𝑥 − 15.21 with roots 𝑥1 =

0.82366 + 0.24769𝑖, 𝑥2 = 0.82366 − 0.24769𝑖, 𝑥3 = −2.62297, 𝑥4 = −0.584, 𝑥5 = −0.21705 + 0.99911𝑖 and
𝑥6 = −0.21705 − 0.99911𝑖.
We observe that Newton-type methods (Table 1) with Caputo derivative, for the same value of 𝑥0 and the same

values of 𝛼, converge to the different roots in more iterations than fractional Traub’s methods. It also can be
observed that Newton- and Traub-type schemes require approximately the same values of 𝛼 to converge. Also, it
has been observed in practice that, for wide ranges of initial guesses, the same 𝑥0 defines a sequence converging to
different roots of the nonlinear function depending on the value of 𝛼.

CFN1 method CFN2 method
𝛼 𝑥 |𝑥𝑘+1 − 𝑥𝑘 | | 𝑓 (𝑥𝑘+1) | iter 𝑥 |𝑥𝑘+1 − 𝑥𝑘 | | 𝑓 (𝑥𝑘+1) | iter
0.6 - 0.29821 28.343 500 - 1.7603e-07 0.0035619 500
0.65 - 0.17488 11.329 500 - 4.1154e-08 6.7515e-04 500
0.7 - 0.058499 2.98929 500 𝑥4 9.9926e-09 1.1322e-04 432
0.75 𝑥4 9.6537e-09 4.1645e-07 151 𝑥4 9.8524e-09 4.6756e-05 230
0.8 𝑥4 8.5475e-09 3.0465e-07 50 𝑥4 9.6579e-09 1.8943e-05 124
0.85 𝑥4 9.468e-09 2.606e-07 28 𝑥4 9.9396e-09 7.7541e-06 67
0.9 𝑥4 3.9203e-09 7.3851e-08 19 𝑥4 9.109e-09 2.6706e-06 37
0.95 𝑥4 2.5822e-09 2.4894e-08 13 𝑥4 7.3622e-09 6.4461e-07 20
1 𝑥4 3.0876e-06 8.8694e-10 6 𝑥4 3.0876e-06 8.8694e-10 6

Tab. 1 Fractional Newton results for 𝑓 (𝑥) with Caputo derivative and initial estimation 𝑥0 = −1.5

CFT method
𝛼 𝑥 |𝑥𝑘+1 − 𝑥𝑘 | | 𝑓 (𝑥𝑘+1) | iter
0.6 - 6.2898e-08 0.0012681 500
0.65 - 1.1562e-08 1.8867e-04 500
0.7 𝑥4 9.9588e-09 6.9453e-05 268
0.75 𝑥4 9.9889e-09 2.7995e-05 138
0.8 𝑥4 9.5606e-09 1.0693e-05 73
0.85 𝑥4 9.4657e-09 4.0225e-06 39
0.9 𝑥4 6.8084e-09 1.0286e-06 22
0.95 𝑥4 5.2078e-09 1.8928e-07 12
1 𝑥4 2.2023e-10 5.329e-15 5

Tab. 2 Fractional Traub results for 𝑓 (𝑥) with Caputo derivative and initial estimation 𝑥0 = −1.5

Now, we are going to analyze the dependence on the initial estimation of Newton- and Traub-type methods by
using convergence planes defined in [7]. In them (see, for example, Figure 1𝑎) the abscissa axis corresponds to the
starting guess and the fractional index 𝛼 appears in the ordinate axis. A mesh of 400 × 400 points is used. Points
that are not painted in black color correspond to those pairs of initial estimations and values of 𝛼 that converge to
one of the roots with a tolerance of 10−3. Different colors mean convergence to different roots. Therefore, when
a point is painted in black, this shows that no root is found in a maximum of 500 iterations. Moreover, for all
convergence planes, the percentage of convergent pairs (𝑥0, 𝛼) is calculated, in order to compare the performance
of the methods.
In Figure 1, we can see that CFN1 and CFT methods have higher percentage of convergence than CFN2. We

can also see, that there are intervals for 𝑥0 such that the same fractional iterative method with different values of
the order of the fractional derivative can lead us to converge to different roots. It can be useful in order to find all
the roots of a function with few computational effort.
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Fig. 1 Convergence planes of proposed methods on 𝑓 (𝑥) with −3 ≤ 𝑥0 ≤ 3

4. Concluding remarks
Fractional Newton- and Traub-type schemes have been designed by using Caputo derivatives. The convergence
properties of these procedures imply always (at least) linear convergence, reaching order 2𝛼, 1 + 𝛼 and 1 + 2𝛼,
respectively. Some numerical tests have been done, and the dependence on the initial estimation has been observed.
It can be concluded that Traub-type procedures can improve Newton-type ones, not only because they require

fewer iterations, higher or similar percentages of convergence. Moreover, the test made have shown that, for some
problems, the methods using fractional derivatives reach different solutions with the same initial estimations.
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