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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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Acosta-Soba D., Guillén-González F. and Rodrı́guez-Galván J.R. . . . . . . . . . . . . . . . . . . . . . . . 8

An optimized sixth-order explicit RKN method to solve oscillating systems
Ahmed Demba M., Ramos H., Kumam P. and Watthayu W. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

The propagation of smallness property and its utility in controllability problems
Apraiz J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Theoretical and numerical results for some inverse problems for PDEs
Apraiz J., Doubova A., Fernández-Cara E. and Yamamoto M. . . . . . . . . . . . . . . . . . . . . . . . . . 31

Pricing TARN options with a stochastic local volatility model
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Cordero-Carrión I., Santos-Pérez S. and Cerdá-Durán P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

New Galilean spacetimes to model an expanding universe
De la Fuente D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Numerical approximation of dispersive shallow flows on spherical coordinates
Escalante C. and Castro M.J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

New contributions to the control of PDEs and their applications
Fernández-Cara E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Saddle-node bifurcation of canard limit cycles in piecewise linear systems
Fernández-Garcı́a S., Carmona V. and Teruel A.E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

On the amplitudes of spherical harmonics of gravitational potencial and generalised products of
inertia
Florı́a L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Turing instability analysis of a singular cross-diffusion problem
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Rodrı́guez-Bellido M.A., Rojas-Medar M.A. and Sepúlveda-Cerda A. . . . . . . . . . . . . . . . . . . . . 325

Asymptotic aspects of the logistic equation under diffusion
Sabina de Lis J.C. and Segura de León S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Analysis of turbulence models for flow simulation in the aorta
Santos S., Rojas J.M., Romero P., Lozano M., Conejero J.A. and Garcı́a-Fernández I. . . . . . . . . . . . . 339

Overdetermined elliptic problems in onduloid-type domains with general nonlinearities
Wu J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

7



Analysis of a SEIRS metapopulation model with fast migration
Pilar Atienza, Luis Sanz-Lorenzo
Universidad Politécnica de Madrid, Spain

Abstract

Metapopulation models for the study of a infectious disease in a population with space structure involve a large
number of equations. Therefore the mathematical analysis of these models yields only partial results. We propose
a model in which, as it is often the case in practical situations, the time scale of the transport of individuals is
much master that that of the disease. Then we make use of approximate reduction techniques in order to reduce
the system’s dimension, and carry out a thorough analysis of the reduced model. In particular we characterize the
number and stability of equilibria, provide conditions for the disease to become endemic (resp. die out) and show
that certain counter-intuitive behaviors can arise.

1. Introduction
Classical deterministic epidemic models assume an homogeneous spatial distribution of individuals. However,
travels of individuals between different regions have proved to have a great influence on the spatial spread of
diseases. Therefore, given the characteristics of current society, in which most humans live in cities and travel
along defined routes, it seems reasonable to include spatial variation into epidemic models.
The spatial spread of infectious diseases is a complex phenomenon tomodel. The usual approach in the literature

is to use the so called metapopulation models, in which the population is distributed into discrete spatial sites,
called patches, amongst which they may migrate. This movement of individuals is captured by a directed graph, in
which the vertices represent the geographical regions and the arcs represent the connections between them.
Epidemic metapopulation models have been formulated and discussed in the literature for different diseases,

see for example [2–4], yielding systems that consist of a large number of ordinary differential equations. This
complexity greatly limits the analytical study that can be carried out, and only partial results have been obtained
for these models. In particular, in [2], a SEIRS model with spatial distribution is formulated and studied. The
expression of the basic reproduction number of the model is derived, but the existence and stability of endemic
equilibria is only considered numerically, as an analytical approach seems unfeasible.
Furthermore, in many practical situations it can be assumed that travel of individuals between patches is much

faster than the dynamics of the corresponding disease. For example, in the case of human diseases travel between
different cities can be done in the span of a few hours, while the development of an infectious disease may take
days or even weeks. This fact justifies the use of two different time scales to formulate the disease dynamics and
the movement of individuals between sites.
One can make use of the existence of two different time scales in order to obtain a reduced approximation of

the model. Indeed, in [7,8] approximate aggregation techniques are presented for the study of complex population
dynamics in which two time scales are considered. Loosely speaking, this method consists in taking the fast process
in the original model to its equilibrium value, yielding a system whose dimension can be reduced. These techniques
allow us to obtain an approximated simplified model that, under the assumption that migration of individuals is
sufficiently faster than the disease dynamics, behave qualitatively similar to the original model, while its dimension
and, hence, complexity is highly reduced.
The objective of this work is to formulate a SEIRS metapopulation model, derive its approximate reduced

version by means of aggregation techniques and carry out an exhaustive study of this simplified system. We aim to
obtain stronger results than those already found in the literature for the case of metapopulation models without a
time-scale approach.
In Section 2 the model is formulated, considering a metapopulation of 𝑟 patches in which the local dynamics

of the disease in each site is of SEIRS type, whereas migration of individuals among sites is linear. This model
is described by a system of 4𝑟 differential equations. Next, under the assumption that migration of individuals
between regions is fast with respect to the disease dynamics, we make use of approximate aggregation techniques
in order to reduce the system’s dimension. The resulting system consists of only 4 differential equations.
Section 3 carries out a thorough analytical study of the approximated model. The basic reproduction number

R0 of the model is obtained by the next generation matrix method [1, 6]. The analysis carried out shows that the
model can only have two behaviours: if R0 < 1 the disease will die out in every region, whereas if R0 > 1 the
disease will be globally endemic.

XXVI CONGRESO DE ECUACIONES DIFERENCIALES Y APLICACIONES
XVI CONGRESO DE MATEMÁTICA APLICADA
Gijón, 14-18 junio 2021
(pp. 58–64)
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Moreover, the reduction on the systems dimension has allowed us to obtain results that can not be found in the
literature on epidemic metapopulation models without a time-scale approach. In particular, some conclusions are
given regarding the existence of endemic equilibria in relation to the value of the basic reproduction number.
Finally, in Section 4 we study the influence that the parameters of migration have on the behaviour of the disease.

The analysis shows that the dynamics the disease would have in the isolated patches can vary under the existence
of migration of individuals. In particular, under certain conditions a counter-intuitive scenario can arise: let us
assume we have 𝑟 separated sites and in all of them the disease dies out (resp. is endemic). Then if migration of
individuals between them is allowed, then for certain values of the parameters regarding migration, the behaviour
of the disease may change, i.e. it might become endemic (resp. die out) globally.
The system formulation and results are also particularized for a SIRS model.

2. Formulation and reduction of the model
We consider a population spread out among 𝑟 different patches amongst which they can migrate, and affected by a
disease. We assume that the local dynamics of the disease in each site follows a classical SEIRS model, whereas
migration of individuals among sites is linear, see Figure 1.

SEIRS

S1, E1, I1, R1

µ1, ǫ1, δ1, γ1
1

f1

SEIRS

S2, E2, I2, R2

µ2, ǫ2, δ2, γ2
2

f2

SEIRS

Sr, Er, Ir, Rr

µr, ǫr, δr, γr
r

fr

SEIRS
Si, Ei, Ii, Ri

µi, ǫi, δi, γii
fi

Fig. 1 SEIRS metapopulation model consisting of r interconnected patches.

This setting has been explored in several works [2–4] but the large dimension of the resulting model makes its
analytical study very difficult. In our approach we make use of the fact that in many practical situations the time
scale of migration is much faster than that of the epidemic process to formulate a two-time scale model.
The “slow time” variable, 𝑡, is used to describe the dynamics of the disease, whereas we denote the “fast time

”variable as 𝜏. Derivatives of a function 𝑔 with respect this two different time variables are denoted as 𝑑𝑔𝑑𝑡 := ¤𝑔 and
𝑑𝑔
𝑑𝜏 := 𝑔

′ respectively.
In order to formulate the model, we first consider both phenomena separately, and then combine them into the

resulting complete system.

2.1. Local dynamics in each patch
Let 𝑆𝑖 , 𝐸𝑖 , 𝐼𝑖 , and 𝑅𝑖 denote the number of susceptible, exposed (infected but can not transmit the disease),
infectious (infected and contagious) and recovered individuals who are present in patch 𝑖, 𝑖 = 1, ..., 𝑟 , at time 𝑡,
respectively. The equations of a classical SEIRS model for patch 𝑖 are:

¤𝑆𝑖 = − 𝑓𝑖 (𝑆𝑖 , 𝐸𝑖 , 𝐼𝑖 , 𝑅𝑖) + 𝜇𝑖𝑁𝑖 − 𝜇𝑖𝑆𝑖 + 𝛿𝑖𝑅𝑖 (2.1)
¤𝐸𝑖 = + 𝑓𝑖 (𝑆𝑖 , 𝐸𝑖 , 𝐼𝑖 , 𝑅𝑖) − (𝜖𝑖 + 𝜇𝑖)𝐸𝑖
¤𝐼𝑖 =𝜖𝑖𝐸𝑖 − (𝛾𝑖 + 𝜇𝑖)𝐼𝑖
¤𝑅𝑖 =𝛾𝑖 𝐼𝑖 − (𝛿𝑖 + 𝜇𝑖)𝑅𝑖
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where the subscript 𝑖 denotes the patch number each epidemiological variable refers to and the time derivatives
are with respect to the slow time 𝑡. We denote by 𝑓𝑖 the incidence function, over which for the moment we do not
impose any condition, 𝜇𝑖 denotes the birth and the death rate of individuals (as it is the case in most models, both
are assumed equal so that the total population in each patch remains constant), 1/𝜖𝑖 is the average latency time,
1/𝛾𝑖 is the average recovery time for infectious individuals and 1/𝛿𝑖 is the average time of the immunity period for
recovered individuals.

2.2. Migration model
Let us denote X(𝑡) := (𝑆1, ..., 𝑆𝑟 , 𝐸1, ..., 𝐸𝑟 , 𝐼1, ..., 𝐼𝑟 , 𝑅1, ..., 𝑅𝑟 ),
For each 𝑌 ∈ {𝑆, 𝐸, 𝐼, 𝑅}, let Y (𝑡) := (𝑌1, ..., 𝑌𝑟 ) and let

𝑌 :=
𝑟∑︁
𝑖=1
𝑌𝑖 (2.2)

denote the total population in each of the epidemiological classes. We refer to 𝑆, 𝐸, 𝐼 and 𝑅 as “global variables”.
We assume that migration between sites is a linear process. The migration rate (with respect to the “fast time”)

of individuals of each class 𝛼 ∈ {𝑆, 𝐸, 𝐼, 𝑅} from patch 𝑗 to 𝑖, is denoted by 𝑚𝛼𝑖 𝑗 , 𝑖, 𝑗 = 1, ..., 𝑟 . Therefore, the
migration matrix for class 𝛼 is

𝑀𝛼 :=

©«

−
𝑟∑

𝑖=1,𝑖≠1
𝑚𝛼𝑖1 𝑚𝛼12 · · · 𝑚𝛼1𝑟

𝑚𝛼21 −
𝑟∑

𝑖=1,𝑖≠2
𝑚𝛼𝑖2 · · · 𝑚𝛼2𝑟

...
...

. . .
...

𝑚𝛼𝑟1 𝑚𝛼𝑟2 · · · −
𝑟∑

𝑖=1,𝑖≠𝑟
𝑚𝛼𝑖𝑟

ª®®®®®®®®®®¬

,

so that it is a Metzler matrix. The matrix characterizing migration for the whole population is then 𝑀 =
diag

(
𝑀𝑆 , 𝑀𝐸 , 𝑀 𝐼 , 𝑀𝑅

)
and therefore migration dynamics is described by the equation X′ = 𝑀X.

We assume that an individual initially present in any patch can (directly or indirectly) travel to any other patch.
This assumption results in the fact that that digraph corresponding to the migration is strongly connected and
therefore each migration matrix 𝑀𝛼 is irreducible.
The following result characterizes the asymptotic behavior of migration:

Theorem 2.1 For each 𝛼 ∈ {𝑆, 𝐸, 𝐼, 𝑅}, let 𝑀𝛼 be irreducible. Let v𝛼 > 0 be the right eigenvector of matrix
𝑀𝛼 associated to eigenvalue 𝜆 = 0 and normalized so that the sum of its components is 1. Then, if the initial
condition X (0) contains at least an individual in each of the epidemiological clases {𝑆, 𝐸, 𝐼, 𝑅}, then the dynamics
of migration for the whole population tends to the equilibrium

X𝑒 =
©«

v𝑆𝑆
v𝐸𝐸
v𝐼 𝐼
v𝑅𝑅

ª®®®¬
, (2.3)

where 𝑆, 𝐸, 𝐼 and 𝑅 are given by (2.2).

2.3. Complete model with two time scales
We proceed with the formulation of the complete model, that takes into account the joint effect of the local disease
dynamics in each site and inter-site migration. In order to take into account the existence of two different time scales,
we define the ratio of characteristic times 𝜀 := 𝑡/𝜏, which under our hypotheses is a small positive number. Putting
together the equations regarding the disease dynamics in each site (2.1) with those corresponding to migration, we
obtain the following model:

S′ = 𝜀
[−f (X) + 𝐷𝜇N − 𝐷𝜇S + 𝐷 𝛿R

] + 𝑀𝑆S (2.4)
E′ = 𝜀

[+f (X) − (
𝐷 𝜖 + 𝐷𝜇

)
E
] + 𝑀𝐸E

I′ = 𝜀
[
𝐷 𝜖E − (

𝐷𝜇 + 𝐷𝛾
)
I
] + 𝑀 𝐼 I

R′ = 𝜀
[
𝐷𝛾I − (

𝐷 𝛿 + 𝐷𝜇
)
R
] + 𝑀𝑅R,

where f (X) :=
©«
𝑓1 (X1)
...

𝑓𝑟 (X𝑟 )

ª®®¬
and 𝐷𝜎 := diag (𝜎1, ..., 𝜎𝑟 ) for 𝜎 ∈ {𝜇, 𝛿, 𝜖, 𝛾}.
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2.4. Reduction of the model
In order to carry out the analysis of model (2.4), we make use of the existence of different time scales and apply
approximate aggregation techniques (see [7, 8] for a survey and a collection of the main results) in order to reduce
its dimension. The reduction procedure consists on replacing the population vector with its equilibrium value for
the migration process, i.e., replacing X(𝑡) with X𝑒 given by (2.3) and then summing the equations corresponding
to each infectious class, in such a way that we obtain an autonomous model in the global variables 𝑆, 𝐸, 𝐼 and 𝑅.
The resulting reduced or aggregated model is:

¤𝑆 = − 𝑓 (𝑆, 𝐸, 𝐼, 𝑅) + 𝜇𝐼 𝐼 + 𝜇𝐸𝐸 +
(
𝜇𝑅 + 𝛿

)
𝑅 (2.5)

¤𝐸 = + 𝑓 (𝑆, 𝐸, 𝐼, 𝑅) −
(
𝜖 + 𝜇𝐸

)
𝐸

¤𝐼 =𝜖𝐸 −
(
𝜇𝐼 + 𝛾

)
𝐼

¤𝑅 =𝛾𝐼 −
(
𝛿 + 𝜇𝑅

)
𝑅.

where

𝑓 (𝑆, 𝐸, 𝐼, 𝑅) :=
𝑟∑︁
𝑖=1

𝑓𝑖

(
𝑣𝑆𝑖 𝑆, 𝑣

𝐸
𝑖 𝐸, 𝑣

𝐼
𝑖 𝐼, 𝑣

𝑅
𝑖 𝑅

)

𝜇𝑆 :=
𝑟∑︁
𝑖=1
𝜇𝑖𝑣

𝑆
𝑖 ∈ R , 𝜇𝐸 :=

𝑟∑︁
𝑖=1
𝜇𝑖𝑣

𝐸
𝑖 ∈ R

𝜇𝑅 :=
𝑟∑︁
𝑖=1
𝜇𝑖𝑣

𝑅
𝑖 ∈ R , 𝜇𝐼 :=

𝑟∑︁
𝑖=1
𝜇𝑖𝑣

𝐼
𝑖 ∈ R

𝛿 :=
𝑟∑︁
𝑖=1
𝛿𝑖𝑣

𝑅
𝑖 ∈ R , 𝛾 :=

𝑟∑︁
𝑖=1
𝛾𝑖𝑣

𝐼
𝑖 ∈ R

𝜖 :=
𝑟∑︁
𝑖=1
𝜖𝑖𝑣

𝐸
𝑖 ∈ R

Note that the reduced model consists of only 4 differential equations, in contrast to the 4𝑟 equations that
constitute the original metapopulation model (2.4).
The results in the field of approximate aggregation techniques allow us to claim that, loosely speaking, if

the reduced model has an attractor which is locally structurally stable (in particular this holds for a hyperbolic
equilibrium) and 𝜖 is small enough, i.e., if the separation of time scales between the disease dynamics and
migration is large enough, then the original model also has a corresponding attractor which is 𝑂 (𝜖)-close and has
the same stability properties. Therefore, the analysis of the reduced system provides relevant qualitative information
about the behavior of the original model.

3. Analysis of the reduced model
In contrast with the original model (2.4), model (2.5) is amenable to an analytical study. In order to do so we will
consider, as most epidemiological models do, the case of standard incidence in each patch, i.e., 𝑓𝑖 (𝑆𝑖 , 𝐸𝑖, 𝐼𝑖 , 𝑅𝑖) =
𝛽𝑖
𝐼𝑖𝑆𝑖
𝑁𝑖
, and so we have

𝑓 (𝑆, 𝐸, 𝐼, 𝑅) =
𝑟∑︁
𝑖=1
𝛽𝑖

𝑣𝑆𝑖 𝑣
𝐼
𝑖

𝑣𝑆𝑖 𝑆 + 𝑣𝐸𝑖 𝐸 + 𝑣𝐼𝑖 𝐼 + 𝑣𝑅𝑖 𝑅
𝐼𝑆.

It must be taken into account that the total population size (𝑁 := 𝑆 + 𝐸 + 𝐼 + 𝑅) remains constant, so the analysis
of the model can be reduced to 3 equations, for example those of 𝐸, 𝐼, 𝑅.
It is straightforward to show that for all non-negative initial conditions system (2.5) has an unique solution for

all times and the solution remains non-negative. The study will be reduced to region

𝐾 := {(𝐸, 𝐼, 𝑅) : 𝐸 ≥ 0, 𝐼 ≥ 0, 𝑅 ≥ 0, 𝐸 + 𝐼 + 𝑅 ≤ 𝑁}, (3.1)

as only solutions inside that region have an epidemiological interpretation. It can be shown taht that 𝐾 is
positively invariant, i.e. solutions lie in 𝐾 for all positive times given initial conditions inside that region. Axis
{𝐸 = 0} ∩ {𝐼 = 0} is also positively invariant.
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Number of EE Stability of DFE Stability of EE Case number
R0 < 1 0 GAS - 1
R0 > 1 1 US GAS (*) 2

Tab. 1 Summary of possible scenarios of aggregated model

(*) Not analytically proven.

The basic reproduction number of themodel can be calculated by using the next generationmatrix approach [1,6],
yielding

R0 =
𝜖
𝑟∑
𝑖=1
𝛽𝑖𝑣

𝐼
𝑖(

𝜖 + 𝜇𝐸 ) (
𝜇𝐼 + 𝛾) . (3.2)

Next, we study the stability of the disease free equilibrium (DFE) and the existence of endemic equilibria (EE)
in relation to the value of R0.
Let 𝑆 := 𝑆/𝑁, �̄� := 𝐸/𝑁 , 𝐼 := 𝐼/𝑁, and �̄� := 𝑅/𝑁 denote the proportions of individuals in each class. We

define

𝑔(𝐼) :=
(
1 − 𝐼

𝐻

)
𝑟∑︁
𝑖=1
𝛽𝑖

𝑣𝑆𝑖 𝑣
𝐼
𝑖

𝑣𝑆𝑖 +
(
𝑣𝐼𝑖 + 𝑏𝑣𝐸𝑖 + 𝑎𝑣𝑅𝑖 −

𝑣𝑆𝑖
𝐻

)
𝐼
, (3.3)

where

𝜎 :=
𝜖(

𝜖 + 𝜇𝐸 ) (
𝛾 + 𝜇𝐼 ) , (3.4)

𝐻 :=
𝜖
(
𝛿 + 𝜇𝑅 )

𝜖𝛾 + (
𝛿 + 𝜇𝑅 ) (

𝜖 + 𝛾 + 𝜇𝐼 ) , (3.5)

𝑎 :=
𝛾

𝛿 + 𝜇𝑅 , (3.6)

𝑏 :=
𝛾 + 𝜇𝐼
𝜖

. (3.7)

Then we have following result:

Theorem 3.1 Let us consider the reduced model (2.5), for which the basic reproduction number is given by (3.2).
Then:

1. If R0 < 1 the DFE is hyperbolic and globally asymptotically stable (GAS) in region 𝐾 , so the disease will
die out asymptotically for any initial condition. No endemic equilibrium exists in this case.

2. If R0 > 1 the DFE is hyperbolic and unstable (US). There exists a unique endemic equilibrium with the form
(�̄�𝑒, 𝐼𝑒, �̄�𝑒), where 𝐼𝑒 is the only solution to the equation

𝑔(𝐼) = 1
𝜎

(3.8)

in the interval 𝐼𝑒 ∈ (0, 𝐻), and 𝐸𝑒 = 𝑏𝐼𝑒, 𝑅𝑒 = 𝑎𝐼𝑒, where 𝑔(𝐼), 𝜎, 𝐻, 𝑎 and 𝑏 are given by (3.3-3.7).

Furthermore, although we have not been able to showed it analytically, if R0 > 1 simulations suggest that the
EE of the model is GAS in 𝐾 , and so the disease will be endemic for any initial condition with infected individuals.
Table 1 summarizes the two possible scenarios. For the particular case of a two region metapopulation (i.e.

𝑟 = 2), Figures 2 (a) and (b) show the three dimensional EIR phase diagrams for the two cases R0 < 1 and R0 > 1.

3.1. Particular case of a SIRS model
The classical SIRS model has the same structure than the SEIRS model, but without latency period, so the exposed
class is not considered. Expressions for a SIRS model can be obtained from those of the SEIRS by letting 𝜖 →∞.
Therefore, the reduced model is
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Fig. 2 (a) Case 1: DFE GAS. (b) Case 2: EE GAS.

¤𝑆 = − 𝑓 (𝑆, 𝐸, 𝐼, 𝑅) + 𝜇𝐼 𝐼 +
(
𝜇𝑅 + 𝛿

)
𝑅 (3.9)

¤𝐼 = + 𝑓 (𝑆, 𝐸, 𝐼, 𝑅) −
(
𝜇𝐼 + 𝛾

)
𝐼

¤𝑅 =𝛾𝐼 −
(
𝛿 + 𝜇𝑅

)
𝑅.

The basic reproduction number for this model is

R0 =

𝑟∑
𝑖=1
𝛽𝑖𝑣

𝐼
𝑖(

𝜇𝐼 + 𝛾) , (3.10)

and results of Theorem 3.1 apply.

4. Discussion: Influence of migration in the dynamics of the disease
One of the main purposes of this work is to evaluate how migration of individuals between sites can affect the
behaviour of the disease. Namely, we aim to explore the possibility that an endemic behaviour of the disease on
the isolated sites might be modified by the existence of migration between them.
First of all, it is important to observe that, according to the model, the disease will have the same behaviour in

all interconnected regions, i.e., either the disease will be endemic in all of the sites, or it will die out globally. In the
first case (R0 > 1), the asymptotic distribution of individuals of each class 𝛼 between the different patches can be
obtained by the eigenvector v𝛼, that, as stated in Theorem 2.3, provides the equilibrium distribution for migration
of those individuals.
In addition, we want to study the possibility that, provided that the behaviour of the disease is the same in all

patches separately, the migration of individuals amongst the sites could alter this behavior. Intuitively, we might
consider that this can not happen, but in fact it can be proven that this counter-intuitive scenario may arise. That
is, even when the basic reproduction number in every patch separately is R𝑖0 < 1 (resp. R𝑖0 > 1), the global basic
reproduction number of the aggregated model could be R0 > 1 (resp. R0 < 1).
It is important to remark that this counter-intuitive situation is only possible under certain circumstances. In

particular, it can not happen if the value of parameters 𝜇𝑖 , 𝛾𝑖 and 𝜀𝑖 is the same for all patches 𝑖, i.e., if the birth-death
parameters and those regarding latency time, recovery time and incubation time are the same in all sites.
For the particular case of a two region metapopulation, Figure 3 shows an example of this situation, in which

the disease dies out in both patches 1 and 2 if they are separated, but it becomes endemic if individuals can travel
between the sites. For this case (𝑟 = 2), this situation arises if and only if the following conditions are satisfied:

max
{

𝜖1
𝜖1 + 𝜇1 ,

𝛾1 + 𝜇1
𝛽1

}
<

𝜖2
𝜖2 + 𝜇2

𝛽2
𝛽1

<
𝛾2 + 𝜇2
𝛾1 + 𝜇1 .
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Fig. 3 Counter-intuitive scenario for a two region metapopulation

In the particular case of a SIRS model it can be proven that the counter-intuitive situation presented above
cannot occur, i.e., if R𝑖0 < 1 (resp. R𝑖0 > 1) for all 𝑖 = 1, ..., 𝑟 , the global basic reproduction number of the reduced
model is R0 > 1 (resp. R0 < 1).
In conclusion, our analysis shows that migration of individuals between different sites has a great influence on

the behaviour of the disease, and we can quantify how the values of the parameters affecting migration affect this
behavior.
Further study will be carried out in this field. In the first place, we want to generalize the study to other forms

of incidence functions (amongst them mass action incidence) and analyse the more realistic situation in which the
recruitment of individuals is not linear and, correspondingly, the local population in each patch is not necessarily
constant.
Additionally, we will extend this analysis of models with time scales to SLIAR models [5], a family of models

that can be used for the study of epidemics such as COVID-19.
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