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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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On numerical approximations to diffuse-interface tumor growth models
Daniel Acosta-Soba1, Francisco Guillén-González2, J. Rafael Rodríguez-Galván3

1. daniel.acosta@uca.es Universidad de Cádiz, Spain
2. guillen@us.es Universidad de Sevilla, Spain

3. rafael.rodriguez@uca.es Universidad de Cádiz, Spain

Abstract
This work is devoted to developing new numerical schemes for a tumor-nutrient PDE model. It is based on

phase field equations for the tumor variable and a diffusive equation for the nutrient one, coupled by reaction terms
and cross-diffusion terms. The model conserves the sum of tumor+nutrient and has a dissipative energy law.
We introduce two different time-discrete schemes: one is based on an Eyre-type decomposition of the energy

and the other is an energy quadratization scheme. Both (continuous) Finite Elements and Discontinuous Galerkin
are used for space discretization.
The schemes are compared analytically and computationally.

1. Introduction
In [3] this tumor-nutrient PDE model is proposed:

𝜕𝑡𝑢 = ∇ · (𝑀𝑢∇𝜇𝑢) + 𝛿𝑃0𝑢+ (𝜇𝑛 − 𝜇𝑢) in Ω × (0, 𝑇], (1.1a)
𝜇𝑢 = 𝑓 ′(𝑢) − 𝜀2Δ𝑢 − 𝜒0𝑛 in Ω × (0, 𝑇], (1.1b)
𝜕𝑡𝑛 = ∇ · (𝑀𝑛∇𝜇𝑛) − 𝛿𝑃0𝑢+ (𝜇𝑛 − 𝜇𝑢) in Ω × (0, 𝑇], (1.1c)

𝜇𝑛 =
1
𝛿
𝑛 − 𝜒0𝑢 in Ω × (0, 𝑇], (1.1d)

∇𝑢 · n = 𝑀𝑢∇𝜇𝑢 · n = 𝑀𝑛∇𝑛 · n = 0 on 𝜕Ω × (0, 𝑇], (1.1e)
𝑢(𝑥, 0) = 𝑢0, 𝑛(𝑥, 0) = 𝑛0 in Ω, (1.1f)

where 𝑢 is the tumor cell volume fraction and 𝑛 is the nutrient density. Here 𝑀𝑢 , 𝑀𝑛 are nonnegative mobility
functions, 𝜀, 𝛿, 𝜒0 > 0 and 𝑓 (𝑢) = Γ𝑢2 (1 − 𝑢)2, Γ > 0. Then, 𝑓 (𝑢) is a polynomial double-well potential with
stable values 0 and 1.
This model is conservative in the sense that 𝜕𝑡

( ∫
Ω
𝑢 + 𝑛

)
= 0 and the following energy is dissipated:

𝐸 (𝑢, 𝑛) B 𝜀2

2

∫
Ω
|∇𝑢 |2 +

∫
Ω
𝑓 (𝑢) − 𝜒0

∫
Ω
𝑢𝑛 + 1

2𝛿

∫
Ω
𝑛2. (1.2)

Specifically, the following energy law holds:

𝑑

𝑑𝑡
𝐸 = −

∫
Ω
𝑀𝑢 |∇𝜇𝑢 |2 −

∫
Ω
𝑀𝑛 |∇𝜇𝑛 |2 − 𝛿𝑃0

∫
Ω
𝑢+ (𝜇𝑛 − 𝜇𝑢)2.

Well-posedness of this model is studied in [1,2] for the case 𝜒0 = 0 while, to the best knowledge of the authors,
it is still an open problem for the cross-difussion case (𝜒0 ≠ 0).
Also in [3], an Eyre-type (convex-splitting) time-discrete numerical scheme is studied which conserves the mass

and has non-increasing discrete energy, giving several numerical examples using (continuous) Finite Elements (FE)
as space discretization.
In this work, we introduce a slight modification of the nonlinear time semidiscretization shown in [3] which

will lead to a first order linear scheme. Besides, we propose another semidiscrete-time scheme based on Invariant
Energy Quadratization (IEQ). Furthermore, we extend the previous FE scheme to a Discontinuous Galerkin space
discretization (DG). Finally, we compare the results both theoretically and computationally.

2. Discrete schemes
Troughout this section we show the different aforementioned time-semidiscrete and space-semidiscrete schemes.
In particular, we focus on the theoretical properties of the Eyre-FE and IEQ-DG fully-discrete schemes. The proofs
of the results will appear together with a numerical comparison of the other different time-space combinations in a
forthcoming paper.
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Gijón, 14-18 junio 2021
(pp. 8–14)
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2.1. Fully-discrete Eyre-FE scheme
The Eyre-type scheme consist of splitting the energy functional (1.2) into two terms

𝐸 (𝑢, 𝑛) = 𝐸𝑖 (𝑢, 𝑛) + 𝐸𝑒 (𝑢, 𝑛),

where 𝐸𝑖 (𝑢, 𝑛) is a convex term (that we will treat implicitly) and 𝐸𝑒 (𝑢, 𝑛) is a non-convex term (which we will
treat explictly) so as to avoid the nonlineaity of the model (1.1a)–(1.1f).
In [3] the following splitting is considered

𝐸𝑖 (𝑢, 𝑛) B 𝜀2

2

∫
Ω
|∇𝑢 |2 + 3Γ

2

∫
Ω
𝑢2 − 𝜒0

∫
Ω
𝑢𝑛 +

(
𝛼

2
+ 1
2𝛿

) ∫
Ω
𝑛2,

𝐸𝑒 (𝑢, 𝑛) B Γ
∫
Ω

(
𝑢4 − 2𝑢3 − 1

2
𝑢2

)
− 𝛼
2

∫
Ω
𝑛2,

where 𝛼 ∈ R is a stabilization parameter which must satisfy that 𝛼 >
𝜒20
3Γ in order to make 𝐸𝑖 (·, ·) convex with

respect to 𝑢 and 𝑛 independently.
Regarding the previous splitting, we propose the following linear scheme using a FE space-semidiscretization

associated with a triangulation family Tℎ of Ω: find, for each 𝑚 ∈ N ∪ {0}, 𝑢𝑚+1, 𝑛𝑚+1, 𝜇𝑚+1𝑢 ∈ Pcont𝑘 (Tℎ) such that
for every 𝜇𝑢 , 𝑢, 𝜇𝑛 ∈ Pcont𝑘 (Tℎ),(

𝛿𝑡𝑢
𝑚+1, 𝜇𝑢

)
𝐿2 (Ω)

= −
(
𝑀𝑢 (𝑢𝑚)∇𝜇𝑚+1𝑢 ,∇𝜇𝑢

)
(𝐿2 (Ω))𝑑 + 𝛿𝑃0

(
𝑢𝑚+ (𝜇𝑚+1𝑛 − 𝜇𝑚+1𝑢 ), 𝜇𝑢

)
𝐿2 (Ω)

, (2.1a)(
𝜇𝑚+1𝑢 , 𝑢

)
𝐿2 (Ω)

= 𝜀2
(
∇𝑢𝑚+1,∇𝑢

)
(𝐿2 (Ω))𝑑 + 3Γ

(
𝑢𝑚+1, 𝑢

)
𝐿2 (Ω)

+ Γ
(
4(𝑢𝑚)3 − 6(𝑢𝑚)2 − 𝑢𝑚, 𝑢

)
𝐿2 (Ω)

− 𝜒0
(
𝑛𝑚+1, 𝑢

)
𝐿2 (Ω)

, (2.1b)(
𝛿𝑡𝑛

𝑚+1, 𝜇𝑛
)
𝐿2 (Ω)

= −
(
𝑀𝑛 (𝑛𝑚)∇𝜇𝑚+1𝑛 ,∇𝜇𝑛

)
(𝐿2 (Ω))𝑑 − 𝛿𝑃0

(
𝑢𝑚+ (𝜇𝑛+1𝑛 − 𝜇𝑚+1𝑢 ), 𝜇𝑛

)
𝐿2 (Ω)

, (2.1c)

where we denote 𝛿𝑡𝑢𝑚+1 = 𝑢𝑚+1−𝑢𝑚
Δ𝑡 and

𝜇𝑚+1𝑛 =
1
𝛿
𝑛𝑚+1 + 𝛼

(
𝑛𝑚+1 − 𝑛𝑚

)
− 𝜒0𝑢𝑚+1. (2.2)

Remark 2.1 The previous time-semidiscrete scheme (2.1) differs from the one proposed in [3] in the way we treat
𝑢+ in the reaction terms. Whereas in [3] this term is approximated using a Crank-Nicolson scheme, we just treat
this term explicitly in order to avoid the nonlinearity.

Despite using a lower-order time-discretization scheme than in [3] for one of the terms in (2.1a)–(2.1c), we can
also afford first-order consistency in time. In particular, using the ideas in [3] we get the following result.

Theorem 2.2 The scheme (2.1a)–(2.1c) has the following properties:

1. If there is a smooth enough solution 𝑢, 𝜇𝑢 , 𝑛 of (1.1a)–(1.1f), then the scheme has first-order consistency in
time.

2. The mass is conserved in the following sense:
∫
Ω
(𝑢𝑚+1 + 𝑛𝑚+1) =

∫
Ω
(𝑢𝑚 + 𝑛𝑚) for 𝑚 ≥ 0.

3. If 𝑢𝑖 ∈
[
1
2 − 1√

3
, 12 + 1√

3

]
for 𝑖 ∈ {𝑚, 𝑚 + 1}, 𝑚 ≥ 0, then 𝐸 (𝑢𝑚+1, 𝑛𝑚+1) ≤ 𝐸 (𝑢𝑚, 𝑛𝑚).

Remark 2.3 It is granted by the previous result that the energy of the solution of the scheme (2.1a)–(2.1c)
decreases as long as the solution 𝑢 belongs to the interval

[
1
2 − 1√

3
, 12 + 1√

3

]
≈ [−0.08, 1.08], where 𝐸𝑒 (·, ·) is

concave. Nevertheless, the model (1.1a)–(1.1f) has no maximum principle so the solution may not be bounded by
this range. Hence, it is not guaranteed that the energy always decreases with this scheme (2.1a)–(2.1c).
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2.2. Fully-discrete IEQ-DG scheme
The following space discretization of the variational formulation of the previous model (1.1a)–(1.1f) using Sym-
metric Interior Penalty (SIP) Discontinuous Galerkin is introduced: find 𝑢(·, 𝑡), 𝑛(·, 𝑡), 𝜇𝑢 (·, 𝑡) ∈ Pdisc𝑘 (Tℎ) for a.e.
𝑡 ∈ (0, 𝑇) such that ∫

Ω
𝜕𝑡𝑢𝜇𝑢 = −𝑎sipℎ (𝑀𝑢 (𝑢); 𝜇𝑢 , 𝜇𝑢) + 𝛿𝑃0

∫
Ω
𝑢+ (𝜇𝑛 − 𝜇𝑢)𝜇𝑢 , (2.3a)∫

Ω
𝜇𝑢𝑢 = 𝑎sipℎ (𝜀2; 𝑢, 𝑢) +

∫
Ω
𝑓 ′(𝑢)𝑢 − 𝜒0

∫
Ω
𝑛𝑢, (2.3b)∫

Ω
𝜕𝑡𝑛𝜇𝑛 = −𝑎sipℎ (𝑀𝑛 (𝑛); 𝜇𝑛, 𝜇𝑛) − 𝛿𝑃0

∫
Ω
𝑢+ (𝜇𝑛 − 𝜇𝑢)𝜇𝑛, (2.3c)

𝜇𝑛 =
1
𝛿
𝑛 − 𝜒0𝑢, (2.3d)

for every 𝜇𝑢 , 𝑢, 𝜇𝑛 ∈ Pdisc𝑘 (Tℎ), with 𝑎
sip
ℎ
(·; ·, ·) the SIP-blinear form defined for 𝑣, 𝑤 ∈ Pdisc𝑘 (Tℎ) as in [4], where

this kind of IEQ-DG schemes are studied for the Cahn-Hilliard equations:

𝑎
sip
ℎ
(𝑀 (𝑎); 𝑣, 𝑤) B

∑︁
𝐾 ∈Tℎ

∫
𝐾
𝑀 (𝑎)∇ℎ𝑣 · ∇ℎ𝑤 −

∑︁
𝑒∈E𝑖

ℎ

∫
𝑒
𝑀 ({{𝑎}}) ({{∇ℎ𝑣 · n𝑒}} [[𝑤]] + {{∇ℎ𝑤 · n𝑒}} [[𝑣]])

+ 𝜎
∑︁
𝑒∈E𝑖

ℎ

∫
𝑒

1
ℎ𝑒
𝑀 ({{𝑎}}) [[𝑣]] [[𝑤]] .

Regarding the IEQ time-semidiscretization we have that, taking 𝐵 > 0 and defining the artifical variable
𝑈 =

√︁
𝑓 (𝑢) + 𝐵 and 𝐻 (𝑢) = 𝑓 ′ (𝑢)

2
√
𝑓 (𝑢)+𝐵

, then 𝑓 ′(𝑢) = 2𝐻 (𝑢)𝑈 (𝑢) and

𝜕𝑡𝑈 = 𝐻 (𝑢)𝜕𝑡𝑢. (2.4)

Now, we will approximate (2.4) in the (𝑚 + 1)-th time iteration in two steps: first, we use the projection operator
Πℎ : 𝐿2 (Ω) −→ Pdisc𝑘 (Tℎ) to calculate𝑈𝑚ℎ = Πℎ𝑈𝑚 and then we use the semidiscrete scheme

𝑈𝑚+1 −𝑈𝑚ℎ
Δ𝑡

= 𝐻 (𝑢𝑚) 𝑢
𝑚+1 − 𝑢𝑚

Δ𝑡
,

where𝑈0 =
√︁
𝑓 (𝑢0) + 𝐵.

Therefore, we propose the next fully discrete IEQ-DG scheme: find, for each 𝑚 ∈ N ∪ {0}, 𝑢𝑚+1, 𝑛𝑚+1, 𝜇𝑚+1𝑢 ∈
Pdisc𝑘 (Tℎ) such that for every 𝜇𝑢 , 𝑢, 𝜇𝑛 ∈ Pdisc𝑘 (Tℎ),(

𝛿𝑡𝑢
𝑚+1, 𝜇𝑢

)
+ 𝑎sipℎ (𝑀𝑢 (𝑢𝑚); 𝜇𝑚+1𝑢 , 𝜇𝑢) = 𝛿𝑃0

(
𝑢𝑚+ (𝜇𝑚+1𝑛 − 𝜇𝑚+1𝑢 ), 𝜇𝑢

)
, (2.5a)(

𝜇𝑚+1𝑢 , 𝑢
)
= 𝑎sipℎ (𝜀2; 𝑢𝑚+1, 𝑢) +

(
2𝐻 (𝑢𝑚)𝑈𝑚+1, 𝑢

)
− 𝜒0 (𝑛𝑚, 𝑢) , (2.5b)(

𝛿𝑡𝑛
𝑚+1, 𝜇𝑛

)
+ 𝑎sipℎ (𝑀𝑛 (𝑛𝑚); 𝜇𝑚+1𝑛 , 𝜇𝑛) = −𝛿𝑃0

(
𝑢𝑚+ (𝜇𝑚+1𝑛 − 𝜇𝑚+1𝑢 ), 𝜇𝑛

)
, (2.5c)

where

𝜇𝑚+1𝑛 =
1
𝛿
𝑛𝑚+1 − 𝜒0𝑢𝑚+1, (2.6a)

𝑈𝑚+1 = 𝑈𝑚ℎ + 𝐻 (𝑢𝑚) (𝑢𝑚+1 − 𝑢𝑚). (2.6b)

In practice, in order to solve the previous system of equations (2.5a)–(2.5c) minimising the computational costs,
in each time step we do the following:

1. We introduce the expressions (2.6a)–(2.6b) in (2.5a)–(2.5c) and we solve the system of equations.

2. The approximation𝑈𝑚+1ℎ is obtained by projecting (2.6b) into Pdisc𝑘 (Tℎ).

Theorem 2.4 The scheme (2.5a)–(2.5c) has the following properties:

1. The mass is conserved:
∫
Ω
(𝑢𝑚+1 + 𝑛𝑚+1) =

∫
Ω
(𝑢𝑚 + 𝑛𝑚).
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2. The following energy law holds:

𝛿𝑡𝐸ℎ (𝑢𝑚+1,𝑈𝑚+1ℎ , 𝑛𝑚+1)

+ 𝑎sipℎ (𝑀𝑢 (𝑢𝑚); 𝜇𝑚+1𝑢 , 𝜇𝑚+1𝑢 ) + 𝑎sipℎ (𝑀𝑛 (𝑛𝑚); 𝜇𝑚+1𝑛 , 𝜇𝑚+1𝑛 ) + 𝛿𝑃0
∫
Ω
𝑢𝑚+ (𝜇𝑚+1𝑛 − 𝜇𝑚+1𝑢 )2 ≤ 0

for the modified energy

𝐸ℎ (𝑢,𝑈ℎ , 𝑛) = 𝑎sipℎ
(
𝜀2

2
; 𝑢, 𝑢

)
+

∫
Ω
𝑈2ℎ − 𝜒0

∫
Ω
𝑢𝑛 + 1

2𝛿

∫
Ω
𝑛2.

Remark 2.5 Observe that the EQ-DG scheme (2.5a)–(2.5c) is unconditionally energy-stable for a modified energy
obtained by using the artificial variable 𝑈. Nonetheless, if the approximation is good enough (for small Δ𝑡 and ℎ)
we have that 𝐸ℎ (𝑢𝑚, 𝑛𝑚) + 𝐵 |Ω| ≈ 𝐸ℎ (𝑢𝑚,𝑈𝑚ℎ , 𝑛𝑚) where now

𝐸ℎ (𝑢, 𝑛) = 𝑎sipℎ
(
𝜀2

2
; 𝑢, 𝑢

)
+

∫
Ω
𝑓 (𝑢) − 𝜒0

∫
Ω
𝑢𝑛 + 1

2𝛿

∫
Ω
𝑛2,

is the natural discrete energy of the model in Pdisc𝑘 (𝑇ℎ).

2.3. Numerical experiments
In this section we show several numerical experiments with the purpose of comparing both the Eyre-FE (2.1a)–
(2.1a) and the IEQ-DG (2.5a)–(2.5c) schemes and studying some properties of the tumor model (1.1a)–(1.1f) by
reproducing some results of the papers [3, 8].

Example 1. Circular tumor growth
We show the results we got with the two schemes for a initial small tumor (radius 0.1) located in the center of the
domain Ω = [−1, 1]2, considering, at the beginning, the extracellular water to be completely nutrient-rich, 𝑛0 = 1,
in Ω.
We take the parameters 𝜀 = 0.005, 𝛿 = 0.01, 𝑃0 = 0.1, 𝜒0 = 0.05, Γ = 0.045 y 𝛼 =

𝜒20
3Γ + 0.1 as in [3] so as to

reproduce its results. Likewise, we will take the mobility functions 𝑀𝑢 (𝑢) = 200𝑢2 and 𝑀𝑛 = 𝛿. In the case of the
IEQ-DG scheme we use 𝜎 = 15 and 𝐵 = 1.
A time step and a mesh size ℎ ≈ 0.04 are used together with polynomials of order 𝑘 = 2.
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Fig. 1 Example 1. Cells and nutrients at different time steps (Δ𝑡 = 5 · 10−2) with the Eyre-FE scheme (2.1).

Comparing Fig. 1 and Fig. 2, despite the qualitative behaviour of the schemes seem to be similar, the scheme
IEQ-DG is much more unstable in time and a significantly smaller time step is needed to control the spurious
oscillations over time. The time step used is Δ𝑡 = 0.05 for Eyre-FE and Δ𝑡 = 0.002 for IEQ-DG. This issue makes
it very difficult to reach the final time 𝑇 = 50 with the IEQ-DG scheme as it was easily done using the scheme
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Fig. 2 Example 1. Cells and nutrients at different time steps (Δ𝑡 = 2 · 10−3) with the IEQ-DG scheme (2.5).

Fig. 3 Example 1. Discrete energy with the Eyre-FE scheme (2.1) on the left and with the IEQ-DG scheme (2.5) on the right.

Eyre-FE. The unstability of these well-known and widely studied IEQ time-semidiscretization technique has been
spotted in several papers such as [5–7].
In both cases the mass is conserved and the energy decresases (Fig. 3). Notice that on the right of Fig. 3 we

can observe that both the natural and the modified energies differ only in the constant 𝐵 |Ω| = 4.

Example 2. Elliptic tumor with nutrient source growth
Now, we slightly modify the model as it was done in [3] in order to increase the interaction between the tumor and
the nutrients. To this aim, we guess that the diffusion of the nutrients is much faster than the growth of the tumor
cells so we consider the elliptic version of the 𝑛-equation, taking 𝜕𝑡𝑛 = 0. Moreover, we change ∇𝑛 · n = 0 to 𝑛 = 1
on 𝜕Ω.

𝜕𝑡𝑢 = 𝑀𝑢Δ𝜇𝑢 + 𝛿𝑃0𝑢+ (𝜇𝑛 − 𝜇𝑢) in Ω × (0, 𝑇), (2.7a)
𝜇𝑢 = 𝐹 ′(𝑢) − 𝜀2Δ𝑢 − 𝜒0𝑛 in Ω × (0, 𝑇), (2.7b)
0 = 𝑀𝑛Δ𝜇𝑛 − 𝛿𝑃0𝑢+ (𝜇𝑛 − 𝜇𝑢) in Ω × (0, 𝑇), (2.7c)

𝜇𝑛 =
1
𝛿
𝑛 − 𝜒0𝑢 in Ω × (0, 𝑇), (2.7d)

∇𝑢 · n = ∇𝜇𝑢 · n = 0 on 𝜕Ω × (0, 𝑇), (2.7e)
𝑛 = 1 on 𝜕Ω × (0, 𝑇), (2.7f)

𝑢(𝑥, 0) = 𝑢0, 𝑛(𝑥, 0) = 𝑛0 in Ω, (2.7g)

where 𝑢0, 𝑛0 ∈ 𝐿2 (Ω).
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Fig. 4 Example 2. Cells and nutrients of the variant (2.7) with the Eyre-FE scheme (2.1).

Fig. 5 Example 2. Mass and discrete energy of the variant (2.7) with the Eyre-FE scheme (2.1).

Consider the domain Ω = [0, 25.6]2. We take 𝑢0 = 1 in the region
{
(𝑥, 𝑦) ∈ R2 : (𝑥−12.8)21.7 + (𝑦−12.8)20.9 ≤ 1

}
and

𝑛0 = 1 in Ω.
We keep the same parameters than in the example 1 as it is done in [3]. We take Δ𝑡 = 8 · 10−2 and ℎ ≈ 0.36

with polynomials of order 𝑘 = 1.
The Eyre-FE scheme (2.1a)–(2.1c) is used to obtain the solution that is shown in Fig. 4. It is remarkable to

underline the evolution of shape of the tumor over time, forming buds towards the higher levels of nutrients as
in [3].
Nontheless, the solution escapes from the range [0, 1] which is due to the lack of maximum principle of the

model (1.1) and, consequently, of the Eyre-FE scheme (2.1a)–(2.1c). Moreover, some oscillations are produced
which may be due to the bad approximations of the cross-diffusion terms as 𝜒0 ≠ 0.
In this case, the energy and mass functions that we obtain with the modification of the model (2.7a)–(2.7g) are

shown in the Fig. 5. Now, the energy may not be dissipative in general and neither is tumor + nutrient conserved.

Example 3. Aggregation of circular tumors
We show a simulation of the aggregation process of three circular tumors as it was done in [8]. To this aim, we
consider the domain Ω = [−1, 1]2 and we guess that there are three tumors in the regions 𝐵((0.2, 0.2), 0.01),
𝐵((0.3,−0.5), 0.01) and 𝐵((−0.15,−0.15), 0.03) with the maximum concentration of nutrients in the extracellular
water 𝑛0 = 1.
This time we use the IEQ-DG scheme (2.5a)–(2.5c). We take the parameters 𝜀 = 0.02, 𝛿 = 0.01, 𝑃0 = 100,

𝜒0 = 0, Γ = 0.045 and 𝐵 = 1. We consider the constant mobility functions 𝑀𝑢 = 1 and 𝑀𝑛 = 𝛿. Moreover we use
polynomials of order 𝑘 = 1 with a penalization parameter 𝜎 = 4 and we take Δ𝑡 = 10−4 and ℎ ≈ 0.02.
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Fig. 6 Example 3. Cells and nutrients at different time steps with the IEQ-DG scheme (2.5).

Looking at the Fig. 6, the solution is not bounded in the interval [0, 1] and some remarkable oscillations are
produced as there is no maximum principle and we are not properly approximating the cross diffusion terms.
The mass is conserved and both the natural and the modified energies have the same decreasing behaviour (Fig.

7) differing only in the constant 𝐵 |Ω| = 4.

Fig. 7 Example 3. Discrete energy with the IEQ-DG scheme (2.5).
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