
Proceedings

of the

XXVI Congreso de Ecuaciones
Diferenciales y Aplicaciones

XVI Congreso de Matemática Aplicada
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Foreword

It is with great pleasure that we present the Proceedings of the 26th Congress of Differential Equations and Appli-
cations / 16th Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEeMA, which is held in Gijón, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEeMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Málaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijón, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijón. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijón; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijón, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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� Departamento de Matemáticas de la Universidad de Oviedo
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Arregui I., Salvador B., Ševčovič D. and Vázquez C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A numerical method to solve Maxwell’s equations in 3D singular geometry
Assous F. and Raichik I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Analysis of a SEIRS metapopulation model with fast migration
Atienza P. and Sanz-Lorenzo L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Goal-oriented adaptive finite element methods with optimal computational complexity
Becker R., Gantner G., Innerberger M. and Praetorius D. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

On volume constraint problems related to the fractional Laplacian
Bellido J.C. and Ortega A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A semi-implicit Lagrange-projection-type finite volume scheme exactly well-balanced for 1D
shallow-water system
Caballero-Cárdenas C., Castro M.J., Morales de Luna T. and Muñoz-Ruiz M.L. . . . . . . . . . . . . . . . 82
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On numerical approximations to diffuse-interface tumor growth models
Daniel Acosta-Soba1, Francisco Guillén-González2, J. Rafael Rodríguez-Galván3

1. daniel.acosta@uca.es Universidad de Cádiz, Spain
2. guillen@us.es Universidad de Sevilla, Spain

3. rafael.rodriguez@uca.es Universidad de Cádiz, Spain

Abstract
This work is devoted to developing new numerical schemes for a tumor-nutrient PDE model. It is based on

phase field equations for the tumor variable and a diffusive equation for the nutrient one, coupled by reaction terms
and cross-diffusion terms. The model conserves the sum of tumor+nutrient and has a dissipative energy law.
We introduce two different time-discrete schemes: one is based on an Eyre-type decomposition of the energy

and the other is an energy quadratization scheme. Both (continuous) Finite Elements and Discontinuous Galerkin
are used for space discretization.
The schemes are compared analytically and computationally.

1. Introduction
In [3] this tumor-nutrient PDE model is proposed:

𝜕𝑡𝑢 = ∇ · (𝑀𝑢∇𝜇𝑢) + 𝛿𝑃0𝑢+ (𝜇𝑛 − 𝜇𝑢) in Ω × (0, 𝑇], (1.1a)
𝜇𝑢 = 𝑓 ′(𝑢) − 𝜀2Δ𝑢 − 𝜒0𝑛 in Ω × (0, 𝑇], (1.1b)
𝜕𝑡𝑛 = ∇ · (𝑀𝑛∇𝜇𝑛) − 𝛿𝑃0𝑢+ (𝜇𝑛 − 𝜇𝑢) in Ω × (0, 𝑇], (1.1c)

𝜇𝑛 =
1
𝛿
𝑛 − 𝜒0𝑢 in Ω × (0, 𝑇], (1.1d)

∇𝑢 · n = 𝑀𝑢∇𝜇𝑢 · n = 𝑀𝑛∇𝑛 · n = 0 on 𝜕Ω × (0, 𝑇], (1.1e)
𝑢(𝑥, 0) = 𝑢0, 𝑛(𝑥, 0) = 𝑛0 in Ω, (1.1f)

where 𝑢 is the tumor cell volume fraction and 𝑛 is the nutrient density. Here 𝑀𝑢 , 𝑀𝑛 are nonnegative mobility
functions, 𝜀, 𝛿, 𝜒0 > 0 and 𝑓 (𝑢) = Γ𝑢2 (1 − 𝑢)2, Γ > 0. Then, 𝑓 (𝑢) is a polynomial double-well potential with
stable values 0 and 1.
This model is conservative in the sense that 𝜕𝑡

( ∫
Ω
𝑢 + 𝑛

)
= 0 and the following energy is dissipated:

𝐸 (𝑢, 𝑛) B 𝜀2

2

∫
Ω
|∇𝑢 |2 +

∫
Ω
𝑓 (𝑢) − 𝜒0

∫
Ω
𝑢𝑛 + 1

2𝛿

∫
Ω
𝑛2. (1.2)

Specifically, the following energy law holds:

𝑑

𝑑𝑡
𝐸 = −

∫
Ω
𝑀𝑢 |∇𝜇𝑢 |2 −

∫
Ω
𝑀𝑛 |∇𝜇𝑛 |2 − 𝛿𝑃0

∫
Ω
𝑢+ (𝜇𝑛 − 𝜇𝑢)2.

Well-posedness of this model is studied in [1,2] for the case 𝜒0 = 0 while, to the best knowledge of the authors,
it is still an open problem for the cross-difussion case (𝜒0 ≠ 0).
Also in [3], an Eyre-type (convex-splitting) time-discrete numerical scheme is studied which conserves the mass

and has non-increasing discrete energy, giving several numerical examples using (continuous) Finite Elements (FE)
as space discretization.
In this work, we introduce a slight modification of the nonlinear time semidiscretization shown in [3] which

will lead to a first order linear scheme. Besides, we propose another semidiscrete-time scheme based on Invariant
Energy Quadratization (IEQ). Furthermore, we extend the previous FE scheme to a Discontinuous Galerkin space
discretization (DG). Finally, we compare the results both theoretically and computationally.

2. Discrete schemes
Troughout this section we show the different aforementioned time-semidiscrete and space-semidiscrete schemes.
In particular, we focus on the theoretical properties of the Eyre-FE and IEQ-DG fully-discrete schemes. The proofs
of the results will appear together with a numerical comparison of the other different time-space combinations in a
forthcoming paper.
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2.1. Fully-discrete Eyre-FE scheme
The Eyre-type scheme consist of splitting the energy functional (1.2) into two terms

𝐸 (𝑢, 𝑛) = 𝐸𝑖 (𝑢, 𝑛) + 𝐸𝑒 (𝑢, 𝑛),

where 𝐸𝑖 (𝑢, 𝑛) is a convex term (that we will treat implicitly) and 𝐸𝑒 (𝑢, 𝑛) is a non-convex term (which we will
treat explictly) so as to avoid the nonlineaity of the model (1.1a)–(1.1f).
In [3] the following splitting is considered

𝐸𝑖 (𝑢, 𝑛) B 𝜀2

2

∫
Ω
|∇𝑢 |2 + 3Γ

2

∫
Ω
𝑢2 − 𝜒0

∫
Ω
𝑢𝑛 +

(
𝛼

2
+ 1
2𝛿

) ∫
Ω
𝑛2,

𝐸𝑒 (𝑢, 𝑛) B Γ
∫
Ω

(
𝑢4 − 2𝑢3 − 1

2
𝑢2

)
− 𝛼
2

∫
Ω
𝑛2,

where 𝛼 ∈ R is a stabilization parameter which must satisfy that 𝛼 >
𝜒20
3Γ in order to make 𝐸𝑖 (·, ·) convex with

respect to 𝑢 and 𝑛 independently.
Regarding the previous splitting, we propose the following linear scheme using a FE space-semidiscretization

associated with a triangulation family Tℎ of Ω: find, for each 𝑚 ∈ N ∪ {0}, 𝑢𝑚+1, 𝑛𝑚+1, 𝜇𝑚+1𝑢 ∈ Pcont𝑘 (Tℎ) such that
for every 𝜇𝑢 , 𝑢, 𝜇𝑛 ∈ Pcont𝑘 (Tℎ),(

𝛿𝑡𝑢
𝑚+1, 𝜇𝑢

)
𝐿2 (Ω)

= −
(
𝑀𝑢 (𝑢𝑚)∇𝜇𝑚+1𝑢 ,∇𝜇𝑢

)
(𝐿2 (Ω))𝑑 + 𝛿𝑃0

(
𝑢𝑚+ (𝜇𝑚+1𝑛 − 𝜇𝑚+1𝑢 ), 𝜇𝑢

)
𝐿2 (Ω)

, (2.1a)(
𝜇𝑚+1𝑢 , 𝑢

)
𝐿2 (Ω)

= 𝜀2
(
∇𝑢𝑚+1,∇𝑢

)
(𝐿2 (Ω))𝑑 + 3Γ

(
𝑢𝑚+1, 𝑢

)
𝐿2 (Ω)

+ Γ
(
4(𝑢𝑚)3 − 6(𝑢𝑚)2 − 𝑢𝑚, 𝑢

)
𝐿2 (Ω)

− 𝜒0
(
𝑛𝑚+1, 𝑢

)
𝐿2 (Ω)

, (2.1b)(
𝛿𝑡𝑛

𝑚+1, 𝜇𝑛
)
𝐿2 (Ω)

= −
(
𝑀𝑛 (𝑛𝑚)∇𝜇𝑚+1𝑛 ,∇𝜇𝑛

)
(𝐿2 (Ω))𝑑 − 𝛿𝑃0

(
𝑢𝑚+ (𝜇𝑛+1𝑛 − 𝜇𝑚+1𝑢 ), 𝜇𝑛

)
𝐿2 (Ω)

, (2.1c)

where we denote 𝛿𝑡𝑢𝑚+1 = 𝑢𝑚+1−𝑢𝑚
Δ𝑡 and

𝜇𝑚+1𝑛 =
1
𝛿
𝑛𝑚+1 + 𝛼

(
𝑛𝑚+1 − 𝑛𝑚

)
− 𝜒0𝑢𝑚+1. (2.2)

Remark 2.1 The previous time-semidiscrete scheme (2.1) differs from the one proposed in [3] in the way we treat
𝑢+ in the reaction terms. Whereas in [3] this term is approximated using a Crank-Nicolson scheme, we just treat
this term explicitly in order to avoid the nonlinearity.

Despite using a lower-order time-discretization scheme than in [3] for one of the terms in (2.1a)–(2.1c), we can
also afford first-order consistency in time. In particular, using the ideas in [3] we get the following result.

Theorem 2.2 The scheme (2.1a)–(2.1c) has the following properties:

1. If there is a smooth enough solution 𝑢, 𝜇𝑢 , 𝑛 of (1.1a)–(1.1f), then the scheme has first-order consistency in
time.

2. The mass is conserved in the following sense:
∫
Ω
(𝑢𝑚+1 + 𝑛𝑚+1) =

∫
Ω
(𝑢𝑚 + 𝑛𝑚) for 𝑚 ≥ 0.

3. If 𝑢𝑖 ∈
[
1
2 − 1√

3
, 12 + 1√

3

]
for 𝑖 ∈ {𝑚, 𝑚 + 1}, 𝑚 ≥ 0, then 𝐸 (𝑢𝑚+1, 𝑛𝑚+1) ≤ 𝐸 (𝑢𝑚, 𝑛𝑚).

Remark 2.3 It is granted by the previous result that the energy of the solution of the scheme (2.1a)–(2.1c)
decreases as long as the solution 𝑢 belongs to the interval

[
1
2 − 1√

3
, 12 + 1√

3

]
≈ [−0.08, 1.08], where 𝐸𝑒 (·, ·) is

concave. Nevertheless, the model (1.1a)–(1.1f) has no maximum principle so the solution may not be bounded by
this range. Hence, it is not guaranteed that the energy always decreases with this scheme (2.1a)–(2.1c).
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2.2. Fully-discrete IEQ-DG scheme
The following space discretization of the variational formulation of the previous model (1.1a)–(1.1f) using Sym-
metric Interior Penalty (SIP) Discontinuous Galerkin is introduced: find 𝑢(·, 𝑡), 𝑛(·, 𝑡), 𝜇𝑢 (·, 𝑡) ∈ Pdisc𝑘 (Tℎ) for a.e.
𝑡 ∈ (0, 𝑇) such that ∫

Ω
𝜕𝑡𝑢𝜇𝑢 = −𝑎sipℎ (𝑀𝑢 (𝑢); 𝜇𝑢 , 𝜇𝑢) + 𝛿𝑃0

∫
Ω
𝑢+ (𝜇𝑛 − 𝜇𝑢)𝜇𝑢 , (2.3a)∫

Ω
𝜇𝑢𝑢 = 𝑎sipℎ (𝜀2; 𝑢, 𝑢) +

∫
Ω
𝑓 ′(𝑢)𝑢 − 𝜒0

∫
Ω
𝑛𝑢, (2.3b)∫

Ω
𝜕𝑡𝑛𝜇𝑛 = −𝑎sipℎ (𝑀𝑛 (𝑛); 𝜇𝑛, 𝜇𝑛) − 𝛿𝑃0

∫
Ω
𝑢+ (𝜇𝑛 − 𝜇𝑢)𝜇𝑛, (2.3c)

𝜇𝑛 =
1
𝛿
𝑛 − 𝜒0𝑢, (2.3d)

for every 𝜇𝑢 , 𝑢, 𝜇𝑛 ∈ Pdisc𝑘 (Tℎ), with 𝑎
sip
ℎ
(·; ·, ·) the SIP-blinear form defined for 𝑣, 𝑤 ∈ Pdisc𝑘 (Tℎ) as in [4], where

this kind of IEQ-DG schemes are studied for the Cahn-Hilliard equations:

𝑎
sip
ℎ
(𝑀 (𝑎); 𝑣, 𝑤) B

∑︁
𝐾 ∈Tℎ

∫
𝐾
𝑀 (𝑎)∇ℎ𝑣 · ∇ℎ𝑤 −

∑︁
𝑒∈E𝑖

ℎ

∫
𝑒
𝑀 ({{𝑎}}) ({{∇ℎ𝑣 · n𝑒}} [[𝑤]] + {{∇ℎ𝑤 · n𝑒}} [[𝑣]])

+ 𝜎
∑︁
𝑒∈E𝑖

ℎ

∫
𝑒

1
ℎ𝑒
𝑀 ({{𝑎}}) [[𝑣]] [[𝑤]] .

Regarding the IEQ time-semidiscretization we have that, taking 𝐵 > 0 and defining the artifical variable
𝑈 =

√︁
𝑓 (𝑢) + 𝐵 and 𝐻 (𝑢) = 𝑓 ′ (𝑢)

2
√
𝑓 (𝑢)+𝐵

, then 𝑓 ′(𝑢) = 2𝐻 (𝑢)𝑈 (𝑢) and

𝜕𝑡𝑈 = 𝐻 (𝑢)𝜕𝑡𝑢. (2.4)

Now, we will approximate (2.4) in the (𝑚 + 1)-th time iteration in two steps: first, we use the projection operator
Πℎ : 𝐿2 (Ω) −→ Pdisc𝑘 (Tℎ) to calculate𝑈𝑚ℎ = Πℎ𝑈𝑚 and then we use the semidiscrete scheme

𝑈𝑚+1 −𝑈𝑚ℎ
Δ𝑡

= 𝐻 (𝑢𝑚) 𝑢
𝑚+1 − 𝑢𝑚

Δ𝑡
,

where𝑈0 =
√︁
𝑓 (𝑢0) + 𝐵.

Therefore, we propose the next fully discrete IEQ-DG scheme: find, for each 𝑚 ∈ N ∪ {0}, 𝑢𝑚+1, 𝑛𝑚+1, 𝜇𝑚+1𝑢 ∈
Pdisc𝑘 (Tℎ) such that for every 𝜇𝑢 , 𝑢, 𝜇𝑛 ∈ Pdisc𝑘 (Tℎ),(

𝛿𝑡𝑢
𝑚+1, 𝜇𝑢

)
+ 𝑎sipℎ (𝑀𝑢 (𝑢𝑚); 𝜇𝑚+1𝑢 , 𝜇𝑢) = 𝛿𝑃0

(
𝑢𝑚+ (𝜇𝑚+1𝑛 − 𝜇𝑚+1𝑢 ), 𝜇𝑢

)
, (2.5a)(

𝜇𝑚+1𝑢 , 𝑢
)
= 𝑎sipℎ (𝜀2; 𝑢𝑚+1, 𝑢) +

(
2𝐻 (𝑢𝑚)𝑈𝑚+1, 𝑢

)
− 𝜒0 (𝑛𝑚, 𝑢) , (2.5b)(

𝛿𝑡𝑛
𝑚+1, 𝜇𝑛

)
+ 𝑎sipℎ (𝑀𝑛 (𝑛𝑚); 𝜇𝑚+1𝑛 , 𝜇𝑛) = −𝛿𝑃0

(
𝑢𝑚+ (𝜇𝑚+1𝑛 − 𝜇𝑚+1𝑢 ), 𝜇𝑛

)
, (2.5c)

where

𝜇𝑚+1𝑛 =
1
𝛿
𝑛𝑚+1 − 𝜒0𝑢𝑚+1, (2.6a)

𝑈𝑚+1 = 𝑈𝑚ℎ + 𝐻 (𝑢𝑚) (𝑢𝑚+1 − 𝑢𝑚). (2.6b)

In practice, in order to solve the previous system of equations (2.5a)–(2.5c) minimising the computational costs,
in each time step we do the following:

1. We introduce the expressions (2.6a)–(2.6b) in (2.5a)–(2.5c) and we solve the system of equations.

2. The approximation𝑈𝑚+1ℎ is obtained by projecting (2.6b) into Pdisc𝑘 (Tℎ).

Theorem 2.4 The scheme (2.5a)–(2.5c) has the following properties:

1. The mass is conserved:
∫
Ω
(𝑢𝑚+1 + 𝑛𝑚+1) =

∫
Ω
(𝑢𝑚 + 𝑛𝑚).
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2. The following energy law holds:

𝛿𝑡𝐸ℎ (𝑢𝑚+1,𝑈𝑚+1ℎ , 𝑛𝑚+1)

+ 𝑎sipℎ (𝑀𝑢 (𝑢𝑚); 𝜇𝑚+1𝑢 , 𝜇𝑚+1𝑢 ) + 𝑎sipℎ (𝑀𝑛 (𝑛𝑚); 𝜇𝑚+1𝑛 , 𝜇𝑚+1𝑛 ) + 𝛿𝑃0
∫
Ω
𝑢𝑚+ (𝜇𝑚+1𝑛 − 𝜇𝑚+1𝑢 )2 ≤ 0

for the modified energy

𝐸ℎ (𝑢,𝑈ℎ , 𝑛) = 𝑎sipℎ
(
𝜀2

2
; 𝑢, 𝑢

)
+

∫
Ω
𝑈2ℎ − 𝜒0

∫
Ω
𝑢𝑛 + 1

2𝛿

∫
Ω
𝑛2.

Remark 2.5 Observe that the EQ-DG scheme (2.5a)–(2.5c) is unconditionally energy-stable for a modified energy
obtained by using the artificial variable 𝑈. Nonetheless, if the approximation is good enough (for small Δ𝑡 and ℎ)
we have that 𝐸ℎ (𝑢𝑚, 𝑛𝑚) + 𝐵 |Ω| ≈ 𝐸ℎ (𝑢𝑚,𝑈𝑚ℎ , 𝑛𝑚) where now

𝐸ℎ (𝑢, 𝑛) = 𝑎sipℎ
(
𝜀2

2
; 𝑢, 𝑢

)
+

∫
Ω
𝑓 (𝑢) − 𝜒0

∫
Ω
𝑢𝑛 + 1

2𝛿

∫
Ω
𝑛2,

is the natural discrete energy of the model in Pdisc𝑘 (𝑇ℎ).

2.3. Numerical experiments
In this section we show several numerical experiments with the purpose of comparing both the Eyre-FE (2.1a)–
(2.1a) and the IEQ-DG (2.5a)–(2.5c) schemes and studying some properties of the tumor model (1.1a)–(1.1f) by
reproducing some results of the papers [3, 8].

Example 1. Circular tumor growth
We show the results we got with the two schemes for a initial small tumor (radius 0.1) located in the center of the
domain Ω = [−1, 1]2, considering, at the beginning, the extracellular water to be completely nutrient-rich, 𝑛0 = 1,
in Ω.
We take the parameters 𝜀 = 0.005, 𝛿 = 0.01, 𝑃0 = 0.1, 𝜒0 = 0.05, Γ = 0.045 y 𝛼 =

𝜒20
3Γ + 0.1 as in [3] so as to

reproduce its results. Likewise, we will take the mobility functions 𝑀𝑢 (𝑢) = 200𝑢2 and 𝑀𝑛 = 𝛿. In the case of the
IEQ-DG scheme we use 𝜎 = 15 and 𝐵 = 1.
A time step and a mesh size ℎ ≈ 0.04 are used together with polynomials of order 𝑘 = 2.
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Fig. 1 Example 1. Cells and nutrients at different time steps (Δ𝑡 = 5 · 10−2) with the Eyre-FE scheme (2.1).

Comparing Fig. 1 and Fig. 2, despite the qualitative behaviour of the schemes seem to be similar, the scheme
IEQ-DG is much more unstable in time and a significantly smaller time step is needed to control the spurious
oscillations over time. The time step used is Δ𝑡 = 0.05 for Eyre-FE and Δ𝑡 = 0.002 for IEQ-DG. This issue makes
it very difficult to reach the final time 𝑇 = 50 with the IEQ-DG scheme as it was easily done using the scheme
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Fig. 2 Example 1. Cells and nutrients at different time steps (Δ𝑡 = 2 · 10−3) with the IEQ-DG scheme (2.5).

Fig. 3 Example 1. Discrete energy with the Eyre-FE scheme (2.1) on the left and with the IEQ-DG scheme (2.5) on the right.

Eyre-FE. The unstability of these well-known and widely studied IEQ time-semidiscretization technique has been
spotted in several papers such as [5–7].
In both cases the mass is conserved and the energy decresases (Fig. 3). Notice that on the right of Fig. 3 we

can observe that both the natural and the modified energies differ only in the constant 𝐵 |Ω| = 4.

Example 2. Elliptic tumor with nutrient source growth
Now, we slightly modify the model as it was done in [3] in order to increase the interaction between the tumor and
the nutrients. To this aim, we guess that the diffusion of the nutrients is much faster than the growth of the tumor
cells so we consider the elliptic version of the 𝑛-equation, taking 𝜕𝑡𝑛 = 0. Moreover, we change ∇𝑛 · n = 0 to 𝑛 = 1
on 𝜕Ω.

𝜕𝑡𝑢 = 𝑀𝑢Δ𝜇𝑢 + 𝛿𝑃0𝑢+ (𝜇𝑛 − 𝜇𝑢) in Ω × (0, 𝑇), (2.7a)
𝜇𝑢 = 𝐹 ′(𝑢) − 𝜀2Δ𝑢 − 𝜒0𝑛 in Ω × (0, 𝑇), (2.7b)
0 = 𝑀𝑛Δ𝜇𝑛 − 𝛿𝑃0𝑢+ (𝜇𝑛 − 𝜇𝑢) in Ω × (0, 𝑇), (2.7c)

𝜇𝑛 =
1
𝛿
𝑛 − 𝜒0𝑢 in Ω × (0, 𝑇), (2.7d)

∇𝑢 · n = ∇𝜇𝑢 · n = 0 on 𝜕Ω × (0, 𝑇), (2.7e)
𝑛 = 1 on 𝜕Ω × (0, 𝑇), (2.7f)

𝑢(𝑥, 0) = 𝑢0, 𝑛(𝑥, 0) = 𝑛0 in Ω, (2.7g)

where 𝑢0, 𝑛0 ∈ 𝐿2 (Ω).
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Fig. 4 Example 2. Cells and nutrients of the variant (2.7) with the Eyre-FE scheme (2.1).

Fig. 5 Example 2. Mass and discrete energy of the variant (2.7) with the Eyre-FE scheme (2.1).

Consider the domain Ω = [0, 25.6]2. We take 𝑢0 = 1 in the region
{
(𝑥, 𝑦) ∈ R2 : (𝑥−12.8)21.7 + (𝑦−12.8)20.9 ≤ 1

}
and

𝑛0 = 1 in Ω.
We keep the same parameters than in the example 1 as it is done in [3]. We take Δ𝑡 = 8 · 10−2 and ℎ ≈ 0.36

with polynomials of order 𝑘 = 1.
The Eyre-FE scheme (2.1a)–(2.1c) is used to obtain the solution that is shown in Fig. 4. It is remarkable to

underline the evolution of shape of the tumor over time, forming buds towards the higher levels of nutrients as
in [3].
Nontheless, the solution escapes from the range [0, 1] which is due to the lack of maximum principle of the

model (1.1) and, consequently, of the Eyre-FE scheme (2.1a)–(2.1c). Moreover, some oscillations are produced
which may be due to the bad approximations of the cross-diffusion terms as 𝜒0 ≠ 0.
In this case, the energy and mass functions that we obtain with the modification of the model (2.7a)–(2.7g) are

shown in the Fig. 5. Now, the energy may not be dissipative in general and neither is tumor + nutrient conserved.

Example 3. Aggregation of circular tumors
We show a simulation of the aggregation process of three circular tumors as it was done in [8]. To this aim, we
consider the domain Ω = [−1, 1]2 and we guess that there are three tumors in the regions 𝐵((0.2, 0.2), 0.01),
𝐵((0.3,−0.5), 0.01) and 𝐵((−0.15,−0.15), 0.03) with the maximum concentration of nutrients in the extracellular
water 𝑛0 = 1.
This time we use the IEQ-DG scheme (2.5a)–(2.5c). We take the parameters 𝜀 = 0.02, 𝛿 = 0.01, 𝑃0 = 100,

𝜒0 = 0, Γ = 0.045 and 𝐵 = 1. We consider the constant mobility functions 𝑀𝑢 = 1 and 𝑀𝑛 = 𝛿. Moreover we use
polynomials of order 𝑘 = 1 with a penalization parameter 𝜎 = 4 and we take Δ𝑡 = 10−4 and ℎ ≈ 0.02.
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Fig. 6 Example 3. Cells and nutrients at different time steps with the IEQ-DG scheme (2.5).

Looking at the Fig. 6, the solution is not bounded in the interval [0, 1] and some remarkable oscillations are
produced as there is no maximum principle and we are not properly approximating the cross diffusion terms.
The mass is conserved and both the natural and the modified energies have the same decreasing behaviour (Fig.

7) differing only in the constant 𝐵 |Ω| = 4.

Fig. 7 Example 3. Discrete energy with the IEQ-DG scheme (2.5).
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Abstract

Optimization of the sixth-order explicit Runge-Kutta-Nyström method with six stages derived by El-Mikkawy
and Rahmo using the phase-fitted and amplification-fitted techniques with constant step-size is developed in this
paper. The new method integrates exactly the common test: 𝑦′′ = −𝑤2𝑦. The local truncation error of the new
method is computed, showing that the order of convergence is maintained. The stability analysis is addressed,
showing that the developed method has a periodicity interval. The numerical experiments demonstrate the high
performance of the proposed scheme compared to other existing RKN codes with six stages and same order.

1. Introduction
This paper aim to effectively solve the special second-order initial-value problem of the form

𝑦′′ = 𝑓 (𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0, 𝑦′(𝑥0) = 𝑦′0, (1.1)

assuming that their solutions are oscillatory, where 𝑦 ∈ <𝑑 and 𝑓 : <×<𝑑 →<𝑑 are sufficiently differentiable.
In recent and past years, the search of new numerical algorithms to effectively solve (1.1) has brought the attention
of many researchers due to the great role the problem played in so many areas of applied sciences. To solve (1.1)
directly, the class of Runge-Kutta-Nyström (RKN) methods has been largely used. Regarding the effective use of
these methods, some RKN methods of sixth-order with six stages have been developed in [6], [7], and [1]. A lot of
adapted RKN methods have been developed, which are of less algebraic-order than the constructed method in this
paper. To mention a few, we cite those in [2, 3, 9–11, 13]. Recently, Demba et al. [4, 5] derived two new explicit
RKN methods trigonometrically adapted for solving the kind of problems in (1.1).
This work aims at the development of a new phase- and amplification-fitted sixth order explicit RKN method with
six stages based on the sixth order method of the RKN6(4)6ER pair given in [1] for solving the problem in (1.1).
The derived method solves exactly the test equation 𝑦′′ = −𝑤2𝑦. The numerical experiments reveal the effectiveness
of the developed method compared to standard RKN codes of sixth order with six stages.
The remaining part of this paper is organized in this way: the basic theory of explicit RKN methods, the

definitions of phase-lag and amplification error, and the definitions regarding the stability analysis are addressed in
Section 2. Section 3 is devoted to the construction of the new code, to determine the order and error analysis, and
to bring some details about the periodicity interval of the derived code. Some numerical examples are presented in
Section 4, showing the good performance of the proposed scheme. Comments on the obtained results are given in
Section 5, and finally, Section 6 gives a conclusion.
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2. Fundamental Concepts
2.1. Explicit Runge-Kutta-Nyström Methods
An explicit RKN method with 𝑟 stages is generally expressed by the formulas:

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦′𝑛 + ℎ2
𝑟∑︁
𝑙=1

𝑏𝑙 𝑓 (𝑥𝑛 + 𝑐𝑙ℎ,𝑌𝑙), (2.1)

𝑦′𝑛+1 = 𝑦′𝑛 + ℎ
𝑟∑︁
𝑙=1

𝑑𝑙 𝑓 (𝑥𝑛 + 𝑐𝑙ℎ,𝑌𝑙), (2.2)

𝑌𝑙 = 𝑦𝑛 + 𝑐𝑙ℎ𝑦′𝑛 + ℎ2
𝑙−1∑︁
𝑗=1
𝑎𝑙 𝑗 𝑓 (𝑥𝑛 + 𝑐 𝑗ℎ,𝑌 𝑗 ), 𝑙 = 1, . . . , 𝑟, (2.3)

where as usual, 𝑦𝑛+1 and 𝑦′𝑛+1 denote approximations for 𝑦(𝑥𝑛+1) and 𝑦′(𝑥𝑛+1), respectively, and the grid points on
the integration interval [𝑥0, 𝑥𝑁 ] are given by 𝑥 𝑗 = 𝑥0 + 𝑗 ℎ, 𝑗 = 0, 1, . . . , 𝑁 , with ℎ a fixed step-size.
The above method may be formulated compactly using the Butcher array in the form

𝑐 𝐴

𝑏𝑇

𝑑𝑇

being 𝐴 = (𝑎𝑖 𝑗 )𝑟×𝑟 a matrix of coefficients, 𝑐 = (𝑐1, 𝑐2, . . . , 𝑐𝑟 )𝑇 is the vector of stages, and 𝑏 = (𝑏1, 𝑏2, . . . , 𝑏𝑟 )𝑇 ,
𝑑 = (𝑑1, 𝑑2, . . . , 𝑑𝑟 )𝑇 are two vectors containing the remaining coefficients of the method. For short, this can be
denoted as (𝑐, 𝐴, 𝑏, 𝑑).

Definition 1 ( [8]) An explicit Runge-Kutta-Nyströmmethod as given in equations (2)–(4) is said to have algebraic
order 𝑘 if at any grid point 𝑥𝑛+1 it holds{

𝑦𝑛+1 − 𝑦(𝑥𝑛 + ℎ) = 𝑂 (ℎ𝑘+1),
𝑦′𝑛+1 − 𝑦′(𝑥𝑛 + ℎ) = 𝑂 (ℎ𝑘+1).

(2.4)

2.2. Analysis of Phase-lag, amplification error and stability
Applying the RKN method in (2)–(4) to the test equation 𝑦′′ = −𝑤2𝑦, the phase-lag, amplification error and the
linear stability analysis are derived. In particular, letting ℎ̃ = −(𝑤ℎ)2, the approximate solution provided by (2)–(4)
verifies the recurrence equation:

𝐿𝑛+1 = 𝐸 ( ℎ̃)𝐿𝑛,
where

𝐿𝑛+1 =

[
𝑦𝑛+1

ℎ𝑦′𝑛+1

]
, 𝐿𝑛 =

[
𝑦𝑛

ℎ𝑦′𝑛

]
, 𝐸 ( ℎ̃) =

[
1 + ℎ̃𝑏𝑇 𝑁−1𝑒 𝑤ℎ(1 + ℎ̃𝑏𝑇 𝑁−1𝑐)
−𝑤ℎ𝑑𝑇 𝑁−1𝑒 1 + ℎ̃𝑑𝑇 𝑁−1𝑐

]
,

𝑁 = 𝐼 − ℎ̃𝐴, with 𝐼 the identity matrix of dimension six, 𝐴 =
(
𝑎𝑖 𝑗

)
6×6 , 𝑏, 𝑐, 𝑑 are the corresponding matrix and

vectors collecting the coefficients, and 𝑒 = [1, 1, 1, 1, 1, 1]𝑇 .
For enough small values of 𝜇 = 𝑤ℎ, it can be assumed that the matrix 𝐸 ( ℎ̃) possesses conjugate complex

eigenvalues [15]. Under this assumption, an oscillatory numerical solution should be provided by the method. The
oscillatory character depends on the eigenvalues of the stability matrix 𝐸 ( ℎ̃). The characteristic equation of this
matrix can be expressed as:

𝜆2 − 𝜆𝑇𝑟 (𝐸 ( ℎ̃)) + 𝐷𝑒𝑡 (𝐸 ( ℎ̃)) = 0. (2.4)

Theorem 2 ( [1]) If we apply to the common test equation 𝑦′′ = −𝑤2𝑦 the Runge-Kutta-Nyström scheme in (2)–(4),
we get the formula for calculating directly the phase-lag (or dispersion error) Ψ(𝜇) given by:

Ψ(𝜇) = 𝜇 − 𝑐𝑜𝑠−1
(

𝑇𝑟 (𝐸 ( ℎ̃))
2
√︁
𝐷𝑒𝑡 (𝐸 ( ℎ̃))

)
. (2.4)

If Ψ(𝜇) = 𝑂 (𝜇𝑙+1), then it is said that the method has a phase-lag of order 𝑙. For an explicit RKNmethod, 𝑇𝑟 (𝐸 ( ℎ̃)
and 𝐷𝑒𝑡 (𝐸 ( ℎ̃) are polynomials in 𝜇 (in case of an implicit RKN method these would be rational functions).
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Definition 3 An explicit Runge-Kutta-Nyström method as given in equations (2)–(4) is said to be phase-fitted, if
the phase-lag is zero.

Definition 4 ( [1]) For the Runge-Kutta-Nyström method given in equations (2)–(4), the value 𝛽(𝜇) = 1 −√︁
𝐷𝑒𝑡 (𝐸 ( ℎ̃) is known as the amplification error (or dissipative error). If 𝛽(𝜇) = 𝑂 (𝜇𝑠+1), then it is said that the

method has an amplification error of order 𝑠.

Definition 5 An explicit Runge-Kutta-Nyström method as given in equations (2)–(4) is said to be amplification-
fitted if the amplification-error is zero.

Definition 6 An interval (−ℎ̃𝑏 , 0), ℎ̃𝑏 ∈ < is named as the primary interval of periodicity of the method in (2)–(4),
if ℎ̃ is the highest value such that for all ℎ̃𝑏 ∈ (−ℎ̃𝑏 , 0), |𝜆1,2 | = 1 and 𝜆1 ≠ 𝜆2. Where 𝜆1,2 are the solutions of the
equation in (2.2).

3. Development of the new scheme
In this section, we will obtain a sixth order explicit phase- and amplification-fitted RKN scheme based on the
higher-order method in the RKN6(4)6ER embedded pair derived by El-Mikkawy and Rahmo in [7], which we
named as RKN6-6ER. The coefficients of the sixth order RKN method in [7] are shown in Table 1 with the correct
value of 𝑎54 as given in [1].

Tab. 1 The RKN6-6ER Method in [7]
0

1
77

1
11858

1
3 − 718917118

4070
8559

2
3

4007
2403 − 589655355644

25217
118548

13
15 − 4477057843750

13331783894
2357015625 − 2819965203125

563992
7078125

1 17265
2002 − 1886451746212088107

22401
31339

2964
127897

178125
5428423

− 341780 386683451
661053840

2853
11840

267
3020

9375
410176 0

− 341780 29774625727
50240091840

8559
23680

801
3020

140625
820352

847
18240

In order to get the new adapted scheme, we equate to zero the phase-lag Ψ(𝜇) and the amplification error 𝛽(𝜇),
and we get the system: {

Ψ(𝜇) = 0
𝛽(𝜇) = 0. (3.0)

We solve this system considering the coefficients in Table 1 except two of them which are taking as unknowns.
Specifically, we take 𝑏5 and 𝑑5 as unknowns. We obtain the following values:
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𝑏5 =
2503125
410176𝑀

(
− 1258632233707368303463680000000 + 524994684043706387148025080000 𝜇2

+38027832783293925493906168800 𝜇4 − 42305110040020986855472545000 𝜇6 + 6389496350903753079525017100 𝜇8

−396360945814751886526623990 𝜇10 + 12393674919826270714885995 𝜇12 − 163757382111950819488686 𝜇14

+443880244626070278520 𝜇16 − 3556135517458913619310080000 𝜇2 cos (𝜇)

+7969295957655526325216985600 𝜇6 cos (𝜇) − 125718020321097360886329600 𝜇8 cos (𝜇)

−74269315558590948580693708800 𝜇4 cos (𝜇) + 1258632233707368303463680000000 cos (𝜇)
)
,

(3.1)

𝑑5 =
625

820352𝑀

(
4882682690886773063720 𝜇20 − 1766435438191731348692196 𝜇18 + 142671286498878012015349560 𝜇16

−10126226143892166109616015370 𝜇14 + 475493904396311527376632326825 𝜇12

+54688197305084078277852710400 𝜇10 cos (𝜇) − 10391680199125544879555652445650 𝜇10

−10381900296589462467492329664000 𝑣8 cos (𝑣) + 113086760758089573241298829586500 𝜇8

+253690204049060105732403398400000 𝜇6 cos (𝜇) − 381721832459881021063776477195000 𝜇6

−1775893905546681693988359573660000 𝜇4 − 630550557973482187135177923840000 𝜇4 cos (𝜇)

+31997530415514051646287158745000000 𝜇2 − 672109612799734674049605120000000 𝜇2 cos (𝑣)

+75612331439970150830580576000000000 cos (𝜇) − 75612331439970150830580576000000000
)
, (3.2)

where

𝑀 = 𝜇2
(
− 28803310743425593080234375000000 + 4800551790570932180039062500000 𝜇2

+240986472782100847395103125000 𝜇4 − 211575854747321234593653037500 𝜇6

+27693379469414224574322792750 𝜇8 − 1543565245575968927989765335 𝜇10

+55158851048499641449369350 𝜇12 − 861578557170344748268248 𝜇14 + 2441341345443386531860 𝜇16
)
.
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The corresponding Taylor series expansions in powers of 𝜇 are given by

𝑏5 =
9375
410176

− 261461
93847723200

𝜇6 + 20361401
369525410100000

𝜇8 − 177044709462626977
8669779600607821080000000

𝜇10

+ 11347558575343312922557
887568686612225683065000000000

𝜇12 − 101477791160183648432238539
136685577738282755192010000000000000

𝜇14 + · · · ,

𝑑5 =
140625
820352

− 1
213290280

𝜇6 − 618923
739050820200

𝜇8 − 1251344791
93120403345200000

𝜇10

− 190297638076116325219
7396405721768547358875000000

𝜇12 + 3527694543209273924031679
994076929005692765032800000000000

𝜇14 + · · · . (3.3)

As expected, when 𝜇 → 0, the newly obtained coefficients 𝑏5, 𝑑5 become the coefficients of the counterpart
scheme in the original method. The new adapted RKN scheme will be named as PFAFRKN6-6ER.

3.1. Order of Convergence
This section is devoted to present the local truncation error of the proposed method and to get the order of
convergence. This is accomplished by using the usual tool of Taylor expansions. The local truncation errors (LTE)
at the point 𝑥𝑛+1 of the solution and the first derivative are given respectively by:

𝐿𝑇𝐸 = 𝑦𝑛+1 − 𝑦(𝑥𝑛 + ℎ),
𝐿𝑇𝐸𝑑𝑒𝑟 = 𝑦′𝑛+1 − 𝑦′(𝑥𝑛 + ℎ). (3.3)

Proposition 7 The corresponding LTEs of the formulas to provide the solution and the derivative with the new
RKN method are, respectively:

𝐿𝑇 𝐸 =
ℎ7

213290280
( 𝑓𝑦)2 ( 𝑓𝑥 + 𝑓𝑦𝑦′) +𝑂 (ℎ8) ,

𝐿𝑇 𝐸𝑑𝑒𝑟 =
ℎ7

5040
( 𝑓𝑥𝑥𝑥𝑥𝑥𝑥 + 15(𝑦′)4 𝑓𝑦𝑦𝑦𝑦𝑦′′ + 60(𝑦′)3 𝑓𝑥𝑦𝑦𝑦𝑦 𝑦′′ + 60𝑦′ 𝑓𝑥𝑥𝑥𝑦𝑦 𝑦′′ + 90(𝑦′)2 𝑓𝑥𝑥𝑦𝑦𝑦 𝑦′′ + 21 𝑓𝑦 𝑓𝑦𝑥𝑥 𝑦′′

+60𝑦′′ 𝑓𝑥𝑦𝑦 𝑓𝑥 + 15𝑦′′ 𝑓𝑦𝑦 𝑓𝑥𝑥 + 18(𝑦′′)2 𝑓𝑦𝑦 𝑓𝑦 + 90𝑦′ 𝑓𝑥𝑦𝑦𝑦 (𝑦′′)2 + 45(𝑦′)2 𝑓𝑦𝑦𝑦𝑦 (𝑦′′)2 + 33(𝑦′)2 ( 𝑓𝑦𝑦)2𝑦′′

+48𝑦′ 𝑓𝑥𝑦 𝑓𝑦𝑥𝑥 + 10 𝑓𝑦 𝑓𝑥𝑦 𝑓𝑥 + 12( 𝑓𝑦)2𝑦′ 𝑓𝑥𝑦 + 60𝑦′ 𝑓𝑥𝑥𝑦𝑦 𝑓𝑥 + 60(𝑦′)2 𝑓𝑥𝑦𝑦𝑦 𝑓𝑥 + 20(𝑦′)3 𝑓𝑦𝑦𝑦𝑦 𝑓𝑥

+24 𝑓𝑦𝑦′ 𝑓𝑥𝑥𝑥𝑦 + 30𝑦′ 𝑓𝑥𝑦𝑦 𝑓𝑥𝑥 + 15(𝑦′)2 𝑓𝑦𝑦𝑦 𝑓𝑥𝑥 + 6𝑦′ 𝑓𝑦𝑦 𝑓𝑥𝑥𝑥 + 78(𝑦′)2 𝑓𝑥𝑦𝑦 𝑓𝑥𝑦 + 66(𝑦′)2 𝑓𝑦 𝑓𝑥𝑥𝑦𝑦

+33(𝑦′)2 𝑓𝑦𝑦 𝑓𝑦𝑥𝑥 + 64(𝑦′)3 𝑓𝑦 𝑓𝑥𝑦𝑦𝑦 + 36(𝑦′)3 𝑓𝑦𝑦𝑦 𝑓𝑥𝑦 + 48(𝑦′)3 𝑓𝑦𝑦 𝑓𝑥𝑦𝑦 + 21( 𝑓𝑦)2 (𝑦′)2 𝑓𝑦𝑦

+21(𝑦′)4 𝑓𝑦 𝑓𝑦𝑦𝑦𝑦 + 21(𝑦′)4 𝑓𝑦𝑦𝑦 𝑓𝑦𝑦 + 15(𝑦′′)3 𝑓𝑦𝑦𝑦 + 45(𝑦′′)2 𝑓𝑥𝑥𝑦𝑦 + 15𝑦′′ 𝑓𝑥𝑥𝑥𝑥𝑦 + 18𝑦′′ ( 𝑓𝑥𝑦)2

+( 𝑓𝑦)3𝑦′′ + (𝑦′)6 𝑓𝑦𝑦𝑦𝑦𝑦𝑦 + 6(𝑦′)5 𝑓𝑥𝑦𝑦𝑦𝑦𝑦 + ( 𝑓𝑦)2 𝑓𝑥𝑥 + 6 𝑓𝑥𝑥𝑥 𝑓𝑥𝑦 + 𝑓𝑦 𝑓𝑥𝑥𝑥𝑥 + 20 𝑓𝑥 𝑓𝑥𝑥𝑥𝑦

+6𝑦′ 𝑓𝑥𝑥𝑥𝑥𝑥𝑦 + 15 𝑓𝑦𝑥𝑥 𝑓𝑥𝑥 + 15(𝑦′)4 𝑓𝑥𝑥𝑦𝑦𝑦𝑦 + 15(𝑦′)2 𝑓𝑥𝑥𝑥𝑥𝑦𝑦 + 20(𝑦′)3 𝑓𝑥𝑥𝑥𝑦𝑦𝑦 + 10 𝑓𝑦𝑦 ( 𝑓𝑥 )2

+81(𝑦′)2 𝑓𝑦𝑦𝑦 𝑓𝑦𝑦′′ + 60𝑦′ 𝑓𝑦𝑦𝑦 𝑓𝑥 𝑦′′ + 102𝑦′ 𝑓𝑦 𝑓𝑥𝑦𝑦 𝑦′′ + 66𝑦′ 𝑓𝑦𝑦 𝑓𝑥𝑦𝑦′′ + 30𝑦′ 𝑓𝑦𝑦 𝑓𝑦 𝑓𝑥 ) +𝑂 (ℎ8) , (3.4)

from which we can infer that the PFAFRKN6-6ER method has order six.

3.2. Periodicity interval of the new method
Using the Maple package, from the definition in (6), the following result can be readily obtained.

Proposition 8 The newly derived method, PFAFRKN6-6ER, has (−39.11, 0) as the primary interval of periodicity.
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4. Some Numerical Examples
To assess the performance of the new scheme, we have considered the following RKN codes of the same order and
stages to get fair comparisons:

• PFAFRKN6-6ER: The constructed adapted RKN code developed here,

• RKN6-6ER: An explicit sixth-order six stage RKN method presented in [7],

• RKN6-6ER-PFAF: An optimized explicit sixth-order six stage RKN method derived by Anastassi and Kosti
in [1],

• RKN6-6FM: An explicit sixth-order six stage RKN method developed by Dormand et al. in [6].

We will consider different oscillatory problems appeared in the literature to test the performance of the above
methods:

Problem. (Non-linear System in [14])

𝑦′′1 + 𝑤2𝑦1 =
2𝑦1𝑦2 − sin(2𝑤𝑥)
(𝑦12 + 𝑦22) 32

, 𝑦1 (0) = 1, 𝑦′1 (0) = 0,

𝑦′′2 + 𝑤2𝑦2 =
𝑦1
2 − 𝑦22 − sin(2𝑤𝑥)
(𝑦12 + 𝑦22) 32

, 𝑦2 (0) = 0, 𝑦′2 (0) = 𝑤, 𝑥 ∈ [0, 4000],

with exact solution given by

𝑦1 (𝑥) = cos(𝑤𝑥), 𝑦2 (𝑥) = sin(𝑤𝑥).
To use the adapted methods we have taken the parameter value 𝑤 = 5.

To tests the accuracy of the considered methods we have taken the integration interval [𝑥0, 𝑥𝑁 ] = [0, 𝑇], with
step-length, ℎ = 𝑥𝑁−𝑥0

𝑁 = 𝑇
𝑁 , where the end point takes different values, 𝑇 = 100, 1000, 4000.

The numerical data is given in Tables 2, considering different step-sizes ℎ. The tables contain the maximum
absolute errors

𝑀𝑎𝑥 𝐴𝑏𝑠 𝐸𝑟𝑟 = max
𝑛=1,2,...,𝑁

| |𝑦(𝑥𝑛) − 𝑦𝑛 | |.

Tab. 2 Numerical data corresponding to Problem

h Methods T = 100 T = 1000 T = 4000
PFAFRKN6-6ER 3.802533(-10) 2.155096(-9) 9.277232(-9)

0.05 RKN6-6ER 4.282131(-8) 1.632977(-7) 1.632977(-7)
RKN6-6ER-PFAF 1.899990(-8) 7.334019(-8) 7.667858(-8)
RKN6-6FM 1.953175(-7) 7.542634(-7) 7.542634(-7)
PFAFRKN6-6ER 9.475666(-9) 3.697725(-8) 3.697725(-8)

0.075 RKN6-6ER 7.249395(-7) 2.799656(-6) 2.804762(-6)
RKN6-6ER-PFAF 1.214422(-5) 4.709903(-5) 4.713322(-5)
RKN6-6FM 2.236286(-6) 8.631087(-6) 8.634346(-6)
PFAFRKN6-6ER 9.349917(-8) 3.600327(-7) 3.600327(-7)

0.1 RKN6-6ER 5.491464(-6) 2.106615(-5) 2.106615(-5)
RKN6-6ER-PFAF 1.223785(-3) 4.727541(-3) 4.727541(-3)
RKN6-6FM 1.261951(-5) 4.880468(-5) 4.881228(-5)
PFAFRKN6-6ER 5.305980(-7) 2.048570(-6) 2.048570(-6)

0.125 RKN6-6ER 2.598789(-5) 1.008581(-4) 1.008581(-4)
RKN6-6ER-PFAF 4.319413(-2) 2.315899(-1) 2.324977(-1)
RKN6-6FM 4.804257(-5) 1.875787(-4) 1.876650(-4)

In order to show even more the efficiency of the developed PFAFRKN6-6ER code, we present the efficiency
curve for the considered problem for 𝑇 = 100. In Figure 1 the logarithm of the maximum absolute global error
versus the logarithm of the total number of function evaluations have been plotted. It can be observed the good
behavior of the new code.
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Fig. 1 Efficiency curves corresponding to the Problem

To further demonstrate the efficiency of the constructed PFAFRKN6-6ER code, we present in Figures 2 the
logarithms of the maximum absolute global errors versus the CPU time used. It can be observed the good behavior
of the new code.
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5. Discussion
The new PFAFRKN6-6ER code gives minimum error norm, minimum number of function evaluation per steps,
and minimum computational cost (Time(s)). Table 2 and Figures 1 − 2 put an evidence that PFAFRKN6-6ER is
a very efficient scheme. Therefore, we can say that PFAFRKN6-6ER is more appropriate for solving the type of
problem in (1.1) than the other existing RKN methods of order 6 with six stages in the literature.

6. Conclusion
In this study, we have used the methodology for constructing the phase-fitted and amplification-fitted methods to
develop an efficient new explicit phase- and amplification-fitted RKN code based on the RKN6-6ER method due to
El-Mikkawy and Rahmo [7]. The new developed method has two variable coefficients depending on the parameter
𝜇 = 𝑤ℎ, which is usually known as the parameter frequency [12, 16]. We computed the local truncation error
of the new method, confirming that the order of convergence of the underlying code is maintained. In addition,
the periodicity interval of the new code has been obtained. The obtained numerical results clearly show that
PFAFRKN6-6ER is more accurate and efficient than other sixth-order six-stage RKN codes in the literature.
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Abstract

In this article, wewould like to transmit the origins and the importance of the propagation of smallness property,
delving into its origins and analyzing its utility in parabolic controllability problems. Generally speaking, the
propagation of smallness property analyzes and tries to quantify the rate of growth of a function in one domain
knowing its values in two other domains related to the first one. We will mention the first historical ideas and
results related to this property (harmonic measure, two-constants theorem, Hadamard three-circles theorem),
and, then, we will see how we have applied them in order to solve parabolic evolutions’ interior and boundary
controllability problems.

1. Introduction
In this presentation, we want to introduce the readers to the propagation of smallness property and some of its
utilities. To achieve this purpose, we will try to show what the propagation of smallness property is, where it comes
from, why it has been useful, and see some of its utilities in controllability problems.
We have divided our presentation into two parts. In the first part, entitled “History of propagation of smallness

property”, in section 2, we will define the harmonic measure (which could be thought of as one of the origins of
the propagation of smallness property), review the origins of our property and sketch out the main results where
it started to be analyzed: the two-constant theorem and the Hadamard three-circles theorem. In the second part,
entitled “Some applications of the propagation of smallness property”, in section 3, we will see the applications of
the propagation of smallness property: the extension of the Hadamard three-circles theorem to higher dimensions
and other domains, and the application to some specific controllability problems of parabolic evolution equations.
First of all, in order to start with our research and to give the reader an idea of the mathematical concept we

are going to talk about, we will give a general definition of what the propagation of smallness property is. The
inequality that we can see in the next definition shows what the results of propagation of smallness usually look
like, but, as we will see throughout our article, it can have different variations.

Definition 1.1 (Propagation of smallness) Given three subsets of R𝑛, 𝐸 , 𝐵1 and 𝐵2, verifying 𝐸 ⊂ 𝐵1 ⊂ 𝐵2 and
a class of functions A ⊂ C(𝐵2), we say that 𝐸 is a propagation of smallness set for A if, for any 𝑢 ∈ A, there
exists 𝛼 = 𝛼(𝐸, 𝐵1, 𝐵2) ∈ (0, 1) such that

| |𝑢 | |∞,𝐵1 ≤ ||𝑢 | |𝛼∞,𝐸 | |𝑢 | |1−𝛼∞,𝐵2 . (1.1)

Inequality (1.1) assures that, having some general boundedness conditions for a function on the smaller and
bigger domains, we can establish estimates for the function on the intermediate domain. The name of this property,
as we can predict from the above inequality, could come from the fact that the “information of the function” on the
smaller domain is propagating or affecting over bigger domains in some sense.
There are some references that sometimes allude to this concept as “rate of growth result” or “quantification of

the propagation of smallness” too.

2. History of the propagation of smallness property
We will start with the first part of our study by analyzing where the propagation of smallness property comes from.
Looking back at the history of different areas of mathematics, we can appreciate that one of the concepts that started
involving the analysis of the rate of growth of functions was the harmonic measure. Therefore, we will start by
defining this measure and giving the historical context in which it was developed.
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2.1. Harmonic measure
In this section, we will introduce the concept of harmonic measure and its importance for our main topic, the
propagation of smallness property. The harmonic measure is a concept that can be considered or defined inside the
theory of harmonic functions. But the harmonic measure is very useful in other areas, and it can also be defined
using partial differential equations (using an integral that is a solution to the Dirichlet problem) or probabilistic
theory (defining it as a boundary hitting distribution of Brownian motion). For the former, we can learn more about
it in [3]; and, for the latter, we can look at these Shizuo Kakutani’s references, [15] and [16].
If we locate the harmonic measure inside the theory of harmonic functions, we can say that it is connected to

estimating the modulus of an analytic function inside a domain given certain bounds on the modulus of the function
on the boundary of the domain. This is mainly what the propagation of smallness property pursues and the main
reason why the harmonic measure is found in the origins of this property.
If we have to find when and how the harmonic measure was defined for the first time, although as in a lot of

areas of mathematics this could be difficult to specify, in many references we look into, it seems that all of them
point to Rolf Nevanlinna in the 1920s, see for example [29], [30] and [31]. In Nevanlinna’s Eindeutige Analytische
Funktionen book, [30], mainly in chapters I, II and III’s section §1, we can follow the ideas and details of how he
worked on and built the harmonic measure that we know nowadays. In this book, Nevanlinna starts by defining the
arcs in the unit circle and analyzing conformal mappings. Then, he defines the harmonic measure and studies its
properties in the same circle to later extend the same idea to any bounded region on the plane. He also established
the principles or properties that the harmonic measure verifies.
Although it was R. Nevanlinna who gave the name to the harmonic measure, we can see in [25], that, some years

earlier, Torsten Carleman and Henri Milloux started to use it trying to measure the growth of analytic functions or,
in some sense, studying the propagation of smallness property.
In the following paragraphs, we will introduce the harmonic measure giving the definition and some of its main

properties using the area of complex analysis or harmonic functions.
First of all, we will recall three definitions that we will use soon.

Definition 2.1 (Jordan curve) We say that a plane curve is a Jordan curve if it is simple and closed or if it is a
homeomorphic image of the unit circle.

Definition 2.2 (Jordan domain) A Jordan domain is a domain in a plane bounded by a Jordan curve or a finite
number of Jordan curves.

Definition 2.3 Let Ω and Ω′ be two open subsets of C. If 𝑓 : Ω → Ω′ is one-to-one, and 𝑓 and 𝑓 −1 are
holomorphic, then, we say that 𝑓 is a conformal mapping from Ω to Ω′.

Let us now give the exact definition of the harmonic measure that we will use in the next section, 2.2.

Definition 2.4 (Harmonic measure) Let 𝐷 ⊂ C be a domain bounded by a finite number of Jordan curves, Γ. Let
Γ = 𝛼 ∪ 𝛽, 𝐼𝑛𝑡 (𝛼) ∩ 𝐼𝑛𝑡 (𝛽) = ∅, where 𝛼 and 𝛽 are finite sets of Jordan curves. We call the harmonic measure of
𝛼 with respect to 𝐷 and evaluated at the point 𝑧, to the harmonic function with boundary limit 1 at points of 𝛼 and
boundary limit 0 at points of 𝛽. It is expressed as 𝜔(𝑧, 𝛼;𝐷) and verifies

lim
𝑧→𝛼𝜔(𝑧, 𝛼;𝐷) = 1 and lim

𝑧→𝛽
𝜔(𝑧, 𝛼;𝐷) = 0.

The fact that 𝜔(𝑧, 𝛼;𝐷) is a harmonic function is the reason why this measure is called harmonic measure. The
existence of the harmonic measure can be proved using the theory and results from/of [1], [7] and [32]. Whereas,
the uniqueness of the harmonic function can be proved using the maximum modulus principle and the Lindelöf
theorem that can be found in [24].

2.2. The origins of the propagation of smallness property
As we mentioned in the above section, although maybe other mathematicians in other moments were trying to
research this property of propagation of smallness, it seems that the topic began to solidify when R. Nevanlinna
started with his works on the harmonic measure in the 1920s. Nevertheless, we can also see in T. Carleman’s works,
for example in [8], that he was pursuing that idea too, trying to study properties of the harmonic measure and
finding bounds for it. This fact is very significant because of the big influence that the later developed Carleman
inequalities have had on many branches of mathematics where partial differential equations are involved. Actually,
these inequalities are very commonly used, for example, in the control theory of partial differential equations.
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We can see in [30, chapter IV, section § 2] the principle of monotoneity for the harmonic measure that Carleman
proved. The method he used to prove it provides a means to estimate the harmonic measure from above and below.
The authors Alexander Ostrowski and Stefan Emanuel Warschawski also employed the results and method used by
Carleman, see [33] and [37].
There is another mathematician that was behind the beginnings of the propagation of smallness property, H.

Milloux (for example, see [26]). In [30], we can also find the Carleman-Milloux problems that are related to the
study of the harmonic measure and its boundedness.
Now, we will see and comment on the main results we know are involved in the origins of the propagation of

smallness property.
We have rebuilt the next theorem a bit looking at [14] and [30] (chapter III, section §2), to deduce this version

of the two-constants theorem.

Theorem 2.5 (Two-constants theorem) Suppose that 𝑓 is a bounded analytic function in a Jordan domainΩ such
that | 𝑓 (𝑧) | ≤ 𝑀 in Ω and lim

𝑧→𝜁
sup | 𝑓 (𝑧) | ≤ 𝑚 < 𝑀 when 𝑧 ∈ Ω and 𝜁 ∈ 𝐸 ⊂ 𝜕Ω. Then, for any 𝑧 ∈ Ω,

log | 𝑓 (𝑧) | ≤ 𝜔(𝑧, 𝐸 ;Ω) log𝑚 + (1 − 𝜔(𝑧, 𝐸 ;Ω)) log𝑀, (2.1)

or similarly,
| 𝑓 (𝑧) | ≤ 𝑚𝜔 (𝑧,𝐸 ;Ω)𝑀1−𝜔 (𝑧,𝐸 ;Ω) . (2.2)

Remark 2.6 In the previous theorem, it’s the second inequality, (2.2), which mostly appears in the literature.

There are more versions of the two-constants theorem, for example, L. Ahlfors and S. G. Krantz, in the books
Complex Analysis and Geometric Funtcion Theory: Explorations in Complex Analysis, respectively, [1] and [18],
present a comparison tool for the harmonic measure called the majorization principle. Then, they prove the
two-constants theorem using this principle.
We can also observe in [14] that the two-constants theorem can also be seen as a particular case of a n-constants

theorem.
Moving forward with the history of the propagation of smallness, we will introduce the Hadamard three-circles

theorem. Before we set forth the theorem, we will remember who discovered it. Jacques Hadamard published this
result without a proof in 1896 in Sur les Fonctions Entières, [13]. Then, in 1935, it seems that he presented a proof
in Selecta: Jubilé Scientifique de M. Jacques Hadamard, [12], but, meanwhile, other proofs were given in [5], [9]
and [10].
The next version of this classic theorem has been obtained from [14].

Theorem 2.7 (Hadamard three-circles theorem) Let 𝑓 (𝑧) be an analytic function in |𝑧 | < 𝑅 and𝑀 (𝑟) = max
𝜃
| 𝑓 (𝑟

𝑒𝑖 𝜃 ) |. If 0 < 𝑟1 ≤ 𝑟 ≤ 𝑟2 < 𝑅, then,

log𝑀 (𝑟) ≤ log 𝑟2 − log 𝑟
log 𝑟2 − log 𝑟1 log𝑀 (𝑟1) +

log 𝑟 − log 𝑟1
log 𝑟2 − log 𝑟1 log𝑀 (𝑟2).

Remark 2.8 The constant log 𝑟2−log 𝑟log 𝑟2−log 𝑟1 is sometimes called the Hadamard exponent and is denoted by 𝛽𝐻
(
𝑟1
𝑟2
, 𝑟𝑟2

)
,

see for example [17].

Seeing what the theorem assures, we can realize where its name comes from. The result compares the logarithm
of the modulus of a function in three circles of radii 𝑟1, 𝑟2 and 𝑟 .
There is also a characterization of theHadamard three-circles theoremusing the logarithmically convex property:

𝑀 (𝑟) is a logarithmically convex function with respect to the variable log 𝑟 .

3. Some applications of the propagation of smallness property
With this second part of our presentation, we would like to show the readers how the original ideas for the
propagation of smallness property have been broadened to different results in higher dimensions and see one of the
applications for parabolic evolution equations to controllability problems.
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3.1. Three-spheres and three-regions theorems for complex-valued harmonic functions
In this section, we will see three propagation of smallness property results extended to higher dimensions. The
different three-spheres type theorems have become very useful and common inmany areas of mathematical analysis.
If we have to go back to the origins of the purpose of mathematicians to extend the Hadamard three-circles

propagation of smallness result to higher dimensions, one of the mathematicians we will find is Evgenii Landis. He
proved a three-spheres theorem for harmonic functions in R𝑛 and also a more general one for solutions of second
order elliptic equations. He published them in 1963 in Some Problems of the Qualitative Theory of Second Order
Elliptic Equation, [20].
There are other mathematicians that could be the forefathers of the expansion of the three-spheres theorem

to higher dimensions and to other equations: Nicola Garofalo and Fang-Hua Lin, Jacob Korevaar and Jan L. H.
Meyers, Raymond Brummelhuis or Igor Kukavica (see [11], [17], [6] and [19]).
We have chosen J. Korevaar’s and J. L. H. Meyers’ results to comment about here because of their similarity

to the Hadamard three-circles theorem we have presented in section 2.2. Another reason why we have also chosen
their results, is because we have used analogous techniques to theirs to prove the null controllability problems we
will see later (theorems 3.7 and 3.8).
In 1994, J. Korevaar and J. L. H. Meyers published the article Logarithmic Convexity for Supremum Norms of

Harmonic Functions, [17], where they mainly proved that the 𝐿2-version of the three-spheres theorem was valid for
harmonic functions in R𝑛 with the same coefficients as the logarithm terms that appear in the Hadamard theorem.
We will see below the two main theorems J. Korevaar and J. L. H. Meyers proved in [17].
Wewill begin with the first theorem J. Korevaar and J. L. H.Meyers proved in [17], they named it the “three-balls

theorem”.

Theorem 3.1 (Three-balls theorem) Suppose 0 < 𝜌 < 𝑟 < 𝑅 and 𝑛 ≥ 2. Then, there exists a constant 𝛼 ∈ (0, 1),
depending only on 𝜌/𝑅, 𝑟/𝑅 and 𝑛, such that for all complex-valued harmonic functions 𝑢 on the ball 𝐵(0, 𝑅) in
R𝑛,

| |𝑢 | |𝑟 ≤ ||𝑢 | |𝛼𝜌 | |𝑢 | |1−𝛼𝑅 ,

where | |𝑢 | |𝑡 = sup |𝑢(𝑥) | on the ball 𝐵(0, 𝑡).
The similarity of this theorem to the Hadamard three-circle theorem is clear. Indeed, in the article [17], they

specifically mention Hadamard’s theorem as a special case of this.
We will briefly sketch out how J. Korevaar and J. L. H. Meyers proved the three-balls theorem:

• If 𝑢 is harmonic on the closed ball 𝐵(0, 𝑅) in R𝑛, then, it can be expressed by the Poisson integral.
• A harmonic function 𝑢(𝑥) can also be represented by Laplace series, an orthogonal decomposition using
spherical harmonics (see [35] for more details).

• Using Hadamard three-circles theorem and the Laplace series for 𝑢(𝑥), it can be proved that log | |𝑢 | |𝑟 ,2 is a
convex function of log 𝑟 .

• The maximum principle for harmonic functions gives us a corresponding arithmetic inequality for the sup or
uniform norm | |𝑢 | |𝑟 on spheres 𝑆(0, 𝑟).

• Change scale in the theorem, 𝑅 = 1 so that 0 < 𝜌 < 𝑟 < 1.

• We may assume that 𝑢 is bounded and that | |𝑢 | |1 = sup
𝐵
|𝑢 | = 1, because if 𝑢 is not bounded on 𝐵 = 𝐵(0, 1)

or if 𝑢 ≡ 0, there is nothing to prove.
• Setting 𝑢𝜏 (𝑥) = 𝑢(𝜏𝑥) with 𝜏 → 1, we have that 𝑢(𝑥) = lim 𝑢𝜏 (𝑥) on 𝐵, uniformly on compact subsets.
Thus, | |𝑢𝜏 | |𝑠 → ||𝑢 | |𝑠 if 𝑠 < 1 while | |𝑢𝜏 | |1 = | |𝑢 | |𝜏 ≤ ||𝑢 | |1. Hence, it is enough to prove the three-balls
theorem for functions (such as 𝑢𝜏) which are harmonic on the closed unit ball.

• Assuming some nomralization conditions and setting

𝑚(𝜖) = 𝑚(𝜖, 𝜌, 𝑟, 𝑛) 𝑑𝑒 𝑓= sup
𝑢∈𝐻𝜖

| |𝑢 | |𝑟 = sup
𝑢∈𝐻𝜖

𝑢(𝑟𝑒1),

it follows from the preceding that the three-balls theorem is equivalent to the next proposition.

Proposition 3.2 There is a constant 𝛼 ∈ (0, 1) (depending on 𝜌, 𝑟 and 𝑛) such that

𝑚(𝜖) ≤ 𝜖 𝛼, 0 < 𝜖 ≤ 1. (3.1)
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Remark 3.3 Some authors have obtained three-balls type theoremswith an additional constant𝐶 = 𝐶 (𝜌/𝑅, 𝑟/𝑅, 𝑛),

| |𝑢 | |𝑟 ≤ 𝐶 | |𝑢 | |𝛼𝜌 | |𝑢 | |1−𝛼𝑅 . (3.2)

The first author that proved this kind of inequality could have been E. M. Landis in [21], 1963. He actually
proved an inequality (3.2) for solutions of second order linear elliptic partial differential equations. In 1995, R.
Brummelhuis, [6], removed the constant 𝐶 in (3.2) for the partial differential equations case. On the other hand, E.
D. Solomentsev obtained a three-spheres theorem for harmonic functions in which the right-hand side of inequality
(3.2) also involved the normal derivative of 𝑢. This was in 1966, [34].

There is an extension of the three-balls theorem, the three-regions theorem. It was proved by Errett Albert
Bishop, [4], in 1963 using the standard covering argument.

Theorem 3.4 (Three-regions theorem) Let Ω be a connected domain in R𝑛, 𝑛 ≥ 2, Ω0 ⊂ Ω a nonempty open
subset and 𝐸 ⊂ Ω a compact subset (which may be just a point). Then, there is a constant 𝛼 ∈ (0, 1] depending
only on 𝐸 , Ω0 and Ω such that for all complex-valued harmonic functions 𝑢 on Ω,

sup
𝐸
|𝑢 | ≤ (sup

Ω0
|𝑢 |)𝛼 (sup

Ω
|𝑢 |)1−𝛼 .

Now, we will see the second theorem J. Korevaar and J. L. H. Meyers proved in [17], a propagation of smallness
property for arbitrary harmonic functions in R𝑛 with 𝑛 ≥ 2. We can observe that the sets where they applied the
propagation of smallness property are not concentric.

Theorem 3.5 Let Ω be a domain in R𝑛, Ω0 ⊂ Ω a nonempty subdomain and 𝐸 ⊂ Ω a nonempty compact subset.
Then, there is a constant 𝛼 = 𝛼(𝐸,Ω0,Ω) ∈ (0, 1] such that for all complex-valued harmonic functions 𝑢 on Ω,

| |𝑢 | |𝐸 ≤ ||𝑢 | |𝛼Ω0 | |𝑢 | |1−𝛼Ω ,

where | |𝑢 | |𝐴 = sup
𝑥∈𝐴
|𝑢(𝑥) |.

Proof Let Ω, Ω0 and 𝐸 be subsets of R𝑛 as in theorem 3.5 and let 𝑢 be harmonic on Ω. As we want to obtain a
constant 𝛼 ∈ (0, 1), we may assume that 𝑢 is bounded and that | |𝑢 | |Ω ≤ 1. We can also assume that Ω is not all of
R𝑛. Otherwise, 𝑢 would be a constant and there would be nothing to prove.
We will now enclose the compact set 𝐸 in a finite union Ω𝑝 = Ω0 ∪ 𝐵1 ∪ . . . ∪ 𝐵𝑝 , where 𝐵1 ⊂ Ω is a ball with

center in Ω0 and, in general, 𝐵𝑘 (𝐵𝑘 ⊂ Ω) is a ball with center in Ω𝑘−1 = Ω0 ∪ 𝐵1 ∪ . . . ∪ 𝐵𝑘−1. In order to explain
the idea of the proof, we will analyze the case of 𝐵1 and Ω = Ω0 ∪ 𝐵1. Let 𝑉1 and𝑊1 be balls concentric with 𝐵1
such that 𝑉1 is maximal in Ω0 and 𝑊1 is maximal in Ω. Then, by the three-balls theorem, theorem 3.1, there is a
constant 𝛼1 ∈ (0, 1), depending only on the radii of 𝐵1, 𝑉1 and𝑊1 and on 𝑛, such that

| |𝑢 | |𝐵1 ≤ ||𝑢 | |𝛼1𝑉1 | |𝑢 | |
1−𝛼1
𝑊1
≤ ||𝑢 | |𝛼1Ω0 .

Since | |𝑢 | |Ω0 ≤ 1, we have also that | |𝑢 | |Ω0 ≤ ||𝑢 | |𝛼1Ω0 , and therefore, | |𝑢 | |Ω1 ≤ ||𝑢 | |
𝛼1
Ω0
. In the next step, we can

similarly prove that
| |𝑢 | |Ω2 ≤ ||𝑢 | |𝛼2Ω1 ≤ ||𝑢 | |

𝛼1𝛼2
Ω0

.

Thus, following the same process, we can obtain

| |𝑢 | |𝐸 ≤ ||𝑢 | |Ω𝑝 ≤ ||𝑢 | |𝛼1...𝛼𝑝Ω0
,

where 𝛼𝑘 ∈ (0, 1) are constants depending only on the geometry. Now, putting things together, we have obtained
what we wanted to prove,

| |𝑢 | |𝐸 ≤ ||𝑢 | |𝛼Ω0 | |𝑢 | |1−𝛼Ω .

�

We have given the above proof in order to show the covering by balls’ argument in a simple way, which is the
argument they use in the proof of the above theorem.

Remark 3.6 We can observe that, depending on the topic or area they are going to be used in, the hypothesis of
three-balls or three-spheres type theorems can change (especially the equation that the function 𝑢 verifies or the
type of the domain we will apply the propagation of smallness to).
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3.2. Applications to controllability problems
In this section, we will see one of the propagation of smallness property’s utilities in parabolic evolutions’ interior
and boundary controllability problems. Following similar results and tools as we have seen in the previous sections,
in the article Null-Control and Measurable Sets, [2], we showed that there are some propagation of smallness
properties (two-constants or three-spheres type inequalities) that can drive us to prove the null controllability
problems we will present soon for the interior case (theorem 3.7) and for the boundary case (theorem 3.8) of a
domain.
The null-controllability problems we present below, are for some time-independent parabolic evolutions with

controls acting over measurable sets D = 𝜔 × [0, 𝑇] and J = 𝛾 × [0, 𝑇] with positive measure.
Here, we focus on the heat equation over a smooth and bounded domain Ω in R𝑛 and for a time interval (0, 𝑇),

for a distributed control 𝑓 in the interior case, or for a boundary control ℎ in the boundary case. We set forth the
null-controllability for the problems



4𝑢 − 𝜕𝑡𝑢 = 𝑓 (𝑥, 𝑡)𝜒𝜔 (𝑥), in Ω × (0, 𝑇),
𝑢 = 0, on 𝜕Ω × [0, 𝑇],
𝑢(0) = 𝑢0, in Ω,

(3.3)

and 

4𝑢 − 𝜕𝑡𝑢 = 0, in Ω × (0, 𝑇),
𝑢 = ℎ(𝑥, 𝑡)𝜒𝛾 (𝑥), on 𝜕Ω × [0, 𝑇],
𝑢(0) = 𝑢0, in Ω,

(3.4)

where 𝜔 ⊂ Ω is an interior control region and 𝛾 ⊂ 𝜕Ω is a boundary control region. In the next theorems, we
give a formal account of the null controllability when the control regions 𝜔 and 𝛾 are measurable sets with positive
measure.

Theorem 3.7 Let 𝑛 ≥ 2. Then, 4− 𝜕𝑡 is null-controllable at all positive times with distributed controls acting over
a measurable set 𝜔 ⊂ Ω with positive Lebesgue measure when

4 = ∇ · (A(𝑥)∇ · ) +𝑉 (𝑥),

is a self-adjoint elliptic operator, the coefficients matrix A is smooth in Ω, 𝑉 is bounded in Ω and both are
real-analytic in an open neighborhood of 𝜔. The same holds when 𝑛 = 1,

4 =
1
𝜌(𝑥) [𝜕𝑥 (𝑎(𝑥)𝜕𝑥 ) + 𝑏(𝑥)𝜕𝑥 + 𝑐(𝑥)]

and 𝑎, 𝑏, 𝑐 and 𝜌 are measurable functions in Ω = (0, 1).

Theorem 3.8 Let 𝑛 ≥ 2. Then, 4 − 𝜕𝑡 is null-controllable at all times 𝑇 > 0 with boundary controls acting over a
measurable set 𝛾 ⊂ 𝜕Ω with positive surface measure when

4 = ∇ · (A(𝑥)∇ · ) +𝑉 (𝑥)

is a self-adjoint elliptic operator, the coefficients matrix A is smooth in Ω, 𝑉 is bounded in Ω and A, 𝑉 and 𝜕Ω are
real-analytic in an open neighborhood of 𝛾 in Ω.

The results in theorems 3.7 and 3.8 follow from:

• A straightforward application of the linear construction of the control function for the systems (3.3) and (3.4)
developed in [22] by Gilles Lebeau and Luc Robbiano.

• For theorem 3.7, a finite number of applications of the following (theorem 3.9) propagation of smallness
estimate from measurable sets established in [36] by Sergio Vessella (see also [27] and [28] for other close
results).

• A suitable covering argument for the domain Ω (in theorem 3.7) and 𝜕Ω (in theorem 3.8).

• For theorem 3.8, a successive iteration of a finite number of applications of the three-spheres type inequalities
associated with the obvious extension of theorem 3.9 for real analytic functions defined over real analytic
hypersurfaces in R𝑛+1
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Theorem 3.9 Assume that 𝑓 : 𝐵2𝑅 ⊂ R𝑛 −→ R is a real-analytic function verifying

|𝜕𝛼 𝑓 (𝑥) | ≤ 𝑀 |𝛼 |!
(𝜌𝑅) |𝛼 | , when 𝑥 ∈ 𝐵2𝑅, 𝛼 ∈ N𝑛, (3.5)

for some 𝑀 > 0, 0 < 𝜌 ≤ 1 and 𝐸 ⊂ 𝐵 𝑅
2
is a measurable set with positive measure. Then, there are positive

constants 𝑁 = 𝑁 (𝜌, |𝐸 |/|𝐵𝑅 |) and 𝜃 = 𝜃 (𝜌, |𝐸 |/|𝐵𝑅 |) such that

‖ 𝑓 ‖𝐿∞ (𝐵𝑅) ≤ 𝑁
(⨏

𝐸
| 𝑓 | 𝑑𝑥

) 𝜃
𝑀1−𝜃 .
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Abstract

We consider geometric inverse problems concerning the one-dimensional Burgers equation and some related
nonlinear systems (involving heat effects and variable density). In these problems, the goal is to find the size of
the spatial interval from some appropriate boundary observations of the solution. Depending on the properties of
the initial and boundary data, we prove uniqueness and non-uniqueness results. On the other hand, we also solve
these inverse problems numerically and compute approximations of the interval sizes.

1. Introduction
In this work we will deal with inverse problems for some nonlinear time-dependent PDEs in one spatial dimension.
The analysis and solution of inverse problems of many kinds has recently increased a lot because of their relevance
in many applications: elastography and medical imaging, seismology, potential theory, ion transport problems or
chromatography, finances, etc.; see for instance [5]. The variety of inverse problems is huge in comparison with
their direct analogs and many inverse problems coming from very classical and basic direct problems wait for
theoretical and numerical research (see for example [3] and [8]) where many theoretical and numerical aspects of
inverse problems for partial differential equations are depicted.
In this paper, we consider problems related to the identification of the size of the spatial interval where a

time-dependent governing equation must be satisfied. We will focus on the Burgers equation and some variants,
satisfied for (𝑥, 𝑡) ∈ (0, ℓ) × (0, 𝑇). We will assume that the equation is complemented with boundary and initial
conditions corresponding to known data, respectively for 𝑥 ∈ {0, ℓ} and 𝑡 = 0. Then, we will try to determine the
width ℓ of the spatial 𝑥-interval from some extra information, for instance given at 𝑥 = 0. The main goals will be
to establish uniqueness and to compute approximations of the solutions to the inverse problems. Related questions
have been analyzed recently for the linear heat and wave equations in [1].
The plan is the following. In Section 2, we consider the viscous Burgers equation under several different

circumstances. Section 3 and Section 4 respectively deal with the Burgers equation coupled to a heat equation and
the variable density Burgers system. Finally, we present the results of some numerical experiments in Section 5.

2. Some positive and negative results for the viscous Burgers equation
Let us consider the following system for the Burgers equation:



𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑢𝑥 = 0, 0 < 𝑥 < ℓ, 0 < 𝑡 < 𝑇,
𝑢(0, 𝑡) = 𝜂(𝑡), 𝑢(ℓ, 𝑡) = 0, 0 < 𝑡 < 𝑇,
𝑢(𝑥, 0) = 𝑢0 (𝑥), 0 < 𝑥 < ℓ.

(2.1)

We will analyze the following question:

Uniqueness for Burgers equation: Let 𝑢ℓ and 𝑢𝐿 be the solutions to (2.1) associated to the spatial intervals (0, ℓ)
and (0, 𝐿), respectively. Assume that the corresponding observations 𝑢ℓ𝑥 (0, ·) and 𝑢𝐿𝑥 (0, ·) coincide, that is,

𝑢ℓ𝑥 (0, 𝑡) = 𝑢𝐿𝑥 (0, 𝑡) in (0, 𝑇).
Then, do we have ℓ = 𝐿?

In the sequel, we will provide some positive and negative answers to this question, depending on the kind of
imposed boundary or initial data.
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2.1. The simplest cases: zero initial and/or boundary data

Case I: 𝜂 . 0 and 𝑢0 ≡ 0. If 𝑢0 ≡ 0, we get uniqueness:

Theorem 2.1 Assume that 0 < ℓ ≤ 𝐿 < 𝑇 , 𝜂 ∈ 𝐿∞ (0, 𝑇) satisfies 𝜂 . 0 and 𝑢0 ≡ 0. Let 𝑢ℓ and 𝑢𝐿 be the solutions
to (2.1) respectively corresponding to ℓ and 𝐿 and let us assume that

|𝑢ℓ𝑥 (𝑥, 𝑡) | ≤ 𝑀 in (0, ℓ) × (𝑇0, 𝑇), |𝑢𝐿𝑥 (𝑥, 𝑡) | ≤ 𝑀 in (0, 𝐿) × (𝑇0, 𝑇),
where 𝑀 > 0 and 𝑢ℓ𝑥 (0, 𝑡) = 𝑢𝐿𝑥 (0, 𝑡) in (0, 𝑇). Then, ℓ = 𝐿.
The proof is standard and it is based on a suitable unique continuation property. For the details, see [2].

Case II: 𝜂 ≡ 0 and 𝑢0 . 0. In this case, we can show that, as in the case of the linear heat equation (see [1]),
non-uniqueness holds in general. A counter-example to uniqueness can be found (see [2]).

2.2. Results where 𝜂(𝑡) . 0 and 𝑢0 (𝑥) . 0
In this case we have the following result, which proof can be found in [2].

Theorem 2.2 Assume that 0 < ℓ ≤ 𝐿 ≤ 𝐿∗, 0 < 𝑇0 < 𝑇 ,
𝑢ℓ𝑥 (0, 𝑡) = 𝑢𝐿𝑥 (0, 𝑡) in (0, 𝑇), ‖𝑢0‖𝐿2 (0,𝐿) ≤ 𝑀0,

|𝑢ℓ𝑥 (𝑥, 𝑡) | ≤ 𝑀 in (0, ℓ) × (𝑇0, 𝑇) and |𝑢𝐿𝑥 (𝑥, 𝑡) | ≤ 𝑀 in (0, 𝐿) × (𝑇0, 𝑇),
where 𝐿∗, 𝑀0 and 𝑀 are some positive constants. There exists 𝛿0 (only depending on 𝐿∗, 𝑇0, 𝑇 , 𝑀0 and 𝑀) such
that, if ∫ 𝑇

𝑇0

|𝜂(𝑡) |2 𝑑𝑡 ≥ 𝛿0, (2.2)

then one necessarily has ℓ = 𝐿.

3. The Burgers equation with heat effects
Given 𝑘 ∈ R, the system is now




𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑢𝑥 = 𝑘𝜃, 0 < 𝑥 < ℓ, 𝑡 > 0,
𝜃𝑡 − 𝜃𝑥𝑥 + 𝑢𝜃𝑥 = 0, 0 < 𝑥 < ℓ, 𝑡 > 0,
𝑢(0, 𝑡) = 𝜂(𝑡), 𝑢(ℓ, 𝑡) = 0, 𝑡 > 0,
𝜃 (0, 𝑡) = 𝜆(𝑡), 𝜃 (ℓ, 𝑡) = 0, 𝑡 > 0,
𝑢(𝑥, 0) = 𝑢0 (𝑥), 𝜃 (𝑥, 0) = 𝜃0 (𝑥), 0 < 𝑥 < ℓ.

(3.1)

The uniqueness property we will analyze here in the following:

Uniqueness for Burgers equation with heat effects: Let (𝑢ℓ , 𝜃ℓ) and (𝑢𝐿 , 𝜃𝐿) be the solutions to (3.1) associated to
the spatial intervals (0, ℓ) and (0, 𝐿), respectively. Assume that the corresponding observations (𝑢ℓ𝑥 (0, ·), 𝜃ℓ𝑥 (0, ·))
and (𝑢𝐿𝑥 (0, ·), 𝜃𝐿𝑥 (0, ·)) coincide, that is,

𝑢ℓ𝑥 (0, 𝑡) = 𝑢𝐿𝑥 (0, 𝑡) and 𝜃ℓ𝑥 (0, 𝑡) = 𝜃𝐿𝑥 (0, 𝑡) in (0, 𝑇).
Then, do we have ℓ = 𝐿?

If (𝑢0, 𝜃0) ≡ (0, 0), we have again uniqueness:

Theorem 3.1 Assume that 0 < ℓ ≤ 𝐿 < 𝑇 , 𝜂, 𝜆 ∈ 𝐿∞ (0, 𝑇) satisfy (𝜂, 𝜆) . (0, 0) and (𝑢0, 𝜃0) ≡ (0, 0). Let
(𝑢ℓ , 𝜃ℓ) and (𝑢𝐿 , 𝜃𝐿) be the solutions to (3.1) respectively corresponding to ℓ and 𝐿 and let us assume that
|𝑢ℓ𝑥 (𝑥, 𝑡) | ≤ 𝑀 in (0, ℓ) × (𝑇0, 𝑇), |𝑢𝐿𝑥 (𝑥, 𝑡) | ≤ 𝑀 in (0, 𝐿) × (𝑇0, 𝑇), 𝑢ℓ𝑥 (0, ·) = 𝑢𝐿𝑥 (0, ·) and 𝜃ℓ𝑥 (0, ·) = 𝜃𝐿𝑥 (0, ·).
Then, ℓ = 𝐿.

The proof is very similar to the proof of Theorem 2.1 (see [2]).

On the other hand, it is obvious that the solution to (2.1) is a particular solution to (3.1), corresponding to 𝜃0 ≡ 0
and 𝜆 ≡ 0. Consequently, the counter-example mentioned before is also a counter-example to uniqueness in this
case when we allow 𝑢0 to be nonzero.
To our knowledge, it is unknown if a counter-example to uniqueness can also be found with 𝜃0 . 0.

As before, we can deduce a uniqueness result for (3.1) for large 𝜂. More precisely, the following holds:
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Theorem 3.2 Assume that 0 < ℓ ≤ 𝐿 ≤ 𝐿∗, 0 < 𝑇0 < 𝑇 ,
𝑢ℓ𝑥 (0, 𝑡) = 𝑢𝐿𝑥 (0, 𝑡) and 𝜃ℓ𝑥 (0, 𝑡) = 𝜃𝐿𝑥 (0, 𝑡) in (0, 𝑇), ‖(𝑢0, 𝜃0)‖𝐿2 (0,𝐿) ≤ 𝑀0,
|𝑢ℓ𝑥 (𝑥, 𝑡) | ≤ 𝑀 in (0, ℓ) × (𝑇0, 𝑇) and |𝑢𝐿𝑥 (𝑥, 𝑡) | ≤ 𝑀 in (0, 𝐿) × (𝑇0, 𝑇).

There exists 𝛿1 (only depending on 𝐿∗, 𝑇0, 𝑇 , 𝑀0 and 𝑀) such that, if∫ 𝑇

𝑇0

|𝜂(𝑡) |2 𝑑𝑡 ≥ 𝛿1, (3.2)

then one necessarily has ℓ = 𝐿.

The proof is similar to the proof of Theorem 2.2 (see [2]).

4. The case of the variable density Burgers equation
This is more interesting, but also more difficult. We consider a non-homogeneous (or variable density) one-
dimensional fluid, modeled as follows:




𝜌(𝑢𝑡 + 𝑢𝑢𝑥) − 𝑢𝑥𝑥 = 0, 0 < 𝑥 < ℓ, 𝑡 > 0,
𝜌𝑡 + 𝑢𝜌𝑥 = 0, 0 < 𝑥 < ℓ, 𝑡 > 0,
𝑢(0, 𝑡) = 𝑢(𝑡), 𝑢(ℓ, 𝑡) = 0, 𝑡 > 0,
𝜌(0, 𝑡) = 𝜌(𝑡), 𝑡 ∈ R+ ∩ {𝑡 : 𝑢(𝑡) > 0},
𝑢(𝑥, 0) = 𝑢0 (𝑥), 𝜌(𝑥, 0) = 𝜌0 (𝑥), 0 < 𝑥 < ℓ.

(4.1)

Of course, this can be viewed as a toy model for the variable density Navier-Stokes system. The corresponding
inverse problem is the following:

This is the uniqueness question we are interested in:

Uniqueness for variable density Burgers equation: Let (𝑢ℓ , 𝜌ℓ) and (𝑢𝐿 , 𝜌𝐿) be the solutions to (4.1) respec-
tively associated to (0, ℓ) and (0, 𝐿). Assume that the corresponding (𝑢ℓ𝑥 (0, ·), 𝜌ℓ (0, ·)) and (𝑢𝐿𝑥 (0, ·), 𝜌𝐿 (0, ·))
coincide. Then, do we have ℓ = 𝐿?

4.1. A result for zero initial data
When the initial data vanish, we have a positive uniqueness result for this problem:

Theorem 4.1 Assume that 0 < ℓ ≤ 𝐿, 𝑇 > 0 and (𝑢0, 𝜌0) and (𝑢, 𝜌) satisfy{
𝑢, 𝜌 ∈ 𝐿∞ (0, 𝑇), 𝑢 . 0, 𝜌 ≥ 0,
𝑢0 ≡ 0, 𝜌0 ∈ 𝐿∞ (0, 𝐿), 𝜌0 ≥ 𝑎0 > 0.

Let (𝑢ℓ , 𝜌ℓ) and (𝑢𝐿 , 𝜌𝐿) be the solutions to (4.1) for 0 < 𝑡 < 𝑇 respectively corresponding to ℓ and 𝐿 and let us
assume that |𝑢ℓ𝑡 | + |𝑢ℓ𝑥 | + |𝜌ℓ𝑥 | ≤ 𝑀 and |𝑢𝐿𝑡 | + |𝑢𝐿𝑥 | + |𝜌𝐿𝑥 | ≤ 𝑀 respectively in (0, ℓ) × (𝑇0, 𝑇) and (0, 𝐿) × (𝑇0, 𝑇)
and 𝑢ℓ𝑥 (0, ·) = 𝑢𝐿𝑥 (0, ·). Then, ℓ = 𝐿.
For the proof, we use a unique continuation property satisfied for the solutions to systems of the form{

𝑎(𝑥, 𝑡)𝑣𝑡 − 𝑣𝑥𝑥 + 𝑏(𝑥, 𝑡)𝑣𝑥 + 𝑐(𝑥, 𝑡)𝑣 + 𝑑 (𝑥, 𝑡)𝑝 = 0, (𝑥, 𝑡) ∈ 𝑄,
𝑝𝑡 + 𝑚(𝑥, 𝑡)𝑝𝑥 + 𝑟 (𝑥, 𝑡)𝑣 = 0, (𝑥, 𝑡) ∈ 𝑄, (4.2)

where we assume that 𝑄 := (0, ℓ) × (0, 𝑇),
𝑎, 𝑏, 𝑐, 𝑑, 𝑚, 𝑟 ∈ 𝐶0 (𝑄) and 𝑎 ≥ 𝑎0 > 0 in 𝑄. (4.3)

More precisely, the following holds:

Proposition 4.2 Assume that (4.3) is satisfied and (𝑣, 𝑝) solves (4.2), with 𝑣, 𝑣𝑥 , 𝑣𝑥𝑥 , 𝑝, 𝑝𝑥 ∈ 𝐶0 (𝑄). Also, assume{
𝑣(0, 𝑡) = 0, 𝑣𝑥 (0, 𝑡) = 0, 𝑝(0, 𝑡) = 0, 0 < 𝑡 < 𝑇,
𝑣(𝑥, 0) = 0, 𝑝(𝑥, 0) = 0, 0 < 𝑥 < ℓ.

(4.4)

Then, one has 𝑣 ≡ 0 and 𝑝 ≡ 0.
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33



The proof of this Proposition relies on appropriate local Carleman inequalities for the solutions to (4.2) and is
postponed to Section 4.2.
Proof of Theorem 4.1: Note that 𝑢ℓ ∈ 𝐿∞ ((0, ℓ) × (0, 𝑇)) and 𝑢𝐿 ∈ 𝐿∞ ((0, 𝐿) × (0, 𝑇)). If we set 𝑣 := 𝑢ℓ − 𝑢𝐿
and 𝑝 := 𝜌ℓ − 𝜌𝐿 , one has



𝜌ℓ𝑣𝑡 − 𝑣𝑥𝑥 + 𝜌ℓ𝑢ℓ𝑣𝑥 + 𝜌ℓ𝑢ℓ𝑥𝑣 − (𝑢𝐿𝑡 + 𝑢𝐿𝑢𝐿𝑥 )𝑝 = 0, 0 < 𝑥 < ℓ, 𝑡 > 0,
𝑝𝑡 + 𝑢ℓ 𝑝𝑥 + 𝜌𝐿𝑥 𝑣 = 0, 0 < 𝑥 < ℓ, 𝑡 > 0,
𝑣(0, 𝑡) = 0, 𝑣𝑥 (0, 𝑡) = 0, 𝑝(0, 𝑡) = 0, 𝑡 > 0,
𝑣(𝑥, 0) = 0, 𝑝(𝑥, 0) = 0, 0 < 𝑥 < ℓ.

Consequently, 𝑣 and 𝑝 satisfies (4.2) with 𝑎 = 𝜌ℓ , 𝑏 = 𝜌ℓ𝑢ℓ , 𝑐 = 𝜌ℓ𝑢ℓ𝑥 , 𝑑 = −(𝑢𝐿𝑡 + 𝑢𝐿𝑢𝐿𝑥 ), 𝑚 = 𝑢ℓ and 𝑟 = 𝜌𝐿𝑥
and (4.4).
In view of Proposition 4.2, one has 𝑣 = 0 and 𝑝 = 0 in (0, ℓ) × (0, 𝑇). This yields 𝑢𝐿 (𝑥, 𝑡) = 0 in (ℓ, 𝐿) × (0, 𝑇).

Since the PDEs satisfied by 𝑢𝐿 and 𝜌𝐿 also possess the unique continuation property, we find that 𝑢𝐿 ≡ 0, which
is impossible. �
It would be interesting to find nonzero initial data (𝑢0, 𝜌0) such that uniqueness fails. On the other hand, it

would also be interesting to prove a result similar to Theorem 3.2 asserting that, if the boundary data are large
enough (with respect to the other data in the system), uniqueness is satisfied. However, to our knowledge this is
unknown.
A still more complex situation is found when we deal with a variable density fluid where thermal effects are

relevant. For example, we can consider the variable density Boussinesq-like system



𝜌(𝑢𝑡 + 𝑢𝑢𝑥) − 𝑢𝑥𝑥 = 𝜃, 0 < 𝑥 < ℓ, 𝑡 > 0,
𝜌(𝜃𝑡 + 𝑢𝜃𝑥) − 𝜃𝑥𝑥 = 𝑢2𝑥 , 0 < 𝑥 < ℓ, 𝑡 > 0,
𝜌𝑡 + 𝑢𝜌𝑥 = 0, 0 < 𝑥 < ℓ, 𝑡 > 0,
𝑢(0, 𝑡) = 𝑢(𝑡), 𝑢(ℓ, 𝑡) = 0, 𝑡 > 0,
𝜌(0, 𝑡) = 𝜌(𝑡), 𝑡 ∈ R+ ∩ {𝑡 : 𝑢(𝑡) > 0},
𝜃𝑥 (0, 𝑡) = 𝜃𝑥 (ℓ, 𝑡) = 0, 𝑡 > 0,
𝜌(𝑥, 0) = 𝜌0 (𝑥), 𝑢(𝑥, 0) = 𝑢0 (𝑥), 𝜃 (𝑥, 0) = 𝜃0 (𝑥), 0 < 𝑥 < ℓ.

(4.5)

This is the related inverse problem: (𝑢0, 𝜃0, 𝜌0) and (𝑢, 𝜌) are given and the additional observations 𝛽 := 𝑢𝑥 |𝑥=0
and 𝜁 := 𝜃 |𝑥=0 are known for 𝑡 ∈ (0, 𝑇) and we try to find ℓ.
A result similar to Theorem 4.1 can also be established in this case. The details are left to the reader.

4.2. Proof of Proposition 4.2
The proof of Proposition 4.2 can be obtained by combining two Carleman inequalities that can be deduced for the
solutions to the first and the second equation in (4.2). The main steps are the following: to choose a suitable weight
function (the same in both inequalities); to argue as in [9] and [7], then, to sum and eliminate all undesirable terms
in the right hand side.
Step 1: Let us first recall some known Carleman estimates for the solutions to equations like in (4.2).
Thus, assume that 𝑎, 𝑏 and 𝑐 are as in Proposition 4.2 and set 𝐿𝑣 := 𝑎𝑣𝑡 − 𝑣𝑥𝑥 + 𝑏𝑣𝑥 + 𝑐𝑣 for any suitable 𝑣.

For any 𝜆 > 0, 𝛽 > 0, 𝑥0 > ℓ, 𝛿 > 0 and 𝑇 > 0 (to be definitively fixed below), we take

𝜑(𝑥, 𝑡) := 𝑒𝜆𝜓 (𝑥,𝑡) , with 𝜓(𝑥, 𝑡) := |𝑥 − 𝑥0 |2 − 2𝛿𝛽
𝑇
|𝑡 − 𝑇/2|. (4.6)

Note that 𝜑 can be used in the proof of the Carleman inequality in Theorem 2.1 in [9, Ch. 4]. Consequently,
the following holds:

Theorem 4.3 There exists 𝜆0 > 0 with the following property: for any 𝜆 ≥ 𝜆0, there exist constants 𝑠0 = 𝑠0 (𝜆) > 0
and 𝐶0 = 𝐶0 (𝜆) such that∬

𝑄

(
1
𝑠𝜑
( |𝑣𝑡 |2 + |𝑣𝑥𝑥 |2) + 𝑠𝜆2𝜑|𝑣𝑥 |2 + 𝑠3𝜆4𝜑3 |𝑣 |2

)
𝑒2𝑠𝜑 𝑑𝑥 𝑑𝑡

≤ 𝐶0
(∬

𝑄
|𝐿𝑣 |2𝑒2𝑠𝜑 𝑑𝑥 𝑑𝑡 +

∫ 𝑇

0

(
𝑠3𝜆3𝜑3 |𝑣 |2 + 𝑠𝜆𝜑|𝑣𝑥 |2 + |𝑣𝑡 |2

)
𝑒2𝑠𝜑 𝑑𝑡

���
𝑥=0,ℓ

+ 𝑠2𝜆2𝑒𝐶0𝜆
∫ ℓ

0

(
|𝑣 |2 + |𝑣𝑥 |2

)
𝑒2𝑠𝜑 𝑑𝑥

���
𝑡=0,𝑇

)
(4.7)

for all 𝑠 ≥ 𝑠0 and any 𝑣 ∈ 𝐻2,1 (𝑄).
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Now, let 𝑚 be as in (4.3) and let us set 𝐵 := 𝜑𝑡 + 𝑚𝜑𝑥 and 𝐸𝑝 := 𝑝𝑡 + 𝑚𝑝𝑥 for any 𝑝. We can also adapt the
proof of the Carleman estimate for transport equations in Proposition 2.1 in [9, Ch. 3] and deduce the following:

Theorem 4.4 Assume that min(𝑥,𝑡) ∈𝑄 |𝐵(𝑥, 𝑡) | ≥ 𝐵0 > 0. Then, there exist constants 𝑠0 > 0 and 𝐶 > 0 such that

𝑠2
∬
𝑄

���𝑝 |2𝑒2𝑠𝜑 𝑑𝑥 𝑑𝑡 ≤ 𝐶∬
𝑄
|𝐸𝑝 |2𝑒2𝑠𝜑 𝑑𝑥 𝑑𝑡 + 𝑠

∫ 𝑇

0
𝑚𝐵 |𝑝 |2𝑒2𝑠𝜑 𝑑𝑡

���𝑥=ℓ
𝑥=0
+ 𝑠

∫ ℓ

0
𝐵 |𝑝 |2𝑒2𝑠𝜑 𝑑𝑥

���𝑡=𝑇
𝑡=0

(4.8)

for all 𝑠 ≥ 𝑠0 and any 𝑝 ∈ 𝐻1 (𝑄).

Step 2: Let us assume that 𝑡0 ∈ (0, 𝑇) and 𝛿 > 0 is such that 0 < 𝑡0 − 𝛿 < 𝑡0 + 𝛿 < 𝑇 and let us set
𝑄 𝛿 := (0, ℓ) × (𝑡0 − 𝛿, 𝑡0 + 𝛿).

Let us introduce the new variable �̃� with �̃� = 𝑡0 − 𝛿 + 2𝛿
𝑇
𝑡 and the new function 𝜑 with

𝜑(𝑥, �̃�) := 𝑒𝜆𝜓 (𝑥,̃𝑡) and 𝜓(𝑥, �̃�) := 𝜓(𝑥, 𝑡) ≡ |𝑥 − 𝑥0 |2 − 𝛽 |̃𝑡 − 𝑡0 |.
Then, (4.7) can be rewritten as an estimate in 𝑄 𝛿 . If we denote �̃� (resp. 𝜑) again by 𝑡 (resp. 𝜑), the following is
found:∬

𝑄𝛿

( 1
𝑠𝜑
( |𝑣𝑡 |2 + |𝑣𝑥𝑥 |2) + 𝑠𝜆2𝜑 |𝑣𝑥 |2 + 𝑠3𝜆4𝜑3 |𝑣 |2

)
𝑒2𝑠𝜑 𝑑𝑥 𝑑𝑡 ≤ 𝐶

(∬
𝑄
|𝑝 |2𝑒2𝑠𝜑 𝑑𝑥 𝑑𝑡 + 𝐾1 + 𝐾2

)
, (4.9)

where
𝐾1 :=

∫ 𝑡0+𝛿

𝑡0−𝛿

(
𝑠3𝜆3𝜑3 |𝑣 |2 + 𝑠𝜆𝜑 |𝑣𝑥 |2 + |𝑣𝑡 |2

)
𝑒2𝑠𝜑 𝑑𝑡

���
𝑥=0,ℓ

≤ 𝐶𝑠3𝜆3𝑒𝐶𝜆
∫ 𝑡0+𝛿

𝑡0−𝛿

(
|𝑣(0, 𝑡) |2 + |𝑣𝑥 (0, 𝑡) |2 + |𝑣𝑡 (0, 𝑡) |2

)
𝑒2𝑠𝜑 (0,𝑡) 𝑑𝑡

+ 𝐶𝑠3𝜆3𝑒𝐶𝜆𝑀2
∫ 𝑡0+𝛿

𝑡0−𝛿
𝑒2𝑠𝜑 (ℓ,𝑡) 𝑑𝑡

(4.10)

and

𝐾2 := 𝐶𝑠2𝜆2𝑒𝐶𝜆
∫ ℓ

0

(
|𝑣 |2 + |𝑣𝑥 |2

)
𝑒2𝑠𝜑 𝑑𝑥

���
𝑡=𝑡0−𝛿,𝑡0+𝛿

≤ 𝐶𝑠2𝜆2𝑒𝐶𝜆𝑀2𝑒2𝑠𝑒𝜆( |𝑥0 |
2−𝛽𝛿)

. (4.11)

On the other hand, (4.8) written in 𝑄 𝛿 and applied to the second equation of (4.2) gives:

𝑠2
∬
𝑄𝛿

|𝑝 |2𝑒2𝑠𝜑 𝑑𝑥 𝑑𝑡 ≤ 𝐶
∬
𝑄𝛿

|𝑣 |2𝑒2𝑠𝜑 𝑑𝑥 𝑑𝑡 + 𝑠
∫ 𝑡0+𝛿

𝑡0−𝛿
𝑚𝐵 |𝑝 |2𝑒2𝑠𝜑

���𝑥=ℓ
𝑥=0

𝑑𝑡 + 𝑠
∫ ℓ

0
𝐵 |𝑝 |2𝑒2𝑠𝜑 𝑑𝑥

���𝑡=𝑡0+𝛿
𝑡=𝑡0−𝛿

and we find that
𝑠2

∬
𝑄𝛿

���𝑝 |2𝑒2𝑠𝜑 𝑑𝑥 𝑑𝑡 ≤ 𝐶∬
𝑄𝛿

|𝑣 |2𝑒2𝑠𝜑 𝑑𝑥 𝑑𝑡 + 𝑅1 + 𝑅2, (4.12)

where
𝑅1 := 𝐶𝑠𝑒𝐶𝜆𝑀2

∫ 𝑡0+𝛿

𝑡0−𝛿
|𝑝 |2𝑒2𝑠𝜑 𝑑𝑡

���𝑥=ℓ
𝑥=0

≤ 𝐶𝑠𝑒𝐶𝜆𝑀2
∫ 𝑡0+𝛿

𝑡0−𝛿
|𝑝(0, 𝑡) |2𝑒2𝑠𝜑 (0,𝑡) 𝑑𝑡 + 𝐶𝑠𝑒𝐶𝜆𝑀4

∫ 𝑡0+𝛿

𝑡0−𝛿
𝑒2𝑠𝜑 (ℓ,𝑡) 𝑑𝑡

(4.13)

and

𝑅2 := 𝐶𝑠𝑒𝐶𝜆𝑀
∫ ℓ

0
|𝑝 |2𝑒2𝑠𝜑 𝑑𝑥

���𝑡=𝑡0+𝛿
𝑡=𝑡0−𝛿

≤ 𝐶𝑠𝑒𝐶𝜆𝑀3𝑒2𝑠𝑒𝜆( |𝑥0 |
2−𝛽𝛿)

. (4.14)

In (4.10), (4.11), (4.13) and (4.14), we have used that |𝑣 | + |𝑣𝑥 | + |𝑣𝑡 | + |𝑝 | ≤ 𝑀 in 𝑄. It is not restrictive to
assume that 𝑀 ≥ 1.
Step 3: After adding (4.9) and (4.12), taking into account the estimates of the 𝐾𝑖 and 𝑅𝑖 and assuming that 𝑠 and 𝜆
are sufficiently large, we find:∬

𝑄𝛿

( 1
𝑠𝜑
( |𝑣𝑡 |2 + |𝑣𝑥𝑥 |2) + 𝑠𝜆2𝜑 |𝑣𝑥 |2 + 𝑠3𝜆4𝜑3 |𝑣 |2

)
𝑒2𝑠𝜑 𝑑𝑥 𝑑𝑡 + 𝑠2

∬
𝑄𝛿

���𝑝 |2𝑒2𝑠𝜑 𝑑𝑥 𝑑𝑡
≤ 𝐶𝑠3𝜆3𝑒𝐶𝜆𝑀2

∫ 𝑡0+𝛿

𝑡0−𝛿

(
|𝑣(0, 𝑡) |2 + |𝑣𝑥 (0, 𝑡) |2 + |𝑣𝑡 (0, 𝑡) |2 + |𝑝(0, 𝑡) |2

)
𝑒2𝑠𝜑 (0,𝑡) 𝑑𝑡

+ 𝐶𝑠3𝜆3𝑒𝐶𝜆𝑀4
∫ 𝑡0+𝛿

𝑡0−𝛿
𝑒2𝑠𝜑 (ℓ,𝑡) 𝑑𝑡 + 𝐶𝑠2𝜆2𝑒𝐶𝜆𝑀3𝑒2𝑠𝑒𝜆( |𝑥0 |

2−𝛽𝛿)
.

(4.15)

Now, we argue as follows:
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• First, we fix 𝜆 > 0 such that (4.15) holds and choose 𝑥0, 𝑡0 and 𝛿 as before and 𝜀 ∈ (0, ℓ).
• Then, we take 𝛽 > 0 large enough and such that 𝛽𝛿/2 > ℓ𝑥0 + ℓ2.
• Finally, we choose 𝜅 ∈ (0, 𝛿/2) such that 𝛽𝜅 < 2𝜀(𝑥0 − ℓ) + 𝜀2.

With these constants 𝜀 and 𝜅, one has

|𝑥−𝑥0 |2−𝛽 |𝑡−𝑡0 | ≥ 𝜇 := |𝑥0−ℓ+𝜀 |2−𝛽𝜅 >max( |𝑥0−ℓ |2, |𝑥0 |2−𝛽𝛿) (4.16)

for all (𝑥, 𝑡) ∈ (0, ℓ − 𝜀) × (𝑡0 − 𝜅, 𝑡0 + 𝜅). Taking into account (4.4), we deduce from (4.15) that∬
(0,ℓ−𝜀)×(𝑡0−𝜅,𝑡0+𝜅)

(
𝑠𝜆4𝑒3𝜆𝜇 |𝑣 |2 + |𝑝 |2

)
𝑑𝑥 𝑑𝑡

≤ 2𝛿𝐶𝑠𝜆3𝑒𝐶𝜆𝑀4𝑒2𝑠 (𝑒𝜆|𝑥0−ℓ |2−𝑒𝜆𝜇) + 𝐶𝑠𝜆2𝑒𝐶𝜆𝑀3𝑒2𝑠 (𝑒𝜆( |𝑥0 |2−𝛽𝛿)−𝑒𝜆𝜇)

≤ 𝐶∗𝑠
(
𝑒2𝑠 (𝑒

𝜆|𝑥0−ℓ |2−𝑒𝜆𝜇) + 𝑒2𝑠 (𝑒𝜆( |𝑥0 |2−𝛽𝛿)−𝑒𝜆𝜇)
)
,

(4.17)

where 𝐶∗ depends on 𝑀 , 𝛿 and 𝜆 but is independent of 𝑠. But, in view of (4.16), this right hand side goes to zero
as 𝑠→ +∞. Consequently, 𝑣(𝑥, 𝑡) = 0 and 𝑝(𝑥, 𝑡) = 0 in (0, ℓ − 𝜀) × (𝑡0 − 𝜅, 𝑡0 + 𝜅).
Since 𝜀 and 𝜅 are arbitrarily small and 𝑡0 is arbitrary in (0, 𝑇), 𝑣 ≡ 0 and 𝑝 ≡ 0 and the proof is achieved.

5. Some numerical results
We will present here some numerical results for the inverse problems for the Burgers equation.

Reformulation of inverse problem: Given 𝑇 > 0, 𝜂 = 𝜂(𝑡), 𝑢0 = 𝑢0 (𝑥) and 𝛽 = 𝛽(𝑡), find ℓ ∈ (ℓ0, ℓ1) such that
𝐽1 (ℓ) ≤ 𝐽1 (ℓ′) ∀ ℓ′ ∈ (ℓ0, ℓ1), (5.1)

where 𝐽 is given by

𝐽1 (ℓ) := 12
∫ 𝑇

0
|𝛽(𝑡) − 𝑢ℓ𝑥 (0, 𝑡) |2 𝑑𝑡. (5.2)

Here, 𝑢ℓ is the state, i.e. the solution to (2.1) corresponding to the unknown length ℓ.

Three different situations will be analyzed for the Burgers equation. In the first two cases, we will check that
uniqueness holds: zero initial data and nonzero initial data and sufficiently large 𝜂. In the third case we will
consider a non-uniqueness situation corresponding to some nonzero initial data and “small” 𝜂 and we will study the
behavior of the numerical algorithm. To this purpose, we will implement the fmincon function from the MatLab
Optimization Toolbox using the active-set minimization algorithm.

Case 1.1: Burgers equation with 𝑢0 = 0 and 𝜂 ≠ 0. We take 𝑇 = 5, 𝜂(𝑡) = 5 sin3 𝑡 in (0, 𝑇) and 𝑢0 (𝑥) ≡ 0.
Starting from 𝐿𝑖 = 3, our goal is to recover the desired value of the length 𝐿𝑑 = 2.
The results of this numerical experiments can be seen in Table 1, where the effect of random noise on the

target are shown. The computed length is denoted by 𝐿𝑐 . The corresponding solution to (5.1)–(5.2) is displayed
in Figure 1. The evolution of the iterates and the cost in the minimization process in the absence of random noise
appear in Figures 2 and 3, respectively.

% noise Cost Iterates Computed 𝐿𝑐
1% 1.e-3 12 1.997140631
0.1% 1.e-5 15 1.999169558
0.01% 1.e-7 11 1.999912907
0.001% 1.e-9 10 2.000021375
0% 1.e-17 9 1.999999985

Tab. 1 Case 𝑢0 = 0 and 𝜂 ≠ 0. Results with
random noise in the target (𝐿𝑑 = 2). Fig. 1 Case 𝑢0 = 0 and 𝜂 ≠ 0. The computed solution.

THEORETICAL AND NUMERICAL RESULTS FOR SOME INVERSE PROBLEMS FOR PDES

36



0 1 2 3 4 5 6 7 8 9

Iterates

1.8

2

2.2

2.4

2.6

2.8

3
Computed L = 1.999999985, Desired L = 2

0
1

2

3

4
5 6 7 8 9

Fig. 2 Case 𝑢0 = 0 and 𝜂 ≠ 0. The iterates.
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Fig. 3 Case 𝑢0 = 0 and 𝜂 ≠ 0. Evolution of the cost.

Case 1.2: Burgers equation with 𝑢0 ≠ 0 and large 𝜂. We take 𝑇 = 5, 𝜂(𝑡) = 5 sin(𝑡)3 in (0, 𝑇) and 𝑢0 (𝑥) ≡
3𝑥(2 − 𝑥). Now, starting from 𝐿𝑖 = 2.4, the target value that we want to recover is 𝐿𝑑 = 2.
The results of the numerical implementation are shown in Table 2, where again random noise was incorporated.

The contents of Figures 4, 5 and 6 are similar to those above.

% noise Cost Iterates Computed 𝐿𝑐
1% 1.e-2 6 2.032815856
0.1% 1.e-5 11 2.012510004
0.01% 1.e-5 9 1.985859861
0.001% 1.e-6 9 1.994836103
0% 1.e-6 9 1.997637334

Tab. 2 Case 𝑢0 ≠ 0 and large 𝜂. Results with
random noise in the target (𝐿𝑑 = 2). Fig. 4 Case 𝑢0 ≠ 0 and large 𝜂. The computed solution.
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Fig. 5 Case 𝑢0 ≠ 0 and large 𝜂. The iterates.
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Fig. 6 Case 𝑢0 ≠ 0 and large 𝜂. The cost.

Case 1.3: Burgers equation with 𝑢0 ≠ 0 and “small” 𝜂.
Here, we deal with a non-uniqueness situation. Our aim is to investigate the behavior of the algorithm in a

situation of this kind.
We take 𝑇 = 6, 𝜂 = 0 in (0, 𝑇) and 𝑢0 (𝑥) ≡ 𝜋 sin(𝜋𝑥/2)/(2 + cos(𝜋𝑥/2)). Note that we have 𝑢0 (𝑥) ≡

sin(3𝜋𝑥/𝐿1𝑑)/(2 + cos(3𝜋𝑥/𝐿1𝑑)) ≡ sin(3𝜋𝑥/𝐿2𝑑)/(2 + cos(3𝜋𝑥/𝐿2𝑑)), with 𝐿1𝑑 = 6 and 𝐿2𝑑 = 4; consequently, this
initial data can be used to prove non-uniqueness. We will consider the following experiments:

• First, we start from 𝐿𝑖 = 5.6. The computed value is 𝐿1𝑐 = 5.998083259 and the associated cost is
𝐽 (𝐿1𝑐) < 10−8.

• Then, we start from 𝐿𝑖 = 4.6. The computed value is 𝐿2𝑐 = 4.000601673 and the associated cost is again
𝐽 (𝐿2𝑐) < 10−9.
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The corresponding computed boundary observations are displayed in Figures 9 and 10, respectively. Thus, we
confirm that these identical observations correspond, as we already knew, two different solutions.
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Computed solution: boundary observation for L = 5.998083259

Fig. 7Case 𝜂 = 0, 𝑢0 (𝑥) ≠ 0. The computed bound-
ary observation 𝑢𝑥 (0, ·) for 𝐿1𝑐 = 5.996562049.
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Computed solution: boundary observation for L = 4.000601673

Fig. 8 Case 𝜂 = 0, 𝑢0 (𝑥) ≠. The computed bound-
ary observation 𝑢𝑥 (0, ·) for 𝐿2𝑐 = 4.007345905

Fig. 9 Case 𝜂 = 0, 𝑢0 (𝑥) ≠ 0. The computed
solution corresponding to 𝐿1𝑐 = 5.998083259.

Fig. 10 Case 𝜂 = 0, 𝑢0 (𝑥) ≠ 0. The computed
solution corresponding to 𝐿2𝑐 = 4.000601673.
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Abstract
Target Accumulation Redemption Notes (TARNs) are financial derivatives which give their holders the right

to receive periodic coupons until the accumulated sum of those ones reaches an agreed target. In this work, we
solve a partial differential equations (PDEs) model for pricing TARN options by implementing an alternating-
direction implicit finite difference method (ADI method). We combine the numerical solution with a stochastic
local volatility (SLV) technique and show the numerical results for a particular example.

1. Introduction
European and American options are the most well-known derivative products, and have been widely studied from
the financial and mathematical points of view. For these options, jointly known as vanilla options, their price
depends mainly on the value of the underlying asset.
On the opposite side, exotic options present different features which also have an effect on the price. For

example, Bermudan options offer multiple exercise dates, the pay-off of Asian options depends on the average price
of the underlying asset and the pay-off of barrier options depends on whether or not the price of the underlying asset
reaches an agreed value during the option’s lifetime. Other examples of exotic products are the target redemption
products, whose notional amount increases until a certain target is reached [5]. In particular, the value of a Target
Accumulation Redemption Note (TARN) depends on an accumulated amount: if the sum of coupons reaches an
agreed target before the maturity date, the holder of the note receives a final payment, also known as knockout, and
the contract terminates. These products are usually traded in foreign exchange (FX) markets.

2. Mathematical model
We propose a stochastic local volatility model based on Heston model [4]:



𝑑𝑆𝑡 = (𝑟𝑑 (𝑡) − 𝑟 𝑓 (𝑡))𝑆𝑡 𝑑𝑡 + 𝐿 (𝑆𝑡 , 𝑡)

√
𝑉𝑡𝑆𝑡 𝑑𝑊

1
𝑡

𝑑𝑉𝑡 = 𝜅(𝜃 −𝑉𝑡 ) 𝑑𝑡 + 𝜆
√
𝑉𝑡 𝑑𝑊

2
𝑡

𝑑𝑊1𝑡 𝑑𝑊
2
𝑡 = 𝜌 𝑑𝑡 ,

(2.1)

where 𝐿 is the leverage function, which represents the contribution of the local volatility and will be calibrated
with the help of market data, 𝑆𝑡 is the underlying asset, 𝑉𝑡 is the stochastic variance,𝑊1𝑡 and𝑊2𝑡 are two Brownian
motions, 𝑟𝑑 and 𝑟 𝑓 are the domestic and foreign interest rates, respectively, and 𝜅, 𝜃, 𝜆 and 𝜌 are the Heston
parameters.
Let 𝑟 (𝑡) = 𝑟𝑑 (𝑡) − 𝑟 𝑓 (𝑡). Let us assume 2𝜅𝜃 ≤ 𝜆2 and 𝑉0 > 0. Then, Feller condition states that 𝑉𝑡 > 0 for

every 𝑡 > 0. Moreover, we will assume 𝑆0, 𝜅, 𝜃 and 𝜆 are strictly positive, −1 < 𝜌 < 1 and the leverage function
is positive and bounded. Under these hypotheses, it is proven [4] that there exists a unique solution of model (2.1)
and there also exists a function 𝑝 := 𝑝(𝑆,𝑉, 𝑡), called transition probability function, solution of the Fokker-Planck
(FP) equation:

𝜕𝑝

𝜕𝑡
= − 𝜕

𝜕𝑆

(
𝑟 (𝑡)𝑆𝑝) − 𝜕

𝜕𝑉

(
𝜅(𝜃 −𝑉)𝑝) + 1

2
𝜕2

𝜕𝑆2
(
𝐿2𝑆2𝑉𝑝

) + 𝜕2

𝜕𝑆𝜕𝑉

(
𝜆𝜌𝐿𝑆𝑉 𝑝

) + 1
2
𝜕2

𝜕𝑉2
(
𝜆2𝑉𝑝

)
, (2.2)

such that the leverage function can be written as [4]:

𝐿 (𝑆, 𝑡) = 𝜎𝐿𝑉 (𝑆, 𝑡)
√√√ ∫

R
𝑝(𝑆,𝑉, 𝑡) 𝑑𝑉∫

R
𝑉 𝑝(𝑆,𝑉, 𝑡) 𝑑𝑉 . (2.3)

Let 𝑆(𝑡) be the FX rate at time 𝑡, 𝑡0 the actual date and 𝑡1, 𝑡2, . . . , 𝑡𝐾 the so-called fixing dates. Moreover, let
𝐸 be the strike, 𝑈 the target accrual level and 𝐴(𝑡) the accumulated amount at time 𝑡 [3]. On each fixing date, 𝑡𝑘 ,
there is a cash flow payment:

𝐶𝑘 ≡ 𝛽(𝑆(𝑡𝑘 ) − 𝐸) × 1𝛽×𝑆 (𝑡𝑘 ) ≥𝛽×𝐸 ,
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where 𝛽 is a strategy on foreign exchange (𝛽 = 1 for a call option and 𝛽 = −1 for a put option), until the accumulated
amount 𝐴 reaches the target𝑈. Let 𝑡𝐾 be the first fixing date when the target is breached:

𝐾 = min
𝑘=1,...,𝐾

{𝑘 : 𝐴(𝑡𝑘 ) ≥ 𝑈}

and let 𝐾 = 𝐾 if the target is not breached, the payment can be written as:

𝐶𝑘 (𝑆, 𝐴) =


𝐶𝑘 ×

(
1𝐴(𝑡𝑘−1)+𝐶𝑘<𝑈 +𝑊𝑘 × 1𝐴(𝑡𝑘−1)+𝐶𝑘 ≥𝑈

)
, if 𝑡𝑘 ≤ 𝑡𝐾 ,

0 , if 𝑡𝑘 > 𝑡𝐾 ,
(2.4)

where 𝐴(𝑡𝑘−1) is the accumulated amount immediately after 𝑡𝑘−1. This magnitude is given by a piecewise constant
function:

𝐴(𝑡) =
{
𝐴(𝑡𝑘−1) , if 𝑡𝑘−1 ≤ 𝑡 < 𝑡𝑘 ,
𝐴(𝑡𝑘−1) + 𝐶𝑘 (𝑆(𝑡𝑘 ), 𝐴(𝑡𝑘−1)) , if 𝑡 = 𝑡𝑘 .

Moreover, 𝑊𝑘 is a weight that depends on the knockout when the target is breached. We will consider three
types of knockout, such that the weight can be written as:

𝑊𝑘 =




1 , in the case of full gain,
𝑈 − 𝐴(𝑡𝑘−1)
𝛽 × (𝑆(𝑡𝑘 ) − 𝐸) , in the case of part gain,

0 , in the case of no gain.

Finally, let 𝑢 := 𝑢(𝑆,𝑉, 𝑡, 𝐴) be the value of a TARN option, the following SLV option pricing PDE:
𝜕𝑢

𝜕𝑡
+ 𝑟 (𝑡)𝑆 𝜕𝑢

𝜕𝑆
+ (𝜅(𝜃 −𝑉)) 𝜕𝑢

𝜕𝑉
+ 1
2
𝐿2𝑉𝑆2

𝜕2𝑢

𝜕𝑆2
+ 𝜌𝐿𝜆𝑆𝑉 𝜕2𝑢

𝜕𝑆𝜕𝑉
+ 1
2
𝜆2𝑉

𝜕2𝑢

𝜕𝑉2
− 𝑟𝑑 (𝑡)𝑢 = 0

is valid between fixing dates. Furthermore, for each fixing date we can pose:

𝑢
(
𝑆,𝑉, 𝑡−𝑘 , 𝐴(𝑡−𝑘 )

)
= 𝑢

(
𝑆,𝑉, 𝑡𝑘 , 𝐴(𝑡−𝑘 ) + 𝐶𝑘 (𝑆, 𝐴(𝑡−𝑘 ))

) + 𝐶𝑘 (𝑆, 𝐴(𝑡−𝑘 )) ,
where 𝐶𝑘 is given by (2.4) and 𝑡−𝑘 is the time infinitesimally before 𝑡𝑘 .

2.1. Numerical methods
We compute the optimal Heston parameters (𝜅, 𝜃, 𝜆, 𝜌) for the calibration of the SLV model. For each maturity, the
COS method is developed to price European options under the Heston model, [𝑤Hes]𝑚𝑖 B 𝑤Hes (𝐸𝑖 , 𝑇𝑚) and the
Levenberg-Marquardt non-linear least squares algorithm is applied to find the optimal parameters by minimizing

min
𝜅, 𝜃 ,𝜆,𝜌

𝑁𝐸∑︁
𝑖=1

([𝑤Hes (𝜅, 𝜃, 𝜆, 𝜌)]𝑚𝑖 − 𝑤𝑚𝑖 )2
,

where 𝑤𝑚𝑖 B 𝑤(𝐸𝑖 , 𝑇𝑚) are the market data for different strikes and maturities.
As Feller condition does not always hold in real markets, we propose a logarithmic change of variable [2]. Thus,

let 𝑆0 and 𝑉0 be the initial values of the underlying and the variance, and let

𝑋𝑡 = log(𝑆𝑡/𝑆0), 𝑍𝑡 = log(𝑉𝑡/𝑉0).
In the new domain (−∞,∞) × (−∞,∞), model (2.1) is rewritten as:



𝑑𝑋𝑡 =

(
𝑟 (𝑡) − 12𝐿 (𝑋𝑡 , 𝑡)2𝑉0𝑒𝑍𝑡

)
𝑑𝑡 + 𝐿 (𝑋𝑡 , 𝑡)

√︁
𝑉0𝑒𝑍𝑡 𝑑𝑊

1
𝑡

𝑑𝑍𝑡 =
((𝜅𝜃 − 12𝜆2) 1

𝑉0𝑒𝑍𝑡
− 𝜅)𝑑𝑡 + 𝜆 1√

𝑉0𝑒𝑍𝑡
𝑑𝑊2𝑡

𝑑𝑊1𝑡 𝑑𝑊
2
𝑡 = 𝜌𝑑𝑡.

A previous step to apply numerical methods is the truncation of the new unbounded domain to a bounded one.
Thus, we consider the fixed domain Ω = (𝑋min, 𝑋max) × (𝑍min, 𝑍max), which is finer around (𝑋0 = 0, 𝑍0 = 0), and
pose the FP equation (2.2):

𝜕𝑝

𝜕𝑡
= − 𝜕

𝜕𝑋

((𝑟 (𝑡) − 1
2
𝐿2𝑉0𝑒

𝑍 )𝑝) − 𝜕

𝜕𝑍

(((𝜅𝜃 − 1
2
𝜆2) 1

𝑉0𝑒𝑍
− 𝜅)𝑝)

+ 1
2
𝜕2

𝜕𝑋2
(
𝐿2𝑉0𝑒

𝑍 𝑝
) + 𝜕2

𝜕𝑋𝜕𝑍

(
𝜆𝜌𝐿𝑝

) + 1
2
𝜕2

𝜕𝑍2
(
𝜆2

1
𝑉0𝑒𝑍

𝑝
)
,

(2.5)
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with the initial condition:
𝑝(𝑋, 𝑍, 0) = 𝛿(𝑋)𝛿(𝑍), (2.6)

where 𝛿 is the Dirac function. Additionally, we impose the boundary conditions:

𝜕2𝑝

𝜕𝑋2
(𝑋min, 𝑍, 𝑡) = 0, 𝜕2𝑝

𝜕𝑋2
(𝑋max, 𝑍, 𝑡) = 0, 𝜕2𝑝

𝜕𝑍2
(𝑋, 𝑍min, 𝑡) = 0, 𝜕2𝑝

𝜕𝑍2
(𝑋, 𝑍max, 𝑡) = 0. (2.7)

Moreover, the leverage function (2.3) is given by:

𝐿 (𝑋, 𝑡) = 𝜎𝐿𝑉 (𝑋, 𝑡)
√√√ ∫

R+ 𝑝(𝑋, 𝑍, 𝑡)𝑑𝑍∫
R+ 𝑉0𝑒

𝑍 𝑝(𝑋, 𝑍, 𝑡)𝑑𝑍 . (2.8)

As we can see in (2.5) and (2.8), the computing of the transition probability function needs the leverage function
and reciprocally. Therefore, we propose a fixed point scheme to solve the problem at each time step, in which
an alternating directions implicit (ADI) method is developed to solve the FP problem and the trapezoidal rule is
applied to approximate the leverage function. The modified Douglas ADI scheme at each step can be written as:

𝐴 = 𝑝𝑛−1 + Δ𝑡𝑛 [𝐹0 (𝑝𝑛−1, 𝑡𝑛−1) + 𝐹1 (𝑝𝑛−1, 𝑡𝑛−1) + 𝐹2 (𝑝𝑛−1, 𝑡𝑛−1)] ,
𝐵 − 𝛼Δ𝑡𝑛𝐹1 (𝐵, 𝑡𝑛) = 𝐴 − 𝛼Δ𝑡𝑛𝐹1 (𝑝𝑛−1, 𝑡𝑛−1), (2.9)
𝐶 − 𝛼Δ𝑡𝑛𝐹2 (𝐶, 𝑡𝑛) = 𝐵 − 𝛼Δ𝑡𝑛𝐹2 (𝑝𝑛−1, 𝑡𝑛−1), (2.10)

𝑝𝑛 = 𝐶,

for 𝑛 = 1, 2, . . . , 𝑁𝑇 , where

𝐹0 (𝑝, 𝑡) = 𝜕2

𝜕𝑋𝜕𝑍

(
𝜆𝜌𝐿𝑝

)
,

𝐹1 (𝑝, 𝑡) = − 𝜕

𝜕𝑍

(((𝜅𝜃 − 1
2
𝜆2) 1

𝑉0𝑒𝑍
− 𝜅)𝑝) + 1

2
𝜕2

𝜕𝑍2
( 𝜆2

𝑉0𝑒𝑍
𝑝
)
,

𝐹2 (𝑝, 𝑡) = − 𝜕

𝜕𝑋

((𝑟 (𝑡) − 1
2
𝐿2𝑉0𝑒

𝑍 )𝑝) + 1
2
𝜕2

𝜕𝑋2
(
𝐿2𝑉0𝑒

𝑍 𝑝
)
.

In addition, a mixing fraction parameter, 𝜂, is applied to the volatility of the volatility, 𝜆:

𝑑𝑉𝑡 = 𝜅(𝜃 −𝑉𝑡 )𝑑𝑡 + 𝜂𝜆
√︁
𝑉𝑡𝑑𝑊

2
𝑡 .

For eachmaturity, the ADImethod is developed to price options under the SLVmodel, [𝑦SLV]𝑚𝑖 B 𝑦SLV (𝐸𝑖 , 𝑇𝑚)
and the golden section search algorithm is applied to determine the optimal parameter by minimizing

min
𝜂

𝑁𝐸∑︁
𝑖=1

([𝑦SLV (𝜂)]𝑚𝑖 − 𝑦𝑚𝑖 )2
,

where 𝑦𝑚𝑖 B 𝑦(𝐸𝑖 , 𝑇𝑚) are the market data for different strikes and maturities.
Finally, we introduce the time-to-maturity variable (𝜏 = 𝑇 − 𝑡) and deduce the TARN price PDE in terms of 𝑋

and 𝑍:
𝜕𝑢

𝜕𝜏
=

(
𝑟 (𝜏) − 1

2
𝐿2𝑉0𝑒

𝑍 ) 𝜕𝑢
𝜕𝑋
+ 1
2
𝐿2𝑉0𝑒

𝑍 𝜕
2𝑢

𝜕𝑋2
+ 𝜆𝜂𝜌𝐿 𝜕2𝑢

𝜕𝑋𝜕𝑍

+ ((𝜅𝜃 − 1
2
𝜆2𝜂2) 1

𝑉0𝑒𝑍
− 𝜅) 𝜕𝑢

𝜕𝑍
+ 1
2
𝜆2𝜂2

𝑉0𝑒𝑍
𝜕2𝑢

𝜕𝑍2
− 𝑟𝑑 (𝜏)𝑢,

(2.11)

with the initial condition:
𝑢(𝑋, 𝑍, 0, 𝐴) = 0. (2.12)

Additionaly, we assume the boundary conditions [4]:

1
𝑆20
𝑒−2𝑋

( 𝜕2𝑢
𝜕𝑋2
(𝑋min, 𝑍, 𝑡) − 𝜕𝑢

𝜕𝑋
(𝑋min, 𝑍, 𝑡)

)
= 0,

1
𝑉20
𝑒−2𝑍

( 𝜕2𝑢
𝜕𝑍2
(𝑋, 𝑍min, 𝑡) − 𝜕𝑢

𝜕𝑍
(𝑋, 𝑍min, 𝑡)

)
= 0,

1
𝑆20
𝑒−2𝑋

( 𝜕2𝑢
𝜕𝑋2
(𝑋max, 𝑍, 𝑡) − 𝜕𝑢

𝜕𝑋
(𝑋max, 𝑍, 𝑡)

)
= 0,

1
𝑉20
𝑒−2𝑍

( 𝜕2𝑢
𝜕𝑍2
(𝑋, 𝑍max, 𝑡) − 𝜕𝑢

𝜕𝑍
(𝑋, 𝑍max, 𝑡)

)
= 0.

(2.13)

As for the numerical solution of the FP problem, we also propose the use of the ADI algorithm to solve
(2.11 − 2.13), jointly with the jump condition for each fixing date 𝜏𝑘 :

𝑢
(
𝑋, 𝑍, 𝜏+𝑘 , 𝐴(𝜏+𝑘 )

)
= 𝑢

(
𝑋, 𝑍, 𝜏𝑘 , 𝐴(𝜏+𝑘 ) + 𝐶𝑘 (𝑋, 𝐴(𝜏+𝑘 ))

) + 𝐶𝑘 (𝑋, 𝐴(𝜏+𝑘 )) ,
where 𝜏+𝑘 is the time infinitesimally after 𝜏𝑘 . Fig. 1 shows a sketch of the scheme.
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Fig. 1 Jump condition

2.2. Numerical results
We present a numerical test for the valuation of a TARN call option in the frame of foreign exchange. For this aim,
we have considered the US dollar and British pound as domestic and foreign currencies, respectively, an initial
underlying 𝑆0 = 1.320, an initial variance 𝑉0 = 0.004 and a strike 𝐸 = 1.283. Furthermore, the domestic and
foreign interest rates are shown in Tab. 1 of [1], the maturity period is 𝑇 = 12months and the fixing dates are taken
every 30 days, thus 𝐾 = 12.
Fig. 2 shows the market implied volatility (left) and the local volatility (right), which is computed by means of

Dupire’s formula. Thus, we apply the previous techniques to compute the Heston parameters, which are shown in
Tab. 3 (left) of [1].

Fig. 2 The implied volatility (left) and the local volatility (right)

Next, we have approximated the (𝑋, 𝑍) domain with a mesh similar to the one plotted in Fig. 3, consisting of
400 × 100 nodes. As we have previously detailed, the mesh is finer around the point (𝑋0 = 0, 𝑍0 = 0). We have
also refined the mesh for values close to 𝑍min in order to minimize the errors arising from the fact that the Feller
condition may be not accurate for these values of the volatility. Moreover, we have used 180 time steps and the
parameter 𝛼 = 0.5 in the ADI method. Fig. 4 shows the computed solution of the FP problem at the maturity (left)
and the leverage function (right).
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Fig. 4 Numerical solution of the FP equation (left) and the leverage function (right)

Finally, we calibrate the mixing fraction parameter 𝜂, which is shown in Tab. 3 (right) of [1], and show the
numerical approximation of the TARN price for different knockouts in Fig. 5. More details and results are available
in [1].

Fig. 5 TARN option price: no gain (left), part gain (center) and full gain (right) knockouts for𝑈 = 0.90.

2.3. Conclusions
We solve a partial differential equations model to price TARN options. We have improved previous results by
introducing a SLV technique in order to better reflect the market volatilities (taking advantage of local volatility
methods) on a path dependent derivative product (for which stochastic volatility methods are more convenient).
This SLV approach can be extended to other kinds of exotic options.
An alternating directions method (ADI) is implemented and the volatility surfaces, transition probability

function, leverage function and option price are computed. Therefore, we have a tool to valuate this kind of exotic
options.
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Abstract

In this work, we derive new linear and nonlinear partial differential equations (PDEs) models for pricing
American options and total value adjustment in the presence of counterparty risk. Moreover, stochastic spreads
are considered, which increases the dimension of the problem.

1. Introduction
Counterparty risk can be understood as the risk to each party of a contract from a future situation in which one of
the counterparties cannot live up its contractual obligations. Since the last financial, crisis when several institutions
went bankrupt, a relevant effort in quantitative finance research concerns to the consideration of counterparty risk
in financial contracts, specially in the pricing of derivatives As a consequence, different adjustments on the value
of the derivative without counterparty risk (hereafter referred as risk–free derivative) are being included in the
derivative pricing. For example, the credit value adjustment (CVA) refers to the variation on the price of a contract
due to the possibility of default of one (or both) of the counterparties. Adjustments on debit (DVA) and funding
(FVA) are also important issues included in the so called total value adjustment (XVA). The XVA incorporates the
sum of all the adjustments related to counterparty risk.
In a previous work [2], European and American options have been priced considering corunterparty risk. In

suchmodel, constant intensities of default for both counterparties have been assumed. So that a model depending on
just one underlying stochastic factor (the underlying asset) is posed to price XVA. However, the intensity of default
is not always constant, then stochastic intensities of default has been assumed in [3] as a result a model depending
on two stochastic factors (the asset price and the spread from the investor) was deduced to price European options.
In the current work, as we have done in [3], we consider that only the investor is defaultable and presents a stochastic
intensity of default. Moreover, similar hypotheses as in the European options model introduced in [3] are assumed.
Then, we extend the models introduced in [2], [3] to price the American options considering counterparty risk and
compute the associated total value adjustment when stochastic intensity of default is assumed. So, we deduce a
two dimensional PDE model for the American risky derivative value with stochastic intensity of deafult. The plan
of the chapter is the following. In Section 1 we pose the complementarity problems deduced from the hedging
arguments. In Section 2 we present the mathematical analysis of the previous problems. Section 3 presents the
numerical methods and Section 4 shows some illustrative numerical results.

2. Mathematical model
In this section, we deduce themodels forAmerican options considering counterparty risk. With this aim, we consider
self–financing portfolio and non–arbitrage scenarios. Moreover, we assume an investor as a risky counterparty and
consider that the issuer’s intensity of default is null. Thus, the underlying asset price 𝑆, and the short term CDS
spread of the investor ℎ are modelled by the following system of stochastic differential equations:

𝑑𝑆𝑡 = (𝑟 (𝑡) − 𝑞(𝑡)) 𝑆𝑡 𝑑𝑡 + 𝜎𝑆 (𝑡) 𝑆𝑡 𝑑𝑊𝑆
𝑡 ,

𝑑ℎ𝑡 = (𝜇ℎ (𝑡) − 𝑀ℎ (𝑡)𝜎ℎ (𝑡)) 𝑑𝑡 + 𝜎ℎ (𝑡) 𝑑𝑊ℎ
𝑡 ,

where (𝑟 (𝑡) − 𝑞(𝑡)) and (𝜇ℎ (𝑡) − 𝑀ℎ (𝑡)𝜎ℎ (𝑡)) are the (respective) drifts of the processes. Moreover, 𝑟 (𝑡) denotes
the risk-free interest rate, 𝑞(𝑡) is the asset dividend yield rate, 𝑀ℎ (𝑡) is the market price of investor’s credit risk,
𝜎𝑆 (𝑡, 𝑆) and 𝜎ℎ (𝑡, ℎ) are the volatility functions, and 𝑊𝑆

𝑡 and 𝑊ℎ
𝑡 are two correlated Wiener processes (i.e.,

𝜌 𝑑𝑡 = 𝑑𝑊𝑆
𝑡 𝑑𝑊

ℎ
𝑡 ) so that 𝜌 is the instantaneous correlation between 𝑆𝑡 and ℎ𝑡 .

Thus, we consider a derivative trade between a hedger and an investor, where only the investor has probability
of default. The risky derivative value from the point of view of the investor, at time 𝑡, is denoted by 𝑉 (𝑡, 𝑆𝑡 , ℎ𝑡 , 𝐽 𝐼𝑡 ),
and depends on the spot value of the asset (𝑆𝑡 ), on the spread of the investor (ℎ𝑡 ) and on the investor’s default
state at time 𝑡 (𝐽 𝐼𝑡 ). Remind that 𝐽 𝐼𝑡 = 1 in case of default before or at time 𝑡, otherwise 𝐽 𝐼𝑡 = 0. The risk–free
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American option value, corresponding to the same contract between two free–bankruptcy counterparties, is denoted
by 𝑉 (𝑡, 𝑆𝑡 ) and does not include any counterparty risk adjustment, whereas the risky derivative price 𝑉𝑡 includes
total value adjustment.
The risky derivative price in case of the investor makes default is given by:

𝑉 (𝑡, 𝑆𝑡 , ℎ𝑡 , 1) = 𝑅𝑀+ (𝑡, 𝑆𝑡 , ℎ𝑡 ) + 𝑀− (𝑡, 𝑆𝑡 , ℎ𝑡 ), (2.1)

where 𝑀 (𝑡, 𝑆𝑡 , ℎ𝑡 ) denotes the mark–to–market price, 𝑀+ = max(𝑀, 0) and 𝑀− = min(0, 𝑀). In terms of the
mark-to-market condition (2.1), we introduce Δ𝑉 as the variation of 𝑉 at default, which is given by:

Δ𝑉𝑡 = 𝑅𝑀
+
𝑡 + 𝑀−𝑡 −𝑉𝑡 , (2.2)

where 𝑀𝑡 = 𝑀 (𝑡, 𝑆𝑡 , ℎ𝑡 ). As it is usually assumed in the literature [4], and as we did in [2] and [3], we consider
two possibilities for the mark–to–market value: either the risk–free value, either the derivative value including
counterparty risk.
The hedger will trade with different financial instruments to hedge the market risk, the spread risk and the

investor’s default risk. Thus, in order to derive the value of American options with counterparty risk, we consider
the same self–financing portfolio built for European options in [3], Π𝑡 , which is designed to hedge all underlying
risk factors:

Π𝑡 = 𝛼(𝑡)𝐻 (𝑡) + 𝛽(𝑡) + 𝛾(𝑡)CDS(𝑡, 𝑇) + 𝜀(𝑡)CDS(𝑡, 𝑡 + 𝑑𝑡) +Ω(𝑡)𝐵(𝑡, 𝑡 + 𝑑𝑡) . (2.3)
Furthermore, in order to avoid arbitrage opportunities we introduce the following hedging inequality:

𝑑𝑉𝑡 ≤ 𝑑Π𝑡 . (2.4)

Next, by applying Itô’s Lemma for jump diffusion processes, we obtain the variation 𝑑𝑉𝑡 of the derivative value
𝑉𝑡 . Thus, replacing the change of the portfolio and the change of the derivative in (2.4), the hedging equation is
transformed into:

𝜕𝑉

𝜕𝑡
+ 1
2
(𝜎𝑆)2𝑆2 𝜕

2𝑉

𝜕𝑆2
+ 1
2
(𝜎ℎ)2 𝜕

2𝑉

𝜕ℎ2
+ 𝜌𝜎𝑆𝜎ℎ𝑆 𝜕

2𝑉

𝜕𝑆𝜕ℎ

≤ 𝜕𝑉/𝜕𝑆
𝜕𝐻/𝜕𝑆

(
𝑐𝐻 − (𝑟 − 𝑞)𝑆 𝜕𝐻

𝜕𝑆

)
+ 𝜕𝑉/𝜕𝑆
𝜕𝐻/𝜕𝑆 (− 𝑓 𝐻)

+ 𝜕𝑉/𝜕ℎ
𝜕CDS(𝑡, 𝑇)/𝜕ℎ

(
− ℎ

1 − 𝑅ΔCDS(𝑡, 𝑇) −
(
𝜇ℎ − 𝑀𝜎ℎ

) 𝜕CDS(𝑡, 𝑇)
𝜕ℎ

)

+
(

𝜕𝑉/𝜕ℎ
𝜕CDS(𝑡, 𝑇)/𝜕ℎ

ΔCDS(𝑡, 𝑇)
1 − 𝑅 − Δ𝑉

1 − 𝑅

)
ℎ + 𝑓 𝑉 , (2.5)

in [0, 𝑇) × (0,∞) × (0,∞). Then, the American option value when considering counterparty risk is modelled
by the following complementarity problem:




L(𝑉) = 𝜕𝑉

𝜕𝑡
+ L̃𝑆ℎ𝑉 + Δ𝑉

1 − 𝑅 ℎ − 𝑓 𝑉 ≤ 0

𝑉 (𝑡, 𝑆, ℎ) ≥ 𝐺 (𝑆)
L(𝑉) (𝑉 − 𝐺) = 0
𝑉 (𝑇, 𝑆, ℎ) = 𝐺 (𝑆) ,

(2.6)

where 𝐺 (𝑆) represents the option payoff and the differential operator L̃𝑆ℎ is

L𝑆ℎ𝑉 ≡ 12 (𝜎
𝑆)2𝑆2 𝜕

2𝑉

𝜕𝑆2
+ 1
2
(𝜎ℎ)2 𝜕

2𝑉

𝜕ℎ2
+ 𝜌𝜎𝑆𝜎ℎ𝑆 𝜕

2𝑉

𝜕ℎ𝜕𝑆
+ (𝑟 − 𝑞)𝑆 𝜕𝑉

𝜕𝑆
− 𝜅

1 − 𝑅 ℎ
𝜕𝑉

𝜕ℎ
.

According to the mark-to–market choices, two alternative linear complementarity problems are deduced:

• If 𝑀 = 𝑉 , we deduce the nonlinear complementarity problem:



L1 (𝑉) = 𝜕𝑉

𝜕𝑡
+ L𝑆ℎ𝑉 − 𝑓 𝑉 − ℎ𝑉+ ≤ 0, in [0, 𝑇) × (0,∞) × (0,∞)

𝑉 (𝑡, 𝑆, ℎ) ≥ 𝐺 (𝑆)
L1 (𝑉) (𝑉 − 𝐺) = 0
𝑉 (𝑇, 𝑆, ℎ) = 𝐺 (𝑆) .

(2.7)
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• If 𝑀 = 𝑉 , the following linear complementarity problem is derived:




L2 (𝑉) = 𝜕𝑉

𝜕𝑡
+ L𝑆ℎ𝑉 −

(
ℎ

1 − 𝑅 + 𝑓
)
𝑉

−((1 − 𝑅)𝑉+ −𝑉) ℎ

1 − 𝑅 ≤ 0, in [0, 𝑇) × (0,∞) × (0,∞)
𝑉 (𝑡, 𝑆, ℎ) ≥ 𝐺 (𝑆)
L2 (𝑉) (𝑉 − 𝐺) = 0
𝑉 (𝑇, 𝑆, ℎ) = 𝐺 (𝑆) .

(2.8)

Moreover, to compute the XVA value, we consider that 𝑉 = 𝑉 + 𝑈 where 𝑈 denotes the XVA, then the
adjustments can be obtained as the difference of the risky derivative value, 𝑉 , and the risk–free derivative value, 𝑉 ,
which is the solution of the classical Black-Scholes American problem:




L3 (𝑉) = 𝜕𝑉

𝜕𝑡
+ L𝑆𝑉 − 𝑓 𝑉 ≤ 0 , in [0, 𝑇) × (0,∞)

𝑉 (𝑡, 𝑆) ≥ 𝐺 (𝑆)
L3 (𝑉) (𝑉 − 𝐺) = 0
𝑉 (𝑇, 𝑆) = 𝐺 (𝑆) ,

(2.9)

where the operator L𝑆 is given by

L𝑆𝑉 ≡ (𝜎
𝑆)2
2

𝑆2
𝜕2𝑉

𝜕𝑆2
+ (𝑟 − 𝑞)𝑆 𝜕𝑉

𝜕𝑆
.

In order to numerically solve problems (2.7) and (2.8) by a finite element method, we proceed to localize the
problems on a bounded domain. For this purpose, let us consider Ω = (0, 𝑆∞) × (0, ℎ∞) for large enough values of
𝑆∞ and ℎ∞, so that their choice does not affect the solution in the domain of financial interest. We need to impose
appropiate boundary conditions on the risky derivative value problem in the bounded domain. For this purpose, we
consider the same boundary conditions than for 𝑉 and 𝑉 as in the case of European options in [3]. Then, at 𝑆 = 0
and 𝑆 = 𝑆∞, the derivative value is given by:{

𝑉 (𝑡, 0, ℎ) = 𝑉 (𝑡, 0) = 𝑉0 (𝑡) ,
𝑉 (𝑡, 𝑆∞, ℎ) = 𝑉 (𝑡, 𝑆∞) = 𝑉∞ (𝑡) ,

where the values of 𝑉0 (𝑡) and 𝑉∞ (𝑡) are respectively given by:

𝑉0 (𝑡) =
{
0 , for a call option,
𝐾 exp(− 𝑓 (𝑇 − 𝑡)) , for a put option,

(2.10)

𝑉∞ (𝑡) =
{
𝑆∞ − 𝐾 , for a call option,
0 , for a put option.

(2.11)

In the next section, the existence and uniqueness of solution of problem (2.7) are studied. For this purpose, we
introduce the problemwhich models the XVA in order to obtain a problemwith homogeneous boundary conditions.
Then, we split up the risky derivative value, 𝑉 , as the sum of the XVA, 𝑈, plus the total value adjustment, 𝑉 , i.e.
𝑉 = 𝑉 +𝑈. Introducing this breakdown in (2.7), the following nonlinear complementarity problem is deduced:




L𝑡 (𝑈) = 𝜕𝑈

𝜕𝑡
+ L𝑆ℎ𝑈 − 𝑓𝑈 − ℎ(𝑈 +𝑉)+ ≤ −𝜕𝑉

𝜕𝑡
− L𝑆𝑉 + 𝑓 𝑉 , 𝑡 ∈ [0, 𝑇) , (𝑆, ℎ) ∈ Ω

𝑈 (𝑡, 𝑆, ℎ) ≥ 𝐺 (𝑆) −𝑉 (𝑡, 𝑆)[
L𝑡 (𝑈) −

(
− 𝜕𝑉
𝜕𝑡
− L𝑆𝑉 + 𝑓 𝑉

)] [
𝑈 − (𝐺 (𝑆) −𝑉 (𝑡, 𝑆)) ] = 0

𝑈 (𝑇, 𝑆, ℎ) = 0
𝑈 (𝑡, 0, ℎ) = 0
𝑈 (𝑡, 𝑆∞, ℎ) = 0
𝑈 (𝑡, 𝑆, 0) = 0
(𝐴∇𝑈 · ®𝑛) (𝜏, 𝑆, ℎ∞) = 0 .

(2.12)

For the linear problem (2.8), the same boundary conditions are considered.
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3. Mathematical analysis
In this section we prove the existence and uniqueness of solution for the XVA problem (2.12) for a given function
𝑉 . Then, taking into account the existence and uniqueness of solution 𝑉 for the classical Black-Scholes problem,
we obtain the existence and uniqueness of solution for problem (2.7). Introducing the time to maturity variable,
𝜏 = 𝑇 − 𝑡, as well as the new variables and unknown:

𝑥 = ln
𝑆

𝐾
, 𝑢(𝜏, 𝑥, ℎ) = 𝑈 (𝑡, 𝑆, ℎ), 𝑣(𝜏, 𝑥) = 𝑉 (𝑡, 𝑆) .

we pose the nonlinear complementarity problem (2.12) as follows:




L𝜏 (𝑢) = 𝜕𝑢

𝜕𝜏
+ A𝑢 −Φ(𝜏, 𝑢) ≥ ℓ , (𝑥, ℎ) ∈ Ω̂, 𝜏 ∈ (0, 𝑇]

𝑢 ≥ 𝜓
[L𝜏 (𝑢) − ℓ] [𝑢 − 𝜓] = 0
𝑢(0, 𝑆, ℎ) = 0
𝑢(𝜏, 𝑥0, ℎ) = 0
𝑢(𝜏, 𝑥∞, ℎ) = 0
𝑢(𝜏, 𝑥, 0) = 0
(𝐴∇𝑢 · ®𝑛) (𝜏, 𝑥, ℎ∞) = 0 ,

(3.1)

Theorem 3.1 The following statements are satisfied:

1. The continuous operator A satisfies Gårding’s inequality, i.e.:

(A𝑧, 𝑧) ≥ 𝜔1‖𝑧‖2
𝐻 1Γ (Ω̂)

− 𝜔2‖𝑧‖2
𝐿2 (Ω̂) , ∀𝑧 ∈ 𝐻

1
Γ (Ω̂) , (3.2)

with 𝜔1 > 0 and 𝜔2 ∈ R.
2. ℓ ∈ 𝐿2 (0, 𝑇 ; 𝐿2 (Ω̂)) ⊂ 𝐿2 (0, 𝑇 ;𝑊∗).

3. Let 𝐷 (𝜙) =
{
𝑧 ∈ 𝐻1Γ (Ω̂) / 𝜙(𝑧) < ∞

}
and 𝑢0 = 𝑢(0, 𝑥, ℎ). Then, 𝑢0 ∈ 𝐷 (𝜙).

4. Φ(𝜏, 𝜑) is Lipschitz continuous on variable 𝜑, i.e.
‖Φ(𝜏, 𝜑1) −Φ(𝜏, 𝜑2)‖𝐿2 (Ω̂) ≤ 𝐿𝐺 ‖𝜑1 − 𝜑2‖𝐻 1Γ (Ω̂) .

Therefore, the nonlinear variational inequality (3.1) has a unique solution 𝑢 ∈ 𝐿2 (0, 𝑇 ;𝐻1Γ (Ω̂))∩C([0, 𝑇]; 𝐿2 (Ω̂));
in particular 𝑢 ∈ 𝑊1,2 (0, 𝑇 ; 𝐿2 (Ω̂)) and satisfies

‖𝑢‖𝑊 1,2 (0,𝑇 ;𝐿2 (Ω̂)) ≤ 𝐶1
(
1 + ‖𝑢0‖𝐿2 (Ω̂) + ‖ℓ‖𝐿2 (0,𝑇 ;𝐻 1Γ (Ω̂))

)
. (3.3)

4. Numerical simulation
The numerical approximation is mainly based on finite element methods combined with the method of character-
istics. Moreover, a fixed point scheme is implemented for the nonlinear complementarity problem.

4.1. The method of characteristics
More precisely, taking into account the advective term, the risky derivative problem is approximated by




L𝑛1 (𝑉𝑛+1) =
𝑉𝑛+1 −𝑉𝑛 ◦ 𝜒𝑛

Δ𝜏𝑛
− div(𝐴∇𝑉𝑛+1) + 𝑓 𝑉𝑛+1 + ℎ(𝑉𝑛+1)+ ≥ 0 ,

𝑉0 (𝑆, ℎ) = 0 ,
𝑉𝑛+1 (𝑆, ℎ) ≥ 𝐺 (𝑆) ,
L𝑛1 (𝑉𝑛+1) (𝑉𝑛+1 − 𝐺) = 0 ,

(4.1)

for 𝑛 = 0, 1, 2 . . . , 𝑁𝑇 −1, where𝑉𝑛 (·) ≈ 𝑉 (𝜏𝑛, ·) and 𝜒𝑛 = 𝜒(𝜏𝑛) = 𝜒((𝑆, ℎ), 𝜏𝑛+1; 𝜏𝑛) represents the characteristic
curve passing through point (𝑆, ℎ) at time 𝜏𝑛+1. Then function 𝜒 is the solution of the final value ODE problem:



𝑑𝜒1
𝑑𝜏

=
( (
𝜎𝑆

)2 − (𝑟 − 𝑞)) 𝜒1,
𝜒1 (𝜏𝑛+1) = 𝑆,



𝑑𝜒2
𝑑𝜏

=
𝜌𝜎𝑆𝜎ℎ

2
+ 𝜅

1 − 𝑅 𝜒2,
𝜒2 (𝜏𝑛+1) = ℎ ,

(4.2)
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The components of 𝜒𝑛 can thus be deduced and are given by:

𝜒𝑛1 = 𝑆 exp
(
−((𝜎𝑆)2 − 𝑟 + 𝑞) (𝜏𝑛+1 − 𝜏𝑛)

)
,

𝜒𝑛2 = − (1 − 𝑅)𝜎
𝑆𝜎ℎ𝜌

2𝜅
+

(
ℎ + (1 − 𝑅)𝜎

𝑆𝜎ℎ𝜌

2𝜅

)
exp

( −𝜅
1 − 𝑅 (𝜏

𝑛+1 − 𝜏𝑛)
)
.

4.2. Fixed point scheme
In order to solve the nonlinearity of problem (4.1), a fixed point scheme is proposed at each iteration of the
characteristics method. Thus, the global scheme is shown in Algorithm 1.

Algorithm 1
Let 𝑁𝑇 > 1, 𝑛 = 0, 𝜀 > 0 and 𝑉0 given
For 𝑛 = 1, 2, . . . , 𝑁𝑇 − 1:
1. Let 𝑉𝑛+1,0 = 𝑉𝑛, 𝑘 = 0, 𝑒 = 𝜀 + 1
2. For 𝑘 = 0, 1, . . .

• Search 𝑉𝑛+1,𝑘+1 solution of:

(1 + Δ𝜏𝑛 𝑓 )𝑉𝑛+1,𝑘+1 − Δ𝜏𝑛 div(𝐴∇𝑉𝑛+1,𝑘+1)
≥ 𝑉𝑛 ◦ 𝜒𝑛 − Δ𝜏𝑛 ℎ (𝑉𝑛+1,𝑘 )+ (4.3)

𝑉𝑛+1,𝑘+1 (𝑆, ℎ) ≥ 𝐺 (𝑆)
L𝑛1 (𝑉𝑛+1,𝑘+1) (𝑉𝑛+1,𝑘+1 − 𝐺) = 0

• Compute the relative error 𝑒 =
‖𝑉𝑛+1,𝑘+1 −𝑉𝑛+1,𝑘 ‖
‖𝑉𝑛+1,𝑘+1‖

until 𝑒 < 𝜀.

4.3. Finite element method
For the spatial discretization of (4.3) a triangular mesh of Ω and the associated finite element space of piecewise
linear Lagrange polynomials are considered. For fixed natural numbers 𝑁𝑆 > 0 and 𝑁ℎ > 0, we consider a uniform
mesh of the computational domain Ω, the nodes of which are (𝑆𝑖 , ℎ 𝑗 ), with 𝑆𝑖 = 𝑖Δ𝑆 (𝑖 = 0, . . . , 𝑁𝑆 + 1) and
ℎ 𝑗 = 𝑗Δℎ ( 𝑗 = 0, . . . , 𝑁ℎ + 1), where Δ𝑆 = 𝑆∞/(𝑁𝑆 + 1) and Δℎ = ℎ∞/(𝑁ℎ + 1) denote the constant mesh steps
in each coordinate. Associated to this uniform mesh, a piecewise linear Lagrange finite element discretization is
considered. More precisely, we introduce the finite element spaces

𝑊ℎ = {𝜑ℎ ∈ C(Ω) / 𝜑|𝑇𝑗 ∈ P1 , ∀𝑇𝑗 ∈ T } ,
Kℎ = {𝜑ℎ ∈ 𝑊ℎ / 𝜑ℎ = 𝑉 on Γ∗,+1 ∪ Γ∗,−2 and 𝜑ℎ ≥ 𝐺 (𝑆)} ,

in order to find 𝑉𝑛+1,𝑘+1ℎ ∈ Kℎ satisfying the boundary conditions and such that:∫
Ω
(1 + Δ𝜏𝑛 𝑓 )𝑉𝑛+1,𝑘+1ℎ

(
𝜑ℎ −𝑉𝑛+1,𝑘+1ℎ

)
𝑑𝑆 𝑑ℎ

+ Δ𝜏𝑛
∫
Ω
𝐴∇𝑉𝑛+1,𝑘+1ℎ ∇ (

𝜑ℎ −𝑉𝑛+1,𝑘+1ℎ

)
𝑑𝑆 𝑑ℎ

− Δ𝜏𝑛
∫
Γ∗,+2

(𝐴∇𝑉𝑛+1,𝑘+1ℎ , 𝑛) (𝜑ℎ −𝑉𝑛+1,𝑘+1ℎ )𝜕𝛾

≥
∫
Ω

(
𝑉𝑛ℎ ◦ 𝜒𝑛

) (
𝜑ℎ −𝑉𝑛+1,𝑘+1ℎ

)
𝑑𝑆 𝑑ℎ − Δ𝜏𝑛

∫
Ω
ℎ
(
𝑉𝑛+1,𝑘ℎ

)+ (
𝜑ℎ −𝑉𝑛+1,𝑘+1ℎ

)
𝑑𝑆 𝑑ℎ ,

for all 𝜑ℎ ∈ Kℎ . Quadrature formula based on the midpoints of the edges of the triangles has been used to obtain the
coefficients of the matrix and the right hand side vector which define the linear system associated to the discretized
problem.
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After the time discretization with the method of characteristics and the spatial discretization with finite elements,
the fully discretized problem can be written in the form:



𝐴ℎ𝑉

𝑛+1,𝑘+1
ℎ ≥ 𝑏𝑛+1,𝑘+1ℎ ,

𝑉𝑛+1,𝑘+1ℎ ≥ Ψℎ ,

(𝐴ℎ𝑉𝑛+1,𝑘+1ℎ − 𝑏𝑛+1,𝑘+1ℎ ) (𝑉𝑛+1,𝑘+1ℎ − Ψℎ) = 0 ,
(4.4)

where Ψℎ denotes the discretized exercise value, 𝐺 (𝑆), which also coincides with the value at maturity.
In order to solve problem (4.4), the augmented Lagrangian active set (ALAS) algorithm is employed.

5. Numerical results
Finally, in order to show the relevance of incorporating counterparty risk pricing derivatives we show some
numerical results to understand the behaviour of the total value adjustment for American options. We focus on an
American put option sold by the investor. The maturity time is 𝑇 = 0.5 years and is discretized with 𝑁𝑇 = 700
time steps. Firstly, we plot the risky and risk-free derivative value and the XVA. Moreover, we present the exercise
region for both derivative value in order to show how affects the counterparty risk in the early exercise.

Fig. 1 American put option value risky valur (left), risk–free value (right)

Fig. 2 Total value adjustment
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49



Fig. 3 Exercise regions (white) risky value (left) risk–free value (right)
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Abstract

We propose a new method to solve the 3D Maxwell equations in axisymmetric singular domains, containing
reentrant corner or edges. By doing a Fourier analysis, one arrives to a sequence of singular problems set in 2D
domains, and 3D solutions are computed by solving 2D problems, depending on a Fourier mode 𝑘 . For each 𝑘 ,
the solution is decomposed into a regular and a singular part. The regular part is computed with a finite element
method. The singular part belongs to a finite-dimensional subspace and is computed by an appropriate numerical
approach, only for the modes 𝑘 = 0,±1, 2. The total the solution is then reconstructed, based on a non stationary
variational formulation. Numerical examples will be shown.

1. Introduction
This article is part of the efforts made in the framework of non-smooth problems, i.e. problems set in non convex
curvilinear polyhedra: such domains containing reentrant edges, they generate singularities in Maxwell’s equations
solutions. From a more intuitive point of view, the term singularities means that such geometrical features can
generate, in their vicinity, very strong electromagnetic fields, that have to be carefully handled and are often difficult
to compute. Moreover, as shown in [2], the impossibility of correctly handling these singularities may have drastic
consequences on the phenomenon one wants to model.

In this context, many methods have been proposed to compute the solution to the Maxwell equations. We can
mention the edge finite element method, introduced by Nédélec [9], that has demonstrated efficiency for the static
and eigenvalue problems. More recently, discontinuous Galerkin method has been introduced [8] and have been
extensively studied since then. In [5], Brenner et al. have also proposed an adaptive finite element method that
works in dimension two.

Nevertheless, it is interesting for some applications to have a continuous approximation of the solutions, that can
capture both the curl and the divergence of the electromagnetic fields, for instance when coupling the Maxwell
equations in other equations, like theVlasov one, see [3]. But the latter works only in convex (curvilinear) polyhedra.

In this paper, we consider three-dimensional axisymmetric domains with non axisymmetric data. Due to the
axisymmetric assumption, the singular computational domain can be reduced to a subset of R2. However, the data
being arbitrary, i.e. not necessarily axisymmetric, the electromagnetic field and other vector quantities still belong
to R3. Hence, we take advantage that the domain is transformed into a two-dimensional one, and based on a Fourier
analysis in the third dimension, one arrives to a sequence of singular problems set in a 2D singular domain. We
then derive a variational formulation from which we propose a finite element method to solve the problem and
numerically compute the solution.

2. Setting of the problem
We consider an axisymmetric bounded and simply connected Lipschitz domainΩ inR3, with a boundary Γ, n being
the unit outward normal to Γ. We denote by 𝑐 and 𝜀0 the speed of light and the dielectric permittivity respectively.
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Hence, the evolution of a time-dependent electromagnetic field E(x, 𝑡),B(x, 𝑡) propagating in vacuum is governed
by Maxwell’s equations1:

𝜕E
𝜕𝑡
− 𝑐2curl B = − 1

𝜀0
J, (2.1)

𝜕B
𝜕𝑡
+ curl E = 0, (2.2)

div E =
𝜌

𝜀0
, (2.3)

div B = 0 , (2.4)

where 𝜌(x, 𝑡) and J(x, 𝑡) are the charge and current densities, that depend on the space variable x and on the time
variable 𝑡. These equations are supplemented with perfect conductor boundary conditions, and homogeneous initial
conditions at initial time 𝑡 = 0.
We assume now that the domain Ω is axisymmetric, limited by the surface of revolution Γ, and we denote by

𝜔 and 𝛾𝑏 their intersections with a meridian half-plane. The boundary 𝜕𝜔 := 𝛾 corresponds to 𝛾𝑎 ∪ 𝛾𝑏 , where
either 𝛾𝑎 = ∅ when 𝛾𝑏 is a closed contour (i.e. Ω does not contain the axis), or 𝛾𝑎 is the segment of the axis lying
between the extremities of 𝛾𝑏 , see Fig.1. The natural coordinates for this domain are the cylindrical coordinates
(𝑟, 𝜃, 𝑧), with the basis vectors (e𝑟 , e𝜃 , e𝑧). A meridian half-plane is defined by the equation 𝜃 =constant, and (𝑟, 𝑧)
are Cartesian coordinates in this half-plane.
However, even if we assumed symmetry of revolution for the domain Ω, we do not assumed such a symmetry

for the data. Consequently, the problem can not be reduced to a two-dimensional one by assuming that derivative
with respect to the azimuthal variable 𝜃 vanishes, i.e. 𝜕/𝜕𝜃 = 0, as made for example in [1]: we have to continue
to deal with a three-dimensional problem.

Fig. 1 Example of 3D domain Ω, and its corresponding 2D intersection with meridian half-plane 𝜔.

Following [3], it is more efficient if one wishes to use nodal finite element methods, for instance for charge particle
simulations as in the context of Vlasov-Maxwell computations, to eliminate the magnetic field B (respectively the
electric field E) from Eqs. (2.1-2.4). Hence, Maxwell’s equations reduce to two second-order wave equations for
each field separately:

𝜕2E
𝜕𝑡2
+ 𝑐2curl curl E = − 1

𝜀0

𝜕J
𝜕𝑡
,

𝜕2B
𝜕𝑡2
+ 𝑐2curl curl B =

1
𝜀0

curl J ,

the constraints equations, namely divergence and boundary conditions, still holding.

3. Two-dimensional space reduction
As the data we consider are not axisymmetric, one can not perform 𝜕/𝜕𝜃 = 0. However, one can use the cylin-
drical symmetry of the domain Ω to characterize the quantities defined on it, through their Fourier series in 𝜃, the
coefficients of which being functions defined on 𝜔.

1In the text, names of function spaces of scalar fields usually begin by an italic letter, whereas they begin by a bold letter for spaces of vector
fields.
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Hence, we will consider, for a given vector field w(𝑟, 𝜃, 𝑧)

w (𝑟, 𝜃, 𝑧) = 1√
2𝜋

∑︁
𝑘∈Z

w𝑘 (𝑟, 𝑧) 𝑒𝑖𝑘 𝜃 ,

and the following weighted Lebesgue space

𝐿2𝑟 (𝜔) :=
{
𝑤 measurable on 𝜔 :

∬
𝜔
|𝑤(𝑟, 𝑧) |2 𝑟𝑑𝑟𝑑𝑧 < ∞

}
,

that will be the space of Fourier coefficients (at all modes) of functions2 in L2 (Ω).

At the same time, let us also define the space of relevant Fourier coefficients for the electromagnetic fields. It is
easy to check that, for w ∈ H (div ;Ω), resp. H (curl ;Ω), one has

divw =
1√
2𝜋

∑︁
𝑘∈Z
div 𝑘w𝑘𝑒𝑖𝑘 𝜃 resp. curl w =

1√
2𝜋

∑︁
𝑘∈Z

curl 𝑘w𝑘𝑒𝑖𝑘 𝜃 ,

where the operators for each mode 𝑘 are defined as

div 𝑘w :=
1
𝑟

𝜕 (𝑟𝑤𝑟 )
𝜕𝑟

+ 𝑖𝑘
𝑟
𝑤 𝜃 + 𝜕𝑤𝑧

𝜕𝑧
; (curl 𝑘w)𝑟 :=

𝑖𝑘

𝑟
𝑤𝑧 − 𝜕𝑤 𝜃

𝜕𝑧
;

(curl 𝑘w) 𝜃 :=
𝜕𝑤𝑟
𝜕𝑧
− 𝜕𝑤𝑧

𝜕𝑟
; (curl 𝑘w)𝑧 :=

1
𝑟

(
𝜕 (𝑟𝑤 𝜃 )
𝜕𝑟

− 𝑖𝑘𝑤𝑟
)
.

The regularity of w only depends on the regularity of its Fourier components w𝑘 , for 𝑘 ∈ Z. Let us now introduce
the spaces for the curl and div operators

H0 (curl ;Ω) = {v ∈ H (curl ;Ω) : v × n|Γ = 0} and H0 (div ;Ω) = {v ∈ H (div ;Ω) : v · n|Γ = 0} .

Hence, electric and magnetic field naturally belongs to the spaces

X (Ω) = H0 (curl ;Ω) ∩H (div v;Ω) and Y (Ω) = H (curl ;Ω) ∩H0 (div v;Ω)

As a consequence, a function v belongs to X(Ω) if and only if, for all 𝑘 ∈ Z, its Fourier coefficients v𝑘 belong to
the space X(𝑘) (𝜔) defined by

X(𝑘) (𝜔) = {v𝑘 ∈ L2𝑟 (𝜔), curl 𝑘v𝑘 ∈ L2𝑟 (𝜔) , div 𝑘v𝑘 ∈ L2𝑟 (𝜔) , v𝑘 × n |𝛾𝑏 = 0} .

In a similar way, one introduces the space Y(𝑘) (𝜔) for the Fourier coefficients of elements of Y(Ω), namely

Y(𝑘) (𝜔) = {v𝑘 ∈ L2𝑟 (𝜔), curl 𝑘v𝑘 ∈ L2𝑟 (𝜔) , div 𝑘v𝑘 ∈ L2𝑟 (𝜔) , v𝑘 · n |𝛾𝑏 = 0}

A useful property concerning these spaces (see [6]) is that X(𝑘) (𝜔) and Y(𝑘) (𝜔) are independent of 𝑘 , for |𝑘 | ≥ 2.
This allows us to compute the singular subspaces only for the modes |𝑘 | ≤ 2, while the modes ±2 will be use to
compute all the higher modes |𝑘 | > 2.

Applying the dimension reduction, and using the linearity of the Maxwell equations together with the orthogonality
of the different Fourier modes, we can reduce the 3D equations to a series of 2D formulations solved by the Fourier
coefficients (E𝑘 , B𝑘 ), for each mode 𝑘 , where the operators curl 𝑘 and div 𝑘 are involved. Let us introduce the
operator 𝑎𝑘 (·, ·) defined by

𝑎𝑘 (u, v) = (curl 𝑘u, curl 𝑘v) + (div 𝑘u, div 𝑘v) . (3.1)

We get that each mode E𝑘 is solution to the following variational formulation:
find E𝑘 (𝑡) ∈ X(𝑘) (𝜔) such that, for all F ∈ X(𝑘) (𝜔) :

𝑑2

𝑑𝑡2

(
E𝑘 (𝑡),F

)
+ 𝑐2 𝑎𝑘

(
E𝑘 (𝑡),F

)
= − 1

𝜀0

(
𝜕𝑡J𝑘 ,F

)
+ 1
𝜀0

(
𝜌𝑘 , div 𝑘F

)
, (3.2)

2In the text, we shall also use the standard spaces and norms
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where 𝜌𝑘 and J𝑘 denote the Fourier coefficients of the charge and current density 𝜌 and J respectively, that depend
(in space) only on (𝑟, 𝑧).

In the same way one gets that the Fourier coefficients B𝑘 (𝑡) verify the variational formulation, for each mode 𝑘:
find B𝑘 (𝑡) ∈ Y(𝑘) (𝜔) such that, for all C ∈ Y(𝑘) (𝜔) :

𝑑2

𝑑𝑡2

(
B𝑘 (𝑡),C

)
+ 𝑐2 𝑎𝑘

(
B𝑘 (𝑡),C

)
=
1
𝜀0

(
curl 𝑘J𝑘 ,C

)
. (3.3)

4. Decomposition in regular and singular parts
Due to the geometrical reduction, the geometrical singularities remain in the two-dimensional domain 𝜔 (see
Figure 1). We briefly recall here some useful results helpful to understand the construction of the numerical method
(see [2], [6] for details). As a first step, we introduce, for each Fourier mode 𝑘 , the regular subspaces X𝑅(𝑘) and
Y𝑅(𝑘) , defined by:

X𝑅(𝑘) := X(𝑘) ∩H1𝑟 (𝜔) , and Y𝑅(𝑘) := Y(𝑘) ∩H1𝑟 (𝜔) .
These subspaces are regular, in the sense that they coincide to the spaces of solutions in the case of a regular
domain. Using now thatX𝑅(𝑘) andY𝑅(𝑘) are closed subspaces ofX(𝑘) andY(𝑘) respectively, we deduce the following
decomposition

X(𝑘) = X𝑅(𝑘) ⊕ X𝑆(𝑘) and Y(𝑘) = Y𝑅(𝑘) ⊕ Y𝑆(𝑘) ,

where X𝑆(𝑘) and Y𝑆(𝑘) are singular subspaces, equal to {0} if the domain Ω (or equivalently 𝜔) is regular.

The second step is to characterize these singular spaces, that have been proved to be finite dimensional. We have

Theorem 4.1 The singular spaces X𝑆(𝑘) and Y
𝑆
(𝑘) are of finite dimension, namely

• For 𝑘 = 0

dimY𝑆(𝑘) := 𝑁𝐵 = number of reentrant edges,

dimX𝑆(𝑘) := 𝑁𝐸 = 𝑁𝐵 + number of conical points with vertex angle >
𝜋

𝛽
, (𝛽 ' 1.3731)

• For 𝑘 ≠ 0

dimY𝑆(𝑘) := 𝑁𝐵 = dimX𝑆(𝑘) := 𝑁𝐸 = number of reentrant edges.

From these properties, one can decompose, for each mode 𝑘 , the electromagnetic field (E𝑘 ,B𝑘 ) into a regular and
a singular part, namely

(E𝑘 (𝑡),B𝑘 (𝑡)) = (E𝑘𝑅 (𝑡),B𝑘𝑅 (𝑡)) + (E𝑘𝑆 (𝑡),B𝑘𝑆 (𝑡)) . (4.1)

Moreover, since the singular spaces are of finite dimension, one can introduce their respective basis (x𝑘𝑆, 𝑗 ) 𝑗=1,𝑁𝐸
and (y𝑘𝑆, 𝑗 ) 𝑗=1,𝑁𝐵 for a given Fourier mode 𝑘 . Using now that these basis are time independent, one can express the
singular parts E𝑘𝑆 (𝑡) and B𝑘𝑆 (𝑡) as

E𝑘𝑆 (𝑡) =
𝑁𝐸∑︁
𝑗=1

𝜇𝑘𝐸, 𝑗 (𝑡)x𝑘𝑆, 𝑗 and B𝑘𝑆 (𝑡) =
𝑁𝐵∑︁
𝑗=1

𝜇𝑘𝐵, 𝑗 (𝑡)y𝑘𝑆, 𝑗 ,

where 𝜇𝑘𝐸, 𝑗 (𝑡) and 𝜇𝑘𝐵, 𝑗 (𝑡) are smooth functions in time (at least continuous). As a consequence, the decomposition
(4.1) of the electromagnetic, that will be useful for the numerical method, can be finally expressed, for each 𝑘 ,

E𝑘 (𝑡) = E𝑘𝑅 (𝑡) ⊕
𝑗=𝑁𝐸∑︁
𝑗=1

𝜇𝑘𝐸, 𝑗 (𝑡)x𝑘𝑆, 𝑗 , B𝑘 (𝑡) = B𝑘𝑅 (𝑡) ⊕
𝑗=𝑁𝐵∑︁
𝑗=1

𝜇𝑘𝐵, 𝑗 (𝑡)y𝑘𝑆, 𝑗 . (4.2)

From a numerical point of view, as explained above, it is sufficient to compute them only for 𝑘 = −1, 0, 1, 2. As
these basis are not time-dependent, the computations will be carried out only once as an initialization procedure.
This has been previously presented in [4] where details can be found.
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5. Solving the time-dependent problem
In this section, we present the case of the magnetic field formulation. The electric field formulation is similar and
can be derived in the same way. Therefore, we consider the variational formulation (3.3), in which we substitute
the decomposition of the magnetic field (4.2) in regular and singular parts. Using that the singular basis y𝑘𝑆, 𝑗 are
time-independent, and denoting by ′′ the second derivative in time, we get

𝑑2

𝑑𝑡2

(
B𝑘𝑅 (𝑡),C

)
+
𝑁𝐵∑︁
𝑗=1
(𝜇𝑘𝐵, 𝑗 ) ′′

(
y𝑘𝑆, 𝑗 ,C

)
+ 𝑐2 𝑎𝑘

(
B𝑘𝑅 (𝑡),C

)
+ 𝑐2

𝑁𝐵∑︁
𝑗=1

𝜇𝑘𝐵, 𝑗 (𝑡) 𝑎𝑘
(
y𝑘𝑆, 𝑗 ,C

)

=
1
𝜀0

(
curl 𝑘J𝑘 ,C

)
, ∀C ∈ Y𝑅(𝑘) (𝜔) . (5.1)

In addition, we add to the space of test functions Y𝑅 (𝜔) the fonctions (y𝑘𝑆, 𝑗 ) 𝑗=1,𝑁𝐵 . This yields the 𝑁𝐵 additional
equations

𝑑2

𝑑𝑡2

(
B𝑘𝑅 (𝑡), y𝑘𝑆,𝑖

)
+
𝑁𝐵∑︁
𝑗=1
(𝜇𝑘𝐵, 𝑗 ) ′′

(
y𝑘𝑆, 𝑗 , y𝑘𝑆,𝑖

)
+ 𝑐2 𝑎𝑘

(
B𝑘𝑅 (𝑡), y𝑘𝑆,𝑖

)
+ 𝑐2

𝑁𝐵∑︁
𝑗=1

𝜇𝑘𝐵, 𝑗 (𝑡) 𝑎𝑘
(
y𝑘𝑆, 𝑗 , y𝑘𝑆,𝑖

)

=
1
𝜀0

(
curl 𝑘J𝑘 , y𝑘𝑆,𝑖

)
, ∀y𝑘𝑆,𝑖 ∈ Y𝑆(𝑘) (𝜔), 1 ≤ 𝑖 ≤ 𝑁𝐵 .

Moreover, using the orthogonality for each 𝑘 of Y𝑅(𝑘) and Y𝑆(𝑘) with respect to the equivalent scalar product 𝑎𝑘 (·, ·)
defined by (3.1), we can eliminate the corresponding terms in the formulations above. This variational formulation
is finally expresses as
Find (B𝑘𝑅, 𝝁𝑘𝐵) ∈ Y𝑅(𝑘) × R𝑁𝐵 such that




(
𝜕2B𝑘𝑅 (𝑡)
𝜕𝑡2

,C
)
+
𝑁𝐵∑︁
𝑗=1
(𝜇𝑘𝐵, 𝑗 ) ′′

(
y𝑘𝑆, 𝑗 ,C

)
+ 𝑐2 𝑎𝑘

(
B𝑘𝑅 (𝑡),C

)

=
1
𝜀0

(
curl 𝑘J𝑘 ,C

)
, ∀C ∈ Y𝑅(𝑘) (𝜔) ,

(
𝜕2B𝑘𝑅 (𝑡)
𝜕𝑡2

, y𝑘𝑆,𝑖

)
+
𝑁𝐵∑︁
𝑗=1
(𝜇𝑘𝐵, 𝑗 ) ′′

(
y𝑘𝑆, 𝑗 , y𝑘𝑆,𝑖

)
+ 𝑐2

𝑁𝐵∑︁
𝑗=1

𝜇𝑘𝐵, 𝑗 (𝑡) 𝑎𝑘
(
y𝑘𝑆, 𝑗 , y𝑘𝑆,𝑖

)

=
1
𝜀0

(
curl 𝑘J𝑘 , y𝑘𝑆,𝑖

)
, ∀y𝑘𝑆,𝑖 ∈ Y𝑆(𝑘) (𝜔).

(5.2)

From a computational point of view, it is worth to rewrite the bilinear form 𝑎𝑘 (·, ·) involved above, depending on
the values of 𝑘 . Performing a simple integration by parts shows that

𝑎𝑘 (u, v) = 𝑎0 (u𝑚, v𝑚) + 𝑘2
(u𝑚
𝑟
,
v𝑚
𝑟

)
+ (curl 𝑢𝜃 , curl 𝑣 𝜃 ) + 𝑘2

(𝑢𝜃
𝑟
,
𝑣 𝜃
𝑟

)
+ 𝚤𝑘𝐵 (u, v) + 𝚤𝑘𝐶 (u, v) ,

where 𝑎0 (·, ·) denotes the operator 𝑎𝑘 (·, ·) for 𝑘 = 0 (namely in the "full" axisymmetric case), u𝑚 := (𝑢𝑟 , 𝑢𝑧) and
the vector curl of a scalar field 𝑤 is defined by

curl𝑤 := −𝜕𝑧𝑤e𝑟 + 𝑟−1𝜕𝑟 (𝑟𝑤) e𝑧 .

In addition, the two bilinear forms 𝐵 (u, v) and 𝐶 (u, v) are defined by

𝐵 (u, v) :=
∫
𝛾𝑏

(u𝑚 · n) �̄� 𝜃 − u𝜃 (v̄𝑚 · n) 𝑑𝛾 ,

and
𝐶 (u, v) :=

∫ ∫
𝜔
2 (𝑢𝜃 �̄�𝑟 − 𝑢𝑟 �̄� 𝜃 ) 𝑑𝜔

𝑟
.

Note that the term 𝐵 (u, v) is vanishes as soon u · n = v · n = 0, that is the case for the magnetic field, due to the
perfect conductor boundary condition. The same is true if u×n = v×n = 0, that is the case for the electric field. In
addition, the term 𝐶 (u, v) is not singular despite the presence of 1/𝑟 in the integral. Indeed, only on the boundary
𝛾𝑎 one may have 𝑟 = 0, but 𝑢𝜃 = 𝑣 𝜃 = 0 (that is in practice 𝐵𝑘𝜃 or 𝐸

𝑘
𝜃 for the electric case) due the symmetry
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condition on the axis 𝛾𝑎.

Starting from this variational formulation, we are now ready to derive a finite element approximation. Let
Y𝑅,ℎ(𝑘) ⊂ Y𝑅(𝑘) be the space of discretized test functions of dimension 𝑁ℎ . We actually used the 𝑃2 finite element,
and denote by Tℎ the mesh of 𝜔 made of triangles 𝐾ℎ . Then, the approximation space for the vector fields is made
of functions which are component-wise 𝑃2-conforming on the triangulation.

Let now B𝑘,ℎ (𝑡) = B𝑘,ℎ𝑅 (𝑡) +
𝑁𝐵∑︁
𝑗=1

𝜇𝑘,ℎ𝐵, 𝑗 (𝑡) y𝑘,ℎ𝑆, 𝑗 be the discrete solution. After discretization in space, the semi-

discretized variational formulation is written (with the addition of the index ℎ) in the same way as (5.2). It can be
expressed equivalently as a linear system:

𝑑2

𝑑𝑡2
M𝑟𝑟𝐵

𝑘
𝑅 + M𝑘𝑟𝑠𝜇𝑘𝐵

′′ + 𝑐2K𝑘𝑟𝑟𝐵𝑘𝑅 =
1
𝜀0
R𝑘𝑟𝑟 𝐽

𝑘 , (5.3)

𝑑2

𝑑𝑡2
M𝑘𝑠𝑟𝐵

𝑘
𝑅 + M𝑘𝑠𝑠𝜇𝑘𝐵

′′ + 𝑐2K𝑘𝑠𝑠𝜇𝑘𝐵
′′

=
1
𝜀0
R𝑘𝑠𝑟 𝐽

𝑘 , (5.4)

where M𝑟𝑟 denotes the mass matrix that does not depend to the Fourier mode 𝑘 , M𝑘𝑟𝑠 is a (𝑁ℎ , 𝑁𝐵) rectangular
matrix coming from the integral over 𝜔 of the product of the 𝑁𝐵 singular functions y𝑘,ℎ𝑆, 𝑗 by the basis functions of
Y𝑅,ℎ(𝑘) ,M

𝑘
𝑠𝑟 being its transpose. Similarly, the matrix K𝑘𝑟𝑟 is associated to the term 𝑎𝑘

(
B𝑘𝑅 (𝑡),C

)
R𝑘𝑟𝑟 coming from

the source term with curl 𝑘J𝑘 , and 𝜇𝑘𝐵 standing for the vector of R𝑁𝐵 of entries (𝜇𝑘𝐵, 𝑗 ). Finally,M𝑘𝑠𝑠 andK𝑘𝑠𝑠 are the
“singular” mass and rigidity matrices of dimension (𝑁𝐵, 𝑁𝐵), associated to the term

(
y𝑘𝑆, 𝑗 , y𝑘𝑆,𝑖

)
and 𝑎𝑘

(
y𝑘𝑆, 𝑗 , y𝑘𝑆,𝑖

)
respectively. For these singular matrices, the computation must be carried out precisely in the neighborhood of the
singularities by using a quadrature formula of high order.

We then perform a time discretization involving a second-order explicit (leap-frog) scheme. Here the notation 𝑋𝑛
(resp. 𝑋𝑛+1) stands for a variable 𝑋 at time 𝑡𝑛 = 𝑛Δ𝑡 (resp. 𝑡𝑛+1 = (𝑛+1)Δ𝑡), where Δ𝑡 is the time-step. 𝐹𝑛, 𝐺𝑛, 𝐻𝑛
is the set of quantities known at time 𝑡𝑛 for each equation of the scheme (5.3)-(5.4), which can be rewritten as

M𝑟𝑟𝐵
𝑘,𝑛+1
𝑅 +M𝑘𝑟𝑠𝜇𝑘,𝑛+1𝐵 = 𝐹𝑘,𝑛 , (5.5)

M𝑘𝑠𝑟𝐵
𝑘,𝑛+1
𝑅 +M𝑘𝑠𝑠𝜇𝑘,𝑛+1𝐵 = 𝐺𝑘,𝑛 . (5.6)

To solve this linear system, a convenient way is to decouple 𝜇𝑘,𝑛+1𝐵 and the unknown 𝐵𝑘,𝑛+1𝑅 as proposed in [2]
for a two-dimensional Cartesian Maxwell system of equations, in the case of 𝑁𝐵 = 1. The method developed
here is more general, since it is also adapted to a domain with 𝑁𝐵 ≥ 1. For this purpose, we simply substitute
(5.5)−M𝑘𝑟𝑠 (M𝑘𝑠𝑠)−1(5.6) to obtain a system where 𝜇𝑘,𝑛+1𝐵 does no appear anymore. It remains now to invert this
system to compute 𝐵𝑘,𝑛+1𝑅 , and then, at the corresponding time, the value 𝜇𝑘,𝑛+1𝐵 by solving (5.6).

Compared to the system one would obtained in a regular domain, the additional effort is essentially the computation
of the matrix (M𝑘𝑠𝑠)−1. M𝑘𝑠𝑠 being a symmetric definite positive matrix (by construction) of dimension (𝑁𝐵, 𝑁𝐵),
i.e. a few units (and often 𝑁𝐵 = 1), (M𝑘𝑠𝑠)−1 is very easy to compute once and for all, for any mode 𝑘, |𝑘 | ≤ 2.

6. Numerical results
We present here numerical results to illustrate the method. For the sake of simplicity, we restrict ourselves to a
domain with only one singular point. Hence, we will consider a 3-D top hat domain Ω with a reentrant circular
edge, that corresponds, for a given 𝜃, to an L-shaped 2-D domain 𝜔 with a reentrant corner. We introduce an un-
structured mesh of 𝜔 made up of triangles, with no particular refinement near the reentrant corner. The variational
formulations are approximated by a finite element method with FreeFem++ package [7]. The singular basis being
computed as described in [4], we focus here on the computation of the time-dependent solutions. As in the previous
section, we will concentrate on the magnetic case.

In addition, we assume that a perfectly conducting boundary condition is imposed on𝜔, and we want to numerically
compute B𝑘 (𝑡) = B𝑘𝑅 (𝑡) + 𝜇𝑘𝐵 (𝑡)y𝑘𝑆 , assuming that singular basis y𝑘𝑆 was already computed. More precisely, we are
interested in computing the magnetic field B𝑘 (𝑡) created by a current loop, with initial conditions set to zero, and
a current defined by J(𝑡) = 10 sin(𝜆𝑡)e𝜃 , with a frequency 𝜆/2𝜋 = 2.5GHz. The support of this current is a little
disc centered around the middle of the domain. This current generates a wave that propagates circularly around the
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current source. Physically, as long as the wave has not reached the reentrant corner, the field is smooth.

Let 𝑡𝐼 be the impact time of the wave on the reentrant corner. Then, if one writes B𝑘 (𝑡) = B𝑘𝑅 (𝑡) + 𝜇𝑘𝐵 (𝑡)y𝑘𝑆 ,
𝜇𝑘𝐵 (𝑡) = 0 for all 𝑡 lower than 𝑡𝐼 , and B𝑘 (𝑡) and B𝑘𝑅 (𝑡) coincide. On the other hand, for 𝑡 > 𝑡𝐼 , 𝜇𝑘𝐵 (𝑡) ≠ 0 (and so
𝜇𝑘𝐵 (𝑡)y𝑘𝑆 is) and the total field differs from its regular part.

This behavior is illustrated, for 𝑘 = 1, on Figures 2 and 3. Similar results are obtained for other values of 𝑘 .

Fig. 2 B1 (𝑡1) and B1𝑅 (𝑡1) , for 𝑡1 < 𝑡𝐼 (case 𝑘 = 1), z-component.

Fig. 3 B1 (𝑡2) and B1𝑅 (𝑡2) , for 𝑡2 > 𝑡𝐼 (case 𝑘 = 1), r-component, in 2D and 3D view.
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Analysis of a SEIRS metapopulation model with fast migration
Pilar Atienza, Luis Sanz-Lorenzo
Universidad Politécnica de Madrid, Spain

Abstract

Metapopulation models for the study of a infectious disease in a population with space structure involve a large
number of equations. Therefore the mathematical analysis of these models yields only partial results. We propose
a model in which, as it is often the case in practical situations, the time scale of the transport of individuals is
much master that that of the disease. Then we make use of approximate reduction techniques in order to reduce
the system’s dimension, and carry out a thorough analysis of the reduced model. In particular we characterize the
number and stability of equilibria, provide conditions for the disease to become endemic (resp. die out) and show
that certain counter-intuitive behaviors can arise.

1. Introduction
Classical deterministic epidemic models assume an homogeneous spatial distribution of individuals. However,
travels of individuals between different regions have proved to have a great influence on the spatial spread of
diseases. Therefore, given the characteristics of current society, in which most humans live in cities and travel
along defined routes, it seems reasonable to include spatial variation into epidemic models.
The spatial spread of infectious diseases is a complex phenomenon tomodel. The usual approach in the literature

is to use the so called metapopulation models, in which the population is distributed into discrete spatial sites,
called patches, amongst which they may migrate. This movement of individuals is captured by a directed graph, in
which the vertices represent the geographical regions and the arcs represent the connections between them.
Epidemic metapopulation models have been formulated and discussed in the literature for different diseases,

see for example [2–4], yielding systems that consist of a large number of ordinary differential equations. This
complexity greatly limits the analytical study that can be carried out, and only partial results have been obtained
for these models. In particular, in [2], a SEIRS model with spatial distribution is formulated and studied. The
expression of the basic reproduction number of the model is derived, but the existence and stability of endemic
equilibria is only considered numerically, as an analytical approach seems unfeasible.
Furthermore, in many practical situations it can be assumed that travel of individuals between patches is much

faster than the dynamics of the corresponding disease. For example, in the case of human diseases travel between
different cities can be done in the span of a few hours, while the development of an infectious disease may take
days or even weeks. This fact justifies the use of two different time scales to formulate the disease dynamics and
the movement of individuals between sites.
One can make use of the existence of two different time scales in order to obtain a reduced approximation of

the model. Indeed, in [7,8] approximate aggregation techniques are presented for the study of complex population
dynamics in which two time scales are considered. Loosely speaking, this method consists in taking the fast process
in the original model to its equilibrium value, yielding a system whose dimension can be reduced. These techniques
allow us to obtain an approximated simplified model that, under the assumption that migration of individuals is
sufficiently faster than the disease dynamics, behave qualitatively similar to the original model, while its dimension
and, hence, complexity is highly reduced.
The objective of this work is to formulate a SEIRS metapopulation model, derive its approximate reduced

version by means of aggregation techniques and carry out an exhaustive study of this simplified system. We aim to
obtain stronger results than those already found in the literature for the case of metapopulation models without a
time-scale approach.
In Section 2 the model is formulated, considering a metapopulation of 𝑟 patches in which the local dynamics

of the disease in each site is of SEIRS type, whereas migration of individuals among sites is linear. This model
is described by a system of 4𝑟 differential equations. Next, under the assumption that migration of individuals
between regions is fast with respect to the disease dynamics, we make use of approximate aggregation techniques
in order to reduce the system’s dimension. The resulting system consists of only 4 differential equations.
Section 3 carries out a thorough analytical study of the approximated model. The basic reproduction number

R0 of the model is obtained by the next generation matrix method [1, 6]. The analysis carried out shows that the
model can only have two behaviours: if R0 < 1 the disease will die out in every region, whereas if R0 > 1 the
disease will be globally endemic.
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Moreover, the reduction on the systems dimension has allowed us to obtain results that can not be found in the
literature on epidemic metapopulation models without a time-scale approach. In particular, some conclusions are
given regarding the existence of endemic equilibria in relation to the value of the basic reproduction number.
Finally, in Section 4 we study the influence that the parameters of migration have on the behaviour of the disease.

The analysis shows that the dynamics the disease would have in the isolated patches can vary under the existence
of migration of individuals. In particular, under certain conditions a counter-intuitive scenario can arise: let us
assume we have 𝑟 separated sites and in all of them the disease dies out (resp. is endemic). Then if migration of
individuals between them is allowed, then for certain values of the parameters regarding migration, the behaviour
of the disease may change, i.e. it might become endemic (resp. die out) globally.
The system formulation and results are also particularized for a SIRS model.

2. Formulation and reduction of the model
We consider a population spread out among 𝑟 different patches amongst which they can migrate, and affected by a
disease. We assume that the local dynamics of the disease in each site follows a classical SEIRS model, whereas
migration of individuals among sites is linear, see Figure 1.

SEIRS

S1, E1, I1, R1

µ1, ǫ1, δ1, γ1
1

f1

SEIRS

S2, E2, I2, R2

µ2, ǫ2, δ2, γ2
2

f2

SEIRS

Sr, Er, Ir, Rr

µr, ǫr, δr, γr
r

fr

SEIRS
Si, Ei, Ii, Ri

µi, ǫi, δi, γii
fi

Fig. 1 SEIRS metapopulation model consisting of r interconnected patches.

This setting has been explored in several works [2–4] but the large dimension of the resulting model makes its
analytical study very difficult. In our approach we make use of the fact that in many practical situations the time
scale of migration is much faster than that of the epidemic process to formulate a two-time scale model.
The “slow time” variable, 𝑡, is used to describe the dynamics of the disease, whereas we denote the “fast time

”variable as 𝜏. Derivatives of a function 𝑔 with respect this two different time variables are denoted as 𝑑𝑔𝑑𝑡 := ¤𝑔 and
𝑑𝑔
𝑑𝜏 := 𝑔

′ respectively.
In order to formulate the model, we first consider both phenomena separately, and then combine them into the

resulting complete system.

2.1. Local dynamics in each patch
Let 𝑆𝑖 , 𝐸𝑖 , 𝐼𝑖 , and 𝑅𝑖 denote the number of susceptible, exposed (infected but can not transmit the disease),
infectious (infected and contagious) and recovered individuals who are present in patch 𝑖, 𝑖 = 1, ..., 𝑟 , at time 𝑡,
respectively. The equations of a classical SEIRS model for patch 𝑖 are:

¤𝑆𝑖 = − 𝑓𝑖 (𝑆𝑖 , 𝐸𝑖 , 𝐼𝑖 , 𝑅𝑖) + 𝜇𝑖𝑁𝑖 − 𝜇𝑖𝑆𝑖 + 𝛿𝑖𝑅𝑖 (2.1)
¤𝐸𝑖 = + 𝑓𝑖 (𝑆𝑖 , 𝐸𝑖 , 𝐼𝑖 , 𝑅𝑖) − (𝜖𝑖 + 𝜇𝑖)𝐸𝑖
¤𝐼𝑖 =𝜖𝑖𝐸𝑖 − (𝛾𝑖 + 𝜇𝑖)𝐼𝑖
¤𝑅𝑖 =𝛾𝑖 𝐼𝑖 − (𝛿𝑖 + 𝜇𝑖)𝑅𝑖
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where the subscript 𝑖 denotes the patch number each epidemiological variable refers to and the time derivatives
are with respect to the slow time 𝑡. We denote by 𝑓𝑖 the incidence function, over which for the moment we do not
impose any condition, 𝜇𝑖 denotes the birth and the death rate of individuals (as it is the case in most models, both
are assumed equal so that the total population in each patch remains constant), 1/𝜖𝑖 is the average latency time,
1/𝛾𝑖 is the average recovery time for infectious individuals and 1/𝛿𝑖 is the average time of the immunity period for
recovered individuals.

2.2. Migration model
Let us denote X(𝑡) := (𝑆1, ..., 𝑆𝑟 , 𝐸1, ..., 𝐸𝑟 , 𝐼1, ..., 𝐼𝑟 , 𝑅1, ..., 𝑅𝑟 ),
For each 𝑌 ∈ {𝑆, 𝐸, 𝐼, 𝑅}, let Y (𝑡) := (𝑌1, ..., 𝑌𝑟 ) and let

𝑌 :=
𝑟∑︁
𝑖=1
𝑌𝑖 (2.2)

denote the total population in each of the epidemiological classes. We refer to 𝑆, 𝐸, 𝐼 and 𝑅 as “global variables”.
We assume that migration between sites is a linear process. The migration rate (with respect to the “fast time”)

of individuals of each class 𝛼 ∈ {𝑆, 𝐸, 𝐼, 𝑅} from patch 𝑗 to 𝑖, is denoted by 𝑚𝛼𝑖 𝑗 , 𝑖, 𝑗 = 1, ..., 𝑟 . Therefore, the
migration matrix for class 𝛼 is

𝑀𝛼 :=

©«

−
𝑟∑

𝑖=1,𝑖≠1
𝑚𝛼𝑖1 𝑚𝛼12 · · · 𝑚𝛼1𝑟

𝑚𝛼21 −
𝑟∑

𝑖=1,𝑖≠2
𝑚𝛼𝑖2 · · · 𝑚𝛼2𝑟

...
...

. . .
...

𝑚𝛼𝑟1 𝑚𝛼𝑟2 · · · −
𝑟∑

𝑖=1,𝑖≠𝑟
𝑚𝛼𝑖𝑟

ª®®®®®®®®®®¬

,

so that it is a Metzler matrix. The matrix characterizing migration for the whole population is then 𝑀 =
diag

(
𝑀𝑆 , 𝑀𝐸 , 𝑀 𝐼 , 𝑀𝑅

)
and therefore migration dynamics is described by the equation X′ = 𝑀X.

We assume that an individual initially present in any patch can (directly or indirectly) travel to any other patch.
This assumption results in the fact that that digraph corresponding to the migration is strongly connected and
therefore each migration matrix 𝑀𝛼 is irreducible.
The following result characterizes the asymptotic behavior of migration:

Theorem 2.1 For each 𝛼 ∈ {𝑆, 𝐸, 𝐼, 𝑅}, let 𝑀𝛼 be irreducible. Let v𝛼 > 0 be the right eigenvector of matrix
𝑀𝛼 associated to eigenvalue 𝜆 = 0 and normalized so that the sum of its components is 1. Then, if the initial
condition X (0) contains at least an individual in each of the epidemiological clases {𝑆, 𝐸, 𝐼, 𝑅}, then the dynamics
of migration for the whole population tends to the equilibrium

X𝑒 =
©«

v𝑆𝑆
v𝐸𝐸
v𝐼 𝐼
v𝑅𝑅

ª®®®¬
, (2.3)

where 𝑆, 𝐸, 𝐼 and 𝑅 are given by (2.2).

2.3. Complete model with two time scales
We proceed with the formulation of the complete model, that takes into account the joint effect of the local disease
dynamics in each site and inter-site migration. In order to take into account the existence of two different time scales,
we define the ratio of characteristic times 𝜀 := 𝑡/𝜏, which under our hypotheses is a small positive number. Putting
together the equations regarding the disease dynamics in each site (2.1) with those corresponding to migration, we
obtain the following model:

S′ = 𝜀
[−f (X) + 𝐷𝜇N − 𝐷𝜇S + 𝐷 𝛿R

] + 𝑀𝑆S (2.4)
E′ = 𝜀

[+f (X) − (
𝐷 𝜖 + 𝐷𝜇

)
E
] + 𝑀𝐸E

I′ = 𝜀
[
𝐷 𝜖E − (

𝐷𝜇 + 𝐷𝛾
)
I
] + 𝑀 𝐼 I

R′ = 𝜀
[
𝐷𝛾I − (

𝐷 𝛿 + 𝐷𝜇
)
R
] + 𝑀𝑅R,

where f (X) :=
©«
𝑓1 (X1)
...

𝑓𝑟 (X𝑟 )

ª®®¬
and 𝐷𝜎 := diag (𝜎1, ..., 𝜎𝑟 ) for 𝜎 ∈ {𝜇, 𝛿, 𝜖, 𝛾}.
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2.4. Reduction of the model
In order to carry out the analysis of model (2.4), we make use of the existence of different time scales and apply
approximate aggregation techniques (see [7, 8] for a survey and a collection of the main results) in order to reduce
its dimension. The reduction procedure consists on replacing the population vector with its equilibrium value for
the migration process, i.e., replacing X(𝑡) with X𝑒 given by (2.3) and then summing the equations corresponding
to each infectious class, in such a way that we obtain an autonomous model in the global variables 𝑆, 𝐸, 𝐼 and 𝑅.
The resulting reduced or aggregated model is:

¤𝑆 = − 𝑓 (𝑆, 𝐸, 𝐼, 𝑅) + 𝜇𝐼 𝐼 + 𝜇𝐸𝐸 +
(
𝜇𝑅 + 𝛿

)
𝑅 (2.5)

¤𝐸 = + 𝑓 (𝑆, 𝐸, 𝐼, 𝑅) −
(
𝜖 + 𝜇𝐸

)
𝐸

¤𝐼 =𝜖𝐸 −
(
𝜇𝐼 + 𝛾

)
𝐼

¤𝑅 =𝛾𝐼 −
(
𝛿 + 𝜇𝑅

)
𝑅.

where

𝑓 (𝑆, 𝐸, 𝐼, 𝑅) :=
𝑟∑︁
𝑖=1

𝑓𝑖

(
𝑣𝑆𝑖 𝑆, 𝑣

𝐸
𝑖 𝐸, 𝑣

𝐼
𝑖 𝐼, 𝑣

𝑅
𝑖 𝑅

)

𝜇𝑆 :=
𝑟∑︁
𝑖=1
𝜇𝑖𝑣

𝑆
𝑖 ∈ R , 𝜇𝐸 :=

𝑟∑︁
𝑖=1
𝜇𝑖𝑣

𝐸
𝑖 ∈ R

𝜇𝑅 :=
𝑟∑︁
𝑖=1
𝜇𝑖𝑣

𝑅
𝑖 ∈ R , 𝜇𝐼 :=

𝑟∑︁
𝑖=1
𝜇𝑖𝑣

𝐼
𝑖 ∈ R

𝛿 :=
𝑟∑︁
𝑖=1
𝛿𝑖𝑣

𝑅
𝑖 ∈ R , 𝛾 :=

𝑟∑︁
𝑖=1
𝛾𝑖𝑣

𝐼
𝑖 ∈ R

𝜖 :=
𝑟∑︁
𝑖=1
𝜖𝑖𝑣

𝐸
𝑖 ∈ R

Note that the reduced model consists of only 4 differential equations, in contrast to the 4𝑟 equations that
constitute the original metapopulation model (2.4).
The results in the field of approximate aggregation techniques allow us to claim that, loosely speaking, if

the reduced model has an attractor which is locally structurally stable (in particular this holds for a hyperbolic
equilibrium) and 𝜖 is small enough, i.e., if the separation of time scales between the disease dynamics and
migration is large enough, then the original model also has a corresponding attractor which is 𝑂 (𝜖)-close and has
the same stability properties. Therefore, the analysis of the reduced system provides relevant qualitative information
about the behavior of the original model.

3. Analysis of the reduced model
In contrast with the original model (2.4), model (2.5) is amenable to an analytical study. In order to do so we will
consider, as most epidemiological models do, the case of standard incidence in each patch, i.e., 𝑓𝑖 (𝑆𝑖 , 𝐸𝑖, 𝐼𝑖 , 𝑅𝑖) =
𝛽𝑖
𝐼𝑖𝑆𝑖
𝑁𝑖
, and so we have

𝑓 (𝑆, 𝐸, 𝐼, 𝑅) =
𝑟∑︁
𝑖=1
𝛽𝑖

𝑣𝑆𝑖 𝑣
𝐼
𝑖

𝑣𝑆𝑖 𝑆 + 𝑣𝐸𝑖 𝐸 + 𝑣𝐼𝑖 𝐼 + 𝑣𝑅𝑖 𝑅
𝐼𝑆.

It must be taken into account that the total population size (𝑁 := 𝑆 + 𝐸 + 𝐼 + 𝑅) remains constant, so the analysis
of the model can be reduced to 3 equations, for example those of 𝐸, 𝐼, 𝑅.
It is straightforward to show that for all non-negative initial conditions system (2.5) has an unique solution for

all times and the solution remains non-negative. The study will be reduced to region

𝐾 := {(𝐸, 𝐼, 𝑅) : 𝐸 ≥ 0, 𝐼 ≥ 0, 𝑅 ≥ 0, 𝐸 + 𝐼 + 𝑅 ≤ 𝑁}, (3.1)

as only solutions inside that region have an epidemiological interpretation. It can be shown taht that 𝐾 is
positively invariant, i.e. solutions lie in 𝐾 for all positive times given initial conditions inside that region. Axis
{𝐸 = 0} ∩ {𝐼 = 0} is also positively invariant.
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Number of EE Stability of DFE Stability of EE Case number
R0 < 1 0 GAS - 1
R0 > 1 1 US GAS (*) 2

Tab. 1 Summary of possible scenarios of aggregated model

(*) Not analytically proven.

The basic reproduction number of themodel can be calculated by using the next generationmatrix approach [1,6],
yielding

R0 =
𝜖
𝑟∑
𝑖=1
𝛽𝑖𝑣

𝐼
𝑖(

𝜖 + 𝜇𝐸 ) (
𝜇𝐼 + 𝛾) . (3.2)

Next, we study the stability of the disease free equilibrium (DFE) and the existence of endemic equilibria (EE)
in relation to the value of R0.
Let 𝑆 := 𝑆/𝑁, �̄� := 𝐸/𝑁 , 𝐼 := 𝐼/𝑁, and �̄� := 𝑅/𝑁 denote the proportions of individuals in each class. We

define

𝑔(𝐼) :=
(
1 − 𝐼

𝐻

)
𝑟∑︁
𝑖=1
𝛽𝑖

𝑣𝑆𝑖 𝑣
𝐼
𝑖

𝑣𝑆𝑖 +
(
𝑣𝐼𝑖 + 𝑏𝑣𝐸𝑖 + 𝑎𝑣𝑅𝑖 −

𝑣𝑆𝑖
𝐻

)
𝐼
, (3.3)

where

𝜎 :=
𝜖(

𝜖 + 𝜇𝐸 ) (
𝛾 + 𝜇𝐼 ) , (3.4)

𝐻 :=
𝜖
(
𝛿 + 𝜇𝑅 )

𝜖𝛾 + (
𝛿 + 𝜇𝑅 ) (

𝜖 + 𝛾 + 𝜇𝐼 ) , (3.5)

𝑎 :=
𝛾

𝛿 + 𝜇𝑅 , (3.6)

𝑏 :=
𝛾 + 𝜇𝐼
𝜖

. (3.7)

Then we have following result:

Theorem 3.1 Let us consider the reduced model (2.5), for which the basic reproduction number is given by (3.2).
Then:

1. If R0 < 1 the DFE is hyperbolic and globally asymptotically stable (GAS) in region 𝐾 , so the disease will
die out asymptotically for any initial condition. No endemic equilibrium exists in this case.

2. If R0 > 1 the DFE is hyperbolic and unstable (US). There exists a unique endemic equilibrium with the form
(�̄�𝑒, 𝐼𝑒, �̄�𝑒), where 𝐼𝑒 is the only solution to the equation

𝑔(𝐼) = 1
𝜎

(3.8)

in the interval 𝐼𝑒 ∈ (0, 𝐻), and 𝐸𝑒 = 𝑏𝐼𝑒, 𝑅𝑒 = 𝑎𝐼𝑒, where 𝑔(𝐼), 𝜎, 𝐻, 𝑎 and 𝑏 are given by (3.3-3.7).

Furthermore, although we have not been able to showed it analytically, if R0 > 1 simulations suggest that the
EE of the model is GAS in 𝐾 , and so the disease will be endemic for any initial condition with infected individuals.
Table 1 summarizes the two possible scenarios. For the particular case of a two region metapopulation (i.e.

𝑟 = 2), Figures 2 (a) and (b) show the three dimensional EIR phase diagrams for the two cases R0 < 1 and R0 > 1.

3.1. Particular case of a SIRS model
The classical SIRS model has the same structure than the SEIRS model, but without latency period, so the exposed
class is not considered. Expressions for a SIRS model can be obtained from those of the SEIRS by letting 𝜖 →∞.
Therefore, the reduced model is
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Fig. 2 (a) Case 1: DFE GAS. (b) Case 2: EE GAS.

¤𝑆 = − 𝑓 (𝑆, 𝐸, 𝐼, 𝑅) + 𝜇𝐼 𝐼 +
(
𝜇𝑅 + 𝛿

)
𝑅 (3.9)

¤𝐼 = + 𝑓 (𝑆, 𝐸, 𝐼, 𝑅) −
(
𝜇𝐼 + 𝛾

)
𝐼

¤𝑅 =𝛾𝐼 −
(
𝛿 + 𝜇𝑅

)
𝑅.

The basic reproduction number for this model is

R0 =

𝑟∑
𝑖=1
𝛽𝑖𝑣

𝐼
𝑖(

𝜇𝐼 + 𝛾) , (3.10)

and results of Theorem 3.1 apply.

4. Discussion: Influence of migration in the dynamics of the disease
One of the main purposes of this work is to evaluate how migration of individuals between sites can affect the
behaviour of the disease. Namely, we aim to explore the possibility that an endemic behaviour of the disease on
the isolated sites might be modified by the existence of migration between them.
First of all, it is important to observe that, according to the model, the disease will have the same behaviour in

all interconnected regions, i.e., either the disease will be endemic in all of the sites, or it will die out globally. In the
first case (R0 > 1), the asymptotic distribution of individuals of each class 𝛼 between the different patches can be
obtained by the eigenvector v𝛼, that, as stated in Theorem 2.3, provides the equilibrium distribution for migration
of those individuals.
In addition, we want to study the possibility that, provided that the behaviour of the disease is the same in all

patches separately, the migration of individuals amongst the sites could alter this behavior. Intuitively, we might
consider that this can not happen, but in fact it can be proven that this counter-intuitive scenario may arise. That
is, even when the basic reproduction number in every patch separately is R𝑖0 < 1 (resp. R𝑖0 > 1), the global basic
reproduction number of the aggregated model could be R0 > 1 (resp. R0 < 1).
It is important to remark that this counter-intuitive situation is only possible under certain circumstances. In

particular, it can not happen if the value of parameters 𝜇𝑖 , 𝛾𝑖 and 𝜀𝑖 is the same for all patches 𝑖, i.e., if the birth-death
parameters and those regarding latency time, recovery time and incubation time are the same in all sites.
For the particular case of a two region metapopulation, Figure 3 shows an example of this situation, in which

the disease dies out in both patches 1 and 2 if they are separated, but it becomes endemic if individuals can travel
between the sites. For this case (𝑟 = 2), this situation arises if and only if the following conditions are satisfied:

max
{

𝜖1
𝜖1 + 𝜇1 ,

𝛾1 + 𝜇1
𝛽1

}
<

𝜖2
𝜖2 + 𝜇2

𝛽2
𝛽1

<
𝛾2 + 𝜇2
𝛾1 + 𝜇1 .
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Fig. 3 Counter-intuitive scenario for a two region metapopulation

In the particular case of a SIRS model it can be proven that the counter-intuitive situation presented above
cannot occur, i.e., if R𝑖0 < 1 (resp. R𝑖0 > 1) for all 𝑖 = 1, ..., 𝑟 , the global basic reproduction number of the reduced
model is R0 > 1 (resp. R0 < 1).
In conclusion, our analysis shows that migration of individuals between different sites has a great influence on

the behaviour of the disease, and we can quantify how the values of the parameters affecting migration affect this
behavior.
Further study will be carried out in this field. In the first place, we want to generalize the study to other forms

of incidence functions (amongst them mass action incidence) and analyse the more realistic situation in which the
recruitment of individuals is not linear and, correspondingly, the local population in each patch is not necessarily
constant.
Additionally, we will extend this analysis of models with time scales to SLIAR models [5], a family of models

that can be used for the study of epidemics such as COVID-19.
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Abstract
We consider a linear symmetric and elliptic partial differential equation (PDE) and a linear goal functional.

We design a goal-oriented adaptive finite element method (GOAFEM), which steers the adaptive mesh-refinement
as well as the approximate solution of the arising linear systems by means of a contractive iterative solver like
the optimally preconditioned conjugate gradient method (PCG). We prove linear convergence of the proposed
adaptive algorithm with optimal algebraic rates with respect to the number of degrees of freedom as well as the
computational cost.

1. Our interest in a nutshell
Let Ω ⊂ R𝑑 be a bounded Lipschitz domain, 𝑑 ≥ 2. For given 𝑓 , 𝒇 ∈ 𝐿2 (Ω) with 𝑓 (𝑥) ∈ R and 𝒇 (𝑥) ∈ R𝑑 , we
consider the linear symmetric and elliptic PDE

−div 𝑨∇𝑢★ = 𝑓 + div 𝒇 in Ω, (1.1a)
𝑢★ = 0 on Γ := 𝜕Ω, (1.1b)

where the right-hand side is understood in the distributional sense. As usual, we assume that 𝑨 ∈ 𝐿∞ (Ω), where
𝑨(𝑥) ∈ R𝑑×𝑑sym is symmetric and uniformly positive definite so that the Lax–Milgram lemma proves existence and
uniqueness of the so-called primal solution 𝑢★ ∈ V := 𝐻10 (Ω) to

𝑎(𝑢★, 𝑣) :=
∫
Ω
(𝑨∇𝑢★) · ∇𝑣 d𝑥 =

∫
Ω
𝑓 𝑣 − 𝒇 · ∇𝑣 d𝑥 =: 𝐹 (𝑣) for all 𝑣 ∈ V. (1.2)

Given 𝑔, 𝒈 ∈ 𝐿2 (Ω) with 𝑔(𝑥) ∈ R and 𝒈(𝑥) ∈ R𝑑 , we aim to approximate the linear goal quantity 𝐺 (𝑢★), where

𝐺 (𝑣) =
∫
Ω
𝑔𝑣 − 𝒈 · ∇𝑣 d𝑥 for all 𝑣 ∈ V. (1.3)

Then, the Lax–Milgram lemma also proves the existence and uniqueness of the so-called dual solution 𝑧★ ∈ V to
𝑎(𝑣, 𝑧★) = 𝐺 (𝑣) for all 𝑣 ∈ V. (1.4)

Following [1,7,10], our numerical approach approximates 𝑢★ ≈ 𝑢ℓ and 𝑧★ ≈ 𝑧ℓ by discrete functions 𝑢ℓ , 𝑧ℓ ∈ V(Tℓ)
from the same conforming FEM space V(Tℓ) ⊆ V. However, unlike [1, 7, 10], we do not assume that 𝑢ℓ and 𝑧ℓ
are the exact Galerkin approximations of 𝑢★ and 𝑧★, respectively. Then, the discrete goal quantity

𝐺ℓ (𝑢ℓ , 𝑧ℓ) := 𝐺 (𝑢ℓ) + [𝐹 (𝑧ℓ) − 𝑎(𝑢ℓ , 𝑧ℓ)] (1.5)

leads to the error estimate

𝐺 (𝑢★) − 𝐺ℓ (𝑢ℓ , 𝑧ℓ) = 𝐺 (𝑢★ − 𝑢ℓ) − [𝐹 (𝑧ℓ) − 𝑎(𝑢ℓ , 𝑧ℓ)] = 𝑎(𝑢★ − 𝑢ℓ , 𝑧★ − 𝑧ℓ) ≤ |||𝑢★ − 𝑢ℓ ||| |||𝑧★ − 𝑧ℓ |||, (1.6)

where ||| · ||| is the 𝑎(·, ·)-induced energy norm |||𝑣 |||2 := 𝑎(𝑣, 𝑣).
Let ‖𝑢★‖A𝑠+‖𝑧★‖A𝑡 < ∞ denote that, starting froman initialmeshT0, the primal solution𝑢★ can be approximated

at algebraic rate 𝑠 > 0 and the dual solution 𝑧★ can be approximated at algebraic rate 𝑡 > 0 with respect to the
number #Tℓ of elements (see Section 3.2 for the precise definition). Due to estimate (1.6), a rate-optimal GOAFEM
will then aim to generate a sequence (Tℓ)ℓ∈N0 of meshes such that

∀𝑠, 𝑡 > 0
[
‖𝑢★‖A𝑠 + ‖𝑧★‖A𝑡 < ∞ =⇒ sup

ℓ∈N0
[#Tℓ]𝑠+𝑡 [𝐺 (𝑢★) − 𝐺ℓ (𝑢ℓ , 𝑧ℓ)] < ∞

]
, (1.7)
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i.e., the goal error decays with rate 𝑠 + 𝑡 with respect to the number of elements (which usually is proportional to
the number of the degrees of freedom of V(Tℓ)). Moreover, the computation of 𝑢ℓ = 𝑢𝑚ℓ and 𝑧ℓ = 𝑧𝑛ℓ will usually
require 𝑚 = 𝑚(ℓ) ∈ N solver steps of an iterative solver on the mesh Tℓ to compute 𝑢ℓ and 𝑛 = 𝑛(ℓ) ∈ N solver
steps to compute 𝑧ℓ . If each solver step is of linear cost, then a cost-optimal GOAFEM will even aim to generate a
sequence (Tℓ)ℓ∈N0 of meshes such that

∀𝑠, 𝑡 > 0
[
‖𝑢★‖A𝑠 + ‖𝑧★‖A𝑡 < ∞ =⇒ sup

ℓ∈N0

( ℓ∑︁
ℓ′=0
[𝑚(ℓ′) + 𝑛(ℓ′)] #Tℓ′

)𝑠+𝑡
[𝐺 (𝑢★) − 𝐺ℓ (𝑢ℓ , 𝑧ℓ)] < ∞

]
,

(1.8)

where we note that the computation of 𝑢ℓ and 𝑧ℓ depends on the full adaptive history. In explicit terms, (1.8) states
that the goal error decays with rate 𝑠 + 𝑡 with respect to the computational cost (and hence usually also with respect
to the computational time). Clearly, cost-optimality (1.8) implies rate-optimality (1.7).
In our contribution, we report on our recent preprint [2], and present and discuss an adaptive strategy which,

based on standard residual error estimators and an optimally preconditioned CG method, steers the local mesh-
refinement as well as the termination of the iterative solver and is proven to be cost-optimal in the sense of (1.8).

2. Mathematical prerequisites
2.1. Mesh-refinement
Throughout, we employ newest vertex bisection for refining conforming simplicial triangulations [3, 4, 13]. For
each conforming triangulation T𝐻 and marked elementsM𝐻 ⊆ T𝐻 , let Tℎ := refine(T𝐻 ,M𝐻 ) be the coarsest
conforming triangulation, where all 𝑇 ∈ M𝐻 have been bisected. We write Tℎ ∈ T(T𝐻 ), if Tℎ results from T𝐻 by
finitely many steps of refinement.
For the later adaptive algorithm, let T0 be a given conforming triangulation of Ω. Let T := T(T0) denote the set

of all admissible triangulations and T(𝑁) := {T𝐻 ∈ T : #T𝐻 − #T0 ≤ 𝑁}
for all 𝑁 ∈ N0.

2.2. Discrete spaces and exact discrete solutions
For a conforming triangulation T𝐻 of Ω and a polynomial degree 𝑝 ≥ 1, let

V(T𝐻 ) :=
{
𝑣𝐻 ∈ V : ∀𝑇 ∈ T𝐻 𝑣𝐻 |𝑇 is a polynomial of degree ≤ 𝑝

}
. (2.1)

Let 𝑢★𝐻 , 𝑧
★
𝐻 ∈ V(T𝐻 ) be the exact Galerkin approximations of the primal and dual solution, i.e.,

𝑎(𝑢★𝐻 , 𝑣𝐻 ) = 𝐹 (𝑣𝐻 ) and 𝑎(𝑣𝐻 , 𝑧★𝐻 ) = 𝐺 (𝑣𝐻 ) for all 𝑣𝐻 ∈ V(T𝐻 ), (2.2)

where existence and uniqueness of 𝑢★𝐻 , 𝑧
★
𝐻 ∈ V(T𝐻 ) follow again from the Lax–Milgram lemma.

2.3. Residual a-posteriori error estimator
To measure the discretization errors, we employ standard residual error estimators: For each 𝑤𝐻 ∈ V(T𝐻 ), define

𝜂𝐻 (𝑤𝐻 ) := 𝜂𝐻 (T𝐻 , 𝑤𝐻 ) with 𝜂𝐻 (U𝐻 , 𝑤𝐻 ) :=
( ∑︁
𝑇 ∈U𝐻

𝜂𝐻 (𝑇, 𝑤𝐻 )2
)1/2

for allU𝐻 ⊆ T𝐻 , (2.3a)

where the local contributions read

𝜂𝐻 (𝑇, 𝑤𝐻 )2 := ℎ2𝑇 ‖ 𝑓 + div 𝒇 + div (𝑨∇𝑤𝐻 )‖2𝐿2 (𝑇 ) + ℎ𝑇 ‖ [[(𝑨∇𝑤𝐻 + 𝒇 ) · 𝒏]] ‖2
𝐿2 (𝜕𝑇∩Ω) for all 𝑇 ∈ T𝐻 .

(2.3b)

Here, [[(·) · 𝒏]] denotes the normal jump across interior facets of the triangulation and ℎ𝑇 := |𝑇 |1/𝑑 denotes the
local element size. We note that 𝜂𝐻 requires additional regularity of 𝑨 and 𝒇 , namely that 𝑨|𝑇 ∈ 𝑊1,∞ (𝑇) and
𝒇 |𝑇 ∈ 𝐻 (div;𝑇) with 𝒇 · 𝒏|𝜕𝑇 ∈ 𝐿2 (𝜕𝑇) for all 𝑇 ∈ T𝐻 . With the same requirements on 𝒈, define

𝜁𝐻 (𝑤𝐻 ) := 𝜁𝐻 (T𝐻 , 𝑤𝐻 ) with 𝜁𝐻 (U𝐻 , 𝑤𝐻 ) :=
( ∑︁
𝑇 ∈U𝐻

𝜁𝐻 (𝑇, 𝑤𝐻 )2
)1/2

for allU𝐻 ⊆ T𝐻 , (2.4a)

where the local contributions read

𝜁𝐻 (𝑇, 𝑤𝐻 )2 := ℎ2𝑇 ‖𝑔 + div 𝒈 + div (𝑨∇𝑤𝐻 )‖2𝐿2 (𝑇 ) + ℎ𝑇 ‖ [[(𝑨∇𝑤𝐻 + 𝒈) · 𝒏]] ‖2𝐿2 (𝜕𝑇∩Ω) for all 𝑇 ∈ T𝐻 .
(2.4b)

It is well-known [3, 4] that the residual error estimator has the following four properties: For all triangulations
T𝐻 ∈ T, refinements Tℎ ∈ T(T𝐻 ), non-refined elementsU𝐻 ⊆ T𝐻 ∩ Tℎ , and discrete functions 𝑤𝐻 ∈ V(T𝐻 ) and
𝑤ℎ ∈ V(Tℎ), there holds the following:

GOAL-ORIENTED ADAPTIVE FINITE ELEMENT METHODS

66



(A1) stability: |𝜂ℎ (U𝐻 , 𝑤ℎ)−𝜂𝐻 (U𝐻 , 𝑤𝐻 ) | ≤ 𝐶stab |||𝑤ℎ−𝑤𝐻 |||, |𝜁ℎ (U𝐻 , 𝑤ℎ)−𝜁𝐻 (U𝐻 , 𝑤𝐻 ) | ≤ 𝐶stab |||𝑤ℎ−
𝑤𝐻 |||;

(A2) reduction: 𝜂ℎ (Tℎ\T𝐻 , 𝑤𝐻 ) ≤ 𝑞red 𝜂𝐻 (T𝐻 \Tℎ , 𝑤𝐻 ), 𝜁ℎ (Tℎ\T𝐻 , 𝑤𝐻 ) ≤ 𝑞red 𝜁𝐻 (T𝐻 \Tℎ , 𝑤𝐻 );
(A3) reliability: |||𝑢★ − 𝑢★𝐻 ||| ≤ 𝐶rel 𝜂𝐻 (𝑢★𝐻 ), |||𝑧★ − 𝑧★𝐻 ||| ≤ 𝐶rel 𝜁𝐻 (𝑧★𝐻 );
(A4) discrete reliability: |||𝑢★ℎ − 𝑢★𝐻 ||| ≤ 𝐶drel 𝜂𝐻 (T𝐻 \Tℎ , 𝑢★𝐻 ), |||𝑧★ℎ − 𝑧★𝐻 ||| ≤ 𝐶drel 𝜁𝐻 (T𝐻 \Tℎ , 𝑧★𝐻 ).
Here, 0 < 𝑞red := 2−1/(2𝑑) < 1 and the constants 𝐶stab, 𝐶drel > 0 depend only on the initial triangulation T0, the
diffusion coefficient 𝑨, and the polynomial degree 𝑝 ∈ N, while 𝐶rel > 0 is independent of 𝑝. Moreover, we note
that, in the present setting, discrete reliability (A4) implies reliability (A3).

2.4. Contractive iterative solver and approximate discrete solutions
In our numerical experiments, we employ a preconditioned CGmethod [9] with optimal multilevel additive Schwarz
preconditioner from [5,12] to approximately solve the discrete formulations (2.2). Since the condition numbers of the
arising preconditioned linear systems are uniformly bounded, it is well-known that the preconditioned CG method
leads to a uniform contraction for the solver. In explicit terms, given arbitrary initial guesses 𝑢0𝐻 , 𝑧

0
𝐻 ∈ V(T𝐻 ), the

solver creates sequences (𝑢𝑚𝐻 )𝑚∈N0 and (𝑧𝑛𝐻 )𝑛∈N0 such that

|||𝑢★𝐻 − 𝑢𝑚𝐻 ||| ≤ 𝑞ctr |||𝑢★𝐻 − 𝑢𝑚−1𝐻 ||| and |||𝑧★𝐻 − 𝑧𝑛𝐻 ||| ≤ 𝑞ctr |||𝑧★𝐻 − 𝑧𝑛−1𝐻 ||| for all 𝑚, 𝑛 ∈ N, (2.5)

where the contraction constant 0 < 𝑞ctr < 1 is independent of T𝐻 and the initial guesses, but only depends on T0;
see [12]. It follows from the triangle inequality that, for instance,

|||𝑢★𝐻 − 𝑢𝑚𝐻 ||| ≤ 𝑞ctr |||𝑢★𝐻 − 𝑢𝑚−1𝐻 ||| ≤ 𝑞ctr
1 − 𝑞ctr |||𝑢

𝑚
𝐻 − 𝑢𝑚−1𝐻 ||| for all 𝑚 ∈ N. (2.6)

Together with stability (A1) and reliability (A3), this leads to

|||𝑢★ − 𝑢𝑚𝐻 ||| ≤ |||𝑢★ − 𝑢★𝐻 ||| + |||𝑢★𝐻 − 𝑢𝑚𝐻 ||| ≤ 𝐶rel 𝜂𝐻 (𝑢★𝐻 ) + |||𝑢★𝐻 − 𝑢𝑚𝐻 |||
≤ 𝐶rel 𝜂𝐻 (𝑢𝑚𝐻 ) + (1 + 𝐶stab) |||𝑢★𝐻 − 𝑢𝑚𝐻 |||
≤ 𝐶rel 𝜂𝐻 (𝑢𝑚𝐻 ) + (1 + 𝐶stab)

𝑞ctr
1 − 𝑞ctr |||𝑢

𝑚
𝐻 − 𝑢𝑚−1𝐻 |||.

(2.7)

We note that this estimate provides reliable a-posteriori error control for any approximate discrete solution 𝑢𝑚𝐻
(with at least 𝑚 ≥ 1). On the one hand, this motivates to terminate the solver for some 𝑚 ≥ 1 as soon as

|||𝑢𝑚𝐻 − 𝑢𝑚−1𝐻 ||| ≤ 𝜆ctr 𝜂𝐻 (𝑢𝑚𝐻 )
for some user-prescribed parameter 𝜆ctr > 0. On the other hand, this also motivates to employ nested iteration
𝑢0ℎ := 𝑢

𝑚
𝐻 if Tℎ = refine(T𝐻 ,M𝐻 ) and the iterative solver on T𝐻 is terminated for 𝑢𝑚𝐻 .

The same considerations apply to the iterative approximation of the discrete dual solution 𝑧★𝐻 ≈ 𝑧𝑛𝐻 , i.e.,

|||𝑧★ − 𝑧𝑛𝐻 ||| ≤ 𝐶rel 𝜂𝐻 (𝑧𝑛𝐻 ) + (1 + 𝐶stab)
𝑞ctr
1 − 𝑞ctr |||𝑧

𝑛
𝐻 − 𝑧𝑛−1𝐻 |||

and the solver is terminated for some 𝑛 ≥ 1 as soon as
|||𝑧𝑛𝐻 − 𝑧𝑛−1𝐻 ||| ≤ 𝜆ctr 𝜁𝐻 (𝑧𝑛𝐻 ).

2.5. A-posteriori control of the goal error
Recall the discrete goal quantity 𝐺𝐻 (𝑢𝑚𝐻 , 𝑧𝑛𝐻 ) = 𝐺 (𝑢𝑚𝐻 ) + [𝐹 (𝑧𝑛𝐻 ) − 𝑎(𝑢𝑚𝐻 , 𝑧𝑛𝐻 )] from the introduction. Combin-
ing (1.6) and (2.7), we see that

|𝐺 (𝑢★) − 𝐺𝐻 (𝑢𝑚𝐻 , 𝑧𝑛𝐻 ) | ≤ 𝐶 ′rel
[
𝜂𝐻 (𝑢𝑚𝐻 ) + |||𝑢★𝐻 − 𝑢𝑚𝐻 |||

] [
𝜁𝐻 (𝑧𝑛𝐻 ) + |||𝑧★𝐻 − 𝑧𝑛𝐻 |||

]
(2.8)

as well as

|𝐺 (𝑢★) − 𝐺𝐻 (𝑢𝑚𝐻 , 𝑧𝑛𝐻 ) | ≤ 𝐶 ′′rel
[
𝜂𝐻 (𝑢𝑚𝐻 ) + |||𝑢𝑚𝐻 − 𝑢𝑚−1𝐻 |||] [𝜁𝐻 (𝑧𝑛𝐻 ) + |||𝑧𝑛𝐻 − 𝑧𝑛−1𝐻 |||

]
, (2.9)

where 𝐶 ′rel = max{𝐶rel , 1 +𝐶stab}2 and 𝐶 ′′rel = max{𝐶rel , (1 +𝐶stab)
𝑞ctr
1−𝑞ctr }2 for any approximate discrete solutions

𝑢𝑚𝐻 and 𝑧
𝑛
𝐻 with 𝑚, 𝑛 ≥ 1. We will use (2.8) to formulate linear convergence of the adaptive algorithm. Moreover,

one can use (2.9) for a-posteriori error control of the goal error.
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3. Cost-optimal adaptive algorithm
3.1. Adaptive algorithm
Algorithm 3.1 Let 𝑢00, 𝑧

0
0 ∈ V(T0) be initial guesses. Let 0 < 𝜃 ≤ 1 as well as 𝜆ctr > 0 be fixed marking parameters.

For all ℓ = 0, 1, 2, . . . , perform the following steps (i)–(vi):
(i) Employ (at least one step of) the iterative solver to compute iterates 𝑢1ℓ , . . . , 𝑢

𝑚
ℓ and 𝑧1ℓ , . . . , 𝑧

𝑛
ℓ together with

the corresponding refinement indicators 𝜂ℓ (𝑇, 𝑢𝑘ℓ ) and 𝜁ℓ (𝑇, 𝑧𝑘ℓ ) for all 𝑇 ∈ Tℓ , until
|||𝑢𝑚ℓ − 𝑢𝑚−1ℓ ||| ≤ 𝜆ctr 𝜂ℓ (𝑢𝑚ℓ ) and |||𝑧𝑛ℓ − 𝑧𝑛−1ℓ ||| ≤ 𝜆ctr 𝜁ℓ (𝑧𝑛ℓ ). (3.1)

(ii) Define 𝑚(ℓ) := 𝑚, 𝑛(ℓ) := 𝑛, and 𝑘 (ℓ) := max{𝑚(ℓ), 𝑛(ℓ)}.
(iii) If 𝜂ℓ (𝑢𝑚ℓ ) = 0 or 𝜁ℓ (𝑧𝑛ℓ ) = 0, then define ℓ := ℓ and terminate.
(iv) Otherwise construct a setMℓ ⊆ Tℓ such that

2𝜃 𝜂ℓ (𝑢𝑚ℓ )2𝜁ℓ (𝑧𝑛ℓ )2 ≤ 𝜂ℓ (Mℓ , 𝑢
𝑚
ℓ )2𝜁ℓ (𝑧𝑛ℓ )2 + 𝜂ℓ (𝑢𝑚ℓ )2𝜁ℓ (Mℓ , 𝑧

𝑛
ℓ )2. (3.2)

(v) Generate Tℓ+1 := refine(Tℓ ,Mℓ).
(vi) Define the initial guesses 𝑢0ℓ+1 := 𝑢

𝑚
ℓ and 𝑧0ℓ+1 := 𝑧

𝑛
ℓ .

Remark 3.2 Given some 0 < 𝜗 ≤ 1, possible realizations of the marking strategy (3.2) are the following, which
are all based on the Dörfler marking strategy proposed in [6]:
• The strategy proposed in [1] defines 𝜌ℓ (𝑇, 𝑢𝑚ℓ , 𝑧𝑛ℓ )2 := 𝜂ℓ (𝑇, 𝑢𝑚ℓ )2𝜁ℓ (𝑧𝑛ℓ )2 + 𝜂ℓ (𝑢𝑚ℓ )2𝜁ℓ (𝑇, 𝑧𝑛ℓ )2 for all 𝑇 ∈ Tℓ
and then determinesMℓ ⊆ Tℓ such that

𝜗 𝜌ℓ (𝑢𝑚ℓ , 𝑧𝑛ℓ ) ≤ 𝜌ℓ (Mℓ , 𝑢
𝑚
ℓ , 𝑧

𝑛
ℓ ), (3.3)

where we employ the same abbreviated notation as in (2.3)–(2.4). This guarantees (3.2) with 𝜃 = 𝜗2.
• The strategy proposed in [10] determinesM𝑢+

ℓ ,M𝑧+
ℓ ⊆ Tℓ such that

𝜗 𝜂ℓ (𝑢𝑚ℓ ) ≤ 𝜂ℓ (M𝑢+
ℓ , 𝑢

𝑚
ℓ ) and 𝜗 𝜁ℓ (𝑧𝑛ℓ ) ≤ 𝜁ℓ (M𝑧+

ℓ , 𝑧
𝑛
ℓ ) (3.4)

and then picksMℓ ∈ {M𝑢+
ℓ , M𝑧+

ℓ } with #Mℓ = min{#M𝑢+
ℓ , #M𝑧+

ℓ }. This guarantees (3.2) with 𝜃 = 𝜗2/2.• The strategy proposed in [7] determines M𝑢+
ℓ ,M𝑧+

ℓ ⊆ Tℓ as in (3.4), but chooses Mℓ := M𝑢
ℓ ∪ M𝑧

ℓ , whereM𝑢
ℓ ⊆ M𝑢+

ℓ and M𝑧
ℓ ⊆ M𝑧+

ℓ satisfy #M𝑢
ℓ = #M𝑧

ℓ = min{#M𝑢+
ℓ , #M𝑧+

ℓ }. Again, this guarantees (3.2) with
𝜃 = 𝜗2/2. �

Remark 3.3 We note that, for fixed ℓ, the potential cost of one step of Algorithm 3.1 amounts to O(𝑘 (ℓ) #Tℓ):
• Performing one solver step of the preconditioned CG method in Algorithm 3.1(i) (for both 𝑢𝑘ℓ and 𝑧𝑘ℓ ) with the
optimal multilevel additive Schwarz preconditioner from [5, 12] is of computational cost O(#Tℓ). Computing the
local contributions 𝜂ℓ (𝑇, 𝑢𝑘ℓ ) and 𝜁ℓ (𝑇, 𝑧𝑘ℓ ) for all 𝑇 ∈ Tℓ amounts to a computational cost O(#Tℓ).
• According to [11, 13], the marking strategies of Remark 3.2 allow to construct a setMℓ in Algorithm 3.1(iv)
satisfying (3.2) at computational cost O(#Tℓ), and the related sets (i.e.,Mℓ in (3.3) resp.M𝑢+

ℓ andM𝑧+
ℓ in (3.4))

have even minimal cardinality [11] resp. up to a factor 2 minimal cardinality [13].
• Finally, also the local mesh-refinement in Algorithm 3.1(v) can be done at linear cost O(#Tℓ). �

3.2. Approximation class and rate-optimal convergence
We follow the seminal works [4, 13] and the abstract framework [3] to formulate a possible algebraic convergence
rate for the approximation of the primal and dual problem. For any 𝑠, 𝑡 > 0, let

‖𝑢★‖A𝑠 := sup
𝑁 ∈N0
(𝑁 + 1)𝑠 min

Topt∈T(𝑁 )
𝜂opt (𝑢★opt) ∈ R≥0 ∪ {∞}, (3.5a)

‖𝑧★‖A𝑡 := sup
𝑁 ∈N0
(𝑁 + 1)𝑡 min

Topt∈T(𝑁 )
𝜁opt (𝑧★opt) ∈ R≥0 ∪ {∞}, (3.5b)

where 𝑢★opt, 𝑧★opt ∈ V(Topt) are the exact discrete solutions and 𝜂opt (𝑢★opt), 𝜁opt (𝑧★opt) are the corresponding error
estimators. It is shown in [3] that the approximabilities (3.5) can equivalently be defined through the minimal total
error (i.e., energy error plus data oscillations) instead of the error estimator.
By definition, ‖𝑢★‖A𝑠 + ‖𝑧★‖A𝑡 < ∞ yields that 𝜂opt (𝑢★opt) = O((#Topt)−𝑠) and 𝜁opt (𝑧★opt) = O((#Topt)−𝑡 ) along

respective sequences of optimal triangulations. In particular, one can thus hope for |𝐺 (𝑢★) − 𝐺opt (𝑢★opt, 𝑧★opt) | ≤
𝐶2rel 𝜂opt (𝑢★opt)𝜁opt (𝑧★opt) = O((#Topt)−(𝑠+𝑡) ), where the first estimate follows from (1.6) and reliability (A3). This
convergence behavior is indeed proved by our main results presented and discussed in Section 3.3 and confirmed
by the numerical experiments below.
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3.3. Main results of own preprint [2]
For each adaptive level ℓ, Algorithm 3.1 performs at least one solver step to compute 𝑢𝑚ℓ as well as one solver
step to compute 𝑧𝑛ℓ . By definition, 𝑚(ℓ) ≥ 1 is the solver step for which the discrete solution 𝑢

𝑚(ℓ)
ℓ is accepted

(to contribute to the set of marked elementsMℓ). Analogously, 𝑛(ℓ) ≥ 1 is the solver step for which the discrete
solution 𝑧𝑛(ℓ)ℓ is accepted (to contribute toMℓ). If the iterative solver for either the primal or the dual problem
fails to converge for some level ℓ ∈ N0, i.e., (3.1) cannot be achieved for finite 𝑚, or 𝑛, we define 𝑚(ℓ) := ∞, or
𝑛(ℓ) := ∞, respectively, and ℓ := ℓ. To simplify the notation, we define

𝑢𝑘ℓ := 𝑢
𝑚(ℓ)
ℓ for all 𝑘 ∈ N with 𝑚(ℓ) < 𝑘 ≤ 𝑘 (ℓ),

𝑧𝑘ℓ := 𝑧
𝑛(ℓ)
ℓ for all 𝑘 ∈ N with 𝑛(ℓ) < 𝑘 ≤ 𝑘 (ℓ).

(3.6)

If Algorithm 3.1 does not terminate in step (iii) for some ℓ ∈ N, e.g., if neither the primal nor the dual solution can
be resolved by a finite dimensional subspace of 𝐻10 (Ω), we define ℓ := ∞. To thoroughly formulate the convergence
of Algorithm 3.1, we define the set

Q := {(ℓ, 𝑘) ∈ N20 : ℓ ≤ ℓ and 1 ≤ 𝑘 ≤ 𝑘 (ℓ)} as well as | (ℓ, 𝑘) | := 𝑘 +
ℓ−1∑︁
𝑗=0

𝑘 ( 𝑗). (3.7)

Note that | (ℓ, 𝑘) | is proportional to the overall number of solver steps needed to compute 𝑢𝑘ℓ and 𝑧𝑘ℓ . Moreover,
| (·, ·) | also provides the natural ordering of Q: If (ℓ, 𝑘), (ℓ′, 𝑘 ′) ∈ Q with | (ℓ′, 𝑘 ′) | ≥ |(ℓ, 𝑘) |, then 𝑢𝑘ℓ is computed
earlier by Algorithm 3.1 than 𝑢𝑘′ℓ′ .
Finally, recall from (2.8) the goal error estimate

(𝐶 ′rel)−1 |𝐺 (𝑢★) − 𝐺ℓ (𝑢𝑘ℓ , 𝑧𝑘ℓ ) | ≤
[
𝜂ℓ (𝑢𝑘ℓ ) + |||𝑢★ℓ − 𝑢𝑘ℓ |||

] [
𝜁ℓ (𝑧𝑘ℓ ) + |||𝑧★ℓ − 𝑧𝑘ℓ |||

]
=: Λ𝑘ℓ . (3.8)

With these notations, there holds the following linear convergence result (stated in terms of the quasi-error product
Λ𝑘ℓ defined in (3.8)) for every choice of the adaptivity parameters. Clearly, this and the subsequent theorems are
only of interest if the index set Q is countably infinite (i.e., Algorithm 3.1 does not terminate in step (iii)). However,
we stress that the theorems hold for both cases ℓ = ∞ and ℓ < ∞ (which also covers the case of finite Q).

Theorem 3.4 (full linear convergence) For any 0 < 𝜃 ≤ 1 and 𝜆ctr > 0, Algorithm 3.1 guarantees that

Λ𝑘
′
ℓ′ ≤ 𝐶lin𝑞 | (ℓ

′,𝑘′) |− | (ℓ,𝑘) |
lin Λ𝑘ℓ for all (ℓ, 𝑘), (ℓ′, 𝑘 ′) ∈ Q with | (ℓ′, 𝑘 ′) | ≥ |(ℓ, 𝑘) |, (3.9)

where the constants 𝐶lin > 0 and 0 < 𝑞lin < 1 depend only on 𝐶stab, 𝐶rel, 𝑞ctr, and the (arbitrary) adaptivity
parameters 𝜃 and 𝜆ctr. �

As is observed in [2], full linear convergence is indeed the key argument to link rates with respect to the number
of elements (1.7) and rates with respect to the overall computational cost (1.8): Recall that any step (ℓ, 𝑘) ∈ Q of
Algorithm 3.1 depends on the full history of preceding steps. Under realistic assumptions on the single steps of
Algorithm 3.1 (see Remark 3.3), the total work spent to compute 𝑢𝑘ℓ and 𝑧

𝑘
ℓ is hence of order

work(ℓ, 𝑘) :=
∑︁

(ℓ′,𝑘′) ∈Q
| (ℓ′,𝑘′) |≤ | (ℓ,𝑘) |

#Tℓ′ . (3.10)

With this understanding and interpretation, there holds the following result, which proves that the convergence rate
𝑟 > 0 with respect to the number of elements will coincide with the convergence rate with respect to the overall
computational cost (and hence with respect to the overall computational time). In particular, this proves that (1.7)
and (1.8) are indeed equivalent in the present setting. We stress that, unlike the rough statement in the introduction,
the theorem covers all iterates (𝑢𝑘ℓ , 𝑧𝑘ℓ ) for (ℓ, 𝑘) ∈ Q instead of only the final iterates (𝑢

𝑚(ℓ)
ℓ , 𝑧

𝑛(ℓ)
ℓ ).

Theorem 3.5 (identification of convergence rates) Let 𝑟 > 0 and define 𝐶𝑟 := sup(ℓ,𝑘) ∈Q (#Tℓ − #T0 + 1)𝑟Λ𝑘ℓ ∈
R≥0 ∪ {∞}. Then, it holds that

𝐶𝑟 ≤ sup
(ℓ,𝑘) ∈Q

(#Tℓ)𝑟Λ𝑘ℓ ≤ sup
(ℓ,𝑘) ∈Q

work(ℓ, 𝑘)𝑟Λ𝑘ℓ ≤ 𝐶rate𝐶𝑟 , (3.11)

where 𝐶rate > 0 depends only on 𝑟 , #T0, and the constants 𝐶lin and 𝑞lin from Theorem 3.4. �
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ω

Fig. 1 Left: Initial mesh T0 for numerical experiments, where the set 𝜔 of (4.2) is highlighted in gray. Right: Mesh after 14
iterations of Algorithm 3.1 with #T14 = 4.157 elements.

Finally, this allows to formulate our main result, which states that Algorithm 3.1 leads to optimal convergence
rates with respect to the number of elements and hence also with respect to the computational cost provided that the
adaptivity parameters are sufficiently small. Indeed, this provides the formal statement of (1.7)–(1.8). In explicit
terms, Algorithm 3.1 will lead to any possible rate 𝑠+ 𝑡 with respect to the computational cost, if the primal problem
allows for rate 𝑠 and the dual problem allows for rate 𝑡 with respect to the number of elements along respective
sequences of optimal meshes.

Theorem 3.6 (optimal convergence) Define 𝜆★ := 1−𝑞ctr
𝑞ctr𝐶stab

. Let 0 < 𝜃 ≤ 1 and 0 < 𝜆ctr < 𝜆★ be sufficiently small
such that

0 <
(√
2𝜃 + 𝜆ctr/𝜆★
1 − 𝜆ctr/𝜆★

)2
<

1
1 + 𝐶2stab𝐶2drel

. (3.12)

Suppose that the setMℓ in Algorithm 3.1(iv) has up to some fixed constant 𝐶mark minimal cardinality with (3.2)
(e.g., by using one of the strategies from Remark 3.2). Let 𝑠, 𝑡 > 0 with ‖𝑢★‖A𝑠 + ‖𝑧★‖A𝑡 < ∞. Then, there exists
a constant 𝐶opt > 0 such that

sup
(ℓ,𝑘) ∈Q

work(ℓ, 𝑘)𝑠+𝑡Λ𝑘ℓ ≤ 𝐶opt max
{‖𝑢★‖A𝑠 ‖𝑧★‖A𝑡 , Λ00}. (3.13)

The constant 𝐶opt depends only on 𝐶stab, 𝐶drel, 𝑞ctr, 𝐶mark, 𝜃, 𝜆ctr, #T0, 𝑠, 𝑡 and on fine properties of mesh-refinement
by newest vertex bisection. �

4. Numerical experiments
We underline our theoretical results by a numerical example. To this end, we consider the model problem

− Δ𝑢★ = 2𝑥1 (𝑥1 − 1) + 2𝑥2 (𝑥2 − 1) in Ω := (0, 1)2, 𝑢★ = 0 on Γ := 𝜕Ω (4.1)

together with 𝜔 := {𝑥 ∈ Ω : 𝑥1 + 𝑥2 ≥ 3/2} and the goal functional

𝐺 (𝑣) :=
∫
𝜔

𝜕𝑣

𝜕𝑥1
d𝑥, for all 𝑣 ∈ 𝐻10 (Ω). (4.2)

Hence, the given data read 𝑓 = 2𝑥1 (𝑥1 −1) +2𝑥2 (𝑥2 −1), 𝒇 = 0, 𝑔 = 0, and 𝒈 = (−1, 0)>𝜒𝜔 , and the exact solution
to (4.1) is 𝑢★ = 𝑥1𝑥2 (𝑥1 − 1) (𝑥2 − 1) with goal value 𝐺 (𝑢★) = 11/960.
We compute a numerical solution to (4.1)–(4.2) with Algorithm 3.1, where we set 𝑢00 = 𝑧

0
0 = 0, 𝜃 = 0.25, and, if

not stated otherwise, 𝜆ctr = 4−6 ≈ 2 · 10−4. The initial triangulation T0 ofΩ as well as a triangulation resulting from
several steps of Algorithm 3.1 are shown in Figure 1. As marking strategy, we employ the one from [1], which is
outlined in (3.3) in Remark 3.2.
In our experiments, we compare two iterative solvers: first, a non-preconditioned conjugate gradient method [9],

which is denoted by CG; second, a preconditioned conjugate gradient method with optimal multilevel additive
Schwarz preconditioner [12], which is denoted by PCG. We evaluate data obtained of Algorithm 3.1 as well as
from a slight modification, where we do not employ nested iteration, but start from scratch at each mesh level ℓ,
i.e., Algorithm 3.1(vi) is replaced by:
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Fig. 2 Error measures over total computational cost. The markers represent the values for the final iterates 𝑢𝑚(ℓ)
ℓ

and 𝑧𝑛(ℓ)
ℓ

on each level. The transparent lines in the background correspond to the values for all iterates 𝑢𝑘
ℓ
and 𝑧𝑘

ℓ
. For CG without

nested iteration, this line is not shown. Note that, for the data with nested iteration, the data for general iterates stays within
close vicinity of that for the final ones.

(vi’) Define the initial guesses 𝑢0ℓ+1 = 𝑧
0
ℓ+1 = 0.

In Figure 2, we report on the values of the estimator product 𝜂ℓ (𝑢𝑘ℓ )𝜁ℓ (𝑧𝑘ℓ ) and the goal error |𝐺 (𝑢★)−𝐺ℓ (𝑢𝑘ℓ , 𝑧𝑘ℓ ) |
over the overall computational cost work(ℓ, 𝑘). The results in Figure 2 are in accordance with Theorem 3.5, which
states that, for the optimally preconditioned conjugate gradient method with nested iteration, the goal error decays
with optimal rate over work(ℓ, 𝑘). For the non-preconditioned CG and also without nested iteration, Theorem 3.5
cannot make any statement. Indeed, our data suggest that in this case the rate is worse than that of PCG with nested
iteration and hence not optimal.
From Figure 2, one also recognizes why nested iteration provides an advantage with respect to the computational

cost. While for the algorithms with nested iteration the data for all iterates 𝑢𝑘ℓ and 𝑧
𝑘
ℓ (shown as transparent lines

in the background) stays in close proximity to that of the final iterates 𝑢𝑚(ℓ)ℓ and 𝑧𝑛(ℓ)ℓ , this is not the case for
PCG without nested iteration, where the data for all iterates highly oscillate. Note that, in this case, the estimator
product of the initial iterates 𝜂ℓ (𝑢0ℓ)𝜁ℓ (𝑧0ℓ) goes down only because of the mesh-width weighting of the residual
error estimates, while such an effect is not present for the goal error.
The cause for the difference in computational cost of PCG and CG becomes clear if one looks at the number

of solver steps on each level that are necessary to reach the stopping criterion (3.1) for primal and dual solution,
respectively. This is shown in Figure 3 (left). We see that, for PCG with nested iteration, the number of solver steps
on each level is uniformly bounded, whereas for the other methods it further increases with increasing numbers of
degrees of freedom. For the CG method with nested iteration, the number of necessary steps also seems relatively
low. However, we stress that, in this case, there is no guaranteed upper bound, as is evident from the occasional
peaks in the iteration count.
As a last observation, we give numerical evidence on the necessity of the definition of the discrete goal

𝐺ℓ (𝑢𝑘ℓ , 𝑧𝑘ℓ ) from (1.5). To this end, we compare the algebraic rates of the quantities |𝐺 (𝑢★) − 𝐺ℓ (𝑢𝑘ℓ , 𝑧𝑘ℓ ) | (goal
error), |𝐺 (𝑢★) −𝐺 (𝑢𝑘ℓ ) | (naïve goal error), |𝐹 (𝑧𝑘ℓ ) − 𝑎(𝑢𝑘ℓ , 𝑧𝑘ℓ ) | (corrector term of discrete goal), and 𝜂ℓ (𝑢𝑘ℓ )𝜁ℓ (𝑧𝑘ℓ )
(estimator product, which is an upper bound of the goal error for the final iterates). These data are obtained by
fitting the experimental data to a parametric model 𝑝1work(ℓ, 𝑘)−𝑝2 with 𝑝1, 𝑝2 ≥ 0 with the MATLAB function
robustfit applied to the natural logarithm of the data. The experimental convergence rates 𝑝2 for different values
of the solver parameter 𝜆ctr are shown in Figure 3 (right). It is evident that the rates of the corrector term are much
lower than for the goal error and the estimator product. For large values of 𝜆ctr, the value of the corrector term is
clearly large enough to disturb the rate of the naïve goal error, which makes it an unsuitable error quantity in this
case.
For further experiments, we refer to the preprint [2].
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Fig. 3 Left: Number of steps of the iterative solver on each level ℓ of Algorithm 3.1. Right: Rates of various error measures
for different values of 𝜆ctr in Algorithm 3.1 with PCG and nested iteration.
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Abstract
In this work we study volume constraint problems involving the nonlocal operator (−Δ)𝑠𝛿 depending upon a

parameter 𝛿 > 0 called horizon. We analyze the associated linear and spectral problems and the behavior of these
volume constraint problems when 𝛿→ 0+ and 𝛿→ +∞. We prove spectral convergence to the classical Laplacian
as 𝛿→ 0+ under a suitable scaling and spectral convergence to the fractional Laplacian as 𝛿→ +∞.

1. Introduction
We study volume constraint elliptic problems driven by a nonlocal operator closely related to the well-known
fractional Laplace operator. In particular, given an open bounded domain Ω ⊂ R𝑁 with Lipschitz boundary and
𝛿 > 0, a parameter called horizon, let us define the problem{ (−Δ)𝑠𝛿𝑢 = 𝑓 in Ω,

𝑢 = 0 on 𝜕𝛿Ω,
(𝑃𝑠𝛿)

where,
(−Δ)𝑠𝛿𝑢(𝑥) = 𝑐𝑁 ,𝑠𝑃.𝑉.

∫
𝐵 (𝑥, 𝛿)

𝑢(𝑥) − 𝑢(𝑦)
|𝑥 − 𝑦 |𝑛+2𝑠 𝑑𝑦,

with 𝑐𝑁 ,𝑠 =
22𝑠𝑠Γ ( 𝑁2 +𝑠)
𝜋
𝑁
2 Γ (1−𝑠)

a normalization constant and 𝜕𝛿Ω the nonlocal boundary given by

𝜕𝛿Ω = {𝑦 ∈ R𝑁 \Ω : |𝑥 − 𝑦 | < 𝛿 for some 𝑥 ∈ Ω}.

Nonlocal and fractional elliptic problems have attracted a great attention in the mathematical community in the
last decades, coming from fields as nonlocal diffusion [4, 13], statistical mechanics [2] and continuum mechanics,
including peridynamics, [17, 20, 25]. Nonlocal variational problems are also important in the characterization of
Sobolev spaces [9,18,21]. Interesting surveys on the fractional Laplacian and nonlocal elliptic problems are [19,22].
The operator (−Δ)𝑠𝛿 is not new, and it has been addressed in different studies in the literature before. In

view of the definition of (−Δ)𝑠𝛿 , it is clear that long-range interactions are neglected and only those exerted at
distance smaller than 𝛿 > 0 are taken into account, i.e., the horizon 𝛿 > 0 represents the range of interactions.
In this sense, the operator (−Δ)𝑠𝛿 , pertaining to the class of nonlocal elliptic operators, it is clearly inspired by
peridynamics, where the elastic energy is computed through a double integral of a pairwise potential function, and
it could actually be seen as a peridynamic fractional Laplacian. Peridynamics is a nonlocal continuum model for
Solid Mechanics proposed by Silling, cf. [25]. The main difference with classical theory relies on the nonlocality,
reflected in the fact that points separated by a positive distance exert a force upon each other. Since the use of
gradients is avoided, peridynamics is a suitable framework for problems where discontinuities, such as fractures,
appear naturally. In [16] a numerical study comparing (−Δ)𝑠𝛿 with the fractional Laplacian, the spectral fractional
Laplacian and the regional Laplacian is performed. In [1], the Fourier multiplier associated to (−Δ)𝑠𝛿 is computed
and, as a consequence, convergence of (−Δ)𝑠𝛿𝑢(𝑥) to (−Δ)𝑢(𝑥), for sufficiently smooth 𝑢, is obtained as 𝛿→ 0+ or
𝑠→ 1−. Also, (−Δ)𝑠𝛿 was studied in [14] in connection with the fractional Laplacian, (−Δ)𝑠 = (−Δ)𝑠∞, and with the
motivation of computing numerical approximations. Notice that taking the limit as 𝛿 → +∞ one recovers, at least
formally, the usual nonlocal elliptic problem driven by the fractional Laplace operator with boundary condition on
the complementary of the domain Ω.
In this work the limit properties of (−Δ)𝑠𝛿 , both as 𝛿 → 0+ and as 𝛿 → +∞, are addressed. In particular,

by means of Γ-convergence techniques, we show, cf. [7], convergence of solutions and spectral stability, i.e.,
convergence of eigenvalues and eigenfunctions, to the classical Laplacian and to the fractional Laplacian as 𝛿→ 0+
and as 𝛿→ +∞ respectively. Therefore, the operator (−Δ)𝑠𝛿 can be seen as an intermediate operator in between the
local Laplacian and the fractional Laplacian.
The results for the case 𝛿 → 0+ rely on a general Γ-convergence result from [6], while the results for the case

𝛿→ +∞ are based on Γ-convergence properties of monotone sequences.
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Closely related to our work is [3], where spectral stability as 𝛿 → 0+ for certain nonlocal problems is shown
without explicitly appealing to Γ-convergence. The advantage of the Γ-convergence approach is its adaptability to
a nonlinear setting. Regarding this nonlinear setting, the spectral convergence of the fractional 𝑝 -Laplacian to the
classical 𝑝 -Laplacian as 𝑠 → 1− is shown, by means of Γ-convergence techniques, in [11]. We extend the results
of this work about spectral behavior to the nonlinear case dealing with the peridynamic fractional 𝑝-Laplacian
in [8], where we obtain analogous results to those of [11] regarding the fractional 𝑝-Laplacian.

2. Preliminaries
LetΩ ⊂ R𝑁 be a regular bounded domain and consider the Sobolev space 𝐻𝑠 (Ω) = {𝑣 ∈ 𝐿2 (Ω) : ‖𝑣‖𝐻 𝑠 (Ω) < ∞},
where ‖𝑣‖2

𝐻 𝑠 (Ω) = ‖𝑣‖2𝐿2 (Ω) + |𝑣 |2𝐻 𝑠 (Ω) being | · |𝐻 𝑠 (Ω) the Gagliardo semi-norm,

|𝑣 |2𝐻 𝑠 (Ω) =
∫
Ω

∫
Ω

|𝑣(𝑥) − 𝑣(𝑦) |2
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦𝑑𝑥.

Next, denoting by Ω𝑐 = R𝑁 \Ω, let us set the energy space H 𝑠
0 (Ω) = {𝑣 ∈ 𝐻𝑠 (R𝑁 ) : 𝑣 = 0 on Ω𝑐} endowed with

the norm inherited from 𝐻𝑠 (R𝑁 ). Let us note that, given 𝑣 ∈ H 𝑠
0 (Ω), although 𝑣 = 0 on Ω𝑐 , the norms ‖𝑣‖𝐻 𝑠 (Ω)

and ‖𝑣‖H𝑠0 (Ω) are not the same. Indeed, denoting by D =
(
R𝑁 × R𝑁 ) ∖ (

Ω𝑐 × Ω𝑐
)
, we have the strict inclusion

Ω ×Ω ( D. Then, the norm ‖ · ‖H𝑠0 (Ω) takes into account the interaction between Ω and Ω𝑐 , i.e.,

‖𝑣‖2H𝑠0 (Ω) = ‖𝑣‖
2
𝐻 𝑠 (R𝑁 ) = ‖𝑣‖2𝐿2 (Ω) +

∬
D

|𝑣(𝑥) − 𝑣(𝑦) |2
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦𝑑𝑥.

Therefore, the space H 𝑠
0 (Ω) is the appropriate space to deal with homogeneous elliptic boundary value problems

involving the fractional Laplace operator,

(−Δ)𝑠∞𝑢(𝑥) = 𝑐𝑁 ,𝑠𝑃.𝑉.
∫
R𝑁

𝑢(𝑥) − 𝑢(𝑦)
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦.

On the other hand, by the fractional Sobolev inequality, cf. [15, Th. 6.5], we can renormize the spaceH 𝑠
0 (Ω) and

consider it endowed with the norm

|||𝑣 |||2H𝑠0 =
∬
D

|𝑣(𝑥) − 𝑣(𝑦) |2
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦𝑑𝑥.

Next, given an horizon 𝛿 > 0, let us define the (nonlocally) completed domain Ω𝛿 = Ω ∪ 𝜕𝛿Ω, and the energy
space H𝑠 (Ω𝛿) = {𝑣 ∈ 𝐿2 (Ω𝛿) : ‖𝑣‖H𝑠 (Ω𝛿 ) < ∞} where ‖𝑣‖2H𝑠 (Ω𝛿 ) = ‖𝑣‖

2
𝐿2 (Ω𝛿 ) + |𝑣 |

2
H𝑠 (Ω𝛿 ) with

|𝑣 |2H𝑠 (Ω𝛿 ) =
∫
Ω𝛿

∫
Ω𝛿∩𝐵 (𝑥, 𝛿)

|𝑣(𝑥) − 𝑣(𝑦) |2
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦𝑑𝑥.

Note that, because of [5, Prop. 6.1], the spaces H𝑠 (Ω𝛿) and 𝐻𝑠 (Ω𝛿) are isomorphic. In order to deal with the
boundary value problem 𝑃𝑠𝛿 , we define the energy space H

𝛿,𝑠
0 (Ω) = {𝑣 ∈ H𝑠 (Ω𝛿) : 𝑣 ≡ 0 on 𝜕𝛿Ω} endowed

with the norm inherited from H𝑠 (Ω𝛿). Let us notice that, given a function 𝑣 ∈ H𝛿,𝑠0 (Ω), although we have
𝑣 = 0 on 𝜕𝛿Ω = Ω𝛿\Ω, the norms ‖𝑣‖H𝑠 (Ω) and ‖𝑣‖H𝛿,𝑠0 (Ω) are not the same. Indeed, if 𝑣 = 0 on 𝜕𝛿Ω, since
H𝑠 (Ω) = {𝑣 ∈ 𝐿2 (Ω) : ‖𝑣‖H𝑠 (Ω) < ∞} with ‖𝑣‖2H𝑠 (Ω) = ‖𝑣‖2𝐿2 (Ω) + |𝑣 |2𝐻 𝑠 (Ω) and

‖𝑣‖2
H𝛿,𝑠0 (Ω)

= ‖𝑣‖2
𝐿2 (Ω) +

∬
D𝛿

|𝑣(𝑥) − 𝑣(𝑦) |2
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦𝑑𝑥,

withD𝛿 =
(
Ω𝛿×

(
Ω𝛿∩𝐵(𝑥, 𝛿)

) )∖ (
𝜕𝛿Ω×

(
𝜕𝛿Ω∩𝐵(𝑥, 𝛿)

) )
, we have the strict inclusion

(
Ω×(Ω∩𝐵(𝑥, 𝛿))) ( D𝛿 .

Hence, the norm ‖ · ‖H𝛿,𝑠0 (Ω) takes into account the interaction between Ω and 𝜕𝛿Ω in the sense that

|𝑣 |2H𝑠 (Ω𝛿 ) = |𝑣 |
2
𝐻 𝑠 (Ω) +

∫
𝜕𝛿Ω

∫
Ω∩𝐵 (𝑥, 𝛿)

|𝑣(𝑦) |2
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦𝑑𝑥 +

∫
Ω

∫
𝜕𝛿Ω∩𝐵 (𝑥, 𝛿)

|𝑣(𝑥) |2
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦𝑑𝑥.

Therefore, the space H𝛿,𝑠0 (Ω) is the appropriate space to deal with homogeneous elliptic boundary value problems
involving the operator (−Δ)𝑠𝛿 . Moreover, comparing the norms ‖ · ‖H𝑠0 (Ω) and ‖ · ‖H𝛿,𝑠0 (Ω) we observe that 𝜕𝛿Ω
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plays the role of Ω𝑐 . Indeed, the sets Ω𝛿 and Ω𝛿 ∩ 𝐵(𝑥, 𝛿) will lead to the complete space R𝑁 for 𝛿 → +∞, the
set Ω∩ 𝐵(𝑥, 𝛿) will eventually reach the set Ω for 𝛿 > 0 big enough and the sets 𝜕𝛿Ω and 𝜕𝛿Ω∩ 𝐵(𝑥, 𝛿) will reach
Ω𝑐 for 𝛿→ +∞. In fact, D𝛿1 ⊂ D𝛿2 for 𝛿1 < 𝛿2 and D𝛿 → D as 𝛿→ +∞.
Due to [5, Prop. 6.1] and [5, Lem. 6.2], we have |𝑣 |H𝑠 (Ω𝛿 ) ≤ ‖𝑣‖H𝑠 (Ω𝛿 ) ≤ 𝑐 |𝑣 |H𝑠 (Ω𝛿 ) , for a positive constant 𝑐 ∈ R
and, then, we can renormize the space H𝛿,𝑠0 (Ω) and consider it endowed with the norm

|||𝑣 |||2
H𝛿,𝑠0

=
∫
Ω𝛿

∫
Ω𝛿∩𝐵 (𝑥, 𝛿)

|𝑣(𝑥) − 𝑣(𝑦) |2
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦𝑑𝑥.

As a consequence, we have the following, cf. [7, Lem. 2] and [7, Lem. 4] respectively.

Lemma 2.1 The space H𝛿,𝑠0 (Ω) is a Hilbert space endowed with norm |||·|||H𝛿,𝑠0 induced by the scalar product

〈𝑢, 𝑣〉H𝛿,𝑠0 =
∫
Ω𝛿

∫
Ω𝛿∩𝐵 (𝑥, 𝛿)

(𝑢(𝑥) − 𝑢(𝑦)) (𝑣(𝑥) − 𝑣(𝑦))
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦𝑑𝑥.

Analyze convergence phenomena for 𝛿→ +∞ will require to study the relation betweenH 𝑠
0 (Ω) and H𝛿,𝑠0 (Ω).

Lemma 2.2 For any 𝛿 > 0, the spaces H𝛿,𝑠0 (Ω) andH 𝑠
0 (Ω) are isomorphic. In particular, there exists a constant

𝐶 = 𝐶 (𝛿) > 1 such that 𝐶 (𝛿) → 1 as 𝛿→ +∞ and

|||·|||2
H𝛿,𝑠0
≤ |||·|||2H𝑠0 ≤ 𝐶 (𝛿) |||·|||

2
H𝛿,𝑠0

for all 𝛿 > 0.

Now we make precise the definition of weak solution of problem 𝑃𝑠𝛿 .

Definition 2.3 We say that 𝑢 ∈ H𝛿,𝑠0 (Ω) is a weak solution to problem 𝑃𝑠𝛿 if, for all 𝑣 ∈ H𝛿,𝑠0 (Ω),
𝑐𝑁 ,𝑠
2
〈𝑢, 𝑣〉H𝛿,𝑠0 = 〈 𝑓 , 𝑣〉𝐿2 (Ω) .

3. Main Results

We present now the main results of the work. To that end, let us set 𝜅(𝑁, 𝑠) = 4𝑁 (1−𝑠)
𝜎𝑁−1𝑐𝑁,𝑠 with 𝜎𝑁−1 the surface of

the unitary sphere S𝑁−1 and 𝜕∞Ω = R𝑁 \Ω and consider the following problems,

𝑅𝑃𝑠𝛿 ≡
{
(−Δ)𝑠𝛿𝑢 = 𝛿2(1−𝑠)

𝜅 (𝑁 ,𝑠) 𝑓 in Ω,
𝑢 = 0 on 𝜕𝛿Ω,

𝑃10 ≡
{ (−Δ)𝑢 = 𝑓 in Ω,

𝑢 = 0 on 𝜕Ω, and 𝑃𝑠∞ ≡
{ (−Δ)𝑠∞𝑢 = 𝑓 in Ω,

𝑢 = 0 on 𝜕∞Ω,

Our main results regarding the linear problems are the following, cf. [7, Th. 2] and [7, Th. 3].

Theorem 3.1 Let 𝑢𝛿,𝑠 and 𝑢0,1 be the solutions of 𝑅𝑃𝑠𝛿 and 𝑃
1
0 respectively. Then, up to a subsequence,

𝑢𝛿,𝑠 → 𝑢0,1 in 𝐿2 (Ω) as 𝛿→ 0+.

Theorem 3.2 Let 𝑢𝛿,𝑠 and 𝑢∞,𝑠 be the solutions of 𝑃𝑠𝛿 and 𝑃
𝑠∞ respectively. Then, up to a subsequence,

𝑢𝛿,𝑠 → 𝑢∞,𝑠 in 𝐿2 (Ω) as 𝛿→ +∞.

We continue with existence and stability issues for the eigenvalue problem{ (−Δ)𝑠𝛿𝜑 = 𝜆𝜑 in Ω,
𝜑= 0 on 𝜕𝛿Ω.

(𝐸𝑃𝑠𝛿)

Using [5, Prop. 6.1, Lem. 6.2] and following [24, Prop. 9], we prove the following, cf. [7, Prop. 2].

Proposition 3.3 Let 𝛿 > 0, 𝑠 ∈ (0, 1), 𝑁 > 2𝑠 and Ω ⊂ R𝑁 an open bounded set with Lipschitz boundary. Then,
the following hold:
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1. Problem 𝐸𝑃𝑠𝛿 has a first positive eigenvalue that can be characterized as

𝜆𝛿,𝑠1 = min
𝑢∈H𝛿,𝑠0 (Ω)
‖𝑢 ‖𝐿2 (Ω)=1

𝑐𝑁 ,𝑠
2
|||𝑢 |||2

H𝛿,𝑠0
=
𝑐𝑁 ,𝑠
2

���������𝜑𝛿,𝑠1
���������2
H𝛿,𝑠0

,

where 𝜑𝛿,𝑠1 ∈ H𝛿,𝑠0 (Ω), is a nonnegative eigenfunction. In addition, the first eigenvalue 𝜆𝛿,𝑠1 is simple.

2. The eigenvalues of 𝐸𝑃𝑠𝛿 are a countable set {𝜆𝛿,𝑠𝑘 }𝑘∈N satisfying

0 < 𝜆𝛿,𝑠1 < 𝜆𝛿,𝑠2 ≤ . . . ≤ 𝜆𝛿,𝑠𝑘 ≤ . . . and 𝜆𝛿,𝑠𝑘 → +∞ as 𝑘 → +∞.

Furthermore, for any 𝑘 ∈ N, 𝑘 ≥ 2 the eigenvalues can be characterized as

𝜆𝛿,𝑠𝑘 = min
𝑢∈P𝛿

𝑘
‖𝑢 ‖𝐿2 (Ω)=1

𝑐𝑁 ,𝑠
2
|||𝑢 |||2

H𝛿,𝑠0
=
𝑐𝑁 ,𝑠
2

���������𝜑𝛿,𝑠𝑘
���������2
H𝛿,𝑠0

.

where P𝛿𝑘 = {𝑢 ∈ H𝛿,𝑠0 (Ω) : 〈𝑢, 𝜑𝛿,𝑠𝑗 〉H𝛿,𝑠0 = 0, 𝑗 = 1, . . . , 𝑘 − 1} and an eigenfunction 𝜑𝛿,𝑠𝑘 ∈ P𝛿𝑘 .

3. The set of eigenfunctions {𝜑𝛿,𝑠𝑘 }𝑘∈N is an orthogonal basis of H𝛿,𝑠0 (Ω) and an orthonormal basis of 𝐿2 (Ω).

4. For any 𝑘 ∈ N, the eigenvalue 𝜆𝛿,𝑠𝑘 has finite multiplicity, 1 ≤ 𝑚 𝛿,𝑠𝑘 < ∞ for all 𝑘 ∈ N.
Moreover, arguing as in [23, Prop. 4], we also deduce the following, cf. [7, Lem. 5].

Lemma 3.4 Let 𝜑𝛿,𝑠𝑘 ∈ H𝛿,𝑠0 (Ω) be an eigenfunction of 𝐸𝑃𝑠𝛿 , then 𝜑𝛿,𝑠𝑘 ∈ 𝐿∞ (Ω) for any 𝑘 ∈ N.
Finally, we present the main results about the behavior of 𝐸𝑃𝑠𝛿 when 𝛿 → 0+ and 𝛿 → +∞. To that end, let us

consider the eigenvalue problems,

𝐸𝑃10 ≡
{ (−Δ)𝜑 = 𝜆𝜑 in Ω,

𝜑 = 0 on 𝜕Ω,
and 𝐸𝑃𝑠∞ ≡

{ (−Δ)𝑠∞𝜑 = 𝜆𝜑 in Ω,
𝜑 = 0 on R𝑁 \Ω.

It is well known cf. [12] that the problem 𝐸𝑃10 has a countable set of eigenvalues that we denote by {𝜆0,1𝑘 }𝑘∈N
and such that

0 < 𝜆0,11 < 𝜆0,12 ≤ . . . ≤ 𝜆0,1𝑘 ≤ . . . and 𝜆0,1𝑘 → +∞ as 𝑘 → +∞.
Denoting by 𝑚0,1𝑘 the multiplicity of the eigenvalue 𝜆0,1𝑘 , we have 1 ≤ 𝑚0,1𝑘 < ∞ for all 𝑘 ∈ N. Moreover, there
exists a countable set of eigenfunctions {𝜑0,1𝑘 }𝑘∈N that is an orthogonal basis of 𝐻10 (Ω) and an orthonormal basis
of 𝐿2 (Ω). The first eigenvalue is simple and 𝜑0,11 > 0 in Ω.

Concerning the fractional eigenvalue problem, Servadei andValdinoci proved, cf. [24], that 𝐸𝑃𝑠∞ has a countable
set of eigenvalues that we denote by {𝜆∞,𝑠𝑘 }𝑘∈N and such that

0 < 𝜆∞,𝑠1 < 𝜆∞,𝑠2 ≤ . . . ≤ 𝜆∞,𝑠𝑘 ≤ . . . , and 𝜆∞,𝑠𝑘 → +∞ as 𝑘 → +∞.

Denoting by 𝑚∞,𝑠𝑘 the multiplicity of the eigenvalue 𝜆∞,𝑠𝑘 , we have 1 ≤ 𝑚∞,𝑠𝑘 < ∞ for all 𝑘 ∈ N. Moreover, there
exists a countable set of eigenfunctions {𝜑∞,𝑠𝑘 }𝑘∈N that is an orthogonal basis of

H∞,𝑠0 (Ω) =


𝑣 ∈ 𝐿2 (Ω) :

∬
D

|𝑣(𝑥) − 𝑣(𝑦) |2
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦𝑑𝑥 < ∞, 𝑣 = 0 a.e. on R𝑁 \Ω



,

and an orthonormal basis of 𝐿2 (Ω). The first eigenvalue is also simple and 𝜑∞,𝑠1 ≥ 0 in Ω.

We relate the eigenvalues and eigenfunctions of 𝐸𝑃𝑠𝛿 to those of the eigenvalue problems 𝐸𝑃
1
0 and 𝐸𝑃

𝑠∞ through
the following results, cf. [7, Th. 4] and [7, Th. 5].
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Theorem 3.5 Let {(𝜆𝛿,𝑠𝑘 , 𝜑𝛿,𝑠𝑘 )}𝑘∈N be the set of eigenvalues and eigenfunctions of (−Δ)𝑠𝛿 with homogeneous
Dirichlet boundary condition on 𝜕𝛿Ω and let {(𝜆0,1𝑘 , 𝜑0,1𝑘 )}𝑘∈N be the set of eigenvalues of (−Δ) with homogeneous
Dirichlet boundary condition on 𝜕Ω. Then,

𝜅(𝑁, 𝑠) 𝜆
𝛿,𝑠
𝑘

𝛿2(1−𝑠)
→ 𝜆0,1𝑘 as 𝛿→ 0+,

for 𝜅(𝑁, 𝑠) = 4𝑁 (1−𝑠)
𝜎𝑁−1𝑐𝑁,𝑠 . Moreover, there exists a subsequence (that we do not relabel) such that, for every 𝑘 ∈ N,

𝜑𝛿,𝑠𝑘 → 𝜑0,1𝑘 in 𝐿2 (Ω) as 𝛿→ 0+.

As a consequence, 𝑚 𝛿,𝑠𝑘 → 𝑚0,1𝑘 as 𝛿→ 0+, for any 𝑘 ≥ 1.
As Theorems 3.1 and 3.5 show, even though the fractionality parameter 𝑠 keeps fixed, the local problem driven

by (−Δ) is recovered, under the appropriate rescaling, as 𝛿→ 0+.

Theorem 3.6 Let {(𝜆𝛿,𝑠𝑘 , 𝜑𝛿,𝑠𝑘 )}𝑘∈N be the set of eigenvalues and eigenfunctions of (−Δ)𝑠𝛿 with homogeneous
Dirichlet boundary condition on 𝜕𝛿Ω and let {(𝜆∞,𝑠𝑘 , 𝜑∞,𝑠𝑘 )}𝑘∈N be the set of eigenvalues of (−Δ)𝑠∞ with homoge-
neous Dirichlet boundary condition on R𝑁 \Ω. Then,

𝜆𝛿,𝑠𝑘 → 𝜆∞,𝑠𝑘 as 𝛿→ +∞,

and there exists a subsequence (that we do not relabeled) such that for every 𝑘 ∈ N,

𝜑𝛿,𝑠𝑘 → 𝜑∞,𝑠𝑘 in 𝐿2 (Ω) as 𝛿→ +∞.

As a consequence, 𝑚 𝛿,𝑠𝑘 → 𝑚∞,𝑠𝑘 as 𝛿→∞, for any 𝑘 ≥ 1.

3.1. Γ-convergence
This section includes some results about Γ-convergence that play a crucial role in the proof of the above stated
results. The limit process in the sense of Γ-convergence, denoted by Γ→, is the right concept of limit for variational
problems since, togetherwith equicoercivity or compactness, it implies thatminimizers of 𝐼𝛿 converge tominimizers
of 𝐼 as well as their energies. A nice account on Γ-convergence is provided in [10]. We present now a result about
Γ-convergence of functionals proved in [6] that is the core of the proof of Theorem 3.1 and Theorem 3.5. Let us
consider a functional of the form

𝐼 (𝑢) =
∫
Ω

∫
Ω∩𝐵 (𝑥, 𝛿)

𝜔(𝑥 − 𝑦, 𝑢(𝑥) − 𝑢(𝑦))𝑑𝑦𝑑𝑥,

for a potential function 𝜔(𝑥, 𝑦) : R𝑁 × R ↦→ R verifying that, for some 𝛽 ∈ R, the following limit exists,

𝜔◦ (𝑥, 𝑦) = lim
𝑡→0+

1
𝑡𝛽
𝜔(𝑡𝑥, 𝑡𝑦).

Let 𝜔𝑐 : R𝑁 ↦→ R be the limit density convexification of 𝜔 defined as 𝜔𝑐 = sup{𝑣 : 𝑣 ≤ 𝜔 and 𝑣 convex}, where
𝜔 : R𝑁 ↦→ R is the limit density of 𝜔,

𝜔(𝐹) =
∫
S𝑁−1

𝜔◦ (𝑧, 𝐹𝑧)𝑑𝜎(𝑧).

Under the hypotheses stated below, given the sequence of rescaled functionals

𝐼𝛿 (𝑢) = 𝑁 + 𝛽
𝛿𝑁+𝛽

∫
Ω

∫
Ω∩𝐵 (𝑥, 𝛿)

𝜔(𝑥 − 𝑦, 𝑢(𝑥) − 𝑢(𝑦))𝑑𝑦𝑑𝑥,

we have,
𝐼𝛿 (𝑢) Γ−→ 𝐼0 (𝑢) =

∫
Ω
𝜔𝑐 (∇𝑢)𝑑𝑥.

In particular, the above Γ-convergence is ensured by the next result, that also provides the compactness of uniformly
bounded energy sequences. Let us set Ω̃ = {𝑧 = 𝑥 − 𝑦 : 𝑥, 𝑦 ∈ Ω} and A𝛿 = {𝑣 ∈ 𝐿 𝑝 (Ω) : 𝑣 = 0 on 𝜕𝛿Ω}.
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Theorem 3.7 ( [6, Th. 1]) Let Ω ⊂ R𝑁 be a bounded domain with Lipschitz boundary and 𝜔 : Ω̃ × R ↦→ R
satisfying the hypotheses (H1)-(H2) below. Then, the following holds:

a) Compactness: For each 𝛿 > 0, let 𝑢𝛿 ∈ A𝛿 such that sup
𝛿
𝐼𝛿 (𝑢𝛿) < +∞. Then, there exist 𝑢 ∈ 𝑊1, 𝑝0 (Ω)

such that, for a subsequence, 𝑢𝛿 → 𝑢 strong in 𝐿 𝑝 (Ω) as 𝛿→ 0+.
b) Γ-liminf inequality: For each 𝛿 > 0 let 𝑢𝛿 ∈ A𝛿 and 𝑢 ∈ 𝑊1, 𝑝0 (Ω) such that 𝑢𝛿 → 𝑢 strong in 𝐿 𝑝 (Ω) as

𝛿→ 0+. Then, 𝐼0 (𝑢) ≤ lim inf
𝛿→0+

𝐼𝛿 (𝑢𝛿).

c) Γ-limsup inequality: For each 𝛿 > 0 and 𝑢 ∈ 𝑊1, 𝑝0 (Ω) there exist 𝑢𝛿 ∈ A𝛿 , called recovery sequence, such
that 𝑢𝛿 → 𝑢 strong in 𝐿 𝑝 (Ω) as 𝛿→ 0+ and lim sup

𝛿→0+
𝐼𝛿 (𝑢𝛿) ≤ 𝐼0 (𝑢).

For a general potential function𝜔(𝑥, 𝑦) the hypotheses of Theorem 3.7 are quite involved but, if𝜔(𝑥, 𝑦) = 𝑓 (𝑥)𝑔(𝑦)
for 𝑓 a Lebesgue measurable function and 𝑔 a Borel measurable and convex function, the necessary hypotheses
are:

H1) There exists constants 𝑐0, 𝑐1 > 0 and ℎ ∈ 𝐿1 (S𝑁−1) with ℎ ≥ 0 such that, for some 1 < 𝑝 < +∞ and
0 ≤ 𝛼 < 𝑁 + 𝑝,

𝑐0
|𝑦 |𝑝
|𝑥 |𝛼 ≤ 𝑓 (𝑥)𝑔(𝑦) ≤ 𝑐1ℎ

(
𝑥

|𝑥 |

) |𝑦 |𝑝
|𝑥 |𝛼 for 𝑥 ∈ Ω̃, 𝑦 ∈ R.

H2) The functions 𝑓 ◦ (𝑥) = lim
𝑡→0+

𝑡𝛼 𝑓 (𝑡𝑥) and 𝑔◦ (𝑦) = lim
𝑡→0+

1
𝑡 𝑝 𝑔(𝑡𝑦), are continuous and, for each compact 𝐾 ⊂ R,

lim
𝑡→0+

sup
𝑥∈S𝑁−1

|𝑡𝛼 𝑓 (𝑡𝑥) − 𝑓 ◦ (𝑥) | = 0 and lim
𝑡→0+

sup
𝐾 ⊂R
| 1
𝑡 𝑝
𝑔(𝑡𝑦) − 𝑔◦ (𝑦) | = 0.

The following is a straightforward consequence, cf. [10], of the Γ-convergence and the compactness provided by
Theorem 3.7. Notice that under previous hypothesis existence of minimizers for 𝐼𝛿 is guaranteed, cf. [5].

Corollary 3.8 In the conditions of Theorem 3.7, let 𝑢𝛿 ∈ H𝛿,𝑠0 (Ω) be a minimizer of 𝐼𝛿 , for any 𝛿 > 0. Then, there
exists 𝑢0 ∈ 𝐻10 (Ω) a minimizer of 𝐼0 such that, up to a subsequence,

𝑢𝛿 → 𝑢0 strong in 𝐿2 (Ω) as 𝛿→ 0+ and 𝐼𝛿 (𝑢𝛿) → 𝐼0 (𝑢0) as 𝛿→ 0+.

3.2. Taking the horizon 𝛿→ 0+
One of the main steps to prove Theorem 3.1 and Theorem 3.5 is the following result, cf. [7, Lem. 6], concerning
the Γ-convergence of the energy functional defining the eigenvalues. Among other things, it shows that, up to the
appropriate scaling, all the functionals 𝐼𝛿,𝑠 will Γ-converge to the same Γ-limit independently of 𝑠.

Lemma 3.9 Let us consider the scaled functional

𝐼𝛿,𝑠 (𝑢) = 2(1 − 𝑠)
𝛿2(1−𝑠)

∫
Ω𝛿

∫
Ω𝛿∩𝐵 (𝑥, 𝛿)

|𝑢(𝑥) − 𝑢(𝑦) |2
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦𝑑𝑥,

defined on H𝛿,𝑠0 (Ω). Then, the Γ-limit of 𝐼𝛿,𝑠 (𝑢) as 𝛿→ 0+ is given by

𝐼0 (𝑢) = 𝜎𝑁−1
𝑁

∫
Ω
|∇𝑢(𝑥) |2𝑑𝑥.

The proof of Theorem 3.1 follows from Lemma 3.9 and Corollary 3.8. To prove Theorem 3.5, we use Lemma
3.9 and Corollary 3.8, from where we get the convergence of the first eigenvalue under the appropriate scaling,
namely,

𝜅(𝑁, 𝑠) 𝜆
𝛿,𝑠
1

𝛿2(1−𝑠)
→ 𝜆0,11 as 𝛿→ 0+.

Moreover, we also get 𝜑𝛿,𝑠1 → 𝜑0,11 strong in 𝐿2 (Ω) as 𝛿 → 0+. Next, we construct a recovery sequence by
projecting appropriately on the second eigenspace P𝛿2 = {𝑢 ∈ H𝛿,𝑠0 (Ω) : 〈𝑢, 𝜑𝛿,𝑠1 〉H𝛿,𝑠0 = 0}. Thanks to the strong
𝐿2 (Ω)-convergence of the first eigenfunction the convergence of the second eigenvalue and the second eigenfunction
follows. To conclude we argue inductively.
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In order to clarify why the scaling in Γ-convergence result is natural in our context, it is of interest to deduce
from the classical localization result of Bourgain, Brezis and Mironescu the upper bound

lim
𝛿→0+

𝜅(𝑁, 𝑠)
𝛿2(1−𝑠)

𝜆𝛿,𝑠1 ≤ 𝜆0,11 .

Let {𝜌𝑛 (𝑥)}𝑛∈N be a sequence of radial mollifiers, i.e.,

𝜌𝑛 (𝑥) = 𝜌𝑛 ( |𝑥 |), 𝜌𝑛 (𝑥) ≥ 0 and
∫

𝜌𝑛 (𝑥)𝑑𝑥 = 1 and satisfying lim
𝑛→∞

∫ ∞

𝜀
𝜌𝑛 (𝑟)𝑟𝑁−1 = 0 ∀𝜀 > 0.

Theorem 3.10 ( [9, Th. 2]) Assume 𝑢 ∈ 𝐿 𝑝 (Ω), 1 < 𝑝 < ∞. Then, for a constant 𝐶 = 𝐶 (𝑁, 𝑝) > 0, we have

lim
𝑛→∞

∫
Ω

∫
Ω

|𝑢(𝑥) − 𝑢(𝑦) |𝑝
|𝑥 − 𝑦 |𝑝 𝜌𝑛 (𝑥 − 𝑦)𝑑𝑦𝑑𝑥 = 𝐶

∫
Ω
|∇𝑢 |𝑝𝑑𝑥.

with the convention that
∫
Ω
|∇𝑢 |𝑝𝑑𝑥 = ∞ if 𝑢 ∉ 𝑊1, 𝑝 (Ω).

Since 𝐻10 (Ω) ⊂ H𝛿,𝑠0 (Ω) for all 𝛿 > 0, we have

𝜆𝛿,𝑠1 = min
𝑢∈H𝛿,𝑠0 (Ω)
‖𝑢 ‖𝐿2 (Ω)=1

𝑐𝑁 ,𝑠
2

∫
Ω𝛿

∫
Ω𝛿∩𝐵 (𝑥, 𝛿)

|𝑢(𝑥) − 𝑢(𝑦) |2
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦𝑑𝑥 ≤ 𝑐𝑁 ,𝑠

2

∫
Ω𝛿

∫
Ω𝛿∩𝐵 (𝑥, 𝛿)

|𝜓 𝛿1 (𝑥) − 𝜓 𝛿1 (𝑦) |2
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦𝑑𝑥,

being 𝜓 𝛿1 the first eigenfunction 𝜑
0,1
1 of the Laplace operator (𝐿2 (Ω)-normalized) extended by zero on 𝜕𝛿Ω. In

order to apply Theorem 3.10, let us rewrite the above inequality as

𝜆𝛿,𝑠1 ≤
∫
Ω𝛿

∫
Ω𝛿

|𝜓 𝛿1 (𝑥) − 𝜓 𝛿1 (𝑦) |2
|𝑥 − 𝑦 |2 𝜌𝛿 ( |𝑥 − 𝑦 |)𝑑𝑦𝑑𝑥,

with 𝜌𝛿 (𝑧) =
𝑐𝑁 ,𝑠
2

𝜒𝐵 (0, 𝛿) ( |𝑧 |)
|𝑧 |𝑁+2(𝑠−1) and 𝜒𝐴 the characteristic function of the set 𝐴. Since∫

𝜌𝛿 (𝑧)𝑑𝑧 =
𝜎𝑁−1𝑐𝑁 ,𝑠
4(1 − 𝑠) 𝛿

2(1−𝑠) ,

the sequence of radial mollifiers 𝜌𝛿 (𝑧) =
4(1 − 𝑠)
𝜎𝑁−1

1
𝛿2(1−𝑠)

𝜒𝐵 (0, 𝛿) ( |𝑧 |)
|𝑧 |𝑁+2(𝑠−1) satisfy the hypotheses of Theorem 3.10.

Then, because of Theorem 3.10, we conclude

lim
𝛿→0+

4(1 − 𝑠)
𝜎𝑁−1𝑐𝑁 ,𝑠

𝜆𝛿,𝑠1
𝛿2(1−𝑠)

≤ lim
𝛿→0+

∫
Ω𝛿

∫
Ω𝛿

|𝜓 𝛿1 (𝑥) − 𝜓 𝛿1 (𝑦) |2
|𝑥 − 𝑦 |2 𝜌𝛿 ( |𝑥 − 𝑦 |)𝑑𝑦𝑑𝑥 = 𝐶

∫
Ω
|∇𝜑0,11 |2𝑑𝑥,

since 𝜓1 = 0 on 𝜕𝛿0Ω and 𝜓1 = 𝜑
0,1
1 in Ω. Since for 𝑝 = 2 the constant 𝐶 = 𝐶 (𝑁, 𝑝) appearing in Theorem 3.10

takes the value 𝐶 (𝑁, 2) = 1
𝑁 , taking in mind that ‖𝜑0,11 ‖𝐿2 (Ω) = 1, the desired bound follows.

3.3. Taking the horizon 𝛿→ +∞
Because of the definition of the operator (−Δ)𝑠𝛿 , as a restriction of the fractional Laplacian, it is plausible that if we
take 𝛿→ +∞ one recovers the definition of the standard fractional Laplacian, namely,

lim
𝛿→+∞

(−Δ)𝑠𝛿𝑢(𝑥) = 𝑐𝑁 ,𝑠𝑃.𝑉.
∫
R𝑁

𝑢(𝑥) − 𝑢(𝑦)
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦.

A result in this line was given in [14, Th. 3.1], where it is showed the explicit convergence rate

‖𝑢𝛿,𝑠 − 𝑢∞,𝑠 ‖H𝛿,𝑠0 ≤
𝑐

(𝛿 − 𝐼)2𝑠 ‖𝑢
∞,𝑠 ‖𝐿2 (Ω) ,

being 𝑢𝛿,𝑠 and 𝑢∞,𝑠 the solutions of 𝑃𝑠𝛿 and 𝑃
𝑠∞ respectively, 𝑐 > 0 is a constant independent of 𝛿 and 𝐼 = 𝐼 (Ω)

a constant depending on the diameter of Ω. This is an important result from the point of view of the numerical
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approximation of problems involving the fractional Laplacian but its proof strongly relies on the linearity of the
problem 𝑃𝑠𝛿 . Instead, the proof of Theorem 3.2 and Theorem 3.6 are based on a general result about Γ-convergence
that works for both the linear and nonlinear setting. We exploit this advantage to address the 𝑝 -fractional Laplacian
case, cf. [8], and extend the results of this work to the nonlinear setting.
The following Γ-convergence result, cf. [7, Lem. 7], is in the core of the proofs of Theorems 3.2 and Theorem

3.6. This result is analogous to Lemma 3.9 in relation to the proofs of Theorem 3.1 and Theorem 3.5.

Lemma 3.11 Let us consider the functional

E𝛿,𝑠 (𝑢) =
∫
Ω𝛿

∫
Ω𝛿∩𝐵 (𝑥, 𝛿)

|𝑢(𝑥) − 𝑢(𝑦) |2
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦𝑑𝑥.

defined on H𝛿,𝑠0 (Ω). Then, the Γ-limit of E𝛿,𝑠 (𝑢) is given by

E∞,𝑠 (𝑢) =
∫
R𝑁

∫
R𝑁

|𝑢(𝑥) − 𝑢(𝑦) |2
|𝑥 − 𝑦 |𝑁+2𝑠 𝑑𝑦𝑑𝑥 as 𝛿→ +∞.

The above Lemma is an easy consequence of the monotonicity in 𝛿 > 0 of the sequence of functionals E𝛿,𝑠 (𝑢)
and Γ-convergence properties. Indeed, since the sequence of functionals E𝛿,𝑠 (𝑢) with 𝛿 → +∞ is a monotone
increasing sequence and functionals E𝛿,𝑠 are lower semicontinuous, cf. [5], because of [10, Remark 1.40], we
conclude E𝛿,𝑠 (𝑢) Γ→ E∞,𝑠 (𝑢) as 𝛿→ +∞.
The proof of Theorem 3.2 follows from Lemma 3.11 combined with the monotonicity in 𝛿 > 0 together with

Lemma 2.2, the compact embedding of H 𝑠
0 (Ω) into 𝐿2 (Ω), cf. [15, Cor. 7.2], and the fact that Γ-convergence

implies the convergence of the minimizers.
The proof of Theorem 3.6 follows by combining Lemma 3.11 and Lemma 2.2 with similar arguments to those

used in Theorem 3.5.
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A semi-implicit Lagrange-projection-type finite volume scheme exactly
well-balanced for 1D shallow-water system
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Abstract
In this work we present a numerical approximation of the shallow water equations based on a Lagrange-

projection-type finite volume scheme. For the Lagrangian step we propose two different versions of the scheme,
two explicit and other two semi-implicit that ensure first and second order of accuracy. The projection on the
Eulerian coordinates will always be done explicitly, preserving the total order of the scheme. Special care is done
for ensuring the well-balanced properties of the scheme. Several numerical experiments are included in order to
illustrate the good behavior of the proposed schemes.

1. Introduction
Let us consider the shallow water equations (SWE), given by



𝜕𝑡ℎ + 𝜕𝑥 (ℎ𝑢) = 0,
𝜕𝑡 (ℎ𝑢) + 𝜕𝑥

(
ℎ𝑢2 + 𝑔 ℎ

2

2

)
= −𝑔ℎ𝜕𝑥𝑧, (1.1)

where 𝑧(𝑥) denotes a given smooth topography and 𝑔 > 0 is the gravity constant. The primitive variables are the
water depth ℎ ≥ 0 and its velocity 𝑢, which both depend on the space and time variables, respectively, 𝑥 ∈ R and
𝑡 ∈ [0,∞).We assume that the initial water depth ℎ(𝑥, 0) = ℎ0 (𝑥) and velocity 𝑢(𝑥, 0) = 𝑢0 (𝑥) are given.
The use of Lagrangian coordinates allows to describe the flow by following the fluid motion. With this in mind,

for any given "fluid particle", 𝜉, we consider the characteristic curves{
𝜕𝑥

𝜕𝑡
(𝜉, 𝑡) = 𝑢(𝑥(𝜉, 𝑡), 𝑡),

𝑥(𝜉, 0) = 𝜉,
and given any function (𝑥, 𝑡) ↦→ U(𝑥, 𝑡) in Eulerian coordinates, we denote by

U(𝜉, 𝑡) = U(𝑥(𝜉, 𝑡), 𝑡)
its counterpart in Lagrangian coordinates.
Moreover, we define

𝐿 (𝜉, 𝑡) = 𝜕𝑥

𝜕𝜉
(𝜉, 𝑡),

which implies that 𝜕𝑡𝐿 (𝜉, 𝑡) = 𝜕𝜉𝑢(𝜉, 𝑡).
Since system (1.1) can be written for smooth solutions as



𝜕𝑡ℎ + 𝑢𝜕𝑥ℎ + ℎ𝜕𝑥𝑢 = 0,

𝜕𝑡 (ℎ𝑢) + 𝑢𝜕𝑥 (ℎ𝑢) + ℎ𝑢𝜕𝑥𝑢 + 𝜕𝑥
(
𝑔
ℎ2

2

)
= −𝑔ℎ𝜕𝑥𝑧,

after multiplying both equations by 𝐿 (𝜉, 𝑡) and setting 𝑝 = 𝑔ℎ2/2 we obtain{
𝜕𝑡 (𝐿ℎ) = 0,
𝜕𝑡 (𝐿ℎ𝑢) + 𝜕𝜉 𝑝 + 𝑔ℎ𝜕𝜉 𝑧 = 0.

(1.2)

The Lagrangian-projection scheme can be interpreted as a two-step algorithm consisting in first solving the
system in Lagrangian coordinates (1.2), which is known as the Lagrangian step, and then projecting the results in
Eulerian coordinates, which is known as the Projection step. See [9] for more details. This strategy allows us to
decouple the acoustic and transport phenomena and to design a natural implicit-explicit and large time steps could
be considered with a CFL restriction based on the slower transport waves and not on the acoustic ones. We address
the reader to [5–8] for further details. In this work we follow the strategy described in [3, 10] for the definition of
the LP scheme and [4] to ensure its well-balanced character. Concerning the well-balanced property, we refer the
reader to [1] for a different approach, and to [2, 4] and the references therein, for a review on this topic.
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Gijón, 14-18 junio 2021
(pp. 82–89)

CEDYA/CMA 82 ISBN 978-84-18482-21-2



2. The Lagrange-projection numerical algorithm
Space and time will be discretized using a space step Δ𝑥 and a time step Δ𝑡 in a set of cells [𝑥𝑖−1/2, 𝑥𝑖+1/2] and
instants 𝑡𝑛 = 𝑛Δ𝑡, for ∈ Z, 𝑛 ∈ N. We consider Δ𝑥 and Δ𝑡 constants for simplicity. We define 𝑥𝑖+1/2 = 𝑖Δ𝑥 and
𝑥𝑖 = (𝑥𝑖−1/2 + 𝑥𝑖+1/2)/2, the cell interfaces and the cell centers, respectively. We consider for the variable 𝜉 the
same space discretization as for 𝑥, that is, Δ𝜉 = Δ𝑥, 𝜉𝑖+1/2 = 𝑥𝑖+1/2 and 𝜉𝑖 = 𝑥𝑖 for all 𝑖 ∈ Z.
LetU = (ℎ, ℎ𝑢)𝑡 . For a given initial condition 𝑥 ↦→ U0 (𝑥),wewill consider a discrete initial conditionU0𝑖 , which

approximates
1
Δ𝑥

∫ 𝑥𝑖+1/2

𝑥𝑖−1/2
U0 (𝑥)𝑑𝑥, for 𝑖 ∈ Z. The proposed algorithm aims at computing an approximation U𝑛𝑖 of

U𝑛𝑖 ≈
1
Δ𝑥

∫ 𝑥𝑖+1/2

𝑥𝑖−1/2
U(𝑥, 𝑡𝑛)𝑑𝑥,

where 𝑥 ↦→ U(𝑥, 𝑡𝑛) is the exact solution of (1.1) at time 𝑡𝑛, 𝑛 ∈ N. Given the sequence {U𝑛𝑖 }𝑖 , it is a matter of
defining the sequence {U𝑛+1𝑖 }𝑖 , 𝑛 ∈ N, since {U0𝑖 }𝑖 is assumed to be known.
Using these notation, the overall Lagrange-projection algorithm can be described as follows: for a given

discrete state U𝑛𝑖 = (ℎ, ℎ𝑢)𝑛𝑖 , 𝑖 ∈ Z, that describes the system at instant 𝑡𝑛, the computation of the approximation
U𝑛+1𝑖 = (ℎ, ℎ𝑢)𝑛+1𝑖 at the next time level is a two-step process defined by

1. update U𝑛𝑖 to U𝑛+1𝑖 by approximating the solution of (1.2);

2. update U𝑛+1𝑖 to U𝑛+1𝑖 by projecting the solution back to the Eulerian coordinates.

3. The Lagrangian step
Concerning the Lagrangian step, we will approximate the solution of (1.2) in two ways: explicitly and implicitly.
For simplicity, from now on we will focus on the flat topography case, which corresponds to 𝜕𝑥𝑧 = 0. The

non-flat case can be carried out by adapting the schemes presented here as proposed in [3, 4, 10]. A detailed
description of the well-balanced schemes will be done during the presentation.
Following [3, 8], we will now consider a relaxation approach of the Lagrangian formulation:



𝜕𝑡𝜏 − 𝜕𝑚𝑢 = 0,
𝜕𝑡𝑢 + 𝜕𝑚Π = 𝜆(𝑝 − Π),
𝜕𝑡Π + 𝑎2𝜕𝑚𝑢 = 0,

(3.1)

where 𝜏 = 1/ℎ, 𝜏𝜕𝑥 = 𝜕𝑚, 𝑎 is a constant satisfying the subcharacteristic condition 𝑎 > ℎ
√︁
𝑔ℎ and 𝜆→∞.

From a numerical point of view, the strategy consists in first solving (3.1) with 𝜆 = 0, that is,



𝜕𝑡𝜏 − 𝜕𝑚𝑢 = 0,
𝜕𝑡𝑢 + 𝜕𝑚Π = 0,
𝜕𝑡Π + 𝑎2𝜕𝑚𝑢 = 0,

(3.2)

and then setting Π = 𝑝(𝜏) before going to the following iteration.
Defining the two new variables −→𝑤 = Π + 𝑎𝑢 and←−𝑤 = Π − 𝑎𝑢, system (3.2) can be written as



𝜕𝑡𝜏 − 𝜕𝑚𝑢 = 0,
𝜕𝑡
−→𝑤 + 𝑎𝜕𝑚−→𝑤 = 0,

𝜕𝑡
←−𝑤 − 𝑎𝜕𝑚←−𝑤 = 0.

(3.3)

In what follows, we present a first order fully explicit and semi-implicit scheme and their extensions to second
order. The second order extension is performed using a second order reconstruction operator combined with a
suitable second order time integration.

3.1. Explicit Lagrangian schemes
First order explicit Lagrangian scheme
The Lagrangian step for the first order explicit scheme can be written as (see [3] for details)



(𝐿ℎ)𝑛+1𝑖 = ℎ𝑛𝑖 ,

(𝐿ℎ𝑢)𝑛+1𝑖 = (ℎ𝑢)𝑛𝑖 −
Δ𝑡
Δ𝑥
(𝜋∗
𝑖+1/2 − 𝜋∗𝑖−1/2),
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where
𝐿𝑛+1𝑖 = 1 + Δ𝑡

Δ𝑥
(𝑢∗𝑖+1/2 − 𝑢∗𝑖−1/2)

and

𝜋∗𝑖+1/2 =
−→𝑤 𝑛𝑖 +←−𝑤 𝑛𝑖+1

2
=
𝜋𝑛𝑖 + 𝜋𝑛𝑖+1
2

− 𝑎
2
(𝑢𝑛𝑖+1 − 𝑢𝑛𝑖 ),

𝑢∗𝑖+1/2 =
−→𝑤 𝑛𝑖 −←−𝑤 𝑛𝑖+1
2𝑎

=
𝑢𝑛𝑖 + 𝑢𝑛𝑖+1
2

− 1
2𝑎
(𝜋𝑛𝑖+1 − 𝜋𝑛𝑖 ).

Second order explicit Lagrangian scheme
The second order explicit scheme, after using a MUSCL-Hancock reconstruction, can be described again as



(𝐿ℎ)𝑛+1𝑖 = ℎ𝑛𝑖 ,

(𝐿ℎ𝑢)𝑛+1𝑖 = (ℎ𝑢)𝑛𝑖 −
Δ𝑡
Δ𝑥
(𝜋∗
𝑖+1/2 − 𝜋∗𝑖−1/2),

with
𝐿𝑛+1𝑖 = 1 + Δ𝑡

Δ𝑥
(𝑢∗𝑖+1/2 − 𝑢∗𝑖−1/2),

where now

𝜋∗𝑖+1/2 =
−→𝑤 𝑛+1/2
𝑖+1/2− +←−𝑤

𝑛+1/2
𝑖+1/2+

2
,

𝑢∗𝑖+1/2 =
−→𝑤 𝑛+1/2
𝑖+1/2− −←−𝑤

𝑛+1/2
𝑖+1/2+

2𝑎
,

and

−→𝑤 𝑛+1/2
𝑖+1/2− =

−→𝑤 𝑛𝑖 +
Δ𝑥
2
𝛿−→𝑤 𝑛𝑖 −

𝑎Δ𝑡
2ℎ𝑛𝑖

𝛿−→𝑤 𝑛𝑖 ,

←−𝑤 𝑛+1/2
𝑖+1/2+ =

←−𝑤 𝑛𝑖+1 −
Δ𝑥
2
𝛿←−𝑤 𝑛𝑖+1 +

𝑎Δ𝑡
2ℎ𝑛𝑖+1

𝛿←−𝑤 𝑛𝑖+1.

In the previous expression, 𝛿−→𝑤 𝑛𝑖 and 𝛿←−𝑤 𝑛𝑖+1 are approximations of the space derivative of −→𝑤 (𝑥𝑖 , 𝑡𝑛) and←−𝑤 (𝑥𝑖+1, 𝑡𝑛)
respectively, that are computed by means of a limiter that avoids the appearance of spurious oscillations in the
presence of discontinuities. In this work we use:

𝛿−→𝑤 𝑛𝑖 = 𝜙𝐿 (𝑑𝑖,𝑙 , 𝑑𝑖,𝑟 )𝑑𝑖,𝑙 + 𝜙𝑅 (𝑑𝑖,𝑙 , 𝑑𝑖,𝑟 )𝑑𝑖,𝑟 (3.4)

where

𝑑𝑖,𝑙 =
−→𝑤 𝑛𝑖 − −→𝑤 𝑛𝑖−1

Δ𝑥
, 𝑑𝑖,𝑟 =

−→𝑤 𝑛𝑖+1 − −→𝑤 𝑛𝑖
Δ𝑥

.

and

𝜙𝐿 (𝑎, 𝑏) =



|𝑏 |
|𝑎 | + |𝑏 | , if |𝑎 | + |𝑏 | > 0,
0, otherwise.

and 𝜙𝑅 (𝑎, 𝑏) =



|𝑎 |
|𝑎 | + |𝑏 | , if |𝑎 | + |𝑏 | > 0,
0 otherwise.

3.2. Implicit Lagrangian schemes
First order implicit Lagrangian scheme
In this section we present the first order implicit scheme for the Lagrangian step. Note, that formally, the explicit
and the implicit schemes have a similar expression, but now, 𝜋∗

𝑖+1/2 and 𝑢
∗
𝑖+1/2 have to be evaluated at time 𝑡 = 𝑡

𝑛+1:



(𝐿ℎ)𝑛+1𝑖 = ℎ𝑛𝑖 ,

(𝐿ℎ𝑢)𝑛+1𝑖 = (ℎ𝑢)𝑛𝑖 −
Δ𝑡
Δ𝑥
(𝜋∗
𝑖+1/2 − 𝜋∗𝑖−1/2),

with
𝐿𝑛+1𝑖 = 1 + Δ𝑡

Δ𝑥
(𝑢∗𝑖+1/2 − 𝑢∗𝑖−1/2),
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where now

𝜋∗𝑖+1/2 =
−→𝑤 𝑛+1𝑖 +←−𝑤 𝑛+1𝑖+1

2
,

𝑢∗𝑖+1/2 =
−→𝑤 𝑛+1𝑖 −←−𝑤 𝑛+1𝑖+1

2𝑎
,

and −→𝑤 𝑛+1𝑖 ,←−𝑤 𝑛+1𝑖 are the solutions of

−→𝑤 𝑛+1𝑖 = −→𝑤 𝑛𝑖 −
𝑎Δ𝑡
ℎ𝑛𝑖 Δ𝑥

(−→𝑤 𝑛+1𝑖 − −→𝑤 𝑛+1𝑖−1 ), (3.5)

←−𝑤 𝑛+1𝑖 =←−𝑤 𝑛𝑖 +
𝑎Δ𝑡
ℎ𝑛𝑖 Δ𝑥

(←−𝑤 𝑛+1𝑖+1 −←−𝑤 𝑛+1𝑖 ), (3.6)

Note that due to the special form of (3.5) and (3.6), −→𝑤 𝑛+1𝑖 and←−𝑤 𝑛+1𝑖 can be computed in a very simple way.

Second order implicit Lagrangian scheme
The second order implicit scheme is defined combining the second order Adams-Moulton scheme for the time
integration, and a second order reconstruction procedure. The resulting scheme reads as follows



(𝐿ℎ)𝑛+1𝑖 = ℎ𝑛𝑖 ,

(𝐿ℎ𝑢)𝑛+1𝑖 = (ℎ𝑢)𝑛𝑖 −
Δ𝑡
2Δ𝑥

(
𝜋∗,𝑛
𝑖+1/2 − 𝜋

∗,𝑛
𝑖−1/2 + 𝜋

∗,𝑛+1
𝑖+1/2 − 𝜋

∗,𝑛+1
𝑖−1/2

)
,

with
𝐿𝑛+1𝑖 = 1 + Δ𝑡

2Δ𝑥

(
𝑢∗,𝑛
𝑖+1/2 − 𝑢

∗,𝑛
𝑖−1/2 + 𝑢

∗,𝑛+1
𝑖+1/2 − 𝑢

∗,𝑛+1
𝑖−1/2

)
,

where

𝜋∗,#
𝑖+1/2 =

−→𝑤 #
𝑖+1/2− +←−𝑤 #𝑖+1/2+

2
,

𝑢∗,#
𝑖+1/2 =

−→𝑤 #
𝑖+1/2− −←−𝑤 #𝑖+1/2+

2𝑎
,

where # stands for 𝑛 or 𝑛 + 1. The space reconstruction is performed as follows

−→𝑤 #𝑖+1/2± = −→𝑤 #𝑖 ∓
Δ𝑥
2

(
𝜙𝐿 (𝑑𝑛𝑖,𝑙 , 𝑑𝑛𝑖,𝑟 )𝑑#𝑖,𝑙 + 𝜙𝑅 (𝑑𝑛𝑖,𝑙 , 𝑑𝑛𝑖,𝑟 )𝑑#𝑖,𝑟

)
.

We can define←−𝑤 #
𝑖+1/2± in a similar way. Note that the limiters are always evaluated at time 𝑡

𝑛, therefore, the systems
that define −→𝑤 𝑛+1𝑖 and←−𝑤 𝑛+1𝑖 , respectively, remain linear and have the following form:

−→𝑤 𝑛+1𝑖 = −→𝑤 𝑛𝑖 −
𝑎Δ𝑡
2ℎ𝑛𝑖 Δ𝑥

(−→𝑤 𝑛𝑖+1/2− − −→𝑤 𝑛𝑖−1/2− + −→𝑤 𝑛+1𝑖+1/2− − −→𝑤 𝑛+1𝑖−1/2−) ,
←−𝑤 𝑛+1𝑖 =←−𝑤 𝑛𝑖 +

𝑎Δ𝑡
2ℎ𝑛𝑖 Δ𝑥

(←−𝑤 𝑛𝑖+1/2+ −←−𝑤 𝑛𝑖−1/2+ +←−𝑤 𝑛+1𝑖+1/2+ −←−𝑤 𝑛+1𝑖−1/2+) .
4. The projection step
Once the system in Lagrangian coordinates is solved, the result has to be projected in Eulerian coordinates. This
step will always be done explicitly.
For doing the projection of 𝐿𝑈 (𝜉, 𝑡) on the Eulerian cells (𝑥𝑖−1/2, 𝑥𝑖+1/2), we need to compute

U𝑖 (𝑡) = 1
Δ𝑥

∫ 𝑥𝑖+1/2

𝑥𝑖−1/2
U(𝑥, 𝑡)𝑑𝑥.

Given 𝑡 ≥ 0 we define 𝜉𝑖+1/2 (𝑡) such that

𝑥(𝜉𝑖+1/2 (𝑡), 𝑡) = 𝑥𝑖+1/2.
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Thus, for any time 𝑇 ≥ 0, 𝜉𝑖+1/2 (𝑇) corresponds to the origin of the characteristic 𝑥(𝜉𝑖+1/2, 𝑡) such that at time
𝑡 = 𝑇 coincides with 𝑥𝑖+1/2.
Using this notation, we can write

U𝑖 (𝑡) = 1
Δ𝑥

∫ 𝑥 ( 𝜉𝑖+1/2 (𝑡) ,𝑡)

𝑥 ( 𝜉𝑖−1/2 (𝑡) ,𝑡)
U(𝑥, 𝑡)𝑑𝑥 = 1

Δ𝑥

∫ 𝜉𝑖+1/2 (𝑡)

𝜉𝑖−1/2 (𝑡)
𝐿 (𝜉, 𝑡)U(𝜉, 𝑡)𝑑𝜉,

and we can split the integral as follows

U𝑖 (𝑡) = 1
Δ𝑥

∫ 𝜉𝑖−1/2 (𝑡)

𝜉𝑖−1/2 (𝑡)
𝐿 (𝜉, 𝑡)U(𝜉, 𝑡)𝑑𝜉 + 1

Δ𝑥

∫ 𝜉𝑖+1/2 (𝑡)

𝜉𝑖−1/2 (𝑡)
𝐿 (𝜉, 𝑡)U(𝜉, 𝑡)𝑑𝜉 + 1

Δ𝑥

∫ 𝜉𝑖+1/2 (𝑡)

𝜉𝑖+1/2 (𝑡)
𝐿 (𝜉, 𝑡)U(𝜉, 𝑡)𝑑𝜉.

Note that the middle integral in the right-hand-side equals (𝐿U)𝑖 (𝑡), which is known from the Lagrangian step.
Therefore,

U𝑛+1𝑖 = (𝐿U)𝑛+1𝑖 + 1
Δ𝑥

∫ 𝜉𝑖−1/2

𝜉𝑖−1/2
𝐿 (𝜉, 𝑡𝑛+1)U(𝜉, 𝑡𝑛+1)𝑑𝜉 + 1

Δ𝑥

∫ 𝜉𝑖+1/2

𝜉𝑖+1/2
𝐿 (𝜉, 𝑡𝑛+1)U(𝜉, 𝑡𝑛+1)𝑑𝜉. (4.1)

It remains to evaluate the other two integrals. We will now present the corresponding first and second order
numerical schemes for doing this.

4.1. First order projection scheme
The previous integrals can be approximated in the following way:

1
Δ𝑥

∫ 𝜉𝑖+1/2

𝜉𝑖+1/2
𝐿 (𝜉, 𝑡𝑛+1)U(𝜉, 𝑡𝑛+1)𝑑𝜉 = 𝜉𝑖+1/2 − 𝜉𝑖+1/2

Δ𝑥
(𝐿U)𝑛+1𝑖+1/2,

where

(𝐿U)𝑛+1𝑖+1/2 =
{ (𝐿U)𝑛+1𝑖 for 𝜉𝑖+1/2 > 𝜉𝑖+1/2,
(𝐿U)𝑛+1𝑖+1 for 𝜉𝑖+1/2 ≤ 𝜉𝑖+1/2.

Moreover, since for sufficiently small Δ𝑡 we can use the approximation

𝜉𝑖+1/2 = 𝑥𝑖+1/2 − Δ𝑡𝑢∗𝑖+1/2,
then from (4.1) we obtain

U𝑛+1𝑖 = (𝐿U)𝑛+1𝑖 − Δ𝑡
Δ𝑥

(
𝑢∗𝑖+1/2 (𝐿U)𝑛+1𝑖+1/2 − 𝑢∗𝑖−1/2 (𝐿U)𝑛+1𝑖−1/2

)
.

4.2. Second order projection scheme
In order to obtain a second order approximation of the integrals in (4.1), we will consider a linear reconstruction of
the cell averages of (𝐿U)𝑛+1𝑖 and the velocities 𝑢∗,𝑛+1

𝑖+1/2 that are continuously defined at the intercells.
It can be seen that we can write (4.1) again as

U𝑛+1𝑖 = (𝐿U)𝑛+1𝑖 − Δ𝑡
Δ𝑥

(
𝑢∗𝑖+1/2 (𝐿U)𝑛+1𝑖+1/2 − 𝑢∗𝑖−1/2 (𝐿U)𝑛+1𝑖−1/2

)
,

where

(𝐿U)𝑛+1𝑖+1/2 =


(𝐿U)𝑛+1

𝑖+1/2− for 𝑢
∗
𝑖+1/2 > 0,

(𝐿U)𝑛+1
𝑖+1/2+ for 𝑢

∗
𝑖+1/2 ≤ 0,

and (
𝐿U

)𝑛+1
𝑖+1/2−

=
1
𝐿𝑛+1𝑖

((
𝐿U

)𝑛+1
𝑖
+ 1
2

(
𝛿𝐿U

)𝑛+1
𝑖

(
Δ𝑥 − Δ𝑡

𝐿𝑛+1𝑖
𝑢∗,𝑛+1
𝑖+1/2

))
,

(
𝐿U

)𝑛+1
𝑖+1/2+

=
1
𝐿𝑛+1𝑖+1

((
𝐿U

)𝑛+1
𝑖+1
+ 1
2

(
𝛿𝐿U

)𝑛+1
𝑖+1

(
−Δ𝑥 − Δ𝑡

𝐿𝑛+1𝑖+1
𝑢∗,𝑛+1
𝑖+1/2

))
.

In the previous expressions,
(
𝛿𝐿U

)𝑛+1
𝑖
and

(
𝛿𝐿U

)𝑛+1
𝑖+1
are approximations of the derivatives of 𝐿U at time 𝑡𝑛+1 at

𝑥𝑖 and 𝑥𝑖+1, respectively, that are computed using (3.4).
(𝐿U)𝑛+1

𝑖−1/2 is defined in a similar way.
Now, the previous numerical schemes could be extended to the general case of non-flat topography. For that

we follow [3, 4] to ensure the well-balanced properties of the schemes. More details will be shown during the
presentation.
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5. Numerical experiments
To be consistent with the numerical scheme presented previously, we only consider here a simple test case with flat
bottom topography.
The aim of this test if to check that the numerical schemes that have been proposed achieves the expected order

of accuracy. Let us consider a flat topography in the interval [−5, 5], with initial zero velocity (𝑢 = 0) and an initial
water depth with a small perturbation given by

ℎ(𝑥, 0) = 1 + 0.1 exp ( − 𝑥2) .
Figures 1 and 2 correspond to this initial condition.
Periodic boundary conditions are considered.
Tables 1 and 2 show the errors corresponding to the different methods. Notice that the errors for the explicit

and the semi-implicit schemes decrease as the number of cells increase at the expected rate.

Explicit scheme - Order 1 Explicit scheme - Order 2
No. of h q h q
cells Error Order Error Order Error Order Error Order
25 6.09E-2 - 1.60E-1 - 3.69E-2 - 1.18E-1 -
50 3.70E-2 0.72 9.97E-2 0.68 1.21E-2 1.61 3.86E-2 1.61
100 2.07E-2 0.84 5.63E-2 0.82 3.16E-3 1.93 1.03E-2 1.90
200 1.07E-2 0.95 2.95E-2 0.93 7.80E-4 2.02 2.58E-3 2.00
400 5.20E-3 1.05 1.44E-2 1.04 1.89E-4 2.05 6.27E-4 2.04

Tab. 1 Errors in 𝐿1 norm and convergence rates for the explicit LP schemes of order 1 and 2.

Implicit scheme - Order 1 Implicit scheme - Order 2
No. of h q h q
cells Error Order Error Order Error Order Error Order
25 7.99E-2 - 2.03E-1 - 3.80E-2 - 1.19E-1 -
50 5.13E-2 0.64 1.35E-1 0.59 1.27E-2 1.58 3.99E-2 1.57
100 3.05E-2 0.75 8.19E-2 0.73 3.35E-3 1.93 1.07E-2 1.90
200 1.66E-2 0.88 4.52E-2 0.86 8.00E-4 2.07 2.55E-3 2.07
400 8.19E-3 1.02 2.26E-2 1.00 1.85E-4 2.12 5.89E-4 2.12

Tab. 2 Errors in 𝐿1 norm and convergence rates for the semi-implicit LP schemes of order 1 and 2.

We now consider a uniform mesh composed by 400 cells. The solution at time 𝑡 = 0.5 for variables ℎ and 𝑢
using the order 1 and order 2 explicit schemes is shown in Figures 3 and 4. The same for the semi-implicit schemes
can be seen in 5 and 6 with CFL value 0.5 and in Figures 7 and 8 with CFL value 2. Observe that the semi-implicit
second order scheme with CFL=2 behaves similar to the explicit scheme with CFL=0.5.

4 2 0 2 4

1.00
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1.06

1.08

1.10

t = 0.000

h

Fig. 1 Initial condition for the variable ℎ.
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u

Fig. 2 Initial condition for the variable 𝑢.
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87



4 2 0 2 4

1.00

1.02

1.04

1.06

1.08

1.10

t = 0.500

hexp(O1)
hexp(O2)

Fig. 3 Solution at time 𝑡 = 0.5 for the variable ℎ
using the explicit schemes of order 1 and 2.
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Fig. 4 Solution at time 𝑡 = 0.5 for the variable 𝑢
using the explicit schemes of order 1 and 2.

4 2 0 2 4

1.00

1.02

1.04

1.06

1.08

1.10

t = 0.500

hImex(O1)
hImex(O2)

Fig. 5 Solution at time 𝑡 = 0.5 for the variable ℎ
using the semi-implicit schemes of order 1 and 2
with CFL 0.5.
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Fig. 6 Solution at time 𝑡 = 0.5 for the variable 𝑢
using the semi-implicit schemes of order 1 and 2
with CFL 0.5.
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Fig. 7 Solution at time 𝑡 = 0.5 for the variable ℎ
using the semi-implicit schemes of order 1 and 2
with CFL 2.
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Fig. 8 Solution at time 𝑡 = 0.5 for the variable 𝑢
using the semi-implicit schemes of order 1 and 2
with CFL 2.
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Abstract
Somenon-local diffussion processesmaybe described by an integral operator such as

∫
𝐾 (𝑥, 𝑦) (𝑢(𝑦) − 𝑢(𝑥))𝑑𝑦.

In the compartmental models in epidemilogy, the diffusion terms may be replaced by an integral term, similar to
above, to describe the dispersion of population. Classical numerical approximations, like finite element methods
or finite difference methods, lead to systems of equations with dense matrices. Wavelets are a kind of functions
which have some properties that make them a very useful tool for discretizing the convolution operators getting
sparse matrices, thus saving computing time and storage memory.

1. Introduction
From the classical theoretical works on epidemic models by Kermack andMcKendrick (1927), a big effort has been
made to apply mathematics to the spread and control of infectious diseases (see, for instance, [5]). In particular,
the called compartmental models distribute population in compartments and explain the mechanism through which
individuals move from one compartment to another.
The spatial spread of the disease is incorporated in the models through diffusion terms that describe the local

movement of population. The nonlocal diffusion models are more realistic, but when we discretize these models
with classical methods as finite element or difference methods led to algebraic systems with large and dense
matrices. We can circunvect this problem using a specific kind of functions, wavelets, to discretize the integral
operators. Due to some of the properties of these functions, if the integral operators show certain properties, most
of the matrix elements that we get from the discretization process are very close to zero and may be neglected, with
the consequent saving in time and computer storage.

2. Multiresolution Analysis and wavelets
We give a brief review of Multiresolution Analysis, which is the starting point for constructing wavelets, and we
show some relevant properties that explain why wavelets play a definitive role in the discretization of some kind of
problems. For details, see, for instance, [2, 3].
Let us consider a sequence of spaces {𝑉 𝑗 } 𝑗∈Z, that we will use to approximate functions with a level of resolution

𝑗 , so we need a basis of functions to generate those spaces.

Definition 2.1 A sequence of spaces {𝑉 𝑗 } 𝑗∈Z of spaces 𝑉 𝑗 ⊂ 𝐿2 (R) is called a Multiresolution Analysis, if
a) The spaces are nested, i.e. 𝑉 𝑗 ⊂ 𝑉 𝑗+1, so the information contained in some level of resolution is also
contained in the finer.

b) Any function may be approximated with arbitrary precission, i.e. lim
𝑗→∞
‖ 𝑓 − 𝑃 𝑗 𝑓 ‖𝐿2 = 0

c) The only common function is 0, i.e. lim
𝑗→−∞

‖𝑃 𝑗 𝑓 ‖𝐿2 = 0

d) The spaces arise by scaling with factor 2: 𝑓 (·) ∈ 𝑆 𝑗 ⇔ 𝑓 (2·) ∈ 𝑆 𝑗+1 ⇔ 𝑓 (2− 𝑗 ·) ∈ 𝑆0
e) The spaces are shift-invariant: 𝑓 (·) ∈ 𝑆0 ⇔ 𝑓 (· − 𝑘) ∈ 𝑆0
f) ∃ 𝜑 s.t. Φ 𝑗 :=

{
𝜑 𝑗 ,𝑘 : 𝑘 ∈ Z

}
is a uniformly stable basis for 𝑉 𝑗 , 𝑗 ∈ Z, being 𝜑 𝑗 ,𝑘 the dilated and traslated

version of some function 𝜑 to be determined:

𝜑 𝑗 ,𝑘 (𝑥) = 2 𝑗/2𝜑(2 𝑗𝑥 − 𝑘) (2.1)

From the condition a) and f) in definition 2.1, the function that is going to be the basis for the approximation space
𝑉 𝑗 have to verify the following recursion formula

𝜑(𝑥) =
∑︁
𝑘

𝑎𝑘𝜑(2𝑥 − 𝑘) (2.2)
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The function 𝜑(𝑥) is called a scaling function or refinement function and its properties are determined by the
refinement coefficientes 𝑎𝑘 ∈ R, 𝑘 ∈ Z. The approximation of functions is carried out projecting the function onto
the space 𝑉 𝑗 , such that

𝑃 𝑗 : 𝐿2 (R) → 𝑉 𝑗 , 𝑃 𝑗 𝑓 =
∑︁
𝑘

𝑐 𝑗 ,𝑘𝜑 𝑗𝑘 (𝑥). (2.3)

The difference between two consecutive levels of resolution is encoded by functions 𝜓 𝑗 ,𝑘 (𝑥), which complete the
information in𝑉 𝑗 to achive the information in𝑉 𝑗+1. These functions are called wavelets and the space𝑊 𝑗 generated
by

𝜓 𝑗 ,𝑘 = 2 𝑗/2𝜓(2 𝑗𝑥 − 𝑘) (2.4)

is the complement of 𝑉 𝑗 in 𝑉 𝑗+1, i.e. 𝑉 𝑗+1 = 𝑉 𝑗 ⊕𝑊 𝑗 . As𝑊0 ⊂ 𝑉1, wavelets also verify a recursion formula similar
to (2.2),

𝜓(𝑥) =
∑︁
𝑘

𝑏𝑘𝜑(2𝑥 − 𝑘) (2.5)

where the coefficients 𝑏𝑘 are determined by the coefficients 𝑎𝑘 .
So, we have spaces 𝑉 𝑗 and spaces𝑊 𝑗 such that

𝑉 𝑗 = span {𝜑 𝑗 ,𝜆}, 𝑊 𝑗 = span {𝜓 𝑗 ,𝜆}, (2.6)

and we can approximate 𝑓 in 𝑉𝐽 or we can carry out an initial approximation 𝑉𝐽0 and add details to achive 𝐽, using
spaces𝑊 𝑗 , projecting the function on

𝑉𝐽 = 𝑉𝐽−1 ⊕𝑊𝐽−1 = 𝑉𝐽−2 ⊕𝑊𝐽−2 ⊕𝑊𝐽−1 = · · · = 𝑉𝐽0 ⊕
𝐽−1⊕
𝑗=𝐽0

𝑊 𝑗 (2.7)

therefore we approximate 𝑓 with a coarse level 𝐽0 and we add finer resolution 𝑗 :

𝑓𝐽 =
∑︁
𝜆

𝑐𝐽0𝜆 𝜑𝐽0 ,𝑘 +
𝐽−1∑︁
𝑗=𝐽0

∑︁
𝜆

𝑑
𝑗
𝑘𝜓 𝑗 ,𝑘 . (2.8)

The next two results (proofs and details can be seen in [2, 3] and references there) about wavelets are the key for
compression and for the potential of wavelets in numerical calculations:

Proposition 2.2 If the scaling functions reproduce exactly a polynomial of order 𝑑, the associated wavelets have
𝑑 vanishing moments

𝑀𝑟 (𝜓 𝑗 ,𝑘 ) =
∫
Ω
𝑥𝑟𝜓 𝑗 ,𝑘 (𝑥)𝑑𝑥 = 0 0 ≤ 𝑟 < 𝑑 (2.9)

Proposition 2.3 If 𝜓 have 𝑑 vanishing moments, then

|𝑑 𝑗𝑘 | . 2− 𝑗𝑠 ‖ 𝑓 ‖𝑠;supp 𝜓𝑗,𝑘 (2.10)

where 𝑑 𝑗𝑘 are the coefficients in (2.8). As a consequence of (2.10), many of the coefficientes of wavelets are small
in the case of functions that are regular enough and, therefore, may be neglected.

3. Nonlocal models
The classical approach to diffusion problems implies local effects; nonlocal evolution equations of the form

𝜕𝑡𝑢(𝑥, 𝑡) =
∫
Ω
𝐾 (𝑥.𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 − 𝑢(𝑥, 𝑡) (3.1)

take into account long range effects and have been used to model nonlocal diffusion processes, replacing the local
term

𝜕𝑡𝑢(𝑥, 𝑡) = ∇(𝜈∇𝑢(𝑥, 𝑡)) (3.2)

by its nonlocal version (3.1), [1].
Discretization in time of (3.1) leads to

𝑢𝑛+1 (𝑥) − 𝑢𝑛 (𝑥)
𝛿𝑡

=
∫
Ω
𝐾 (𝑥 − 𝑦)𝑢𝑛+1 (𝑦) − 𝑢𝑛+1 (𝑥) (3.3)
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Let us consider the variational formulation of (3.3), writing functions 𝑢𝑛 (𝑥) in wavelet basis

𝑢𝑛 (𝑥) =
∑︁
𝜆

𝑑𝑛𝜆𝜓𝜆 (𝑥) (3.4)

and using as test function 𝜓𝜇 (𝑥) (to simplify notation, we don’n distinguish here between scaling functions and
wavelets, and include the level of resolution 𝑗 in the index 𝜆, which should be ( 𝑗 , 𝜆))

∑︁
𝜆

𝑑𝑛+1
∫
Ω
𝜓𝜆 (𝑥)𝜓𝜇 (𝑥)𝑑𝑥 −

∑︁
𝜆

𝑑𝑛
∫
Ω
𝜓𝜆 (𝑥)𝜓𝜇 (𝑥)𝑑𝑥

= 𝛿𝑡
∑︁
𝜆

𝑑𝑛+1
∫
Ω

∫
Ω
𝜓𝜆 (𝑦)𝜓𝜇 (𝑥)𝑑𝑥𝑑𝑦 − 𝛿𝑡

∑︁
𝜆

𝑑𝑛+1
∫
Ω
𝜓𝜆 (𝑥)𝜓𝜇 (𝑥)𝑑𝑥

(3.5)

and in matrix form
[(1 + 𝛿𝑡)B − 𝛿K] 𝑑𝑛+1 = B𝑑𝑛 (3.6)

where the matrix elements for B and K are respectively

𝐵𝜆𝜇 =
∫
Ω
𝜓𝜆 (𝑥)𝜓𝜇 (𝑥)𝑑𝑥 (3.7)

𝐾𝜆𝜇 =
∫
Ω

∫
Ω
𝐾 (𝑥 − 𝑦)𝜓𝜆 (𝑦)𝜓𝜇 (𝑥)𝑑𝑥𝑑𝑦 (3.8)

If the scaling functions (and so wavelets) have compact support, most of elements in (3.7) are equal to zero, whereas
the matrix K is a dense matrix, what involves a long computing time and storage. Anyway, if the distributional
kernel verifies that

|𝜕𝛼𝑥 𝜕𝛽𝑦 𝐾 (𝑥, 𝑦) | . dist(𝑥, 𝑦)𝑛+𝛼+𝛽 (3.9)

it is shown that many of the |𝐾𝜆,𝜇 | in (3.8) are neglected and the matrix K has a sparse pattern similar to the local
operators

Fig. 1 Sparse pattern for non local operator

This fact, together with (2.10), makes wavelets a powerfull tool to design numerical algorithms to solve integro-
differential equations wich come from the nonlocal diffusion models.

4. Epidemiological models
The starting point to describe transmission of diseases are the compartmental models by Kermack andMcKendrick,
in the final 20’s and early 30’s. These and later models share the idea of compartmental models, in which the
population is distributed in compartments and may change between them under some conditions. In [6,7] a SEIRD
(susceptible, exposed, infected, recovery and deceased) model is proposed, where the spatial spread of the infection
is included trough a local diffusion term

∇ · (𝜈𝑢∇𝑢) (4.1)
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where 𝑢 represents the population in any of the compartments before and 𝜈𝑢 is the diffusion coefficient for that
population group. For a more realistic description of dispersion of the different groups of populations we can
replace (4.1) by its non local version, as in (3.1)∫

Ω
𝐾 (𝑥 − 𝑦) (𝑢(𝑦) − 𝑢(𝑥)) 𝑑𝑦 (4.2)

where 𝐾 (𝑥 − 𝑦) represents the probability for the population to move from a location 𝑦 to a location 𝑥. If the
integral kernel 𝐾 (𝑥 − 𝑦) is normalized we can rewrite (4.2) by∫

Ω
𝐾 (𝑥 − 𝑦)𝑢(𝑦)𝑑𝑦 − 𝑢(𝑥) = 𝐾 ∗ 𝑢 − 𝑢 (4.3)

where 𝐾 ∗ 𝑢 is a convolution product. So, the equations for the nonlocal SEIRD model are

𝜕𝑡𝑆 = 𝐾 ∗ 𝑆 − 𝑆 − 𝛽𝑖𝑆𝐼 − 𝛽𝑒𝑆𝐸 (4.4)
𝜕𝑡𝐸 = 𝐾 ∗ 𝐸 − 𝐸 + 𝛽𝑖𝑆𝐼 + 𝛽𝑒𝑆𝐸 − 𝜎𝐸 − 𝜙𝑒𝐸 (4.5)
𝜕𝑡 𝐼 = 𝐾 ∗ 𝐼 − 𝐼 + 𝜎𝐸 − 𝜙𝑟 𝐼 − 𝜙𝑑 𝐼 (4.6)
𝜕𝑡𝑅 = 𝐾 ∗ 𝑅 − 𝑅 + 𝜙𝑒𝐸 + 𝜙𝑟 𝐼 (4.7)
𝜕𝑡𝐷 = 𝜙𝑑 𝐼 (4.8)

where the {𝛽𝑒, 𝛽𝑖} are the contact rates of susceptible with exposed and infected, 𝜎 is the rate of exposed people
who develops synthoms, {𝜙𝑒, 𝜙𝑟 } are the rates of recovery for exposed and infected and 𝜙𝑑 is the rate of deceased
people. The discretization in time leads to

𝑆𝑛+1 (𝑥) − 𝑆𝑛 (𝑥)
𝛿𝑡

=
∫

𝐾 (𝑥 − 𝑦)𝑆𝑛+1 (𝑦)𝑑𝑦 − 𝑆𝑛+1 (𝑥) − (𝛽𝑖 𝐼𝑛 (𝑥) + 𝛽𝑒𝐸𝑛 (𝑥)) 𝑆𝑛+1 (𝑥) (4.9)

𝐸𝑛+1 (𝑥) − 𝐸𝑛 (𝑥)
𝛿𝑡

=
∫

𝐾 (𝑥 − 𝑦)𝐸𝑛+1 (𝑦)𝑑𝑦 − 𝐸𝑛+1 (𝑥) + (𝛽𝑖 𝐼𝑛 (𝑥) + 𝛽𝑒𝐸𝑛 (𝑥)) 𝑆𝑛+1 (𝑥)

− (𝜎 + 𝜙𝑒)𝐸𝑛+1 (𝑥) (4.10)
𝐼𝑛+1 (𝑥) − 𝐼𝑛 (𝑥)

𝛿𝑡

=
∫

𝐾 (𝑥 − 𝑦)𝐼𝑛+1 (𝑦)𝑑𝑦 − 𝐼𝑛+1 (𝑥) + 𝜎𝐸𝑛+1 (𝑥) − (𝜙𝑟 + 𝜙𝑑)𝐼𝑛+1 (𝑥) (4.11)

𝑅𝑛+1 (𝑥) − 𝑅𝑛 (𝑥)
𝛿𝑡

=
∫

𝐾 (𝑥 − 𝑦)𝑅𝑛+1 (𝑦)𝑑𝑦 − 𝑅𝑛+1 (𝑥) + 𝜙𝑒𝐸𝑛+1 (𝑥) + 𝜙𝑟 𝐼𝑛+1 (𝑥) (4.12)

𝐷𝑛+1 (𝑥) − 𝐷𝑛 (𝑥)
𝛿𝑡

= 𝜙𝑑 𝐼
𝑛+1 (𝑥) (4.13)

Let us consider the weak formulation for (4.9)-(4.12) (once we know 𝐼 we get 𝐷 from (4.13)) and write the functions
{𝑆𝑛, 𝐸𝑛, 𝐼𝑛, 𝑅𝑛} in terms of wavelet basis,

𝑆𝑛 (𝑥) =
∑︁
𝜆

𝑠𝑛𝜆𝜓𝜆 (𝑥), 𝐸𝑛 (𝑥) =
∑︁
𝜆

𝑒𝑛𝜆𝜓𝜆 (𝑥), (4.14)

𝐼𝑛 (𝑥) =
∑︁
𝜆

𝑖𝑛𝜆𝜓𝜆 (𝑥), 𝑅𝑛 (𝑥) =
∑︁
𝜆

𝑟𝑛𝜆𝜓𝜆 (𝑥) (4.15)

we get

[(1 + 𝛿𝑡) B − 𝛿𝑡K] 𝑠𝑛+1 = B𝑠𝑛 − 𝛿𝑡F (4.16)
[(1 + 𝛿𝑡 (1 + 𝜎 + 𝜙𝑒) B − 𝛿𝑡K] 𝑒𝑛+1 = B𝑒𝑛 + 𝛿𝑡F (4.17)
[(1 + 𝛿𝑡 (1 + 𝜙𝑟 + 𝜙𝑑) B − 𝛿𝑡K] 𝑖𝑛+1 = B𝑖𝑛 + 𝛿𝑡𝜎B𝑒𝑛+1 (4.18)

[(1 + 𝛿𝑡) B − 𝛿𝑡K] 𝑟𝑛+1 = B𝑟𝑛 + 𝛿𝑡B(𝜙𝑒𝑒𝑛+1 + 𝜙𝑟 𝑖𝑛+1) (4.19)

A.N. CALVO PEREIRA

93



where F in (4.16) and (4.17) is
F𝜇 =

∫
Ω
𝑝𝑛+1𝜓𝜇 (𝑥)𝑑𝑥 (4.20)

for the coefficients 𝑝𝑛+1 for the expansion of

(𝛽𝑖 𝐼𝑛 (𝑥) + 𝛽𝑒𝐸𝑛 (𝑥)) 𝑆𝑛+1 (𝑥) =
∑︁
𝜆

𝑝𝑛+1𝜓𝜆 (𝑥) (4.21)

(this last term is treated with an implicit scheme for (4.16) and implicit in (4.17)).

5. Numerical test
To test the numerical algorithms, we have solved the nonlocal SEIRDmodel in Mallorca Island (Spain), to compare
with the local model solved in [4]. We have considered two focus of asynthomatic people concentrated in a short
distance, modeled by gaussian functions, as in the figure below,
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and the dispersal kernel

𝐾 (𝑥.𝑦) = 𝑒−‖𝑥−𝑦 ‖2/𝑑2 , (5.1)

being 𝑑 a kind of mean distance that individuals from different compartments travel.
Figures below show the evolution of infected people in different moments, comparing the local SEIRD model

with the nonlocal with different values of 𝑑; as it is seen, longer is 𝑑, faster the epidemic spreads.

Fig. 2 infected population after 5 days
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Fig. 3 infected population after 15 days

Fig. 4 infected population after 30 days

Fig. 5 infected population after 60 days
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Two-sided methods for the nonlinear eigenvalue problem
Carmen Campos1, Jose E. Roman1
Universitat Politècnica de València, Spain

Abstract

We discuss solvers for the general nonlinear eigenvalue problem that are able to compute both left and right
eigenvectors. A possible application is the approximation of the resolvent of a matrix-valued function. Our focus
is on large-scale problems, in the context of SLEPc, the Scalable Library for Eigenvalue Problem Computations.
We present two-sided variants of the NLEIGS and SLP methods. For the latter, we have implemented a non-
equivalence deflation scheme. The accuracy and performance of the methods are analyzed for several problems
coming from real applications.

1. Introduction
Let the matrix-valued function 𝑇 : Ω→ C𝑛×𝑛 be defined in the open setΩ ⊆ C. The nonlinear eigenvalue problem
(NEP) is expressed as

𝑇 (𝜆)𝑥 = 0, 𝑥 ≠ 0, (1.1)

where we are interested in computing eigenvalues 𝜆 ∈ C and (right) eigenvectors 𝑥 ∈ C𝑛 that satisfy (1.1). In the
following, we assume that 𝑇 is holomorphic inΩ and regular, that is, det𝑇 (𝑧) is not identically zero. If 𝑇 is a matrix
polynomial, then the above problem is the polynomial eigenproblem, which includes the standard and generalized
eigenvalue problem if the polynomial has degree one. Here we are interested in the non-polynomial case, where
𝑇 is for instance a rational matrix or, more generally, a matrix whose entries are nonlinear functions of the
parameter 𝜆. Example applications where this type of problem appears are the simulation of photonic crystals [3],
or the analysis of scattering resonances in metal-dielectric nano-structures [1]. The nonlinear eigenvalue problem
has been addressed by many numerical linear algebra researchers in recent times, see the survey [5]. The SLEPc
library (Scalable Library for Eigenvalue Problem Computations [7, 10]) implements several methods to solve the
NEP, with details provided in our previous work [2].
In this work we focus on the case where, in addition to right eigenvectors 𝑥, it is also necessary to compute left

eigenvectors 𝑦, that satisfy
𝑦∗𝑇 (𝜆) = 0∗, 𝑦 ≠ 0, (1.2)

where (·)∗ denotes the conjugate transpose of a vector or matrix. Left eigenvectors can be obtained as right
eigenvectors of 𝑇∗, but we are interested in methods that compute both 𝑥 and 𝑦 simultaneously, which are referred
to as two-sided methods. In particular, we consider a two-sided variant of NLEIGS, already described in [2], and
a two-sided version of SLP (Successive Linear Problems). The main contribution of this work is to show how to
handle deflation when computing several eigenvalues with two-sided SLP.
The remaining material is organized as follows. Section 2 provides the necessary mathematical background for

the NEP. Sections 3 and 4 describe the details of the NLEIGS and SLP methods, respectively. Some computational
results are given in section 5, and then section 6 wraps up with some conclusions.

2. Nonlinear eigenvalue problems
The two-sided solution of the NEP consists in eigen-triples {(𝑥𝑖 , 𝑦𝑖 , 𝜆𝑖)}𝑘𝑖=1 satisfying both (1.1) and (1.2). We
are interested mainly in large-scale problems, where the problem size 𝑛 is large, so we can afford to compute
only a relatively small number of eigen-triples. On the other hand, as opposed to the case of linear or polynomial
eigenproblems, in the NEP one cannot normally aspire to compute the “full spectrum” as the solution structure of
the NEP is more diverse (a NEPmay have no solution at all, finitely many solutions, or infinitely many solutions [5]).
Practical applications typically need to compute all eigenvalues inside a given region of the complex plane, or a
few eigenvalues closest to a given target value.
The function 𝑇 can always be expressed in split form

𝑇 (𝑧) =
ℓ∑︁
𝑖=1

𝐴𝑖 𝑓𝑖 (𝑧), (2.1)
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for constant coefficient matrices 𝐴1, . . . , 𝐴ℓ ∈ C𝑛×𝑛 and scalar holomorphic functions 𝑓1, . . . , 𝑓ℓ : Ω → C, with
ℓ ≤ 𝑛2. In many applications, 𝑇 is naturally given in this form, usually with a small number of terms, ℓ � 𝑛2, and
this often simplifies the implementation of application codes [2]. In addition, algorithms may sometimes exploit
the structure of (2.1).
If the problem is expressed in split form, the accuracy of a computed eigen-triple (𝑥, �̃�, �̃�) can be assessed by

means of the backward error

𝜂(𝑥, �̃�, �̃�) = max
{ ‖𝑇 (�̃�)𝑥‖
𝑓 (�̃�)‖𝑥‖ ,

‖𝑇∗ (�̃�) �̃�‖
𝑓 (�̃�)‖ �̃�‖

}
, with 𝑓 (�̃�) =

ℓ∑︁
𝑖=1
| 𝑓𝑖 (�̃�) |‖𝐴𝑖 ‖, (2.2)

which involves the scaled residuals for both left and right eigenvectors. If the backward error (2.2) is small then
the approximate eigen-triple (𝑥, �̃�, �̃�) is the exact eigen-triple of a nearby problem.

2.1. Resolvent
We now mention one relevant type of application where computing left eigenvectors of the NEP is required: it is
the case where the (approximate) resolvent 𝑇−1 needs to be applied to a set of vectors.
Analogously to the Jordan form in linear eigenproblems, for the NEP there exists the Smith form, which is a

factorization that reveals the structure of eigenvalues (including partial multiplicities) together with (generalized)
right and left eigenvectors. The Smith form can be employed to operate with the resolvent. In particular, Keldysh’s
theorem provides an explicit formula for the resolvent. In case that all eigenvalues 𝜆𝑖 are semisimple, the resolvent
can be written as

𝑇−1 (𝑧) =
𝑘∑︁
𝑖=1
(𝑧 − 𝜆𝑖)−1𝑥𝑖𝑦∗𝑖 + 𝑅(𝑧), (2.3)

where 𝑘 is the number of eigenvalues 𝜆𝑖 contained inΩ, 𝑥𝑖 and 𝑦𝑖 are the corresponding right and left eigenvectors,
respectively, normalized so that 𝑦∗𝑖𝑇

′(𝜆𝑖)𝑥𝑖 = 1, and 𝑅(𝑧) is some function holomorphic in Ω. SLEPc provides
functionality to efficiently apply the first part of (2.3) to a vector, once the eigen-triples have been computed with
the methods described next.

3. Rational interpolation approach
A possible approach to solve (1.1) is to build a replacement of 𝑇 (·) via interpolation that can then be linearized. A
matrix polynomial is the most obvious candidate, but it is effective only in some cases, e.g., when the interpolation
points are sufficiently far away from the singularities of 𝑇 (·). A better strategy is to solve 𝑅𝑑 (𝜆)𝑥 = 0 as a surrogate
of (1.1), where 𝑅𝑑 (·) is a rational matrix that interpolates 𝑇 (·). The NLEIGS method [6] takes this route, with an
𝑅𝑑 such that it is easy to build a linearization. In this work, we use the NLEIGS solver that we implemented in
SLEPc. The details, including the two-sided version, are already described in [2], but we summarize them here for
completeness.

3.1. Overview of NLEIGS
We want to find eigenvalues located inside a compact target set Σ ⊂ Ω, in which 𝑇 (·) is analytic, by approximating
𝑇 with a rational matrix that interpolates it at nodes 𝜎𝑗 ∈ 𝜕Σ (the boundary of Σ) and whose poles are chosen from
the set of singularities of 𝑇 , denoted by Ξ. This rational matrix is built as

𝑅𝑑 (𝜆) :=
𝑑∑︁
𝑗=0

𝑏 𝑗 (𝜆)𝐷 𝑗 , (3.1)

using the degree-graded rational Newton basis functions defined by the recurrence

𝑏0 (𝜆) = 1, 𝑏 𝑗 (𝜆) =
𝜆 − 𝜎𝑗−1

𝛽 𝑗 (1 − 𝜆/𝜉 𝑗 ) 𝑏 𝑗−1 (𝜆), 𝑗 = 1, 2, . . . (3.2)

with nonzero poles at 𝜉 𝑗 ∈ Ξ. The 𝛽 𝑗 scaling factors are used to guarantee that max𝜆∈𝜕Σ |𝑏 𝑗 (𝜆) | = 1. In the case
of pairwise distinct interpolation nodes 𝜎𝑗 , the coefficient matrices 𝐷 𝑗 of (3.1), called rational divided difference
matrices, can be obtained from the interpolation conditions 𝑅 𝑗 (𝜎𝑗 ) = 𝑇 (𝜎𝑗 ), resulting in

𝐷0 = 𝛽0𝑇 (𝜎0), 𝐷 𝑗 =
𝑇 (𝜎𝑗 ) − 𝑅 𝑗−1 (𝜎𝑗 )

𝑏 𝑗 (𝜎𝑗 ) , 𝑗 = 1, 2, . . . . (3.3)
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If 𝑇 is expressed in the split form (2.1), then the simpler form

𝐷 𝑗 =
ℓ∑︁
𝑖=0

𝑑
𝑗
𝑖 𝐴𝑖 , 𝑗 ≥ 0 (3.4)

can be used, where 𝑑 𝑗𝑖 denotes the 𝑗 th rational divided difference corresponding to the scalar function 𝑓𝑖 . Additional
details of how to compute these scalar divided differences in a numerically stable way can be found in [2]. In
SLEPc, the degree 𝑑 of the interpolant (3.1) is determined at run time, by evaluating the norms of the rational
divided difference matrices as they are generated, until the relation ‖𝐷𝑑 ‖/‖𝐷0‖ < tol holds for a given tolerance.
The interpolation nodes and poles that determine 𝑅𝑑 (𝜆) are obtained as a sequence of Leja–Bagby points for

(Σ,Ξ), see [6] for details. In SLEPc’s implementation, the target set Σ is specified by the user by defining a region,
whose boundary 𝜕Σ is discretized automatically, and in the case of the singularity set Ξ, there is the possibility that
the user provides a discretization of Ξ, or it can also be computed automatically (e.g., via the AAA method).
After building the rational approximation, a linearization is carried out to obtain a linear eigenvalue problem

A𝑦 = 𝜆B𝑦, (3.5)

having the same eigenvalues 𝜆 as the rational eigenproblem 𝑅𝑑 (𝜆)𝑥 = 0 and whose eigenvectors have the form

𝑦 =


𝑏0 (𝜆)𝑥
...

𝑏𝑑−1 (𝜆)𝑥


. (3.6)

The matrices of the linearization (3.5) can be simplified if the last pole is chosen as 𝜉𝑑 = ∞ [6], resulting in

A =



𝐷0 𝐷1 . . . 𝐷𝑑−2 (𝐷𝑑−1 − 𝜎𝑑−1
𝛽𝑑

𝐷𝑑)
𝜎0𝐼 𝛽1𝐼

. . .
. . .

. . . 𝛽𝑑−2𝐼
𝜎𝑑−2𝐼 𝛽𝑑−1𝐼


, B =



0 0 . . . 0 −𝐷𝑑𝛽𝑑
𝐼 𝛽1

𝜉1
𝐼

. . .
. . .

. . . 𝛽𝑑−2
𝜉𝑑−2 𝐼

𝐼 𝛽𝑑−1
𝜉𝑑−1 𝐼



. (3.7)

Once the matrices A, B of (3.7) have been built, the eigenproblem (3.5) must be solved, and we do this with
the shift-and-invert Krylov-Schur method. This implies buiding a Krylov subspace associated with the matrix

S = (A − 𝜎B)−1B, (3.8)

where 𝜎 ∈ Σ is the target value. To get an efficient algorithm, the action of S on a vector must be computed
implicitly, without explicitly constructing the 𝑑 · 𝑛 matrices A, B nor the inverse. This can be achieved by means
of a block LU factorization of (A − 𝜎B), as described next.
Suppose we want to compute the product 𝑤 = S𝑥, by considering the 𝑑 blocks of the vectors and deriving

recurrence formulas for𝑤𝑖 , which denotes the 𝑖th block of vector𝑤 = vec(𝑤0, . . . , 𝑤𝑑−1). Consider the factorization
(A − 𝜎B)Π = 𝑈𝜎𝐿𝜎 , where Π =

[
0 𝐼(𝑑−1)𝑛
𝐼𝑛 0

]
is a permutation matrix, and 𝐿𝜎 , 𝑈𝜎 are block triangular matrices

(lower and upper, respectively, see the expressions in [2]). Then 𝑤 = S𝑥 = Π𝐿−1𝜎 𝑈−1𝜎 B𝑥 can be computed by first
solving the block upper triangular system𝑈𝜎𝑦 = B𝑥, with the recurrence

𝑦𝑑−1 =
1

𝜎𝑑−2 − 𝜎𝑥
𝑑−2 + 𝛽𝑑−1

(𝜎𝑑−2 − 𝜎)𝜉𝑑−1 𝑥
𝑑−1,

𝑦 𝑗 =
1

𝜎𝑗−1 − 𝜎𝑥
𝑗−1 + 𝛽 𝑗

(𝜎𝑗−1 − 𝜎)𝜉 𝑗 𝑥
𝑗 − 𝛽 𝑗

𝜎𝑗−1 − 𝜎

(
1 − 𝜎

𝜉 𝑗

)
𝑦 𝑗+1, 𝑗 = 𝑑−2, . . . , 1,

𝑦0 = 𝑅𝑑 (𝜎)−1
(
−𝐷0𝑦1 − 𝐷1𝑦2 − · · · − 𝐷𝑑−2𝑦𝑑−1 − 1

𝛽𝑑
𝐷𝑑𝑥

𝑑−1
)
,

(3.9)

then the block lower triangular system 𝐿𝜎�̃� = 𝑦 with

�̃�0 = 𝑏𝑑−1 (𝜎)𝑦0,
�̃� 𝑗 = 𝑦 𝑗 + 𝑏 𝑗−1 (𝜎)𝑦0, 𝑗 = 1, . . . , 𝑑 − 1,

(3.10)
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and finally computing the solution vector by applying the permutation 𝑤 = Π�̃�. The most computationally
expensive operation is building the sparse matrix 𝑅𝑑 (𝜎) and solving one linear system of equations with it.
SLEPc provides two different implementations of NLEIGS, one that operates with explicitly stored Krylov

vectors (full basis) and another one with a compact representation (TOAR basis). The latter allows a significant
reduction of both computational and storage cost [2], but cannot be used for left eigenvectors, so in the next
subsection we assume a full basis.

3.2. Two-sided NLEIGS
We have implemented a two-sided variant of NLEIGS that allows computing both right and left eigenvectors,
which is related to the two-sided Krylov–Schur of Zwaan and Hochstenbach [13]. The two-sided variant works
with two Krylov bases, for the approximate right and left eigenspaces, respectively. The addition with respect
to the previous subsection is that left basis vectors are obtained from matrix-vector products with the conjugate
transpose, S∗, so it is necessary to derive analogue recurrences that perform this operation by blocks. To obtain
𝑤 = S∗𝑥 = B∗𝑈−∗𝜎 𝐿−∗𝜎 Π∗𝑥 we proceed as follows. Let 𝑦 = 𝐿−∗𝜎 Π∗𝑥, then 𝐿∗𝜎𝑦 = Π∗𝑥 and we have




𝑦𝑖 = 𝑥𝑖−1, 𝑖 = 1, . . . 𝑑 − 1,

𝑦0 = �̄�𝑑−1 (𝜎)𝑥𝑑−1 +
𝑑−1∑︁
𝑖=1

�̄�𝑖−1 (𝜎)𝑦𝑖 = �̄�𝑑−1 (𝜎)𝑥𝑑−1 +
𝑑−2∑︁
𝑖=0

�̄�𝑖 (𝜎)𝑥𝑖 ,
(3.11)

where complex conjugation is denoted with a bar. For 𝑧 = 𝑈−∗𝜎 𝑦 the following relations hold,

𝑅𝑑 (𝜎)∗𝑧0 = 𝑦0,
𝐷∗0𝑧

0 + (�̄�0 − �̄�)𝑧1 = 𝑦1,

𝐷∗1𝑧
0 + 𝛽1

(
1 − �̄�

𝜉1

)
𝑧1 + (�̄�1 − �̄�)𝑧2 = 𝑦2,

. . .

𝐷∗𝑑−2𝑧
0 + 𝛽𝑑−2

(
1 − �̄�

𝜉𝑑−2

)
𝑧𝑑−2 + (�̄�𝑑−2 − �̄�)𝑧𝑑−1 = 𝑦𝑑−1,

(3.12)

from which we obtain the recurrence




𝑧0 = 𝑅𝑑 (𝜎)−∗𝑦0,

𝑧1 =
1

�̄�0 − �̄�
(
𝑦1 − 𝐷∗0𝑧0

)
,

𝑧𝑖 =
1

�̄�𝑖−1 − �̄�

(
𝑦𝑖 − 𝐷∗𝑖−1𝑧0 − 𝛽𝑖−1

(
1 − �̄�

𝜉𝑖−1

)
𝑧𝑖−1

)
, 𝑖 = 2, . . . , 𝑑 − 1.

(3.13)

Finally, 𝑤 = B∗𝑧 is computed with



𝑤0 = 𝑧1,

𝑤𝑖 =
𝛽𝑖

𝜉𝑖
𝑧𝑖 + 𝑧𝑖+1, 𝑖 = 1, . . . , 𝑑 − 2,

𝑤𝑑−1 = − 1
𝛽𝑑
𝐷∗𝑑𝑧

0 + 𝛽𝑑−1
𝜉𝑑−1

𝑧𝑑−1.

(3.14)

As before, the most computationally expensive step is the application of 𝑅𝑑 (𝜎)−∗. In case of using a direct method
for the linear solves, the factorization needed for (3.9) can be reused here.

4. Newton-type approach
In this section we present the SLP method, which is one of the many Newton-type methods that we can find in the
literature. In general, Newton-type methods for the NEP are appropriate whenever one eigenpair is required, but
for several eigenpairs the complexity increases significantly due to the need of a deflation mechanism, and hence
cannot compete with NLEIGS in terms of computational time. Another issue of these methods is that the initial
guess may have a great influence on which eigensolution is found.
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ALGORITHM 1: Successive Linear Problems (SLP)
Input: Initial eigenvalue approximation 𝜆 (0)
Output: Computed eigenpair (𝑥 (𝑘) , 𝜆 (𝑘) )

1 for k=0,1,2,. . . do
2 Evaluate 𝐴 = 𝑇 (𝜆 (𝑘) ), 𝐵 = 𝑇 ′(𝜆 (𝑘) )
3 if 𝑘 > 0 and 𝜂(𝑥 (𝑘) , 𝜆 (𝑘) ) < tol then exit
4 Compute (𝑥 (𝑘+1) , 𝜇 (𝑘) ), the smallest magnitude eigenpair of 𝐴𝑥 = 𝜇𝐵𝑥
5 Update 𝜆 (𝑘+1) = 𝜆 (𝑘) − 𝜇 (𝑘)
6 end

4.1. Overview of SLP
The Successive Linear Problems (SLP) method is a Newton-type iteration proposed by Ruhe [11]. It is very simple
and susceptible of computing left eigenvectors as well. The method stems from a linearization using a first-order
Taylor approximation, 𝑇 (𝜆 + 𝜇) ≈ 𝑇 (𝜆) + 𝜇𝑇 ′(𝜆), which suggests computing the correction 𝜇 as the smallest
eigenvalue of the pencil (𝑇 (𝜆), 𝑇 ′(𝜆)), see Algorithm 1.
We implement step 4 of Algorithm 1 as computing the largest magnitude eigenvalue of𝐶𝑥 = 𝜃𝑥, where 𝜃 = 1/𝜇

and 𝐶 = 𝑇 (𝜆 (𝑘) )−1𝑇 ′(𝜆 (𝑘) ), via a Krylov-Schur solver in which 𝐶 is not built explicitly. The main drawback of
SLP is that a factorization of 𝑇 (𝜆 (𝑘) ) is required at each iteration, which is computationally expensive with respect
to the rest of operations. In contrast, NLEIGS needs a single factorization throughout.

4.2. Two-sided SLP
In the two-sided variant, we must also compute approximations of left eigenvectors, by modifying step 4 of
Algorithm 1. There are two approaches for this:

1. Use a two-sided Krylov-Schur method to compute the eigen-triple (𝑥 (𝑘+1) , 𝑦 (𝑘+1) , 𝜃 (𝑘) ) corresponding to the
smallest magnitude eigenvalue of 𝐴𝑥 = 𝜇𝐵𝑥. Note that when computed via 𝐶, left eigenvectors must be
post-processed,

�̃�∗𝐶 = 𝜃�̃�∗, 𝑦 = 𝐵−∗ �̃�. (4.1)

2. Run two independent Krylov-Schur solves for 𝐶𝑥 = 𝜃𝑥 and 𝐷𝑦 = 𝜃𝑦, where 𝐷 = 𝑇 (𝜆 (𝑘) )−∗𝑇 ′(𝜆 (𝑘) )∗.
We will use the second approach, not only because it avoids the post-processing (4.1), but mainly because the first
approach cannot be used with the deflation scheme to be explained next.
When computing more than one eigenvalue, Newton-type solvers need some type of deflation to avoid recon-

verging to the same solution. In SLEPc [2] we implemented Effenberger deflation [4], that consists in building an
extended nonlinear operator by padding 𝑇 (𝜆) with some rows and columns related to the eigenvalues and eigen-
vectors that we want to deflate. This formulation has no obvious extension to the case of needing left eigenvectors
also. An alternative is the non-equivalence deflation technique [5,8], that aims at mapping the previously computed
eigenvalues to infinity. We use this strategy here, since it is suitable for two-sided solvers.

Non-equivalence deflation in SLP Let {(𝑥𝑖 , 𝜆𝑖)}𝑘𝑖=1 be the set of computed eigenpairs and let {𝑦𝑖}𝑘𝑖=1 be vectors
such that 𝑦∗𝑖 𝑥𝑖 = 1, 𝑖 = 1, . . . , 𝑘 . Then the operator

𝑇 (𝜆) := 𝑇 (𝜆)
𝑘∏
𝑖=1

(
𝐼𝑛 − 𝜆 − 𝜆𝑖 − 1

𝜆 − 𝜆𝑖 𝑦𝑖𝑥
∗
𝑖

)
(4.2)

verifies that Λ(𝑇) = (Λ(𝑇) \ {𝜆𝑖}𝑘𝑖=1) ∪ {∞}. Taking vectors 𝑌 bi-orthogonal to 𝑋 (i.e., 𝑌 ∗𝑋 = 𝐼𝑘 ), operator 𝑇 can
be expressed as

𝑇 (𝜆) := 𝑇 (𝜆) (𝐼𝑛 − 𝑌𝐷𝑋∗), (4.3)

where 𝐷 = diag(𝛼𝑖) and 𝛼𝑖 = 𝜆−𝜆𝑖−1
𝜆−𝜆𝑖 , 𝑖 = 1, . . . , 𝑘 . Note that once an eigenvector �̃�𝑘+1 of 𝑇 (𝜆) has been computed,

the corresponding eigenvector of the original problem 𝑇 (𝜆) can be recovered as 𝑥𝑘+1 = (𝐼𝑛 − 𝑌𝐷𝑋∗)�̃�𝑘+1.
We take {𝑦𝑖}𝑘𝑖=1 as the set of computed left eigenvectors properly bi-orthogonalized. After 𝑘 eigen-triples

{(𝑥𝑖 , 𝑦𝑖 , 𝜆𝑖)}𝑘𝑖=1 have been computed, the modified operators we will use with the SLP method are (4.3) and

𝑇∗ (𝜆) := 𝑇∗ (𝜆) (𝐼𝑛 − 𝑋�̄�𝑌 ∗). (4.4)
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Tab. 1 Summary of the two test problems employed for the computational experiments. The table shows the problem
dimension and the region where eigenvalues are sought (used only by the NLEIGS solver). In the tests, nev eigenvalues are
requested around the target value 𝜎.

name dim region nev 𝜎

gun 9956 see Fig. 1 4 65000 + 500i
dimer 1095073 [−1, 20] × [−2, 0] 4 2.7 − 0.25i

Fig. 1 Graphical representation of the gun problem. The shaded region is the target set Σ. The nodes (blue points) and poles
(orange points) used in the NLEIGS solver are Leja-Bagby pairs, picked from the discretization of the boundary 𝛿Σ and the
singularity set Ξ, respectively. Red crosses are the eigenvalues lying inside the region.

In the last equation we have taken into account the fact that the columns of 𝑌 and 𝑋 are, respectively, right and left
eigenvectors of 𝑇∗. Matrix 𝐷 is the same as in (4.3).
Now we give detailed expressions of the matrices we need in order to carry out the product of (𝑇 (𝜎))−1𝑇 ′(𝜎)

by a vector. Dropping the 𝜎 argument, these expressions become

𝑇−1 = (𝐼 + 𝑌𝐷 (𝐼 − 𝐷)−1𝑋∗)𝑇−1 and

𝑇 ′ = 𝑇 ′(𝐼𝑛 − 𝑌𝐷𝑋∗) + 𝑇 (−𝑌𝐷 ′𝑋∗),
(4.5)

where 𝐷 ′ = diag(𝛼′𝑖 (𝜎)) and 𝛼′𝑖 (𝜎) = 1
(𝜎−𝜆𝑖)2 . We have similar expressions for the operator 𝑇

∗:

(𝑇∗)−1 = (𝐼 + 𝑋�̄� (𝐼 − �̄�)−1𝑌 ∗)𝑇−∗ and

(𝑇∗) ′ = (𝑇∗) ′(𝐼𝑛 − 𝑋�̄�𝑌 ∗) + 𝑇 (−𝑋�̄� ′𝑌 ∗).
(4.6)

To compute the inverses in (4.5) and (4.6) we have used the Woodbury matrix identity

(𝐴 +𝑈𝑉)−1 = 𝐴−1 − 𝐴−1𝑈 (𝐼 +𝑉𝐴−1𝑈)−1𝑉𝐴−1, (4.7)

particularized for the case 𝐴 = 𝐼.

5. Computational results
We have carried out some computational tests to measure the accuracy and performance of the two-sided NLEIGS
and SLP solvers. The runs are performed on Tirant III, a computer consisting of 336 computing nodes, each of
them with two Intel Xeon SandyBridge E5-2670 processors (16 cores each) running at 2.6 GHz with 32 GB of
memory, linked with an Infiniband network. We allocated 4 MPI processes per node at most. The results in this
section correspond to SLEPc version 3.15, together with PETSc 3.15 and MUMPS 5.3.
All methods in SLEPc are implemented in parallel with a message-passing paradigm (MPI), so here we also

include results on parallel performance. The details about parallelization are discussed in [2].
We have used two test problems for the computational experiments, which are summarized in Table 1. Both

problems are expressed in the split form (2.1) and either the problem matrices or the 𝑓𝑖 functions are complex, and
so are the eigenvalues. The solvers have been run using complex arithmetic with double precision. The tolerance
for the convergence criterion has been set to 10−8. A more detailed description of the problems follows:

Fig. 2 Graphical representation of the dimer problem. The orange points are the 12 poles of the rational function. The shaded
part is the region used in the NLEIGS solver, while the blue circle is the target value used in both NLEIGS and SLP. Red
crosses are the 20 eigenvalues computed by NLEIGS (there are more eigenvalues inside the region).
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Tab. 2 Results for both algorithms when solving the two test problems with 16 MPI processes. The table shows the number
of iterations, the total number of required linear solves, the time used by the factorizations (PC), the total execution time, and
the backward error.

test problem solver iter lin. solves PC time 𝜂(𝑥, 𝑦, 𝜆)
gun NLEIGS 4 98 0.4 1.1 7 × 10−13

SLP 7 224 1.5 2.4 4 × 10−9

dimer NLEIGS 2 122 14.2 109.1 3 × 10−14
SLP 20 656 66.2 231.5 2 × 10−11
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1 2 4 8 16 32
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Fig. 3 Execution time (in seconds) with up to 32 nodes (128 MPI processes) for the problems gun (left) and dimer (right),
solved with two-sided NLEIGS and two-sided SLP. The execution parameters are shown in Table 1.

• The gun problemmodels a radio-frequency gun cavity [9]. Here,𝑇 (𝜆) = 𝐾−𝜆𝑀+𝑖
√︃
𝜆 − 𝜅21𝑊1+𝑖

√︃
𝜆 − 𝜅22𝑊2,

where 𝐾 , 𝑀 ,𝑊1 and𝑊2 are real symmetric matrices and we set 𝜅1 = 0 and 𝜅2 = 108.8774. The nonlinearity
comes from the square roots, and in this case Ξ = (−∞, 𝜅22). Figure 1 shows a picture of this problem.

• The dimer problem [1] corresponds to the analysis of scattering resonances (TMpolarization) of a dimer nano-
structure (two disks coated with gold). The partial differential equation is written as Δ𝑢 + 𝜀(𝑥, 𝜔)𝜔2𝑢 = 0,
where 𝜔 is the complex frequency (eigenvalue). The relative permittivity 𝜀(𝑥, 𝜔) is modeled as a rational
function (Drude-Lorentz), so the nonlinear operator 𝑇 (𝜔) = 𝐴0 − 𝜔2𝐴1 − 𝜔2𝜀(𝑥, 𝜔)𝐴2 is rational. In the
case of gold, the rational representation of 𝜀 has 12 poles, see Figure 2.

The accuracy of the computed eigen-triples is assessed with the backward error (2.2), using ∞-norms for
practical computation of matrix norms. Table 2 shows the maximum value of this error estimate for all the eigen-
triples computed by two-sided NLEIGS and two-sided SLP for the problems of Table 1. From the results, we can
note the following:

• NLEIGS may return more eigenvalues than requested. This depends on the size of the Krylov subspace,
which by default is max{2 · 𝑛𝑒𝑣, 𝑛𝑒𝑣 + 15}. The number of NLEIGS iterations in Table 2 refers to restarts.

• All eigen-triples returned by both solvers have an accuracy below the requested tolerance. In the case of
NLEIGS, the accuracy is significantly better, which can be attributed to being a subspace method. In SLP,
deflation of the first eigenvalues does not seem to introduce large errors for subsequent ones.

• SLP is significantly slower than NLEIGS, taking more that twice its time in these examples. As pointed out
previously, the reason is that it requires computing many factorizations while NLEIGS just computes one.
We can also see that the number of linear solves (the number of times 𝑇 (𝜎)−1 or 𝑇 (𝜎)−∗ is applied to a
vector) is much larger in SLP.

We conclude this section by analyzing the parallel scalability of the two solvers. Figure 3 shows the execution
time of both two-sided NLEIGS and two-sided SLP when solving the two problems with increasing number of
nodes (with 4 MPI processes per node). The plots for the dimer problem show very good scaling up to 128
processes, while for the gun problem, the trend is reasonably good, but the problem size is too small for maintaining
good parallel efficiency after a certain number of processes.
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6. Concluding remarks
We have presented the details for implementing a two-sided SLP method for computing a few eigen-triples of large-
scale nonlinear eigenvalue problems, and we have compared it with a two-sided variant of the NLEIGS eigensolver
in terms of efficiency and accuracy. According to the computational experiments of section 5, SLP cannot compete
with NLEIGS in any aspect. NLEIGS is faster and returns more accurate eigen-triples. Furthermore, NLEIGS
is more reliable with respect to retrieving eigenvalues that are closest to the target, while SLP might converge
erratically to other eigenvalues that are not the closest ones.
The upside of two-sided SLP is its simplicity, which makes it appealing for easy implementation. Also, if

the number of wanted eigenvalues is small, it could require a computational effort similar to NLEIGS in some
problems. On the other hand, the SLP method solves the original problem while NLEIGS replaces it with an
approximation, which is not guaranteed to be good in all cases.
As a future work, we will explore the feasibility of deriving a two-sided variant of Nonlinear Arnoldi [12] via

an oblique projection using subspaces containing approximations of left and right eigenvectors.
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Abstract

In recent years, some point-to-point fractional Newton-type methods have been proposed to find roots of
nonlinear equations using fractional derivatives. We present several Newton-type methods based on Caputo
fractional derivative. For each case, the order of convergence of the proposed methods is stated, and some
numerical tests are carried out in order to observe their performance, in practice. Convergence to different roots
depending on the order of the derivative is observed and also differences among the methods in terms of the
percentage of converging starting points.

1. Introduction
Leibnitz and L’Höpital created the concept of the semi-derivative at 1695, giving birth to fractional calculus.
Also Riemann, Liouville and Euler were interested in this idea. From then, fractional calculus has evolved from
theoretical aspects to the applications in many real world problems (see [2, 5, 8, 10, 12]): medicine, mechanical
engineering, economics, ... In numerical analysis, we are focused in the area of research of iterative methods for
solving nonlinear equations 𝑓 (𝑥) = 0. A large amount of these procedures are Newton-like, that is, they involve
in their iterative expressions the evaluation of the nonlinear function 𝑓 and its first derivative 𝑓 ′ at each iterate. In
this context, we question ourselves how would affect to the convergence order 𝑝 of these schemes the replacement
of integer derivatives by fractional ones. In particular, we introduce the Caputo fractional derivative, and study the
convergence of these fractional methods. We would like to answer this and other questions for both point-to-point
and multipoint schemes.
For the sake of completeness, we introduce in what follows some concepts about fractional derivatives and the

series developments necessary to prove the convergence results.

1.1. Preliminary concepts
Now, we introduce some general concepts such as the Caputo fractional derivative [10,11] and the fractional Taylor
series [4, 9].
The first concept that we define is the Gamma function, as:

Γ(𝑥) =
∫ +∞

0
𝑢𝑥−1𝑒−𝑢𝑑𝑢,

whenever 𝑥 > 0. This function is a generalization of the factorial function to the complex plane, taking into account
that Γ(1) = 1 and Γ(𝑛 + 1) = 𝑛!, when 𝑛 ∈ N. As we will see in the following section, it appears in the iterative
expressions of fractional iterative methods, being necessary for reaching the order of convergence of the iterative
scheme.

Definition 1.1 (Caputo fractional derivative of order 𝛼) Let 𝑓 : 𝐼 ⊆ R→ R be an element of 𝐶+∞ ( [𝑎, 𝑥]) (−∞ <
𝑎 < 𝑥 < +∞), with 𝛼 ≥ 0 and 𝑛 = [𝛼] + 1, being [𝛼] the integer part of 𝛼. Then, the Caputo fractional derivative
of order 𝛼 of 𝑓 (𝑥) is defined as follows:

(𝑐𝐷𝛼𝑎 ) 𝑓 (𝑥) =



1
Γ(𝑛 − 𝑎)

∫ 𝑥

𝑎

𝑑𝑛 𝑓 (𝑡)
𝑑𝑡𝑛

𝑑𝑡

(𝑥 − 𝑡)𝛼−𝑛+1 , 𝛼 ∉ N,

𝑑𝑛−1 𝑓 (𝑥)
𝑑𝑥𝑛−1

, 𝛼 = 𝑛 − 1 ∈ N ∪ {0}.
(1.1)

Moreover, to prove the order of convergence of the iterative fractional methods, a generalization of the classical
Taylor series expansion of 𝑓 (𝑥) around the zero of the nonlinear function, 𝑥, is needed. Further on, this development
also uses the Caputo fractional derivatives, see [9] (with 𝜌 = 1).
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Theorem 1.2 (Taylor series expansion by using Caputo fractional derivatives [9]) Let us suppose that 𝑐𝐷 𝑗 𝛼
𝑎 𝑓 (𝑥) ∈

C([𝑎, 𝑏]), for 𝑗 = 1, 2, . . . , 𝑛 + 1, where 𝛼 ∈ (0, 1], then we have

𝑓 (𝑥) =
𝑛∑︁
𝑖=0

𝑐𝐷𝑖𝛼𝑎 𝑓 (𝑎) (𝑥 − 𝑎)
𝑖𝛼

Γ(𝑖𝛼 + 1) + 𝑐𝐷
(𝑛+1)𝛼
𝑎 𝑓 (𝜉) (𝑥 − 𝑎)

(𝑛+1)𝛼

Γ((𝑛 + 1)𝛼 + 1) , (1.2)

with 𝑎 ≤ 𝜉 ≤ 𝑥, for all 𝑥 ∈ (𝑎, 𝑏] where 𝑐𝐷𝑛𝛼𝑎 = 𝑐𝐷𝛼𝑎 · 𝑐𝐷𝛼𝑎 · · · 𝑐𝐷𝛼𝑎 (n times composition).

We develop the work in the following order. In Section 2 we state our iterative methods and expose their
convergence results. In the next section, numerical tests are performed, paying special attention to the convergence
rates and the roots the methods converge to. Finally, expose the conclusions obtained and some open questions.

2. Iterative methods designed by using fractional derivatives
In this section, we introduce high-order one-point and multi-point fractional iterative methods based on the
methods of Newton and Traub methods, stating the conditions that must be assued in order to achieve their order
of convergence, which depend on the order of the fractional derivative.

Theorem 2.1 ( [1]) Let 𝑓 : 𝐷 ⊂ R → R be a continuous function whose fractional derivatives of order 𝑘𝛼 are
defined for any positive integer 𝑘 and any 𝛼, 0 < 𝛼 < 1, on the interval 𝐷 containing the zero 𝑥 of 𝑓 (𝑥) and let the
fractional derivatives of Caputo type, 𝑐𝐷𝛼𝑎 𝑓 (𝑥), be continuous and non-singular at 𝑥. Also, let us suppose that 𝑥0
is an initial approximation close enough to 𝑥. Then the order of local convergence of Newton’s fractional method

𝑥𝑘+1 = 𝑥𝑘 − Γ(𝛼 + 1) 𝑓 (𝑥𝑘 )
𝑐𝐷𝛼𝑎 𝑓 (𝑥𝑘 )

, 𝑘 = 0, 1, . . . , (2.1)

of Caputo type is at least 2𝛼, where 0 < 𝛼 ≤ 1, with the error equation

𝑒𝑘+1 =
Γ(2𝛼 + 1) − (Γ(𝛼 + 1))2

(Γ(𝛼 + 1))3 𝐶2𝑒
2𝛼
𝑘 +𝑂 [𝑒3𝛼𝑘 ).

We denote the iterative method (2.1) as CFN1. However, another kind of fractional iterative method can be
designed, fixing the order of convergence to be at least one, as can be seen in the following result.

Theorem 2.2 ( [3]) Let 𝑓 : 𝐷 ⊂ R → R be a continuous function with fractional derivatives of order 𝑘𝛼 defined
for any positive integer 𝑘 and 𝛼 ∈ (0, 1] defined on the open interval 𝐷 containing the zero 𝑥 of 𝑓 (𝑥). Additionally,
let us suppose that 𝑐𝐷𝛼𝑎 𝑓 (𝑥) is continuous and not zero at 𝑥. Then, the order of convergence of the Caputo type
fractional Newton method with iterative scheme

𝑥𝑘+1 = 𝑥𝑘 −
(
Γ(𝛼 + 1) 𝑓 (𝑥𝑘 )

𝑐𝐷𝛼𝑎 𝑓 (𝑥𝑘 )

)1/𝛼
, 𝑘 = 0, 1, 2, . . . (2.2)

(denoted by CFN2) is at least 𝛼 + 1, and its error equation is

𝑒𝑘+1 =
Γ(2𝛼 + 1) − (Γ(𝛼 + 1))2

𝛼(Γ(𝛼 + 1))2 𝐶2𝑒
𝛼+1
𝑘 +𝑂 [𝑒2𝛼+1𝑘 ] .

On the other hand, higher-order iterative schemes can be designed, following this structure. A Traub-type
fractional-order method can be defined also bymeans of Caputo derivatives. In the following result, the convergence
conditions and its fractional order of convergence are stated.

Theorem 2.3 ( [3]) Let 𝑓 : 𝐷 ⊂ R → R be a the continuous function with fractional derivatives of order 𝑘𝛼, for
any positive integer 𝑘 and 𝛼 ∈ (0, 1], in the open interval 𝐷 holding the zero of 𝑓 (𝑥), denoted by 𝑥. Let us suppose
𝑐𝐷𝛼𝑎 𝑓 (𝑥) is continuous and not null at 𝑥. Additionally, let us consider an initial estimation 𝑥0, close enough to 𝑥.
Therefore, the local convergence order of CFT method with iterative expression

𝑥𝑘+1 = 𝑦𝑘 −
(
Γ(𝛼 + 1) 𝑓 (𝑦𝑘 )

𝑐𝐷𝛼𝑎 𝑓 (𝑥𝑘 )

)1/𝛼
, 𝑘 = 0, 1, . . . , (2.3)

where 𝑦𝑘 is obtained using (2.2), being 𝛼2 + 2𝛼 + 1 < 3𝛼 + 1, is at least 2𝛼 + 1. Its error equation is

𝑒𝑘+1 = − Γ(2𝛼 + 1)
𝛼2 (Γ(𝛼 + 1))2

(Γ(𝛼 + 1))2 − Γ(2𝛼 + 1)
(Γ(𝛼 + 1))2 𝐶22𝑒

2𝛼+1
𝑘 +𝑂 [𝑒𝛼2+2𝛼+1𝑘 ] .
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3. Numerical results
In the following section, the numerical performance of these schemes is tested. We are going to test a nonlinear
function in order to make a comparison between the presented methods. It is important to point out that in any case
a comparison is being made with the classical methods (when 𝛼 = 1).
To get these results, we have used Matlab R2018b with double precision arithmetics, |𝑥𝑘+1 − 𝑥𝑘 | < 10−8 or

| 𝑓 (𝑥𝑘+1) | < 10−8 as stopping criteria, and a maximum of 500 iterations. For the calculation of the gamma function,
Γ(𝑥), we use the program presented in [6], where gamma function is calculated with 15 digits of accuracy along
the real axis and 13 elsewhere in C. Moreover, in all the numerical tests, we used 𝑎 = 0.
Our test function is 𝑓 (𝑥) = −12.84𝑥6 − 25.6𝑥5 + 16.55𝑥4 − 2.21𝑥3 + 26.71𝑥2 − 4.29𝑥 − 15.21 with roots 𝑥1 =

0.82366 + 0.24769𝑖, 𝑥2 = 0.82366 − 0.24769𝑖, 𝑥3 = −2.62297, 𝑥4 = −0.584, 𝑥5 = −0.21705 + 0.99911𝑖 and
𝑥6 = −0.21705 − 0.99911𝑖.
We observe that Newton-type methods (Table 1) with Caputo derivative, for the same value of 𝑥0 and the same

values of 𝛼, converge to the different roots in more iterations than fractional Traub’s methods. It also can be
observed that Newton- and Traub-type schemes require approximately the same values of 𝛼 to converge. Also, it
has been observed in practice that, for wide ranges of initial guesses, the same 𝑥0 defines a sequence converging to
different roots of the nonlinear function depending on the value of 𝛼.

CFN1 method CFN2 method
𝛼 𝑥 |𝑥𝑘+1 − 𝑥𝑘 | | 𝑓 (𝑥𝑘+1) | iter 𝑥 |𝑥𝑘+1 − 𝑥𝑘 | | 𝑓 (𝑥𝑘+1) | iter
0.6 - 0.29821 28.343 500 - 1.7603e-07 0.0035619 500
0.65 - 0.17488 11.329 500 - 4.1154e-08 6.7515e-04 500
0.7 - 0.058499 2.98929 500 𝑥4 9.9926e-09 1.1322e-04 432
0.75 𝑥4 9.6537e-09 4.1645e-07 151 𝑥4 9.8524e-09 4.6756e-05 230
0.8 𝑥4 8.5475e-09 3.0465e-07 50 𝑥4 9.6579e-09 1.8943e-05 124
0.85 𝑥4 9.468e-09 2.606e-07 28 𝑥4 9.9396e-09 7.7541e-06 67
0.9 𝑥4 3.9203e-09 7.3851e-08 19 𝑥4 9.109e-09 2.6706e-06 37
0.95 𝑥4 2.5822e-09 2.4894e-08 13 𝑥4 7.3622e-09 6.4461e-07 20
1 𝑥4 3.0876e-06 8.8694e-10 6 𝑥4 3.0876e-06 8.8694e-10 6

Tab. 1 Fractional Newton results for 𝑓 (𝑥) with Caputo derivative and initial estimation 𝑥0 = −1.5

CFT method
𝛼 𝑥 |𝑥𝑘+1 − 𝑥𝑘 | | 𝑓 (𝑥𝑘+1) | iter
0.6 - 6.2898e-08 0.0012681 500
0.65 - 1.1562e-08 1.8867e-04 500
0.7 𝑥4 9.9588e-09 6.9453e-05 268
0.75 𝑥4 9.9889e-09 2.7995e-05 138
0.8 𝑥4 9.5606e-09 1.0693e-05 73
0.85 𝑥4 9.4657e-09 4.0225e-06 39
0.9 𝑥4 6.8084e-09 1.0286e-06 22
0.95 𝑥4 5.2078e-09 1.8928e-07 12
1 𝑥4 2.2023e-10 5.329e-15 5

Tab. 2 Fractional Traub results for 𝑓 (𝑥) with Caputo derivative and initial estimation 𝑥0 = −1.5

Now, we are going to analyze the dependence on the initial estimation of Newton- and Traub-type methods by
using convergence planes defined in [7]. In them (see, for example, Figure 1𝑎) the abscissa axis corresponds to the
starting guess and the fractional index 𝛼 appears in the ordinate axis. A mesh of 400 × 400 points is used. Points
that are not painted in black color correspond to those pairs of initial estimations and values of 𝛼 that converge to
one of the roots with a tolerance of 10−3. Different colors mean convergence to different roots. Therefore, when
a point is painted in black, this shows that no root is found in a maximum of 500 iterations. Moreover, for all
convergence planes, the percentage of convergent pairs (𝑥0, 𝛼) is calculated, in order to compare the performance
of the methods.
In Figure 1, we can see that CFN1 and CFT methods have higher percentage of convergence than CFN2. We

can also see, that there are intervals for 𝑥0 such that the same fractional iterative method with different values of
the order of the fractional derivative can lead us to converge to different roots. It can be useful in order to find all
the roots of a function with few computational effort.
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Fig. 1 Convergence planes of proposed methods on 𝑓 (𝑥) with −3 ≤ 𝑥0 ≤ 3

4. Concluding remarks
Fractional Newton- and Traub-type schemes have been designed by using Caputo derivatives. The convergence
properties of these procedures imply always (at least) linear convergence, reaching order 2𝛼, 1 + 𝛼 and 1 + 2𝛼,
respectively. Some numerical tests have been done, and the dependence on the initial estimation has been observed.
It can be concluded that Traub-type procedures can improve Newton-type ones, not only because they require

fewer iterations, higher or similar percentages of convergence. Moreover, the test made have shown that, for some
problems, the methods using fractional derivatives reach different solutions with the same initial estimations.
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Abstract

Angiogenesis processes including the effect of stochastic branching and spread of blood vessels can be
described coupling a (nonlocal in time) integrodifferential kinetic equation of Fokker-Planck type with a diffusion
equation for the angiogenic factor. Well posedness studies underline the importance of preserving positivity when
constructing approximate solutions. We devise order one positivity preserving schemes for a reduced model and
show that soliton-like asymptotic solutions are correctly captured. We also find good agreement with the original
stochastic model from which the deterministic kinetic equations are derived working with ensemble averages.
Higher order positivity preserving schemes can be devised combining WENO and SSP procedures.

1. Angiogenesis model
Angiogenesis (growth of blood vessels) is fundamental for tissue repair and development. A host of immune,
inflammatory and malignant diseases are triggered by angiogenic disorders. We study here a deterministic inte-
grodifferential model for the development of the stochastic vessel network.
Denoting by 𝑝 and 𝐶 the density of blood vessel tips and the concentration of angiogenic factor released by

hypoxic cells, their time evolution is governed by a system of nondimensional equations [1]:

𝜕

𝜕𝑡
𝑝(x, v, 𝑡) = 𝛼(𝐶 (x, 𝑡))𝛿𝜎𝑣 (v − v0)𝑝(x, v, 𝑡) − Γ𝑝(x, v, 𝑡)

∫ 𝑡

0
𝑑 𝑠

∫
𝑑v′𝑝(x, v′, 𝑠)

−v · ∇x𝑝(x, v, 𝑡) + 𝛽divv (v𝑝(x, v, 𝑡)) +
−divv [𝛽F (𝐶 (x, 𝑡)) 𝑝(x, v, 𝑡)]+ 𝛽

2
Δv𝑝(x, v, 𝑡), (1.1)

𝜕

𝜕𝑡
𝐶 (x, 𝑡) = 𝜅Δx𝐶 (x, 𝑡) − 𝜒𝐶 (x, 𝑡) 𝑗 (x, 𝑡), (1.2)

𝑝(x, v, 0) = 𝑝0 (x, v), 𝐶 (x, 0) = 𝐶0 (x), (1.3)

where

𝛼(𝐶 (x, 𝑡)) = 𝐴 𝐶 (x, 𝑡)
1 + 𝐶 (x, 𝑡) , F(𝐶 (x, 𝑡)) = 𝛿1

(1 + Γ1𝐶 (x, 𝑡))𝑞1 ∇x𝐶 (x, 𝑡), (1.4)

𝑗 (x, 𝑡) =
∫
R𝑁

|v|
1 + 𝑒 ( |v−v0 |2−𝜂)/𝜖 𝑝(x, v, 𝑡) 𝑑v, 𝜌(x, 𝑡) =

∫
R𝑁

𝑝(x, v, 𝑡) 𝑑v, (1.5)

for x ∈ Ω ⊂ R𝑁 , v ∈ R𝑁 , 𝑁 = 2, 3, 𝑡 ∈ [0,∞). The parameters 𝛽, Γ, 𝜅, 𝜒, 𝐴, Γ1, 𝛿1, 𝜂, 𝜖 and 𝑞1 are dimensionless
and positive. Typical values are listed in Table 1. Here, 𝛿𝜎𝑣 is a regularized delta function, such as

𝛿𝜎𝑣 (v − v0) = 1
𝜋𝜎2𝑣

𝑒−|v−v0 |2/𝜎2𝑣 . (1.6)

In dimension two, these models can be adapted to describe angiogenesis problems causing retinopathies [2].

𝛿1 𝛽 𝐴 Γ Γ1, 𝑞1 𝜅 𝜒 𝜂 𝜖 𝜎𝑣
0.255 5.88 22.42 0.135 1 0.0045 0.002 15 0.001 0.08

Tab. 1 Dimensionless parameters.

Existence, uniqueness and stability of positive solutions is established in the whole space resorting to iterative
procedures. The key idea for an existence theory is to include the integrodifferential terms in the reference
linear operators [3]: we consider iterative schemes in which the velocity integrals 𝜌 and 𝑗 are fixed from one
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step to the next. Then, we construct solutions of the linearized Fokker-Plank and heat problems by means of
fundamental solutions. This guarantees nonnegativity of the solutions, a crucial property to obtain preliminary
uniform estimates. Existence follows from compactness arguments, using sharp estimates on the force field F(𝐶)
and on the anastomosis terms. Passing to the limit in the equations, we obtain a global in time solution of the
original problem for initial data decaying at infinite, as well as stability bounds in terms of the norms of the initial
data. Gronwall type inequalities yield uniqueness. More precisely, the following result is proven in [3]

Theorem 1. Let us assume that:

𝑝0 ≥ 0, 𝐶0 ≥ 0, (1.7)
𝐶0 ∈ 𝐿∞ (𝐼𝑅𝑁 ),∇x𝐶0 ∈ 𝐿∞ (𝐼𝑅𝑁 ) ∩ 𝐿2 (𝐼𝑅𝑁 ), (1.8)
(1 + |v|2)𝛽/2𝑝0 ∈ 𝐿∞ (𝐼𝑅𝑁 ×𝐼𝑅𝑁 ), 𝛽 > 𝑁, (1.9)
(1 + |v|2)𝛽/2𝑝0 ∈ 𝐿1 (𝐼𝑅𝑁 × 𝐼𝑅𝑁 ), 𝛽 > 𝑁. (1.10)

Then, there exists a nonnegative solution (𝑝, 𝐶) of (1.1)-(1.5) satisfying:
𝐶 ∈ 𝐿∞ (0, 𝑇 ; 𝐿∞ (𝐼𝑅𝑁 )),∇x𝐶 ∈ 𝐿∞ (0, 𝑇 ; 𝐿∞ ∩ 𝐿2 (𝐼𝑅𝑁 )), (1.11)

𝑝 ∈ 𝐿∞ (0, 𝑇 ; 𝐿∞ ∩ 𝐿1 (𝐼𝑅𝑁 × 𝐼𝑅𝑁 )),∇v𝑝 ∈ 𝐿2 (0, 𝑇 ; 𝐿2 (𝐼𝑅𝑁 × 𝐼𝑅𝑁 )), (1.12)
(1 + |v|2)𝛽/2𝑝 ∈ 𝐿∞ (0, 𝑇 ; 𝐿∞ (𝐼𝑅𝑁 × 𝐼𝑅𝑁 )), (1.13)
(1 + |v|2)𝛽/2𝑝 ∈ 𝐿∞ (0, 𝑇 ; 𝐿1 (𝐼𝑅𝑁 × 𝐼𝑅𝑁 )), (1.14)

𝑝 ∈ 𝐿∞ (0, 𝑇 ; 𝐿∞x (𝐼𝑅𝑁 , 𝐿1v (𝐼𝑅𝑁 )), (1.15)

with norms bounded in terms of the norms of the data.
If ∇v𝑝0 ∈ 𝐿∞x (𝐼𝑅𝑁 , 𝐿1v (𝐼𝑅𝑁 )), then ∇v𝑝 ∈ 𝐿∞ (0, 𝑇 ; 𝐿∞x (𝐼𝑅𝑁 , 𝐿1v (𝐼𝑅𝑁 )) and the solution is unique.
When the spatial domainΩ is bounded, we need to impose boundary conditions. We consider the slab (0, 𝐿)×R,

and set x = (𝑥1, 𝑥2), v = (𝑣1, 𝑣2). On 𝑥1 = 0 (initial blood vessel) and 𝑥1 = 𝐿 (hypoxic region), we impose Neumann
boundary conditions for 𝐶:

𝜕

𝜕n𝐶 (0, 𝑥2, 𝑡) = 0,
𝜕

𝜕n𝐶 (𝐿, 𝑥2, 𝑡) = 𝑐𝐿 (𝑡)𝑒
−𝑎2𝑥22 , 𝑡 > 0, 𝑥2 ∈ R, (1.16)

where 𝑐𝐿 (𝑡) > 0 represents the influx of angiogenic factor produced at the hypoxic region and 1/𝑎 is a characteristic
length. This function decreases as blood vessels reach the hypoxic region. We impose nonlocal boundary conditions
hold on 𝑝:

𝑝+ (0, 𝑥2, 𝑣1, 𝑣2, 𝑡) = 𝑒−|v−v0 |2∫ ∞
0

∫ +∞
−∞ 𝑣′1 𝑒

−|v′−v0 |2𝑑𝑣′1𝑑𝑣
′
2

[
𝑗0 (𝑥2, 𝑡)

−
∫ 0

−∞

∫ +∞

−∞
𝑣′1 𝑝

− (0, 𝑥2, 𝑣′1, 𝑣′2, 𝑡)𝑑𝑣′1𝑑𝑣′2
]
= 𝑆0 (𝑝), 𝑡, 𝑣1 > 0, 𝑣2, 𝑥2 ∈ 𝐼𝑅, (1.17)

𝑝− (𝐿, 𝑥2, 𝑣1, 𝑣2, 𝑡) = 𝑒−|v−v0 |2∫ 0
−∞

∫ +∞
−∞ 𝑒−|v′−v0 |2𝑑𝑣′1𝑑𝑣

′
2

[
𝜌𝐿 (𝑥2, 𝑡)

−
∫ +∞

0

∫ +∞

−∞
𝑝+ (𝐿, 𝑥2, 𝑣′1, 𝑣′2, 𝑡)𝑑𝑣′1𝑑𝑣′2

]
= 𝑆𝐿 (𝑝), 𝑡 > 0, 𝑣1 < 0, 𝑥2, 𝑣2 ∈ 𝐼𝑅, (1.18)

where 𝑝+ denotes the values of 𝑝 for positive 𝑣1 and 𝑝− the values of 𝑝 for negative 𝑣1. For a fixed v0 = (𝑣1,0, 𝑣2,0)
𝑗0 (𝑥2, 𝑡) = 𝑣1,0 𝛼(𝐶 (0, 𝑥2, 𝑡)) 𝑝(0, 𝑥2, 𝑣1,0, 𝑣2,0, 𝑡), (1.19)

𝜌𝐿 (𝑥2, 𝑡) = 𝜌(𝐿, 𝑥2, 𝑡) =
∫ +∞

−∞

∫ +∞

−∞
𝑝(𝐿, 𝑥2, 𝑣′1, 𝑣′2, 𝑡)𝑑𝑣′1𝑑𝑣′2. (1.20)

Existence results are based on similar iterative schemes as those employed in the whole space. However, lacking
explicit fundamental solutions, proofs exploit balance equations, estimates of velocity decay and compactness
results for kinetic operators, combined with gradient estimates of heat kernels for Neumann problems (see [4] for
detailed proofs of existence results in an annulus).
We aim to devise robust schemes for this kind of problems. In principle, we could rely on the iterative schemes

used for existence, and apply schemes for linear kinetic and heat equations to each iterate. However, the convergence
of the iterative scheme may be slow and the order of the resulting procedure would be uncontrolled. Instead, we
will discuss how to discretize the original nonlinear problem. To simplify, we will illustrate the ideas on a two
dimensional reduction that captures soliton-like solutions. Section 2 describes the discretization procedure. Section
3 presents some numerical results.
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2. Positivity preserving high order schemes
In the limit as 𝛽→∞, the marginal density 𝜌(x, 𝑡) and the concentration satisfy the equations [1]:

𝜕𝜌

𝜕𝑡
+ divx (F𝜌) − 12𝛽Δx𝜌 = 𝜇 𝜌 − Γ𝜌

∫ 𝑡

0
𝜌(x, 𝑠) 𝑑𝑠, (2.1)

𝜇 =
𝛼

𝜋

[
1 + 𝛼

2𝜋𝛽(1 + 𝜎2𝑣 )
ln

(
1 + 1

𝜎2𝑣

)]
, (2.2)

𝜕

𝜕𝑡
𝐶 (x, 𝑡) = 𝜅Δx𝐶 (x, 𝑡) − 𝜒1 𝐶 (x, 𝑡) 𝜌(x, 𝑡), (2.3)

𝜒1 =
𝜒

𝜋

∫ ∞

0

∫ 𝜋

−𝜋

√︁
1 +𝑉2 + 2𝑉 cos 𝜑
1 + 𝑒 (𝑉 2−𝜂)/𝜖 𝑒−𝑉

2
𝑉 𝑑𝑉𝑑𝜑. (2.4)

To leading order, the density and the marginal density are related by

𝑝(x, v, 𝑡) ∼ 1
𝜋
𝑒−|v−v0 |2𝜌(x, 𝑡). (2.5)

A positivity preserving order one scheme follows by explicit forward time discretization, upwind treatment of
transport terms, and standard centered schemes for the Laplacians. Integral terms are discretized by means of
composite Simpson rules. The integral 𝐼 (x, 𝑡) =

∫ 𝑡
0 𝜌(x, 𝑠) 𝑑𝑠 is transformed in an additional equation

𝐼 ′(x, 𝑡) = 𝜌(x, 𝑡), 𝐼 (x, 0) = 0. (2.6)

To obtain a higher order scheme, we apply a positivity preservingWENO5 scheme to spatial operators, combined
with three point Legendre quadrature rules [7]. In spite of their order, these schemes may degenerate to order two
in practice. To preserve positivity and stability, we consider strong stability preserving (SSP) time discretizations.
Standard choices for third order accuracy are the third order SSP multistep method [7]

𝑢(𝑡𝑛+1) = 16
27 (𝑢(𝑡𝑛) + 3𝛿𝑡 𝑟 (𝑢(𝑡𝑛))) + 1127

(
𝑢(𝑡𝑛−3) + 1211𝛿𝑡 𝑟 (𝑢(𝑡𝑛−3))

)
, (2.7)

and the third order Runge Kutta method [6]

𝑢 (1) = 𝑢(𝑡𝑛) + 𝛿𝑡 𝑟 (𝑢(𝑡𝑛)),
𝑢 (2) = 3

2𝑢(𝑡𝑛) + 14𝑢 (1) + 14𝛿𝑡 𝑟 (𝑢 (1) ),
𝑢(𝑡𝑛+1) = 1

3𝑢(𝑡𝑛) + 23𝑢 (2) + 23𝛿𝑡 𝑟 (𝑢 (2) ).
(2.8)

The stability of SSP methods is governed by a CFL number 𝑐 in the following way. If the Euler forward time
discretization applied to an equation 𝑢𝑡 = 𝑟 (𝑢) is stable under the condition 𝛿𝑡 ≤ 𝛿𝑡0, then the higher order SSP
time discretization is stable when 𝛿𝑡 ≤ 𝑑 𝛿𝑡0. For the multistep method we have 𝑑 = 1/3 while 𝑑 = 1 (𝑑𝑒 𝑓 𝑓 = 1/3)
for the RK3 (2.8). For second order accuracy, the RK2 scheme is

𝑢 (1) = 𝑢(𝑡𝑛) + 𝛿𝑡 𝑟 (𝑢(𝑡𝑛)),
𝑢(𝑡𝑛+1) = 1

2𝑢(𝑡𝑛) + 12𝑢 (1) + 12𝛿𝑡 𝑟 (𝑢 (1) )
(2.9)

with 𝑑 = 1 (𝑑𝑒 𝑓 𝑓 = 1/2). The spatial operator 𝑟 (𝑢(𝑡𝑛)) would be the operator obtained discretizing the space
variables, time excluded. These schemes can be extended to the whole model [5].

3. Numerical results
In this section, we present numerical solutions for appropriate values of the parameters as listed in Table 1.
Figure 1 shows the evolution of the marginal tip density (1.5) at four different times as the angiogenic network

moves towards the hypoxic region on the right, obtained by combining a WENO5 discretization in space and RK2
in time. Figures 2 depicts the angiogenic factor concentration. We observe that the active vessel tips evolve as a
patch as they consume the concentration of theangiogenic factor as they advance. The tip density profile forms a
soliton-like pattern, with slightly varying profile. The soliton forms at the initial stage and then advances keeping
its appearance but changing its size and height. This numerically observed soliton can be described asymptotically
as explained in [1].
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(a) (b)

(c) (d)

Fig. 1 Snapshots of the time evolution of the marginal tip density.

(a) (b)

(c) (d)

Fig. 2 Snapshots of the time evolution of the concentration.
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Abstract
The time-dependent neutron diffusion equation can describe the power evolution inside a nuclear reactor

core. One approach to integrate this time-dependent equation is the modal method. This methodology is based
on assuming that the solution can be decomposed as a finite sum of time-dependent amplitudes multiplied by
shape functions (obtained by solving a partial eigenvalue problem), which are updated along the transient. In this
work, different controls, that adapt the time-step according to the state of the transient, are implemented. Several
benchmark problems show the competitiveness of the methodology.

1. Introduction
The evolution of the neutron power inside of reactor core can be described by the time-dependent multigroup
neutron diffusion equation [11]. This equation is an approximation of the neutron transport equation that assumes
that the neutron current is proportional to the gradient of the scalar neutron flux by means of a diffusion coefficient.
For two energy-groups and without considering up-scattering, this model can be expressed as

V 𝑑

𝑑𝑡
Φ + LΦ = (1 − 𝛽)FΦ +

𝐾∑︁
𝑘=1

𝜆𝑑𝑘
𝜒C𝑘 ,

𝑑

𝑑𝑡
C𝑘 = 𝛽𝑘F1Φ − 𝜆𝑑𝑘C𝑘 , 𝑘 = 1, . . . , 𝐾 ,

(1.1)

where the time-dependent operators are

L =

(
−®∇ · (𝐷1 ®∇) + Σ𝑎1 + Σ12 0

−Σ12 −®∇ · (𝐷2 ®∇) + Σ𝑎2

)
,

F =

(
𝜈Σ 𝑓1 𝜈Σ 𝑓2
0 0

)
, F1 =

(
𝜈Σ 𝑓1 𝜈Σ 𝑓2

)
,

V =

(
1/𝑣1 0
0 1/𝑣2

)
, 𝜒 =

(
1
0

)
, Φ =

(
Φ1
Φ2

)
.

(1.2)

In the previous expressions, 𝐷 is the diffusion coefficient, Σ𝑎 is the absorption cross-section, Σ12 is the scattering
cross-section from the first group to the second group, Σ 𝑓 is the fission cross-section, 𝜈 is the average number of
neutrons produced in each fission and 𝑣𝑔 is the velocity of the neutrons. Subindex 𝑔(= 1, 2) denotes the energy
group. The first and the second group are known as fast and thermal group, respectively. Thus, Φ1 and Φ2 are
the fast and thermal neutron fluxes. The concentration of delayed neutron precursors is represented by 𝐶𝑘 , where
subindex 𝑘 denotes the delayed group 𝑘 . 𝛽𝑘 is the fraction of delayed neutrons that satisfies

∑𝐾
𝑘=1 𝛽𝑘 = 𝛽. 𝜆𝑑𝑘 is the

neutron decay constant. All magnitudes and variables are, in general, time and space-dependent.
A Galerkin finite element method is applied for the spatial discretization of the neutron diffusion equation to

obtain a semi-discrete system of ordinary differential equations [13]. Usually, this system of differential equations
is stiff due to, among other things, the fast variation of the neutron flux and the presence of both prompt and delayed
neutrons that leads to time scales of different orders of magnitude.
Several methodologies of different types have been studied to integrate this semi-discrete equation. First,

one can use implicit differential schemes such as the backward differential method or higher order differential
schemes [5, 14]. There are also many works that apply a quasi-static method that decomposes the solution as a
product of two functions: an amplitude function that only depends on the time and a shape function that depends
on space and time but its variation in time is assumed to be slow. These functions are approximated with two
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different schemes that are coupled. In this work, to integrate the time-dependent neutron diffusion equation, a
modal method is used. This approach assumes that the solution can be described as the sum of several amplitude
functions multiplied by shape functions or modes. This expansion has a strong interest to approximate the solution
for some types of transient problems, such as the ones defined from out-of-phase oscillations or local perturbations,
where more than one shape function is necessary. The shape functions are obtained computing the eigenfunctions
associated with the dominant eigenvalues (larger in magnitude) of the 𝜆-modes problem

L𝜙𝑚 =
1
𝜆𝑚
F 𝜙𝑚 , (1.3)

where L and F are the operators defined in Equation (1.2) for a given configuration of the reactor. This generalized
eigenvalue problem is obtained forcing the criticality of the system and describes the steady-state, which is the
initial condition for the problem (1.1). Other possibilities for the shape functions have been studied, but they are
not as efficient numerically as the 𝜆-modes [4].
The shape functions can be fixed along the transient and one can use the modes associated with the static

problem but this implies, in some transients, the necessity of using a high number of them in the expansion to
obtain accurate results. To reduce the number of modes, Miró et al. proposed an updated modal method where
the shape functions are updated at some time-steps [10]. In this last work, the time-step to update the modes was
a fix value that had to be selected before beginning the computation. This strategy leads, in some cases, to use a
too small time-step to assure the accuracy of the computations, which implies an unnecessary large computational
cost. In this work, we propose some adaptive time-step controls that estimate an updating time-step depending on
the transient analysed such that the results obtained are accurate enough with reasonable computational demands.
The rest of the paper is organized as follows. Section 2 briefly describes the finite element method used for

the spatial discretization. Section 3 exposes the updated modal method. Section 4 presents the adaptive time-step
controls analysed. Section 5 contains the numerical results obtained to test the proposed methodology. Finally,
Section 6 collects the main conclusions of this work.

2. Spatial discretization. Finite element method
To approximate the solution, the differential system (1.1) is discretized. For the spatial discretization, a continuous
Galerkin finite element method (FEM) is applied to obtain the semi-discrete system of differential equations (see
details in [14])

𝑉
dΦ̃
d𝑡
+ 𝐿Φ̃ = (1 − 𝛽)𝐹Φ̃ +

𝐾∑︁
𝑘=1

𝜆𝑑𝑘𝑋𝐶𝑘 ,

d𝑋𝐶𝑘
d𝑡

= 𝛽𝑘𝐹Φ̃ − 𝜆𝑑𝑘𝑋𝐶𝑘 , 𝑘 = 1, . . . , 𝐾 ,

(2.1)

where 𝐿, 𝐹, 𝑉 and 𝑋 are the matrices obtained from the spatial discretization of operators L, F , V and 𝜒,
respectively. Vectors Φ̃ and𝐶𝑘 are the corresponding coefficients ofΦ and C𝑘 in terms of the Lagrange polynomials,
which are the polynomials used in the finite element method. The FEM has been implemented by using the open
source finite elements library Deal.II ( [2]). Henceforth, the notation has been simplified by removing the tildes of
the discrete operators from the original notation to the vectors Φ and 𝜙.
For the 𝜆-modes problem (1.3), the algebraic problem associated with the spatial discretization has the following

structure
𝐿𝜙𝑚 =

1
𝜆𝑚

𝐹𝜙𝑚, (2.2)

where 𝜙𝑚 are the algebraic vectors of coefficients associated with the functions 𝜙𝑚.
Associated with the 𝜆-modes problem one can define the adjoint problem [6]

𝐿𝑇 𝜙†𝑙 =
1
𝜆𝑙
𝐹𝑇 𝜙†𝑙 , (2.3)

where 𝐿𝑇 and 𝐹𝑇 are the matrices obtained from the spatial discretization of the adjoint operatorsL† and F †. They
also correspond to the transpose matrices of 𝐿 and 𝐹. The solutions of the adjoint modes problem 𝜙†𝑙 , 𝑙 = 1, . . . , 𝑞
satisfy the biorthogonality condition

〈𝜙†𝑙 , 𝐹𝜙𝑚〉 = 〈𝜙†𝑚, 𝐹𝜙𝑚〉𝛿𝑙,𝑚, 𝑙, 𝑚 = 1, . . . , 𝑞, (2.4)

where 〈 , 〉 denotes the inner product for vectors and 𝛿𝑙,𝑚 is the Kronecker’s delta.

A. CARREÑO, A. VIDAL-FERRÀNDIZ, D. GINESTAR AND G. VERDÚ
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3. Time discretization. Updated modal method
From the finite element discretization, a semi-discrete system of ordinary differential equations is obtained that
must be integrated over the time. In this work, the updated modal expansion is used for this purpose. This is a
generalization of the traditional modal method that updates the eigenfunctions used in the expansions to avoid using
a high number of modes [10].
To apply this method, the time domain is divided into several intervals [𝑡𝑖 , 𝑡𝑖 + Δ𝑡𝑖] = [𝑡𝑖 , 𝑡𝑖+1] and the neutron

flux in this interval is decomposed in terms of 𝑞 dominant 𝜆-modes as

Φ𝑖 (®𝑟, 𝑡) =
𝑞∑︁
𝑚=1

𝑛𝑖𝑚 (𝑡)𝜙𝑖𝑚 (®𝑟), 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1] , (3.1)

where 𝜙𝑖𝑚 (®𝑟) is the unitary eigenvector associated with the 𝑚-th dominant eigenvalue of the 𝜆-modes problem (1.3)
associated with the configuration of the reactor in time 𝑡 = 𝑡𝑖

𝐿𝑖𝜙𝑖𝑚 =
1
𝜆𝑖𝑚

𝐹𝑖𝜙𝑖𝑚, (3.2)

and 𝑛𝑖𝑚 (𝑡) is the amplitude coefficient associated, that is only time-dependent. The matrices 𝐿𝑖 and 𝐹𝑖 correspond
to the matrices 𝐿 and 𝐹 at time 𝑡 = 𝑡𝑖 .
Along the transient, it is assumed that only themagnitudes included in the operators 𝐿 and 𝐹 are time-dependent.

The precursor data and the velocities are considered constant. The matrices 𝐿 and 𝐹 are expressed as

𝐿 (𝑡) = 𝐿𝑖 + 𝛿𝐿𝑖 (𝑡), 𝐹 (𝑡) = 𝐹𝑖 + 𝛿𝐹𝑖 (𝑡) , 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1] . (3.3)

The transient is initialized by forcing the criticality of the reactor dividing the fission cross-sections by 𝜆01 and
using the steady-state neutron flux as initial condition.
To apply the modal methodology, the expressions (3.1) and (3.3) are substituted in the discretized neutron

diffusion equation (2.1) and the resulting expression is then collapsed on the left by the adjoint 𝜆-modes to obtain
a system of 𝑞(𝐾 + 1) ODEs

d
d𝑡

N𝑖 = T𝑖N𝑖 , (3.4)

where
N𝑖 =

(
𝑛𝑖1 · · · 𝑛𝑖𝑞 𝑐𝑖11 · · · 𝑐𝑖𝑞1 · · · 𝑐𝑖1𝐾 · · · 𝑐𝑖𝑞𝐾

)𝑇
, (3.5)

T𝑖 =

©«

Λ−1𝑖 ((1 − 𝛽)𝐼 − [𝜆𝑖]−1 − Δ𝐿𝑖 + (1 − 𝛽)Δ𝐹𝑖) Λ−1𝑖 𝜆
𝑑
1 · · · Λ−1𝑖 𝜆

𝑑
𝐾

𝛽1 (𝐼 + Δ𝐹𝑖) −𝜆𝑑1 𝐼 · · · 0
...

...
. . .

...

𝛽𝐾 (𝐼 + Δ𝐹𝑖) 0 · · · −𝜆𝑑𝐾 𝐼

ª®®®®®®®¬
, (3.6)

and
Λ𝑖𝑙𝑚 = 〈𝜙†,𝑖𝑙 , 𝑉𝜙𝑖𝑚〉, Δ𝐿𝑖𝑙𝑚 = 〈𝜙†,𝑖𝑙 , 𝛿𝐿𝑖𝜙𝑖𝑚〉,

Δ𝐹𝑖𝑙𝑚 = 〈𝜙†,𝑖𝑙 , 𝛿𝐹𝑖𝜙𝑖𝑚〉, 𝑐𝜆𝑙𝑘 = 〈𝜙†,𝑖𝑙 , 𝑋𝐶𝑘〉.
(3.7)

The matrix block [Λ]𝑖 is a diagonal matrix whose elements are the dominant 𝜆-modes 𝜆𝑖𝑚. The initial conditions
at 𝑡 = 0 are

𝑛01 (0) = 1, 𝑛0𝑚 (0) = 0, 𝑚 = 2, . . . , 𝑞,

𝑐01𝑘 (0) =
𝛽𝑘

𝜆𝑑𝑘
〈𝜙†,01 , 𝐹0𝜙

0
1〉, 𝑐0𝑚𝑘 (0) = 0, 𝑚 = 2, . . . , 𝑞, 𝑘 = 1, . . . , 𝐾,

(3.8)

with 𝜙01 and 𝜙
†,0
1 , the corresponding eigenvector and its adjoint associated with the dominant eigenvalue 𝜆

0
1. That

are obtained from the problem in the initial configuration.
The initial conditions at 𝑡𝑖 to integrate the system in the interval [𝑡𝑖 , 𝑡𝑖+1] must be defined to ensure the continuity

of the solution. These initial conditions will be calculated from the solution in the previous interval [𝑡𝑖−1, 𝑡𝑖], the
eigenvectors associated with direct modes (𝜙𝑖𝑚) and the adjoint modes (𝜙

†,𝑖
𝑙 ). Therefore, the computation of the

solution in the interval [𝑡𝑖 , 𝑡𝑖+1] uses the solution of the previous interval [𝑡𝑖−1, 𝑡𝑖].
First, the initial conditions for 𝑛𝑖𝑚 in the interval [𝑡𝑖 , 𝑡𝑖+1] are defined. The vector Φ(𝑡𝑖) can be computed by

using the expansion in the interval [𝑡𝑖−1, 𝑡𝑖] as

Φ𝑖−1 (𝑡𝑖) =
𝑞∑︁
𝑚=1

𝑛𝑖−1𝑚 (𝑡𝑖)𝜙𝑖−1𝑚 . (3.9)
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Assuming the continuity of Φ(𝑡) on all its domain, that is Φ𝑖−1 (𝑡𝑖) = Φ𝑖 (𝑡𝑖), and collapsing the expression (3.1) at
𝑡 = 𝑡𝑖 by the adjoint modes it is obtained that the amplitude coefficients must be equal to

𝑛𝑖𝑚 (𝑡𝑖) =
〈𝜙†,𝑖𝑚 , 𝐹𝑖Φ𝑖−1 (𝑡𝑖)〉
〈𝜙†,𝑖𝑚 , 𝐹𝑖𝜙𝑖𝑚〉

. (3.10)

To compute the initial conditions for the concentration of the precursor 𝑘 at time 𝑡𝑖 , 𝑐𝑖𝑙,𝑘 (𝑡𝑖), the coefficients
computed in the previous integration for 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖] and the adjoint modes are used. It is supposed that

𝜙†,𝑖𝑙 =
𝑞∑︁
𝑚=1

𝑎𝑙𝑚𝜙
†,𝑖−1
𝑚 . (3.11)

Using the biorthogonality relation of the adjoint 𝜆-modes and Equation (3.11) it is obtained that

𝑎𝑙𝑚 =
〈𝜙†,𝑖𝑙 , 𝐹𝑖−1𝜙𝑖−1𝑚 〉
〈𝜙†,𝑖−1𝑚 , 𝐹𝑖−1𝜙𝑖−1𝑚 〉

. (3.12)

Therefore, the precursors coefficients at time 𝑡𝑖 can be computed as

𝑐𝑖𝑙,𝑘 (𝑡𝑖) = 〈𝜙†,𝑖𝑙 , 𝑋𝐶𝑘〉(𝑡𝑖) =
𝑞∑︁
𝑚=1

𝑎𝑙𝑚〈𝜙†,𝑖−1𝑚 , 𝑋𝐶𝑘〉(𝑡𝑖) =
𝑞∑︁
𝑚=1

𝑎𝑙𝑚𝑐
𝑖−1,𝜆
𝑚,𝑘 (𝑡𝑖). (3.13)

Note that the system of ODEs (3.4) is much smaller than the system (2.1) if a moderate number of modes is used
in expansion (3.1). In this work, this stiff system is integrated with a backward differentiation formula implemented
in the CVODE solver from the SUNDIALS library [1, 7]. This code has implemented an adaptive time step and it
is initialized with a time step of 10−3s.

4. Adaptive time-step control
Previous works [10], update the modes with a fix time-step that is selected before beginning the computation. This
implies the necessity of selecting a time-step that can lead to results with unpredictable errors. If a small time-step
is used to reduce the errors, the computational cost also increases and this small time-step may be not necessary
in some stages of the transient. Consequently, it is interesting to have an algorithm to adapt the time-step during
the transient. To define it, two fundamental points must be studied: an error estimation and a control to select the
time-step based on this error.

4.1. Estimation of local error
The error obtained for the modal expansion essentially comes from the assumption that the neutron flux can be
described as a finite linear combination of the spatial modes, because the set of 𝑞 modes do not form a complete
basis of the function space. Therefore, larger spatial variations in the flux will imply larger errors in the modal
method. We define several types of errors to estimate these spatial variations.

Modal difference error Oneway to estimate how the neutron fluxwill change in the interval [𝑡𝑖 , 𝑡𝑖+1] is to compute
the modes in the next time 𝑡𝑖+1 and observe the differences between the modes at 𝑡𝑖 and the modes at 𝑡𝑖+1 as

𝜀𝑖𝑚𝑑 = max
𝑚=1,...,𝑞

‖𝜙𝑖−1𝑚 − 𝜙𝑖𝑚‖1
‖𝜙𝑖−1𝑚 ‖1

𝑘𝑚𝑑 . (4.1)

Modal residual error Other possibility to estimate this change is computing the residual error of the modes at 𝑡𝑖
on the problem corresponding to the time 𝑡𝑖+1 as

𝜀𝑚𝑟 = max
𝑚=1,...,𝑞

‖𝐹𝑖𝜙𝑖−1𝑚 − 𝜆𝑖−1𝑚 𝐿𝑖𝜙𝑖−1𝑚 ‖1
‖𝜙𝑖−1𝑚 ‖1

𝑘𝑚𝑟 .

Cross-section perturbation error In nuclear reactor systems the neutron flux shape change will depend on the
variation in the cross-sections. Thus, we define an error

𝜀𝑥𝑠 =
∑︁
𝑐

‖XS𝑖−1 (𝑐) − XS𝑖 (𝑐)‖1
‖XS𝑖−1 (𝑐)‖1

𝑘𝑥𝑠 ,

where 𝑐 denotes the different cells of the spatial discretization of the reactor and XS is one type of cross-section
that depends on the perturbation applied to generate the transient.

In the previous error estimations the constants 𝑘𝑚𝑑 , 𝑘𝑚𝑟 , 𝑘𝑥𝑠 , are defined to adjust the accuracy of the
approximation and their values will depend on the transient analyzed.
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4.2. Time-step control
Two strategies are defined to compute the time-step from the error estimations. Both compute the new time-step
Δ𝑡𝑖 from the previous one Δ𝑡𝑖−1 .

Banded control The first control computes this time-step in a fixed way as

Δ𝑡𝑖 =




Δ2𝑡𝑖−1, 𝜀 < 1.0,
Δ𝑡𝑖−1, 1.0 < 𝜀 < 2.0,
Δ𝑡𝑖−1 / 2, 1.0 < 𝜀,

(4.2)

where 𝜀 is one of the error estimations presented in Section 4.1.

Dynamic control It is based on control algorithms of other differential methods implemented for stiff prob-
lems [15]. In particular, the time-step Δ𝑡𝑖 is computed as

Δ𝑡𝑖 = Δ𝑡𝑖−1min{2.0,max{0.5,
√︁
1.0/𝜀}}, (4.3)

where 𝜀 is some error defined in Section 4.1.

Finally, a minimum time-step and maximum time-step to avoid using very high or very small time-steps are
used. These values are defined as Δ𝑡min = Δ𝑡0/2, Δ𝑡max = 50Δ𝑡0, where Δ𝑡0 is the initial Δ𝑡.

5. Numerical results
The performance of the variable time-step updated modal methodology is tested using two type of reactor transients.
In the finite element method, Lagrange polynomials of degree 3 are used because usually, this degree gives accurate
results for usual reactor calculations [14].
The solution of the partial eigenvalue problems has been computed with a hybrid method by using a residual

error of 10−7 (see more details in [3]). Moreover, for the implementation, a matrix-free technique is applied where
the matrices of the system are not assembled. Matrix-vector products are computed ‘on the fly’ in a cell-based
interface.
To analyzed the results, different relative errors for the neutron power are computed. The neutron power

distribution, P, is defined as
P(®𝑟, 𝑡) = Σ 𝑓 1Φ1 (®𝑟, 𝑡) + Σ 𝑓 2Φ2 (®𝑟, 𝑡).

The Local Error (LE) at time 𝑡 and Mean Power Error (MPE) in the interval [𝑡0, 𝑡𝑁 ] are given by

LE(𝑡) = ‖P(𝑡) − P
ref (𝑡)‖1

‖Pref (𝑡)‖1
· 100, MPE =

1
(𝑡𝑁 − 𝑡0)

𝑁∑︁
𝑛=1
LE(𝑡𝑛) (𝑡𝑛 − 𝑡𝑛−1) ,

where Pref (𝑡) is the reference power at time 𝑡, that is computed from the solution obtained with a backward
differential method (BKM) of first order and time-step of 0.001 s. [14].
This methodology has been implemented in C++ based on data structures provided by the library Deal.ii [2],

PETSc [1]. It has been incorporated to the open-source neutronic code FEMFFUSION. It approximates the neutron
diffusion equation and the steady-state SPN equations by using a high order finite element method. The full
description and the source code of FEMFFUSION is available in [12].
The computer used in the computations has been an Intel® Core™ i7-4790@3.60GHz×8 processor with 32Gb

of RAM running on Ubuntu GNU/Linux 18.04 LTS.

5.1. Langenbuch OOP transient
The Langenbuch reactor is a small LWR core with 77 fuel assemblies and two types of fuel [9]. The Langenbuch-
OOP transient is defined from two local sinusoidal perturbations that are out-of-phase between them. They are
expressed as,

Σ 𝑓 𝑔 (𝑡) = Σ 𝑓 𝑔 (0) + 𝛿Σ 𝑓 𝑔 (𝑡) 𝑔 = 1, 2. (5.1)

The perturbation 1 (P1) and the perturbation 2 (P1), marked in the Figure 1 with dash pattern, are given by

𝛿Σ𝑃1𝑓 𝑔 (𝑡) = 5 · 10−4 sin(2𝜋𝑡), 𝛿Σ𝑃2𝑓 𝑔 (𝑡) = 5 · 10−4 sin(2𝜋𝑡 + 𝜋), 𝑔 = 1, 2. (5.2)

This transient is followed during 2 s. The number of modes for the modal method has been set to 𝑞 = 3 because
the out-of-phase perturbations cannot be described with only one mode.
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Fig. 1 Radial location of the perturbation areas for the Langenbuch-OPP transient.
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Fig. 2 Relative power and local error (%) obtained with the updated modal method with 3 modes for the Langenbuch-OPP
transient.

Figure 2(a) displays the evolution of the relative global power computed with the BKM and the updated modal
method with several fixed time-steps (Δ𝑡). Figure 2(b) displays the local error (LE). Large errors between the BKM
and the updated modal method are produced when the perturbations reach their maximum value. However, these
differences are reduced for smaller time-steps. Errors are not constant along the transient and the use of a control
for the updating time-step is convenient to improve the efficiency of the method.
First, the adaptive control is analysed. The time-step to initialize the time-step control is set to Δ𝑡0 = 0.05 s.

The fission cross-section is used for the cross-section perturbation error. Table 1 shows Mean Power Errors and
CPU times obtained by setting the different error estimations, control errors and accuracy coefficients 𝑘 . Themodal
difference error (𝜀𝑚𝑑) is very expensive because it needs to compute the modes at the start of each time interval.
The cross-section perturbation error (𝜀𝑥𝑠) gives lower errors than the modal residual error (𝜀𝑚𝑟 ), but by requiring
more time. In the type of controls, the dynamic control gives similar approximations than the banded control, but
also using more CPU time.

Tab. 1Mean Power Errors (MPE) and CPU time obtained with the adaptive time-step modal method for the Langenbuch-OOP
transient.

Type of Error Banded Control Dynamic Control
𝑘 MPE (%) CPU Time MPE (%) CPU Time

𝜀𝑚𝑑
1.0 3.901 3 min 3.748 5 min
2.0 2.902 22 min 1.681 14 min
5.0 1.641 32 min 1.519 20 min
𝜀𝑚𝑟
50 6.383 3 min 2.117 3 min
100 1.011 7 min 1.162 8 min
200 1.531 7 min 0.713 18 min
𝜀𝑥𝑠
0.5 1.338 4 min 0.809 7 min
1.0 0.647 11 min 0.656 12 min
2.0 0.617 13 min 0.607 13 min

Table 2 compares the mean power errors for the updated modal method with several fixed time-steps Δ𝑡 and
for the adaptive modal method with the cross-section perturbation residual error, dynamic control time-step and
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𝑘𝑥𝑠 = 0.5. The updated modal method with fix Δ𝑡 = 0.2 s and the adaptive modal method uses similar CPU times,
but the approximation obtained with the adaptive control is a 20 % more accurate.

Tab. 2 Errors and CPU time obtained to integrate the Langenbuch-OOP transient.

BKM Updated Modal Updated Modal Updated Modal Adaptive Modal
Δ𝑡 = 0.2 s Δ𝑡 = 0.1 s Δ𝑡 = 0.05 s

MPE (%) 0.988 0.558 0.187 0.809
CPU Time (min) 195 7 12 30 7

5.2. AER-DYN-001 transient
The AER-DYN-001 problem was introduced in [8]. It corresponds to an asymmetric control rod ejection accident
without any feedback in a large hexagonal VVER440 reactor. The discretization of the reactor core is composed of
15 156 cells to have a system of 3 361 970 degrees of freedoms for a degree in the FEM equal to 3. Two dominant
modes are used for the modal method because one eigenvalue gives non-accurate approximations [8].
Table 3 shows the mean power error (MPE) and the CPU time obtained with the updated modal method with

fix time-steps and the adaptive control. Very small time-steps are necessary in the updated modal method to
approximate accurately the drop out of the bar at the beginning of the transient, but then these small values are not
necessary. Thus, different time-steps are interesting to be used along the transient. The adaptive updated modal
method with modal residual error, dynamic control time-step and 𝑘𝑚𝑟 = 100 is applied. This solution has smaller
mean power error than the rest of the solutions computed with the fixed updated modal method and this is also
computed in less CPU time.

Tab. 3 Comparison of the BKM and the updated modal method for the AER-DYN-001 transient.

Method 𝚫𝒕 MPE CPU Time
(s) (%) (h)

BKM 0.01 - 89
Updated modal method 0.01 5.90 140
Updated modal method 0.05 4.60 38
Updated modal method 0.10 4.86 23
Adaptive updated modal method - 3.59 17

Figure 3(a) shows the relative power obtained with the updated modal method with adaptive time step and the
BKM. Figure 3(b) displays the local errors of the updated modal method using a fix time step Δ𝑡 = 0.05 s and
the adaptive update modal method. It observed that the adaptive modal method reduces the local error in the first
times, but also reduces the local error beyond 𝑡 = 1 s.
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Fig. 3 Relative power, local error (%) and time-step (Δ𝑡) obtained with the updated modal method and the adaptive updated
modal method with 2 modes for the AER-DYN-001 transient.
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6. Conclusions
An updated modal method with a variable time-step is proposed to integrate the neutron diffusion equation, where
the updating time-step is selected in function on different types of errors and controls.
Numerical results show that the modal residual error and the cross-section perturbation error are good

estimators to control the time-step update. However, the modal difference error has been shown computationally
very expensive. In the type of controls, the dynamic control error is more adapted to the local errors, but there are
not relevant differences between the dynamic and the banded time step control. Moreover, different coefficients 𝑘
are defined to adjust the accuracy obtain in the different errors. Values of 𝑘𝑚𝑑 ≈ 2.0, 𝑘𝑚𝑟 ≈ 100 and 𝑘𝑥𝑠 ≈ 0.5 are
recommended.
Finally, numerical results show that the time-step control for the updated modal method decreases the errors

with similar or smaller CPU times than if the updated modal method is applied with fix time-step.
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Abstract

The rich variety of homoclinic phenomena exhibited by the limit family of any generic unfolding of a four-
dimensional nilpotent singularity of codimension-four is discussed. Specifically, numerical techniques based
on the Taylor integrator and the expansion of the invariant manifolds were designed for this family. A partial
bifurcation diagram which includes, besides a suggestive catalogue of local bifurcations of equilibria, folds and
period doublings of periodic orbits is also given. These results are certainly the first steps towards a much more
ambitious goal: to achieve a general understanding of these codimension-four unfoldings.

1. Introduction
Let 𝑋 be a 𝐶∞ vector field on R𝑛 with 𝑋 (0) = 0 and 1-jet at 0 linearly conjugate to ∑𝑛−1

𝑖=1 𝑥𝑖+1 𝜕/𝜕𝑥𝑖 . Vector fields
satisfying this assumption make up a set of codimension 𝑛 in the space of germs of singularities in R𝑛 (see [19] for
definitions). As argued in [8], working with appropriate coordinates, 𝑋 can be written as the following differential
equation {

𝑥 ′𝑖 = 𝑥𝑖+1 for 𝑖 = 1, . . . , 𝑛 − 1,
𝑥 ′𝑛 = 𝑓 (𝑥),

with 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑓 (𝑥) = 𝑂 (‖𝑥‖2). We say that 0 (or 𝑋 itself) is a 𝑛-dimensional nilpotent singularity of
codimension 𝑛 when the condition

𝜕2 𝑓

𝜕𝑥21
(0) ≠ 0

is satisfied.
Consider now a 𝐶∞-family of vector fields 𝑋𝜈 , with 𝜈 = (𝜈1, . . . , 𝜈𝑛) ∈ R𝑛, such that 𝑋0 is a 𝑛-dimensional

nilpotent singularity of codimension 𝑛. As proved in [8], under generic assumptions, 𝑋𝜈 can be written as follows{
𝑥 ′𝑖 = 𝑥𝑖+1 for 𝑖 = 1, . . . , 𝑛 − 1,
𝑥 ′𝑛 = 𝜈1 + 𝜈2𝑥2 + . . . + 𝜈𝑛𝑥𝑛 + 𝑥21 + ℎ(𝜈, 𝑥),

where 𝜈1, . . . , 𝜈𝑛 and the coefficient in front of 𝑥21 represent exact coefficients in a Taylor expansion with respect to
𝑥 and ℎ is of order 𝑂 (‖(𝜈, 𝑥)‖2) and 𝑂 (‖(𝑥2, . . . , 𝑥𝑛)‖2).
As proved in [1], when rescaling parameters and variables by the equations

𝜈1 = 𝜀2𝑛 �̄�1,
𝜈𝑘 = 𝜀𝑛−𝑘+1 �̄�𝑘 for 𝑘 = 2, . . . , 𝑛,
𝑥𝑘 = 𝜀𝑛+𝑘−1𝑥𝑘 for 𝑘 = 1, . . . , 𝑛,

(1.1)

with 𝜀 > 0 and �̄�21 + . . . + �̄�2𝑛 = 1, 𝑋𝜈 becomes the system{
𝑥 ′𝑖 = 𝑥𝑖+1 for 𝑖 = 1, . . . , 𝑛 − 1,
𝑥 ′𝑛 = �̄�1 + �̄�2𝑥2 + . . . + �̄�𝑛𝑥𝑛 + 𝑥21 +𝑂 (𝜀),

after division by 𝜀. Variable 𝑥 = (𝑥1, . . . , 𝑥𝑛) can be assumed to belong to any arbitrarily large compact in R𝑛.
Understanding the bifurcation diagram of the limit family (𝜀 = 0) is essential to study the dynamics emerging

from the singularity, that is, its unfolding. The limit family when 𝑛 = 2 is a key piece in the study of the Bogdanov-
Takens bifurcation ( [3,20]). The limit family corresponding to the case 𝑛 = 3was studied in [11–14]. Among other
results, it was proved in [14] that any generic unfolding of the 3-dimensional nilpotent singularity of codimension
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3 exhibits strange attractors. Finally, the limit family corresponding to the 4-dimensional nilpotent singularity of
codimension four 



𝑥 ′1 = 𝑥2,
𝑥 ′2 = 𝑥3,
𝑥 ′3 = 𝑥4,
𝑥 ′4 = �̄�1 + �̄�2𝑥2 + �̄�3𝑥3 + �̄�4𝑥4 + 𝑥21,

(1.2)

was studied in [1, 2, 8]. Most notably, it was proved in [1] that any generic unfolding of the singularity contains a
bifurcation hypersurface corresponding to bifocal homoclinic orbits. Even so, all the mentioned papers only offer
very preliminary results. Consequently, the study of the dynamics exhibited by the limit family in the 4-dimensional
case continues to be an interesting and enormous challenge.
In this work we delve into the study of (1.2). In Section 2 we propose directional rescalings that facilitate

the study. The numerical methods employed along the paper are described in Section 3. The core of this paper
is Section 4 where we provide results related to the existence of homoclinic connections. In addition, a first
approximation to the complex structure of bifurcations of periodic orbits displayed in the family is presented in
Section 5. We conclude with a brief discussion on related topics of interest.

2. Directional rescalings and reversible case
In what follows, we consider the family (1.2). When �̄�1 > 0, it can be proven that the function

𝐿 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑥4 − �̄�2𝑥1 − �̄�3𝑥2 − �̄�4𝑥3
is strictly increasing along orbits. Therefore, there are no bounded orbits when �̄�1 > 0 and the interesting dynamics
only emerges for �̄�1 ≤ 0. When �̄�1 = 0, there is a unique equilibrium point at the origin and for �̄�1 < 0 there exist
two equilibrium points at 𝑝± = (±

√−�̄�1, 0, 0, 0).
On the other hand, family (1.2) is invariant with respect to the transformation:

(�̄�1, �̄�2, �̄�3, �̄�4, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑡) ↦−→ (�̄�1,−�̄�2, �̄�3,−�̄�4, 𝑥1,−𝑥2, 𝑥3,−𝑥4,−𝑡).
This allows to restrict the study to the case �̄�4 ≤ 0. In particular, the divergence of each vector field in the

family is given by �̄�4 so the existence of repellors is not feasible for �̄�4 6 0 and attractors also do not exist when
�̄�4 = 0. Additionally, the vector fields are time-reversible when �̄�2 = �̄�4 = 0. As argued in [1, 2, 8], understanding
the dynamics for the subfamily of time-reversible vector fields becomes essential. The dynamics of the linear part
is simple around 𝑝+ and richer around 𝑝− (see [1]). The linear part at 𝑝+ always have a pair of real eigenvalues and
a pair of complex eigenvalues with non-zero real part. However, the linear part at 𝑝− has

• a double zero eigenvalue and a pair of pure imaginary eigenvalues when �̄�3 = −1 and �̄�1 = �̄�2 = �̄�4 = 0 (we
denote this bifurcation point as HBT),

• two double pure imaginary eigenvalues ±𝑖(−�̄�3/2)1/2 when �̄�23 − 8
√−�̄�1 = 0, �̄�3 < 0 and �̄�2 = �̄�4 = 0 (we

denote this bifurcation point as HH),

• two double real eigenvalues ±(𝜈3/2)1/2 when �̄�23 − 8
√−�̄�1 = 0, �̄�3 > 0 and �̄�2 = �̄�4 = 0 (we denote this

bifurcation point as BD),

• a double zero eigenvalue and eigenvalues ±1 when �̄�3 = 1 and �̄�1 = �̄�2 = �̄�4 = 0 (we denote this bifurcation
point as BT).

In between bifurcation points HBT and HH on the circumference �̄�21 + �̄�23 = 1, the linear part at 𝑝− has four pure
imaginary eigenvalues ±𝜔𝑘𝑖, with 𝑘 = 1, 2, and 𝜔1 ≠ 𝜔2. For parameter values between bifurcation points HH
and BD, it has four complex eigenvalues 𝜌 ± 𝜔𝑖 and −𝜌 ± 𝜔𝑖 with non-zero real part (𝜌 ≠ 0). Finally, in between
bifurcation points BD and BT, all eigenvalues are real.

Remark 2.1 1. Since �̄�1 = 0 at the bifurcation points HBT and BT, 𝑝± = (0, 0, 0, 0) is the only equilibrium.
2. Although the linearization at the origin has a double zero eigenvalue for the point BT, it is not a generic
Bogdanov-Takens point because the vector field is conservative. In the same way, it occurs at the point HBT,
where the linearization at the origin matches with a Hopf-Bogdanov-Takens point. Despite this, it should be
notice that these bifurcations are generically unfolded in the original family.

3. As the item above suggests, the notation was chosen based on the type of linearization at the equilibrium
point. In this sense, the linearization at 𝑝− is related to a Hopf-Hopf bifurcation at the point HH and to a
Belyakov-Devaney bifurcation at the point BD.
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As usual, when dealing with limit families, it can be more convenient to consider directional rescalings. Namely,
we can take �̄�𝑖 = +1 (or �̄�𝑖 = −1) and (�̄�1, . . . , �̄�𝑖−1, �̄�𝑖+1, . . . , �̄�𝑛) ∈ R𝑛−1 in (1.1). Bearing in mind the study of
(1.2) close to the time-reversible subfamily, we consider a directional rescaling with �̄�1 = −1 to get the family




𝑥 ′1 = 𝑥2,
𝑥 ′2 = 𝑥3,
𝑥 ′3 = 𝑥4,
𝑥 ′4 = −1 + �̄�2𝑥2 + �̄�3𝑥3 + �̄�4𝑥4 + 𝑥21,

(2.1)

with (�̄�2, �̄�3, �̄�4) ∈ R3.

Remark 2.2 To obtain a complete picture, directional rescalings with �̄�3 = ±1 may be useful. This means to look
at the limit family from the bifurcation points BT and HBT.

To compare with results previously obtained in the literature it is better to translate the equilibrium point
𝑝− = (−1, 0, 0, 0) to the origin and rescale variables and parameters as follows:

𝑥1 =
𝑥1 + 1
2

, 𝑥2 =
𝑥2

25/4
, 𝑥3 =

𝑥3

23/2
, 𝑥4 =

𝑥4

27/4
, 𝜂2 =

�̄�2

23/4
, 𝜂3 =

�̄�3

21/2
, 𝜂4 =

�̄�4

21/4
,

to obtain the expression: 


𝑥 ′1 = 𝑥2,
𝑥 ′2 = 𝑥3,
𝑥 ′3 = 𝑥4,
𝑥 ′4 = −𝑥1 + 𝜂2𝑥2 + 𝜂3𝑥3 + 𝜂4𝑥4 + 𝑥21,

(2.2)

after division by 21/4. As already explained, we only have to study the dynamics of system (2.2) around the origin
varying (𝜂2, 𝜂3, 𝜂4) ∈ R3 with 𝜂4 6 0.
In system (2.2), we first restrict parameters to the reversibility set:

T =
{(𝜂2, 𝜂3, 𝜂4) ∈ R3 | 𝜂2 = 𝜂4 = 0}

which, taking 𝑢 = 𝑥1 and 𝑃 = −𝜂3, is equivalent to the fourth order ODE:

𝑢 (4) + 𝑃𝑢′′ + 𝑢 − 𝑢2 = 0. (2.3)

This ODE arises, for instance, in applications to elasticity or fluid problems, and has been widely studied [4–6]. In
this case, (2.3) can be expressed by means of Hamilton’s equations with Hamiltonian [4]:

𝐻 =
1
2
𝑥21 −

1
3
𝑥31 −

𝜂3
2
𝑥22 + 𝑥2𝑥4 −

1
2
𝑥23 . (2.4)

At the same time, (2.3) is a time-reversible system, with reversor:

𝑅(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥1,−𝑥2, 𝑥3,−𝑥4)

such that 𝑅 ◦ 𝜙𝑡 = 𝜙−𝑡 ◦ 𝑅, being 𝜙𝑡 the flow associated to (2.3). When 𝑃 < 2, the origin is an hyperbolic stationary
solution, meanwhile it is non-hyperbolic for 𝑃 > 2. The point 𝑃 = 2 (respectively, 𝑃 = −2) corresponds to the
bifurcation point HH (respectively, BD).
We have reproduced numerically some findings of previous works concerning homoclinic orbits of (2.3). The

set
Fix(𝑅) = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ R4 | 𝑥2 = 𝑥4 = 0}

plays an important role in their computation. Note that in the hyperbolic case (𝑃 < 2), when one of the invariant
manifolds

𝑊 𝑠 (0) =
{
𝑥 ∈ R4 | lim

𝑡→∞ 𝜙𝑡 (𝑥) = 0
}
or 𝑊𝑢 (0) =

{
𝑥 ∈ R4 | lim

𝑡→−∞ 𝜙𝑡 (𝑥) = 0
}

intersects transversally Fix(𝑅) at 𝑥0, the orbit through 𝑥0 is homoclinic to the origin [6]. We use this property to
locate homoclinic trajectories. We describe below the numerical procedures.
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3. Numerical approach
3.1. Numerical integration
Equation (2.3), or more generally system (2.2), is integrated in time by means of Taylor method [16]. We apply
it by restricting errors bellow 10−15, which consequently impose the order of the Taylor polynomial used in every
time step. In the reversible case (2.3), 𝐻 in (2.4) is a conserved quantity. We use this fact as a test for the numerical
integration. In addition, homoclinic orbits belong to the set of zero energy, {𝐻 = 0}, since 𝐻 (0) = 0.
Another important fact is the selection of a proper Poincaré section, in order to classify orbits. We choose

Σ = {𝑥2 = 0} as the main Poincaré section in our computations.

3.2. Invariant manifolds approximation
In the reversible equation (2.3), 𝑅(𝑊 𝑠 (0)) = 𝑊𝑢 (0) and dim(𝑊𝑢 (0)) = dim(𝑊 𝑠 (0)) = 2 hold for 𝑃 < 2
(see [6]). In the general system (2.2), we still have dim(𝑊𝑢 (0)) = dim(𝑊 𝑠 (0)) = 2 for (𝜂2, 𝜂3, 𝜂4) close to the
line {(0, 𝜂3, 0) | 𝜂3 > −2}. For this reason, we can consider each of the invariant manifolds, say 𝑊 , expressed as
follows

𝑊 =
{(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ R4 | 𝑥3 = 𝑎(𝑥1, 𝑥2), 𝑥4 = 𝑏(𝑥1, 𝑥2)}

for certain unknown functions, 𝑎 and 𝑏, smooth enough. We use the Taylor’s expansion in power series around the
origin:

𝑥3 =
∞∑︁
𝑀=1

𝑀∑︁
𝑖=0

𝑎𝑀−𝑖,𝑖𝑥𝑀−𝑖1 𝑥𝑖2 and 𝑥4 =
∞∑︁
𝑀=1

𝑀∑︁
𝑖=0

𝑏𝑀−𝑖,𝑖𝑥𝑀−𝑖1 𝑥𝑖2 (3.1)

where 𝑎𝑀−𝑖,𝑖 , 𝑏𝑀−𝑖,𝑖 are coefficients corresponding to degree 𝑀 , to be determined. As𝑊 is an invariant manifold,
we can impose (3.1) to satisfy system (2.2). With standard but lengthy computations, we obtain a 2(𝑀+1)×2(𝑀+1)
system in the unknowns 𝑎𝑀−𝑠,𝑠 , 𝑏𝑀−𝑠,𝑠 , for each 𝑀 = 1, 2, . . . and 𝑠 = 0, 1, . . . , 𝑀:




∑𝑀
𝑘=1 𝑎𝑘−1,1𝑎𝑀−𝑘+1,0 = 𝑏𝑀,0
(𝑀 − 𝑠 + 1)𝑎𝑀−𝑠+1,𝑠−1 + 𝑐𝑀−𝑠,𝑠 = 𝑏𝑀−𝑠,𝑠 𝑠 = 1, . . . , 𝑀∑𝑀
𝑘=1 𝑏𝑘−1,1𝑎𝑀−𝑘+1,0 = 𝜂3𝑎𝑀,0 + 𝜂4𝑏𝑀,0 − 𝛿𝑀1 + 𝛿𝑀2
(𝑀 − 𝑠 + 1)𝑏𝑀−𝑠+1,𝑠−1 + 𝑑𝑀−𝑠,𝑠 = 𝜂3𝑎𝑀−𝑠,𝑠 + 𝜂4𝑏𝑀−𝑠,𝑠 + 𝜂2𝛿𝑀𝑠1 𝑠 = 1, . . . , 𝑀

(3.2)

with

𝑐𝑀−𝑠,𝑠 =
𝑀∑︁
𝑘=1

𝐿𝑘∑︁
𝑖=𝑙𝑘

𝑖𝑎𝑘−𝑖,𝑖𝑎𝑀−𝑘+𝑖−𝑠,𝑠+1−𝑖 and 𝑑𝑀−𝑠,𝑠 =
𝑀∑︁
𝑘=1

𝐿𝑘∑︁
𝑖=𝑙𝑘

𝑖𝑏𝑘−𝑖,𝑖𝑎𝑀−𝑘+𝑖−𝑠,𝑠+1−𝑖

where 𝑙𝑘 = max{𝑠 + 𝑘 − 𝑀, 1}, 𝐿𝑘 = min{𝑠 + 1, 𝑘} and 𝛿𝑥𝑦 = 𝛿𝑥𝑦𝑧 = 1 only when 𝑥 = 𝑦 = 𝑧 but 0 otherwise.
Those systems are solved in increasing order for 𝑀 = 1, 2, . . .. Once we compute 𝑎𝑀−𝑠,𝑠 and 𝑏𝑀−𝑠,𝑠 , we can only
evaluate (3.1) on a certain disk of convergence centered at (0, 0), in the plane defined by (𝑥1, 𝑥2). Accordingly, in
order to approximate a point in an invariant manifold𝑊 , we fix (𝑥1, 𝑥2) not very distant to (0, 0). Using the series
(3.1) up to a certain order 𝑀 , we finally find 𝑥3 and 𝑥4 such that (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝑊 , up to the truncation error.

4. Time-reversible case
In this section we restrict our study to the time-reversible case, i.e. 𝜂2 = 𝜂4 = 0, 𝜂3 ∈ R in (2.2). We apply the tools
described above, namely: numerical integrator for system (2.2) and approximation of the invariant manifolds𝑊 at
the origin. Because 𝑊 is invariant by the flow 𝜙𝑡 , an orbit Γ is included in 𝑊 , provided there exists 𝑥0 ∈ Γ ∩𝑊 .
By means of the Taylor series (3.1), we approximate 𝑥0 = (𝑥01, 𝑥02, 𝑎(𝑥01, 𝑥02), 𝑏(𝑥01, 𝑥02)) ∈ 𝑊 (with 𝑎 and 𝑏 defined
in the above section) and, using the numerical integrator, we estimate Γ(𝑥0). In Figure 1, we represent different
orbits Γ(𝑥0 (𝜃)) for

𝑥0 (𝜃) = (𝑥1, 𝑥2, 𝑎(𝑥1, 𝑥2), 𝑏(𝑥1, 𝑥2)), 𝑥1 = 𝑟 cos 𝜃, 𝑥2 = 𝑟 sin 𝜃, 𝜃 ∈ [0, 2𝜋), and 𝑟 = 1/10. (4.1)

The value of 𝑟 is chosen so that series (3.1) are convergent. In fact, the system (3.2) for 𝑀 = 1 gives rise to two
solutions corresponding, respectively, to the stable and unstable manifolds.
Homoclinic solutions for ODE (2.3) were analyzed in [4–6]. As stated in the final part of §2, homoclinic orbits

corresponds to trajectories with a point in Fix(𝑅) ∩𝑊 . In order to find an orbit Γ ⊂ 𝑊 such that Γ∩Fix(𝑅) ≠ ∅, we
consider initial conditions 𝑥0 (𝜃) as in (4.1). First, we find 𝑡 = 𝑡 (𝜃) so that 𝜙𝑡 (𝑥0 (𝜃)) = (𝑥1, 𝑥2, 𝑥3, 𝑥4) (𝜃, 𝑡) crosses
the Poincaré section Σ = {𝑥2 = 0} for a fixed number of times, 𝑘 . If 𝑥4 (𝜃, 𝑡) = 0, then 𝜙𝑡 (𝑥0 (𝜃)) ∈ Fix(𝑅) and the
orbit through 𝑥0 (𝜃) is homoclinic. Otherwise, we apply a secant method on 𝜃 to vanish 𝑥4 (𝜃, 𝑡 (𝜃)). In Figure 2, we
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Fig. 1 Different orbits in family (2.2) which make up the stable (blue) and unstable (red) invariant manifolds, close to the
origin for 𝜂3 = 1.8 and projected on the plane (𝑥2, 𝑥4) .
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Fig. 2 Homoclinic orbits in family (2.2) for values of 𝜂3 specified by colors. Each orbit starts at Fix(𝑅) for 𝑡 = 0. Half of the
orbit is missing by symmetry. For a given color, different coordinates of the same orbit are shown on the left and right plots.
Points in the vertical axis (𝑡 = 0) on the left panel are in correspondence with points on 𝑥4 = 0 on the right panel.

present different homoclinic orbits varying 𝜂3 ∈ [−1.9, 2.1], for 𝑘 = 1. Since we are in the time-reversible case,
we have 𝑅 ◦ 𝜙𝑡 = 𝜙−𝑡 ◦ 𝑅. If the initial condition 𝑥0 ∈ Fix(𝑅), then:

𝑅𝜙𝑡 (𝑥0) = 𝜙−𝑡 (𝑅(𝑥0)) = 𝜙−𝑡 (𝑥0)
and the orbit is 𝑅-symmetric. For this reason, we only plot values for 𝑡 > 0 in Figure 2.
To improve the plot of the invariant manifolds in Figure 1, we present the curve 𝑊𝑢 (0) ∩ Σ in Figure 3 (left).

Each intersection of this curve with Fix(𝑅) (in red) leads to a homoclinic orbit, which is represented in Figure 3
(right). Particularly, the 11 depicted homoclinic orbits cross Σ a variable number 𝑘 = 1, . . . , 5 of times. The
findings for these homoclinics may not be exhaustive, but they give an idea of the dynamics complexity.
All the homoclinic orbits in the time-reversible case belong to the hypersurface {𝐻 = 0}. Taking initial

conditions 𝑥0 ∉ {𝐻 = 0}, it is not difficult to meet another kind of invariant orbits. For instance, we obtain the
solutions plotted in Figure 4 which correspond to invariant tori.

5. Insights in the non-zero divergence case
In the above section, we have analyzed numerically part of the homoclinic phenomena arising in family (2.2) when
𝜂2 = 𝜂4 = 0. In particular, we used the Taylor integrator and the expansion of the invariant manifolds that we
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Fig. 3 Invariant manifolds and homoclinic orbits in family (2.2). Left: Curve𝑊 𝑢 (0) ∩Σ projected on the plane (𝑥1, 𝑥4) . The
red line depicts Fix(𝑅) . Right: 11 different homoclinic orbits starting at the respective initial conditions on𝑊 𝑢 (0) ∩Fix(𝑅) ,
located in the left figure as crosses with Fix(𝑅) .
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Fig. 4 Quasiperiodic orbits close to periodic, represented on the (𝑥1, 𝑥3) plane, for family (2.2). Left: Each point of the orbit
is only plotted when it crosses Σ. Right: The whole orbit at discrete time values is represented. As a reference, Σ is likewise
in this plot, traced on its left side as two little blue curves.

designed specifically for this model. To study the bifurcation diagram around that axis, we can also use numerical
continuation methods.
A first overview of the bifurcation complexity is shown in the two bifurcation diagrams in Figure 5, that we

obtained using MATCONT [7]. For this analysis, we fix �̄�3 = −3 and �̄�2 = −0.6 in family (2.1) and find a Hopf
bifurcation at 𝑝− = (−1, 0, 0, 0) when �̄�4 = −0.3. The continuation of the limit cycle arising at 𝑝− is shown
in Figure 5 (left panel, at the bottom). First, an attracting limit cycle emerges from the Hopf bifurcation and
loses its stability at a period doubling bifurcation. The periodic orbit recovers stability through another period
doubling bifurcation, but loses stability again at a Neimark-Sacker bifurcation where an attracting invariant torus
emerges. Finally, the limit cycle disappears at a Hopf bifurcation which occurs at the other equilibrium point
𝑝+ = (+1, 0, 0, 0).
The Hopf bifurcation curve occurring at 𝑝− and the continuation of the Neimark-Sacker bifurcation are repre-

sented in Figure 5 (right). Above all, both period doubling bifurcation points belong to the same bifurcation curve,
as depicted in Figure 5 (right) where we show a solid red line consisting of two loops.
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127



-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1
3

4

5

6

7

8

9

10

11

12

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 5 Left: Continuation of periodic orbits in family (2.1) with �̄�3 = −3 and �̄�2 = −0.6. On the one hand, continuation of
a periodic orbit emerging from a Hopf bifurcation when �̄�4 = −0.3 (at the bottom). On the other hand, continuation of a
periodic orbit emerging at a period doubling bifurcation (at the top). Right: Partial bifurcation diagram of family (2.1) with
�̄�3 = −3 fixed.

In Figure 5 (left panel, at the top), we also show the continuation of the limit cycle with doubled period that
emerges from the period doubling bifurcation point placed on the right side of the continuation curve at the bottom.
The attracting limit cycle loses its stability almost immediately due to a period doubling bifurcation. Along the
curve we see two fold bifurcation points (black) which belong to the double loop bifurcation curve displayed in
Figure 5 (right panel, dashed black line). The limit cycle in between the fold points and the period doubling
bifurcation points closer to them is an attractor. These two period doubling points belong to the double loop shown
in Figure 5 (right panel, dashed red line).
Additionally, Figure 5 (right) includes a fold bifurcation curve that joins two generalized period doubling

bifurcation points (green). Other codimension-two points are the cusp bifurcations of periodic orbits (cyan) and
the two point of resonance 1 : 2 (black). A description of the bifurcations mentioned can be found in [17].

6. Discussion
In conclusion, there exist thorough studies [4–6] regarding the complex tangle of homoclinic orbits exhibited by
system (2.2) when 𝜂2 = 𝜂4 = 0. Nevertheless, an exhaustive picture is not yet available (see conjectures in [5]).
Numerical techniques, which we take advantage of to explore the intersections of the invariant manifolds with a
transverse section, are tools that, perhaps for technical reasons, have not been fully exploited in the literature. In
this case, despite the fact that the scenario is quite different, our numerical study revives an old paper [18] where
the heteroclinic connections unfolded in a reversible three-dimensional system with two equilibrium points of
saddle-focus type and different stability indices were studied. Ultimately, the analysis of the traces left by invariant
manifolds in a cross section is our most immediate interest. Techniques used in [15] to study Poincaré return maps
around a homoclinic orbit to bifocus equilibrium will be useful to describe the geometry of such intersections.
Beyond the homoclinic framework, it is fundamental to analyze the conservative dynamics. In particular, the one

that emerges in family (2.2) when 𝜂2 = 𝜂4 = 0 and 𝜂3 < −2, that is, when the equilibrium point 𝑝− = (−1, 0, 0, 0)
is a Hopf-Hopf singularity. In this context, it is also crucial to delve into the dynamics of the family around the
point HBT as well as in the surroundings of the point HH. However, these are longer-term goals. In fact, the
study of generic unfoldings of Hopf-Bogdanov-Takens singularities has started very recently [9,10]. Furthermover,
we must recall that the limit family is not a generic unfolding of the HBT singularity. The process of reaching a
complete theoretical support seems too involved and long. Therefore, all the information that we can collect with
continuation tools such as those illustrated in this study will be very useful.
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Abstract

A technique for generating iterative methods for solving nonlinear equations with memory can be constructed
from a method without memory that includes a parameter, provided the parameter is present in the error equation.
Generally, the parameter depends on the evaluation of the function and its derivatives in the solution. However,

this information is not available. So this parameter is approximated using interpolation techniques, taking the
current iterate 𝑥𝑘 and the previous iterates 𝑥𝑘−1, 𝑥𝑘−2, . . .
In this paper we explore different interpolation techniques to obtain both the convergence order of the new

methods and their stability characteristics.

1. Introduction
Many phenomena in applied sciences do not respond to a linear pattern. Nonlinearities are present in most fields,
such as physics, fluid mechanics, economics or ecology, among others. In this case, these phenomena can be
modeled by means of a nonlinear equation 𝑓 (𝑥) = 0, 𝑓 : 𝐼 ⊆ R → R, or by means of a system of nonlinear
equations 𝐹 (𝑥) = 0, 𝐹 : 𝐷 ⊆ R𝑛 → R𝑛. The desired solution 𝑥∗ of these problems is a closed-form analytic
expression. However, there are problems whose analytic solution is hardly available. Obtaining approximate
solutions becomes an alternative, by applying numerical methods based on iterative algorithms.
Numerical methods for solving nonlinear equations can be sorted by different criteria. Single-step methods

respond to the scheme 𝑥𝑘+1 = 𝜙(𝑥𝑘 ), while multi-step methods are those that match with 𝑦𝑘 = 𝜙1 (𝑥𝑘 ), 𝑥𝑘+1 =
𝜙2 (𝑥𝑘 , 𝑦𝑘 ). A quantitative comparison between methods can be perfomed by the order of convergence 𝑝 and the
efficiency index [17] 𝐼 = 𝑝1/𝑑 , where 𝑑 stands for the number of functional evaluations in each step. Kung-Traub’s
conjecture [15] states that there exists an upper bound for the order of convergence that is 𝑝 ≤ 2𝑑−1; thus, the
iterative method is optimal when 𝑝 = 2𝑑−1. There is an interesting overview of these methods in [12].
Kung-Traub’s conjecture sets an upper bound for the order of convergence in numerical methods without

memory. However, this restriction can be overcome by using iterative methods with memory. These kind of
methods are defined as

𝑥𝑘+1 = 𝜙(𝑥𝑘 , 𝑥𝑘−1, . . . , 𝑥𝑘−𝑚).
In other words, the current iterate is calculated taking into account the last 𝑚 + 1 iterates. This idea was introduced
by Traub [23], including memory from Steffensen’s method. In the last years, many schemes of iterative methods
with memory have been presented. A key overview can be found in [18, 19].
One technique for the design of a method with memory consists of the inclusion of an accelerating parameter

in the expression of a method without memory. This technique has been widely adopted in the research of this kind
of methods for both nonlinear equations [5, 6, 10], and nonlinear systems of equations [7, 16, 20].
Once the parameter has been included in the iterative expression, the next step is the analysis of the error

equation. When the parameter is present in the lower term of this equation, the goal is the replacement of the
parameter by an expression that cancels this error term. There are different techiques for the approximation of the
parameter.
In this paper, we analyze the most common techniques of replacing the parameter, as well as other novel

techniques. In [4] the authors introduced the general form of one-step iterative methods using the weight function
technique given by

𝑥𝑘+1 = 𝑥𝑘 − 𝐻 (𝑡𝑘 ), 𝑘 = 0, 1, 2, . . . , (1.1)

where 𝑡𝑘 = 𝑓 (𝑥𝑘 )/ 𝑓 ′(𝑥𝑘 ). Family (1.1) has quadratic convergence when 𝐻 (𝑡) satisfies 𝐻 (0) = 0, 𝐻 ′(0) = 1 and
|𝐻 ′′(0) | < ∞. The error equation of members of family (1.1) is

𝑒𝑘+1 =
(
𝑐2 − 𝐻

′′(0)
2

)
𝑒2𝑘 + O(𝑒3𝑘 ), (1.2)
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where 𝑒𝑘 = 𝑥𝑘 − 𝑥∗ and 𝑐 𝑗 = 𝑓 ( 𝑗) (𝑥∗)
𝑗! 𝑓 ′ (𝑥∗) , 𝑗 ≥ 2. Note that 𝐻 (𝑡) = 𝑡 + 𝛼 𝑡22 satisfies the conditions of quadratic

convergence of (1.1) for 𝐻 (𝑡), resulting in

𝑥𝑘+1 = 𝑥𝑘 − 𝑓 (𝑥𝑘 )
𝑓 ′(𝑥𝑘 ) − 𝛼

𝑓 2 (𝑥𝑘 )
2( 𝑓 ′(𝑥𝑘 ))2

, (1.3)

and its error equation is
𝑒𝑘+1 =

(
𝑐2 − 𝛼2

)
𝑒2𝑘 + O(𝑒3𝑘 ). (1.4)

For 𝛼 = 2𝑐2, the second order error term vanishes. However, the value of 𝑐2 = 𝑓 ′′ (𝑥∗)
2 𝑓 ′ (𝑥∗) is not known. Therefore,

some approximations of 𝑓 ′(𝑥∗) and 𝑓 ′′(𝑥∗) must be applied.

2. The approximations of 𝑓 and the convergence analysis
In order to obtain an approximation of 𝑓 , we compare the approximation of different interpolatory structures. The
most of papers apply Newton’s interpolation polynomial of different degrees [11, 14, 24]. Let us denote by 𝑁 (𝑡)
the interpolation polynomial of Newton of second degree, whose expression is

𝑁 (𝑡) = 𝑓 (𝑥𝑘 ) + 𝑓 [𝑥𝑘−1, 𝑥𝑘 ] (𝑡 − 𝑥𝑘 ) + 𝑓 [𝑥𝑘−2, 𝑥𝑘−1, 𝑥𝑘 ] (𝑡 − 𝑥𝑘 ) (𝑡 − 𝑥𝑘−1), (2.1)

where 𝑓 [·, ·] and 𝑓 [·, ·, ·] are the divided differences of orders one and two. The lower degree of the polynomial in
order to avoid that 𝑁 ′′(𝑡) vanishes is two. Approximating{

𝑓 ′(𝑥∗) = 𝑓 ′(𝑥𝑘 ),
𝑓 ′′(𝑥∗) = 𝑁 ′′(𝑥𝑘 ),

the value of the parameter is

𝛼𝑘 = 2
𝑓 [𝑥𝑘−2, 𝑥𝑘−1, 𝑥𝑘 ]

𝑓 ′(𝑥𝑘 ) . (2.2)

Then, parameter 𝛼𝑘 is replaced in (1.3), resulting in an iterative method with memory. Note that this method
requires the knowledge of three previous iterates and two new functional evaluations.
The Taylor expansion of a function can also give an approximation for the value of 𝛼. From the regressive

Taylor expansion at node 𝑥𝑘−1 of order O((𝑥𝑘−1 − 𝑥𝑘 )2) the parameter can be approximated by

𝛼𝑘 =
2

(𝑥𝑘−1 − 𝑥𝑘 )2
(
𝑓 (𝑥𝑘−1) − 𝑓 (𝑥𝑘 )

𝑓 ′(𝑥𝑘 ) − (𝑥𝑘−1 − 𝑥𝑘 )
)
. (2.3)

In this case, the method requires the value of the two last iterates, and three evaluations of 𝑓 .
Another option for the approximation of the parameter is the use od Padé’s approximant. It has been applied

for solving nonlinear equations [9, 21], but –up to our knowledge– it has not been used for methods with memory.
Let 𝑃(𝑡) be the Padé’s approximant

𝑃(𝑡) = 𝑎0 + 𝑎1 (𝑡 − 𝑥𝑘 )
1 + 𝑎2 (𝑡 − 𝑥𝑘 ) . (2.4)

The values of 𝑎0, 𝑎1 and 𝑎2 can be obtained when (2.4) satisfies


𝑃(𝑥𝑘 ) = 𝑓 (𝑥𝑘 ),
𝑃(𝑥𝑘−1) = 𝑓 (𝑥𝑘−1),
𝑃′(𝑥𝑘 ) = 𝑓 ′(𝑥𝑘 ).

The approximation of the parameter in this case has the expression

𝛼𝑘 =
𝑃′′(𝑥𝑘 )
𝑓 ′(𝑥𝑘 ) = 2

𝑓 ′(𝑥𝑘 ) ( 𝑓 (𝑥𝑘−1 − 𝑓 (𝑥𝑘 ) + 𝑓 ′(𝑥𝑘 ) (𝑥𝑘 − 𝑥𝑘−1))
( 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘−1) (𝑥𝑘 − 𝑥𝑘−1) . (2.5)

The resulting method only requires two iterates for the approximation of the parameter and three functional
evaluations.
Theorem 2.1 gathers the analysis of the 𝑅-order of convergence of the previous methods.

Theorem 2.1 Let 𝑥∗ be a simple zero of a sufficiently differentiable function 𝑓 : 𝐼 ⊆ R→ R in an open interval 𝐼.
If 𝑥0 is close enough to 𝑥∗ and 𝛼0 is given, then the R-orders of method (1.3) replacing 𝛼𝑘 by expressions (2.2),
(2.3) and (2.5) are 1 +

√
2.

Table 1 collects the comparison of the main values of each technique.
Let us remark from Table 1 that every method has the same order of convergence, while the number of functional

evaluations is lower for Taylor and Padé’s approximant.
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Technique Newton Taylor Padé
Iterates 3 2 2
𝑑 4 3 3
𝑝 1 +

√
2 1 +

√
2 1 +

√
2

Tab. 1 Quantitative comparison of the parameter approximation

3. Real multidimensional dynamical analysis
The dynamics of an iterative method analyses their stability in terms of the amount of initial guesses that converge
to the expected solution. Some fundamentals about dynamics of iterative methods without memory can be found
in [1, 13], while for the iterative methods with memory the basics are in [2, 3].
The fixed points, for real multidimensional dynamics, involves the definition of an auxilary function 𝐺 : R2 →

R2 such that
𝐺 (𝑧, 𝑥) = (𝑥, 𝑔(𝑧, 𝑥)),

where 𝑔 : R2 → R is the iterative expression 𝑥𝑘+1 = 𝑔(𝑥𝑘−1, 𝑥𝑘 ), 𝑧 = 𝑥𝑘−1 and 𝑥 = 𝑥𝑘 . Therefore, the fixed points
are defined as 𝐺 (𝑧𝐹 , 𝑥𝐹 ) = (𝑧𝐹 , 𝑥𝐹 ). Fixed points that does not match with the roots of 𝑓 are named strange
fixed points. They affect the unstability of the method. A 𝑇-periodic point is defined as 𝐺𝑇 (𝑧𝑇 , 𝑥𝑇 ) = 𝐺 (𝑧𝑇 , 𝑥𝑇 ),
satisfying 𝐺𝑡 (𝑧𝑇 , 𝑥𝑇 ) ≠ (𝑧𝑇 , 𝑥𝑇 ), 𝑡 < 𝑇 ; note that for 𝑇 = 1, the periodic point is a fixed point. The asymptotical
behavior of 𝑇-periodic points is defined in [22]. Theorem 3.1 collects the asymptotical behavior for 𝑇 = 1.

Theorem 3.1 Let 𝐺 : R2 → R2 be C2. Let 𝜇1, 𝜇2 be the eigenvalues of the Jacobian matrix 𝐺 ′ on a fixed point
(𝑧𝐹 , 𝑥𝐹 ). Then

1. If |𝜇1 | < 1 and |𝜇2 | < 1, then (𝑧𝐹 , 𝑥𝐹 ) is attracting.
2. If |𝜇1 | > 1 and |𝜇2 | > 1, then (𝑧𝐹 , 𝑥𝐹 ) is repelling.
3. If |𝜇1 | < 1 and |𝜇2 | > 1, or |𝜇1 | > 1 and |𝜇2 | < 1, then (𝑧𝐹 , 𝑥𝐹 ) is unstable.
The attracting fixed points are denoted by (𝑧+, 𝑥+). The basin of attraction of an attracting fixed pointA(𝑧+, 𝑥+)

is the set of points that satisfy

A(𝑧+, 𝑥+) = {(𝑧, 𝑥) ∈ R2 : 𝐺𝑛 (𝑧, 𝑥) → (𝑧+, 𝑥+), 𝑛→∞}.

The dynamical analysis is performed applying the expressions of 𝛼 on (1.3) for the solution of 𝑓 (𝑥) = 𝑥2 − 𝜆.
In order to make a reasonable comparison, we are analysing the resulting methods of Taylor’s and Padé’s

approximations of 𝛼. Note that these methods only require the two last iterates, while Newton’s approximation
requires three previuos iterates.
The comparison is performed via the representation of the basins of attraction, in a similar manner as described

in [8]. In this particular case, the basins of (𝑧+, 𝑥+) = √𝜆(1, 1) are represented in orange, the basins of (𝑧+, 𝑥+) =
−√𝜆(1, 1) are represented in blue, and the convergence to a different point than (𝑧+, 𝑥∗) = ±√𝜆(1, 1) is represented
in black. The fixed attracting points are represented with white stars.

3.1. Taylor’s approximation
Replacing (2.3) in (1.3), the auxiliary function is

𝑇 (𝑧, 𝑥) =
(
𝑥,
3𝑥4 + 6𝑥2𝜆 − 𝜆2

8𝑥3

)
.

There are two fixed attracting points (𝑧+, 𝑥+) = ±√𝜆(1, 1) and two unstable points (𝑧, 𝑥) = ±
√︃
𝜆
5 (1, 1).

Figure 1 represents the basins of attraction of 𝑇 (𝑧, 𝑥) for different values of 𝜆. Since 𝑇 (𝑧, 𝑥) does not have
dependence on the value of 𝑧 = 𝑥𝑘−1, the dynamical planes are vertical bands. Note that every initial guess converge
to an attracting fixed point, and bands are wider as the value of 𝜆 increases.
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Fig. 1 Dynamical planes using Taylor’s approximation of 𝛼

3.2. Padé’s approximation
Replacing (2.5) in (1.3), the auxiliary function is

𝑃(𝑧, 𝑥) = ©«
𝑥,
𝑥2 − (𝑥2−𝜆)2𝑥+𝑧 + 𝜆

2𝑥
ª®¬
.

There are two fixed attracting points (𝑧+, 𝑥+) = ±√𝜆(1, 1) and two unstable points (𝑧, 𝑥) =
(
−1 ±

√
1 + 𝜆

)
(1, 1).

Figure 2 represents the basins of attraction of 𝑃(𝑧, 𝑥) for different values of 𝜆. In this case, 𝑃(𝑧, 𝑥) depends on
both 𝑧 = 𝑥𝑘−1 and 𝑥 = 𝑥𝑘 , so dynamical planes are not vertical bands. There are regions of convergence to the roots
of 𝑓 , but there are other regions that diverge or converge to another point, as black areas represent. Moreover, as 𝜆
increases, the width of black central region also does.
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Fig. 2 Dynamical planes using Padé’s approximation of 𝛼

4. Conclusions
Three new techniques have been introduced for the approximation of the self-accelerating parameter in a low-order
iterative method. The order of convergence for the three cases have increased from 2 to 1 +

√
2. In order to

make a reasonable comparison for the stability counterpart, two approximations that involve the same number of
previous iterates have been taken. Taylor’s approximation results in vertical dynamical planes, because of the
independence of 𝑇 (𝑧, 𝑥) with 𝑧. In addition, Taylor’s approximation results in more stable dynamical planes than
Padé’s approximation.
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Abstract

In this work, two families of iterative methods without derivatives have been designed using the composition
of iterative schemes and the inclusion of weight functions. The convergence analysis of the two-step and the
three-step families is presented, showing the necessary conditions that must be satisfied by the weight functions to
have order four and six, respectively. From them, two methods with memory have been derived, improving their
order of convergence and their efficiency. All the methods are tested and compared with other known methods in
the approxitation of the roots of different nonlinear functions. The results show the improvement of the classes
after including memory.

1. Introduction
It is becoming a need in many scientific and technological disciplines to solve a nonlinear equation or a system of
nonlinear equations. We describe this nonlinear problem for the scalar case as 𝑓 (𝑥) = 0, where 𝑓 : 𝐷 ⊂ R −→ R
and 𝐷 is an open set. Due to the lack of analytical methods for solving these type of nonlinear problems, the
implementation of iterative processes to solve them has become more frequent.
The use of iterative methods for solving nonlinear problems has increased in the recent decades. These iterative
processes generate a sequence of points closer and closer to the solution, so that an approximation to the root with
the required precision is obtained as a solution to the problem.
There is a wide literature related to iterative schemes for approximating simple roots of nonlinear functions
(see [8], [1] and [5] and the references therein). Among them, the most classical iterative algorithm is Newton’s
method, with iterative expression

𝑥𝑘+1 = 𝑥𝑘 − 𝑓 (𝑥𝑘 )
𝑓 ′(𝑥𝑘 ) , 𝑘 = 0, 1, 2, . . .

Given an initial estimation 𝑥0 to the root of 𝑓 (𝑥) = 0, Newton’s method converges with quadratic order.
There are several ways to quantify the quality of an iterative method, in particular the speed of convergence

and its computational cost. One point methods, such as Newton’s scheme, are known for their simplicity and low
computational cost, but have slow convergence. For this reason, the number of multipoint methods designed to
increase the order of convergence has grown exponentially.
The most common iterative schemes are those that use only the previous iteration to obtain the next approxima-

tion. They are called methods without memory. However, Kung and Traub conjectured in [4] that the order of these
scalar methods can not be grater than 2𝑑−1, where 𝑑 is the number of different functional evaluations performed
on each iteration of the method. However, iterative methods with memory, that is, methods that use more than one
previous iterate, do not have any upper bound on their order of convergence.
On the other hand, many nonlinear functions have a derivative that is difficult to calculate or whose expression

is not known. For this reason, Steffensen [7] proposed to approximate the derivative of Newton’s method by

𝑓 ′(𝑥𝑘 ) ≈ 𝑓 [𝑥𝑘 + 𝑓 (𝑥𝑘 ), 𝑥𝑘 ] = 𝑓 (𝑥𝑘 + 𝑓 (𝑥𝑘 )) − 𝑓 (𝑥𝑘 )
𝑓 (𝑥𝑘 )

and then replacing it on its iterative structure, obtaining the well-known Steffensen’s method:

𝑥𝑘+1 = 𝑥𝑘 − 𝑓 (𝑥𝑘 )2
𝑓 (𝑥𝑘 + 𝑓 (𝑥𝑘 )) − 𝑓 (𝑥𝑘 ) , 𝑘 = 0, 1, 2, . . . ,

with quadratic order.
In addition, it is known that the composition of two iterative methods with orders 𝑝1 and 𝑝2 results in a method
with order of convergence 𝑝1 · 𝑝2, but whose computational cost increases significantly. However, the use of
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weight functions in the composition of iterative schemes allows the design of methods that increase the order of
convergence without adding a high number of new functional evaluations.
In this paper, we propose the use of the above techniques to design methods with higher order of convergence

and adding the minimal computational cost. For this purpose, we have organized the contents as follows. In
Section 2 we present a new derivative-free iterative family with two steps and a real parameter. We analyse its
convergence and the possibility of increasing the order by using previous iterations. Section 3 is devoted to extend
the two-step family to a three-step family holding the same iterative structure. The convergence of this family and
an approximation for the parameter to increase the order of convergence leading to a method with memory are also
analysed. In Section 4 we test the performance of the methods studied in this work for solving different nonlinear
equations. Finally, the conclusions of the study are summarized in section 5.

2. Derivative-free iterative family with two steps
In this section, we will use several techniques to design new iterative schemes that improve the performance of
Newton and Steffensen’s methods and also have the possibility of increasing the order of convergence. First, we
propose a derivative-free family obtained by composing methods and using weight functions. Then, we will extend
this family to higher order memory methods without adding new functional evaluations.
The starting family of iterative methods presented in this work is obtained by the composition of Steffensen’s

method and the addition of a real parameter 𝛽 and a weight function 𝐻. The proposed scheme is as follows:

𝑦𝑘 = 𝑥𝑘 − 𝑓 (𝑥𝑘 )
𝑓 [𝑤𝑘 , 𝑥𝑘 ] ,

𝑥𝑘+1 = 𝑦𝑘 − 𝐻 (𝜇𝑘 ) 𝑓 (𝑦𝑘 )
𝑓 [𝑦𝑘 , 𝑥𝑘 ] ,

𝑘 = 0, 1, 2, . . . , (2.1)

where 𝑤𝑘 = 𝑥𝑘 + 𝛽 𝑓 (𝑥𝑘 ), 𝛽 ∈ R − {0}, and the weight function variable is defined by 𝜇 = 𝑓 (𝑦)
𝑓 (𝑤) . We denote 𝑀4𝛽

the iterative family (2.1).
Theorem 2.1 shows the conditions that the weight function must satisfy to obtain order four for any value of the
parameter.

Theorem 2.1 Let 𝑓 : 𝐷 ⊂ R −→ R be a real sufficiently differentiable function in a convex set 𝐷 and let 𝛼 ∈ 𝐷
be a simple root of 𝑓 (𝑥) = 0. If 𝑥0 is close enough to 𝛼 and 𝐻 (𝜇) satisfies 𝐻 (0) = 𝐻 ′(0) = 1 and |𝐻 ′′(0) | < ∞,
then sequence {𝑥𝑘 } generated by family 𝑀4𝛽 converges to 𝛼 with order of convergence 4 for any value of 𝛽 ∈ R,
𝛽 ≠ 0, being its error equation:

𝑒𝑘+1 =
1
2
𝑐2 (1 + 𝛽 𝑓 ′(𝛼)) (−2𝑐3 (1 + 𝛽 𝑓 ′(𝛼)) + 𝑐22 (6 + 4𝛽 𝑓 ′(𝛼) − 𝐻2))𝑒4𝑘 + O(𝑒5𝑘 ), (2.2)

where 𝐻2 = 𝐻 ′′(0), 𝑒𝑘 = 𝑥𝑘 − 𝛼 and 𝑐 𝑗 = 1
𝑗!
𝑓 ( 𝑗) (𝛼)
𝑓 ′ (𝛼) , 𝑗 ≥ 2.

From the error equation (2.2), we can observe that family 𝑀4𝛽 is fourth-order convergent for any value of 𝛽.
According to the Kung and Traub conjecture [4], 𝑀4𝛽 is a family of optimal iterative methods as the number of
different functional evaluations is three, i.e, 𝑓 (𝑥𝑘 ), 𝑓 (𝑦𝑘 ) and 𝑓 (𝑤𝑘 ), so the maximum value 4 = 23−1 is reached.
Moreover, the value of 𝛽 = − 1

𝑓 ′ (𝛼) leads to a method of the family with order five. As the solution 𝛼 is unknown,
we can not use this value to fix the parameter and increase the order of convergence. Following the guideliness
in [3], we can approximate the derivative of 𝑓 in the solution as

𝑓 ′(𝛼) ≈ 𝑓 [𝑥𝑘 , 𝑥𝑘−1] = 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘−1)
𝑥𝑘 − 𝑥𝑘−1 ,

so we propose the following approximation of the parameter, which varies on each iteration of the method:

𝛽𝑘 = − 1
𝑓 [𝑥𝑘 , 𝑥𝑘−1] . (2.3)

Let us note that with parameter 𝛽𝑘 defined in (2.3) the number of different functional evaluations has not been
increased, because 𝑓 (𝑥𝑘 ) and 𝑓 (𝑥𝑘−1) are functional evaluations that were already being performed by the method
at iterations 𝑘 and 𝑘 − 1, respectively.
The replacement of (2.3) in the iterative structure (2.1) of 𝑀4𝛽 gives a method with memory, denoted 𝑀𝑀1, that
belongs to the family and also with higher order of convergence than the original family as Theorem 2.2 states.
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Theorem 2.2 Let 𝑓 : 𝐷 ⊂ R −→ R be a real sufficiently differentiable function in a convex set 𝐷 and let 𝛼 ∈ 𝐷
be a simple root of 𝑓 (𝑥) = 0. Let us suppose that 𝐻 (𝜇) satisfies 𝐻 (0) = 𝐻 ′(0) = 1, 𝐻 ′′(0) = 2 and |𝐻 ′′′(0) | < ∞.
If 𝑥0 is close enough to 𝛼, method 𝑀𝑀1 converges to 𝛼 with order of convergence:

𝑝 = 2 +
√
6 ≈ 4.4495.

In addition to the approximation with memory considered, we could develop approximations using higher order
interpolating polynomials. However, we have studied the resulting iterative family after adding a new step in the
iterative scheme of family 𝑀4𝛽 .

3. Derivative-free iterative family with three steps
Following the same iterative structure than family 𝑀4𝛽 , we propose to add a step in order to accelerate the
convergence. In this sense, we propose to replicate the last step of the family and add a new weight function 𝐺, so
we obtain the following three-step family of iterative schemes:

𝑦𝑘 = 𝑥𝑘 − 𝑓 (𝑥𝑘 )
𝑓 [𝑤𝑘 , 𝑥𝑘 ] ,

𝑧𝑘 = 𝑦𝑘 − 𝐻 (𝜇𝑘 ) 𝑓 (𝑦𝑘 )
𝑓 [𝑦𝑘 , 𝑥𝑘 ] ,

𝑥𝑘+1 = 𝑧𝑘 − 𝐺 (𝜈𝑘 ) 𝑓 (𝑧𝑘 )
𝑓 [𝑧𝑘 , 𝑦𝑘 ]

𝑘 = 0, 1, 2, . . . , (3.1)

where 𝑤𝑘 = 𝑥𝑘 + 𝛽 𝑓 (𝑥𝑘 ), 𝛽 ∈ R − {0}, and the weight function variables are 𝜇 = 𝑓 (𝑦)
𝑓 (𝑤) and 𝜈 =

𝑓 (𝑧)
𝑓 (𝑦) . We denote

the resulting three-step family as family 𝑀6𝛽 . The analysis of its order if convergence is shown below.

Theorem 3.1 Let 𝑓 : 𝐷 ⊂ R −→ R be a real sufficiently differentiable function in a convex set 𝐷 and let 𝛼 ∈ 𝐷
be a simple root of 𝑓 (𝑥) = 0. Let us suppose that the weight functions 𝐻 (𝜇) and 𝐺 (𝜈) hold:

• 𝐻 (0) = 1, 𝐻 ′(0) = 1, |𝐻 ′′(0) | < ∞.
• 𝐺 (0) = 1, |𝐺 ′(0) | < ∞.

Then, if 𝑥0 is close enough to 𝛼, the sequence {𝑥𝑘 } generated by family 𝑀6𝛽 converges to 𝛼 with order of
convergence 6 for any value of 𝛽 ∈ R, 𝛽 ≠ 0, The error equation of the family is given by:

𝑒𝑘+1 = − 𝑐24 (1 + 𝛽 𝑓
′(𝛼))

(
−2𝑐3 (1 + 𝛽 𝑓 ′(𝛼)) + 𝑐22 (6 + 4𝛽 𝑓 ′(𝛼) − 𝐻2)

)
·
(
−2𝑐3 (1 + 𝛽 𝑓 ′(𝛼))𝐺1 + 𝑐22 (−2 + 6𝐺1 + 2𝛽 𝑓 ′(𝛼) (−1 + 2𝐺1) − 𝐺1𝐻2)

)
𝑒6𝑘 + O(𝑒7𝑘 ),

(3.2)

where 𝐺1 = 𝐺 ′(0), 𝐻2 = 𝐻 ′′(0) and 𝑐 𝑗 = 1
𝑗!
𝑓 ( 𝑗) (𝛼)
𝑓 ′ (𝛼) , 𝑗 ≥ 2. In addition, if we set 𝐻2 = 2, the error equation (3.2)

turns into
𝑒𝑘+1 = 𝑐2 (2𝑐22 − 𝑐3) (𝑐22 (1 − 2𝐺1) + 𝑐3𝐺1) (1 + 𝛽 𝑓 ′(𝛼))3𝑒6𝑘 + O(𝑒7𝑘 ). (3.3)

In the same way as family 𝑀4𝛽 , the term 1 + 𝛽 𝑓 ′(𝛼) appears in the error equation (3.3), so we can use the same
approximation for the parameter in order to cancel the lower term in the error equation. Then, we replace the
parameter 𝛽𝑘 = − 1

𝑓 [𝑥𝑘 ,𝑥𝑘−1 ] in (3.1) obtaining a method of family 𝑀6𝛽 . The resulting iterative scheme has been
denoted 𝑀𝑀2 and is a method with memory without additional functional evaluations. The improvement of the
order of convergence is described in Theorem 3.2.

Theorem 3.2 Let 𝑓 : 𝐷 ⊂ R −→ R be a real sufficiently differentiable function in a convex set 𝐷 and 𝛼 ∈ 𝐷 a
simple root of 𝑓 (𝑥) = 0. Let us suppose that 𝐻 (𝜇) and 𝐺 (𝜂) are real functions satisfying:

• 𝐻 (0) = 1, 𝐻 ′(0) = 1, 𝐻 ′′(0) = 2 and |𝐻 ′′′(0) | < ∞,
• 𝐺 (0) = 1, |𝐺 ′(0) | < ∞.

Then, if 𝑥0 is close enough to 𝛼, method 𝑀𝑀2 converges to 𝛼 with order of convergence:

𝑝 = 3 + 2
√
3 ≈ 6.4641.

To compare different iterative methods from the point of view of their computational cost, Ostrowski [6]
introduced the efficiency index 𝐼 = 𝑝1/𝑑 , where 𝑝 is the order of the method and 𝑑 is the number of funcional
evaluations. Table 1 summarises the order and functional evaluations of the proposed methods and their efficiency
index. We can see that all the methods improve the efficiency of Newtona and Steffensen’s method. In turn,
methods with memory 𝑀𝑀1 and 𝑀𝑀2 improve the efficiency with respect to the original families 𝑀4𝛽 and 𝑀6𝛽 ,
respectively.
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Method 𝑝 𝑑 𝐼

Newton 2 2 1.4142

Steffensen 2 2 1.4142

𝑀4𝛽 4 3 1.5847

𝑀𝑀1 4.4495 3 1.6448

𝑀6𝛽 6 4 1.5650

𝑀𝑀2 6.4641 4 1.5945

Tab. 1 Efficiency indices

4. Numerical results
In this section, we perforn numerical experiments to test the features of the proposed methods. With this aim, they
are used to solve different nonlinear problems. We also compare our methods with the classical iterative schemes
of Newton and Steffensen.
All the methods require an initial estimation 𝑥0 to the root of the nonlinear function. In addition, to check the
numerical performance of families 𝑀4𝛽 and 𝑀6𝛽 we have used the weight functions:

𝐻 (𝜇) = 1 + 𝜇 + 𝜇2,

𝐺 (𝜈) = 1 + 𝜈 + 𝜈2,
such that they hold the convergence conditions stated in Theorems 2.2 and 3.2. The real parameter 𝛽 has been set
to 𝛽 = 1, having Steffensen’s method in the first step, and arbitrarily to 𝛽 = 5.
The solution of the following nonlinear functions has been approximated:

• 𝑓1 (𝑥) = 𝑒−𝑥 + 2 sin(𝑥) − 𝑥 + 3.5, 𝛼 ≈ 3.273938.
• 𝑓2 (𝑥) = cos(𝑥) − 𝑥, 𝛼 ≈ 0.73908513.
• 𝑓3 (𝑥) = (𝑥 − 1)3 − 1, 𝛼 = 2.

In order to compare the theoretical order of convergence of the methods with their practical implementation, we
use the approximated computational order of convergence, ACOC, introduced by the authors in [2] and defined by

𝐴𝐶𝑂𝐶 =
ln( |𝑥𝑘+1 − 𝑥𝑘 |/|𝑥𝑘 − 𝑥𝑘−1 |)
ln( |𝑥𝑘 − 𝑥𝑘−1 |/|𝑥𝑘−1 − 𝑥𝑘−2 |) , 𝑘 = 2, 3, . . .

The numerical implementation has been done using Matlab R2018b with variable precision arithmetics of 2000
digits of mantissa. Tables 2, 3 and 4 show the results obtained for 𝑓1, 𝑓2 and 𝑓3, respectively. For each method, we
have shown the number of iterations, the difference between the two last iterations, the value of the function in the
last iterate and the ACOC. Taking an initial estimation 𝑥0, the iterative process stops when |𝑥𝑘+1 − 𝑥𝑘 | < 10−100 or
| 𝑓 (𝑥𝑘+1) | < 10−100, with a maximum of 50 iterations.
We can observe in Tables 2 and 3 that the best results are given by the methods with memory 𝑀𝑀1 and 𝑀𝑀2.

Both methods approximate the solution with high precision and the lowest number of iterations. In addition,
methods belonging to families 𝑀4𝛽 and 𝑀6𝛽 are also competitive. In all cases the ACOC is near the theoretical
order of convergence, being the higher value, as expected, in method 𝑀𝑀2.
Finally, in Table 4 we can see an example where Steffensen’s method and families 𝑀4𝛽 and 𝑀6𝛽 for 𝛽 = 1 do
not work properly. However, for 𝛽 = 5 the performance is good and again methods with memory remain the most
competitive.
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𝑥0 Method 𝑖𝑡𝑒𝑟 |𝑥𝑘+1 − 𝑥𝑘 | | 𝑓 (𝑥𝑘+1) | ACOC

2

Newton 8 2.0845e–87 6.5561e–175 2.0000

Steffensen 7 1.5294e–56 7.1309e–113 2.0000

𝑀41 5 2.3692e–66 2.1794e–264 4.0000

𝑀45 5 3.0444e–42 3.0444e–42 4.0041

𝑀𝑀1 4 3.7619e–74 3.3998e–330 4.5071

𝑀61 4 4.8657e–61 2.0361e–364 6.0079

𝑀65 4 2.1005e–44 4.4813e–262 5.9678

𝑀𝑀2 3 1.3534e–31 5.4909e–205 6.2994

Tab. 2 Numerical results for 𝑓1 (𝑥)

𝑥0 Method 𝑖𝑡𝑒𝑟 |𝑥𝑘+1 − 𝑥𝑘 | | 𝑓 (𝑥𝑘+1) | ACOC

1

Newton 7 1.7955e–83 1.1913e–166 2.0000

Steffensen 7 5.4267e–89 7.3307e–178 2.0000

𝑀41 4 2.4716e–74 1.0299e–296 4.0000

𝑀45 5 4.926e–67 1.9443e–265 4.0000

𝑀𝑀1 3 5.6456e–30 7.4958e–133 4.0126

𝑀61 3 2.389e–41 4.0033e–247 6.0180

𝑀65 4 2.1274e–71 2.6129e–424 6.0041

𝑀𝑀2 3 1.6466e–64 2.667e–416 6.0214

Tab. 3 Numerical results for 𝑓2 (𝑥)

5. Conclusions
Two new derivative-free families of iterative methods have been introduced. The starting point has been an optimal
two-step family with a real parameter and order four. After analyzing its order of convergence, the parameter
has been approximated using two previous iterations, resulting in a method with memory with higher order of
convergence than the original family and without additional functional evaluations. Then, we have extended
the initial family to a three-step scheme with order six following a similar iterative estructure and the same real
parameter. A new method with memory has been designed using the approximation of the parameter with memory
as in the initial family and also improving the order of convergence. In both cases, the schemes not only improve
the order but also the efficiency index with respect to the starting families. Finally, it has been verified that the
theoretical analysis carried out in this work is consistent with the practical implementation of the methods. For this
purpose, the proposed methods have been used to approximate roots of nonlinear test functions, obtaining the best
results in the methods with memory.
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𝑥0 Method 𝑖𝑡𝑒𝑟 |𝑥𝑘+1 − 𝑥𝑘 | | 𝑓 (𝑥𝑘+1) | ACOC

1.5

Newton 10 1.7506e–90 9.1937e–180 2.0000

Steffensen nc

𝑀41 40 6.8579e–32 1.7695e–123 3.9979

𝑀45 7 2.4187e–60 4.3803e–236 4.0000

𝑀𝑀1 5 8.8702e–78 5.9533e–343 4.4425

𝑀61 nc

𝑀65 9 1.1125e–27 2.5886e–158 5.7084

𝑀𝑀2 4 1.3332e–100 1.162e–645 6.5487

Tab. 4 Numerical results for 𝑓3 (𝑥)
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Abstract
A family of iterative schemes for finding approximate inverses of nonsingular matrices is suggested and

established analytically. This class of methods can be used for finding the Moore-Penrose inverse of a rectangular
complex matrix. The order of convergence is stated in each case, depending on the first non-zero parameter. For
different examples, the accessibility of some schemes, that is, the set of initial estimations leading to convergence,
is analyzed in order to select those with wider sets. This wideness is related with the value of the first non-zero
value of the parameters defining the method. Finally, some numerical examples are provided to confirm the
theoretical results and to show the feasibility and effectiveness of the new methods.

1. Introduction
Computing the matrix inverse of nonsingular matrices of higher size is difficult and is a time consuming task.
Generally speaking, in wide variety of topics, one must compute the inverse or particularly the generalized inverses
to comprehend and realize significant features of the involved problems.
In the last decade, many iterative schemes of different orders have been designed for approximating the inverse

or some generalized inverse (Moore-Penrose inverse, Drazin inverse, etc.) of a complex matrix 𝐴. In this paper,
we focus our attention on constructing a new class of iterative methods, free of inverse operators and with arbitrary
order of convergence, for finding the inverse of a nonsingular complex matrix. We also study the proposed class for
computing the Moore-Penrose inverse of complex rectangular matrices. The designed family depends on several
real parameters, which by taking particular values provide us numerous known methods constructed by other
authors with different procedures.
The most known iterative scheme for computing the inverse 𝐴−1 of a nonsingular complex matrix 𝐴 is the

Schulz’s method whose iterative expression is

𝑋𝑘+1 = 𝑋𝑘 (2𝐼 − 𝐴𝑋𝑘 ), 𝑘 = 0, 1, . . . (1.1)

where 𝐼 is the identity matrix with the same size of 𝐴. Schulz in [8] demonstrated the convergence of sequence
{𝑋𝑘 }𝑘≥0, obtained from (1.1), to the inverse 𝐴−1 is guaranteed if the eigenvalues of matrix 𝐼 − 𝐴𝑋0 are lower than
1. Taking into account that the residuals 𝐸𝑘 = 𝐼 − 𝐴𝑋𝑘 , 𝑘 = 0, 1, . . . satisfy ‖𝐸𝑘+1‖ ≤ ‖𝐸𝑘 ‖2, expression (1.1) has
quadratic convergence. In general, in the Schulz-type methods it is common to use as initial approach 𝑋0 = 𝛼𝐴∗ or
𝑋0 = 𝛼𝐴, where 0 < 𝛼 < 2/𝜌(𝐴∗𝐴), where 𝐴∗ is the conjugate transpose of 𝐴 and 𝜌(·) the spectral radius. In this
paper, we use in the case of inverses and also in generalized inverses, the initial estimation 𝑋0 = 𝛽𝐴∗/‖𝐴‖2. We
also study the values of the parameter 𝛽 that guarantee convergence.
Li et al. in [5] proposed the family of iterative methods

𝑋𝑘+1 = 𝑋𝑘

(
𝜈𝐼 − 𝜈(𝜈 − 1)

2
𝐴𝑋𝑘 + 𝜈(𝜈 − 1) (𝜈 − 2)3!

(𝐴𝑋𝑘 )2 − . . . + (−1)𝜈−1 (𝐴𝑋𝑘 )𝜈−1
)
, 𝜈 = 2, 3, . . .

with 𝑋0 = 𝛼𝐴∗. They proved the convergence of 𝜈-order of {𝑋𝑘 }𝑘≥0 to the inverse of matrix 𝐴. This class was
used by Chen et al. in [2] and by Li et al. in [19] for approximating the Moore-Penrose inverse.
Soleymani et al. in [18] also constructed a fourth-order iterative scheme for calculating the inverse and the

Moore-Penrose inverse, with iterative expression

𝑋𝑘+1 =
1
2
𝑋𝑘 (9𝐼 − 𝐴𝑋𝑘 (16𝐼 − 𝐴𝑋𝑘 (14𝐼 − 𝐴𝑋𝑘 (6𝐼 − 𝐴𝑋𝑘 )))), 𝑘 = 0, 1, . . .

On the other hand, Stanimirović et al. in [16] designed the following scheme of order eleven for computing the
generalized outer inverse 𝐴(2)𝑇 ,𝑆

𝑋𝑘+1 = 𝑋𝑘 (𝐼 + (𝑅𝑘 + 𝑅2𝑘 ) (𝐼 + (𝑅2𝑘 + 𝑅4𝑘 ) (𝐼 + 𝑅4𝑘 ))), 𝑘 = 0, 1, . . .
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being 𝑅𝑘 = 𝐼 − 𝐴𝑋𝑘 , 𝑘 = 0, 1, . . ..
Kaur et al. in [4], by using also the hyperpower iterative method, designed the following scheme of order five

for obtaining the weighted Moore-Penrose inverse

𝑋𝑘+1 = 𝑋𝑘 (5𝐼 − 10𝐴𝑋𝑘 + 10(𝐴𝑋𝑘 )2 − 5(𝐴𝑋𝑘 )3 + (𝐴𝑋𝑘 )4), 𝑘 = 0, 1, . . .

These papers are some of the manuscripts that have been published to approximate the inverse of a nonsingular
matrix or some of the generalized inverses of arbitrary matrices. In this paper, we design a parametric family of
iterative schemes with arbitrary order of convergence that contains many of the methods constructed up to date.
For each fixed value of the order of convergence, we still have a class of iterative methods depending on several
parameters.
The rest of this manuscript is organized as follows. Section 2 is devoted to the construction of the proposed

class of iterative schemes, proving its convergence to the inverse of a nonsingular complex matrix, with arbitrary
order of convergence. In Section 3, it is proven that the same family of iterative methods is able to converge to the
Moore-Penrose inverse of a complex matrix of size 𝑚 × 𝑛. Some particular cases of this class are found in Section
4, corresponding to existing methods proposed by different authors. A wide range of numerical test are also found
in Section 5, checking the robustness and applicability of the proposed methods on different kinds of matrices.
With some conclusions and the references used finishes this manuscript.

2. A class of iterative schemes for matrix inversion
In this section, we present a parametric family of iterative schemes for approximating the inverse of nonsingular
matrices and we prove the order of convergence of the different members of the family. First, we define the following
polynomial matrix.

Definition 2.1 Let 𝑈 ∈ C𝑚×𝑚 be a complex square matrix and 𝑝 > 0 a positive integer number. We define the
polynomial matrix 𝐻𝑝 (𝑈) as

𝐻𝑝 (𝑈) =
𝑝∑︁
𝑗=1
(−1) 𝑗−1𝐶 𝑗𝑝𝑈 𝑗−1 = 𝐶1𝑝 𝐼 − 𝐶2𝑝𝑈 + 𝐶3𝑝𝑈2 + ... + (−1) 𝑝−1𝐶 𝑝𝑝𝑈 𝑝−1,

where 𝐶 𝑗𝑝 is the combinatorial number 𝐶
𝑗
𝑝 =

(
𝑝

𝑗

)
=

𝑝!
𝑗!(𝑝 − 𝑗)! .

The following technical result can be proven by using mathematical induction with respect to parameter 𝑝.

Lemma 2.2 Let 𝑝 > 0 be a positive integer and𝑈 ∈ C𝑚×𝑚. Then (𝐼 −𝑈) 𝑝 = 𝐼 −𝑈𝐻𝑝 (𝑈).
Let 𝐴 ∈ C𝑚×𝑚 be a nonsingular matrix and 𝑝 > 1 a positive integer. Let {𝛼1, 𝛼2, . . . , 𝛼𝑝} be a set of real

parameters such that 𝛼𝑖 ∈ [0, 1], for 𝑖 = 1, 2, ..., 𝑝 − 1, 𝛼𝑝 ∈ ]0, 1] and
𝑝∑︁
𝑖=1

𝛼𝑖 = 1.

We assume a sequence of complex matrices {𝑋0, 𝑋1, ..., 𝑋𝑛, ...}, of size 𝑚 ×𝑚, satisfying following conditions:
(a) ‖𝐼 − 𝐴𝑋0‖ = 𝛾0 < 1,

(b) 𝐼 − 𝐴𝑋𝑘+1 =
𝑝∑︁
𝑖=1

𝛼𝑖 (𝐼 − 𝐴𝑋𝑘 )𝑖 .

We consider the family of methods with iterative expression

𝑋𝑘+1 = 𝑋𝑘
𝑝∑︁
𝑖=1

𝛼𝑖𝐻𝑖 (𝐴𝑋𝑘 ), 𝑘 = 0, 1, . . . (2.1)

For each positive integer 𝑝, 𝑝 > 1, we have a different class of iterative methods, whose order of convergence
depends on the value of parameters 𝛼𝑖 , 𝑖 = 1, 2, . . . , 𝑝.
In the following results, the convergence of these schemes to the inverse of matrix 𝐴 is proven.

Proposition 2.3 Let 𝐴 ∈ C𝑚×𝑚 be a nonsingular matrix and 𝑝 > 1 a positive integer. Let us consider the sequence
of complex matrices constructed as

𝑋𝑘+1 = 𝑋𝑘
𝑝∑︁
𝑖=1

𝛼𝑖𝐻𝑖 (𝐴𝑋𝑘 ), 𝑘 = 0, 1, . . . ,
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where 𝛼𝑖 ∈ [0, 1], for 𝑖 = 1, 2, ..., 𝑝 − 1, 𝛼𝑝 ∈ ]0, 1] and
𝑝∑︁
𝑖=1

𝛼𝑖 = 1. Then, condition

𝐼 − 𝐴𝑋𝑘+1 =
𝑝∑︁
𝑖=1

𝛼𝑖 (𝐼 − 𝐴𝑋𝑘 )𝑖 ,

is equivalent to

𝑋𝑘+1 = 𝑋𝑘
𝑝∑︁
𝑖=1

𝛼𝑖
©«
𝑖∑︁
𝑗=1
(−1) 𝑗−1𝐶 𝑗𝑖 (𝐴𝑋𝑘 ) 𝑗−1

ª®¬
. (2.2)

By mathematical induction it is also easy to prove the following result.

Proposition 2.4 Let us consider sequence {𝑋𝑘 }𝑘≥0 obtained from expression (2.1). If ‖𝐼 − 𝐴𝑋0‖ < 1, then

‖𝐼 − 𝐴𝑋𝑘 ‖ < 1, 𝑘 = 1, 2, . . .

From these previous results, we can establish the following convergence theorem.

Theorem 2.5 Let 𝐴 ∈ C𝑚×𝑚 be a nonsingular matrix and an initial guess 𝑋0 ∈ C𝑚×𝑚. Let 𝛼1, . . . , 𝛼𝑝 be

nonnegative real numbers such that 𝛼𝑖 ∈ [0, 1], 𝛼𝑝 ≠ 0 and
𝑝∑︁
𝑖=1

𝛼𝑖 = 1. If ‖𝐼 − 𝐴𝑋0‖ < 1, then sequence {𝑋𝑘 }𝑘≥0,

obtained by (2.1), converges to 𝐴−1 with convergence order 𝑞 for any 𝑝 > 1, where 𝑞 = min
𝑖=1,2,..., 𝑝

{𝑖 | 𝛼𝑖 ≠ 0}.

In the next section, we extend the iterative schemes (2.1) for finding the Moore-Penrose inverse of any complex
rectangular matrix.

3. A class of iterative schemes for computing Moore-Penrose inverse
Let 𝐴 be a 𝑚 × 𝑛 complex matrix. The Moore-Penrose inverse of 𝐴 (pseudoinverse), denoted by 𝐴†, is the unique
𝑛 × 𝑚 matrix 𝑋 satisfying

𝐴𝑋𝐴 = 𝐴, 𝑋𝐴𝑋 = 𝑋, (𝐴𝑋)∗ = 𝐴𝑋, (𝑋𝐴)∗ = 𝑋𝐴.

This generalized inverse plays an important role in several fields, such as eigenvalue problems and the linear
least square problems [3]. It can be obtained, explicitly, from the singular value decomposition of 𝐴 but, with a high
computational cost. Therefore, it is interesting to have efficient iterative methods to approximate this matrix. In
this section, we prove how family (2.1) allows us to compute the pseudoinverse with the same order of convergence
that in the previous section, where the inverse of a square matrix was calculated. First, we establish the following
technical result, that is proven by mathematical induction, although other authors state similar results in the context
of outer inverses (see, for example, [17]).

Lemma 3.1 Let us consider 𝑋0 = 𝛼𝐴∗, where 𝛼 ∈ R, and sequence {𝑋𝑘 }𝑘≥0 generated by family (2.1). For any
𝑘 ≥ 0, it is satisfied

(𝑋𝑘𝐴)∗ = 𝑋𝑘𝐴, (𝐴𝑋𝑘 )∗ = 𝐴𝑋𝑘 , 𝑋𝑘𝐴𝐴
† = 𝑋𝑘 , 𝐴†𝐴𝑋𝑘 = 𝑋𝑘 . (3.1)

Now, some technical results are presented.

Lemma 3.2 ( [2]) Let 𝐴 ∈ C𝑚×𝑛 and 𝑋0 = 𝛼𝐴∗ be, where 𝛼 < 1
𝜎21

and 𝜎1 is the largest singular value of 𝐴. Then

‖(𝑋0 − 𝐴†)𝐴‖ < 1.

Lemma 3.3 Let 𝐴 ∈ C𝑚×𝑛 and {𝑋𝑘 }𝑘≥0 be the sequence generated by (2.1). Let us consider 𝐸𝑘 = 𝑋𝑘 − 𝐴†,
𝑘 = 0, 1, . . .. Then,

1. ‖𝑋𝑘 − 𝐴†‖ ≤ ‖𝐸𝑘𝐴‖‖𝐴†‖,
2. (𝐼 − 𝐴†𝐴)𝐸𝑘𝐴 = 0.
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Lemma 3.4 Let 𝐴 ∈ C𝑚×𝑛 and {𝑋𝑘 }𝑘≥0 be the sequence generated by (2.1). By using 𝐸𝑘 = 𝑋𝑘 − 𝐴†, defined in
the previous lemma, we have

𝐸𝑘+1𝐴 =
𝑝∑︁
𝑖=1

𝛼𝑖 (−1)𝑖−1 (𝐸𝑘𝐴)𝑖 , 𝑘 = 0, 1, . . . (3.2)

Finally, we can state the following convergence result.

Theorem 3.5 Let 𝐴 ∈ C𝑚×𝑛 and 𝑞 = min
𝑖=1,2,..., 𝑝

{𝑖 | 𝛼𝑖 ≠ 0}. Then, sequence {𝑋𝑘 }𝑘≥0 generated by (2.1) converges

to the Moore-Penrose inverse 𝐴† with 𝑞th-order provided that 𝑋0 = 𝛼𝐴∗, where 𝛼 <
1
𝜎21

is a constant and 𝜎1 is

the largest singular value of A.

4. Some known members of the proposed class
The family of iterative schemes (2.1) is a generalization of other known methods constructed with different
techniques. Now, we describe some of them.

1. For any 𝑝 > 1, if 𝛼1 = · · · = 𝛼𝑝−1 = 0 and 𝛼𝑝 = 1, then we obtain the method proposed by Li and Li. (see
Eq. (2.3) in [5] for inverse case and Eq. (2.1) in [2] for pseudoinverse one). Recall that method proposed by
Li and Li generalizes the Newton-Schultz (𝑝 = 2) and Chebyshev method (𝑝 = 3).

2. On the other hand, if 𝛼𝑖 = 0 for 𝑖 = 1, 2, . . . , 8, 𝛼9 = 𝛼12 = 1/8 and 𝛼10 = 𝛼11 = 3/8, then we get the method
proposed by Soleymani and Stanimirovic (see Eq. (12) in [9]).

3. Also, expression (2.1) gives us the method proposed by Toutounian and Soleymani (see Eq. (18) in [18]), if
𝛼4 = 1/2 and 𝛼5 = 1/2 and 𝛼1 = 𝛼2 = 𝛼3 = 0.

4. When the only not null parameter is 𝛼7 = 1, then we obtain method proposed by Soleymani (see Eq. (18)
in [11]).

5. In a similar way, if the only parameter different from zero is 𝛼6 = 1, then the method proposed by Soleymani,
Stanimirovic and Zaka (see Eq. (2.4) in [14]) is obtained.

6. When 𝛼𝑖 = 0 for 𝑖 = 1, 2, ...7, 𝛼8 = 𝛼10 = 1/4 and 𝛼9 = 2/4, the resulting scheme is that proposed by
Soleymani in Eq. (9) in [12].

7. The method proposed by Soleymani et al in [13], Eq. (10), appears if 𝛼1 = · · · = 𝛼8 = 0, 𝛼9 = 7/9 and
𝛼10 = 2/9.

8. The scheme proposed by Razavi, Kerayechian, Gachpazan and Shateyi, (see Eq. (16) in [7]) is obtained if
we choose 𝛼1 = ... = 𝛼9 = 0, 𝛼10 = 𝛼12 = 1/4 and 𝛼11 = 1/2 in Equation (2.1).

9. When the first eight paramenters are null, 𝛼9 = 343/729, 𝛼10 = 294/729, 𝛼11 = 84/729 and 𝛼12 = 8/729,
we get the scheme proposed by Al-Fhaid et al in [1], Eq. (5).

10. If 𝛼7 = 9/16, 𝛼8 = 6/16, 𝛼9 = 1/16 and the rest of parameters are zero, then the scheme proposed by
Soleymani is found (see Eq. (3.1) in [10]).

11. When 𝑝 = 12 and the only parameters different from zero are 𝛼9 = 𝛼12 = 1/8 and 𝛼9 = 𝛼10 = 3/8, therefore
the method proposed by Liu and Cai. see Eq. (4) in [6]) is obtained.

12. If 𝛼2 = 0, 𝛼1 = 1 − 𝛼 and 𝛼3 = 𝛼, where 𝛼 ∈ (0, 1], then we find the method proposed by Srivastava and
Gupta in [15]), Eq. (6).

5. Numerical examples
In this section, we check the performance of the proposed schemes, on small and large–scale matrices. Among
them, we work with the Hilbert matrix as an example of ill-conditioned matrix. These numerical tests have been
made with Matlab R2018b, by using double precision arithmetics. The convergence is checked by means of the
stopping criterium of the residual, ‖𝐴𝑋𝑘 − 𝐼 ‖ < 10−6 and a maximum of 200 iterations. In all cases, the initial
estimation taken is 𝑋0 = 𝛽

𝐴𝑇

‖𝐴‖2 , being 𝐴 the matrix whose inverse we are estimating and choosing values of
parameter 𝛽 close to 0.7.
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In Tables 1 - 2, elements 𝛼1 = 0, 𝛼1 = 0.6 and 𝛼1 = 0.8 for the class 𝑝 = 2 (all of them with 𝛼2 = 1 − 𝛼1) are
compared with the members of class 𝑝 = 3 corresponding to 𝛼1 = 0 and 𝛼2 = 0, 𝛼2 = 0.6 and 𝛼2 = 0.8, where
𝛼3 = 1 − 𝛼2. The comparison is made through the number of iterations needed to converge (it) and the residual
‖𝐴𝑋𝑘 − 𝐼 ‖, denoted by (res). If the method does not converge (typically giving “NaN"), it is denoted by “nc" in
the column of iterations; if the scheme simplify needs more than 200 iterations to converge, it is denoted by > 200.
In Table 1 the numerical results correspond to a Leslie matrix of size 100 × 100, and in Table 2 the results

generated by a Hilbert matrix of size 5 × 5 are shown.

𝛽
𝑝 = 2 𝑝 = 3, 𝛼1 = 0

𝛼1 = 0 𝛼1 = 0.6 𝛼1 = 0.8 𝛼2 = 0 𝛼2 = 0.6 𝛼2 = 0.8
it res it res it res it res it res it res

1 18 6.9e-12 55 8.5e-7 113 9.2e-7 11 2.9e-8 14 6.4e-7 16 2.4e-10
1.5 17 4.2e-9 54 7.7e-7 111 8.8e-7 11 4.8e-12 14 2.4e-9 15 1.4e-7
2 53 3.7e-11 53 8.3e-7 107 9.6e-7 33 8.0e-11 14 1.3e-11 15 1.4e-9
2.5 nc - 52 9.8e-7 108 9.2e-7 nc - 13 3.9e-7 nc -
3 nc - 52 7.5e-7 107 9.2e-7 nc - 13 3.7e-8 nc -
3.5 nc - nc - 106 9.5e-7 nc - 26 1.1e-12 nc -
4 nc - nc - 106 8.1e-7 nc - nc - nc -
4.5 nc - nc - 105 8.7e-7 nc - nc - nc -
5 nc - nc - 104 9.6e-7 nc - nc - 14 1.2e-12
5.5 nc - nc - 104 8.5e-7 nc - nc - nc -
6 nc - nc - > 200 - nc - nc - nc -

Tab. 1 Numerical results for a Leslie matrix of size 100 × 100

In Table 1, we notice that for large–scale (100 × 100) Leslie matrix, the numerical results obtained by 𝑝 = 2,
𝛼1 = 0 and 𝛼2 = 0.6 show convergence to the inverse matrix even when parameter 𝛽 of the initial estimation is
not close to zero. However, in these cases the number of iterations is very high. Regarding the lowest number of
iterations needed to converge, the best method corresponds to 𝑝 = 3, 𝛼1 = 0 and 𝛼2 = 0.6 as it holds low number
of iterations and high value of 𝛽.
Table 2 corresponds to a test on a 5 × 5 Hilbert matrix. It is clear that the number of iterations is high due to

the bad conditioning of the matrix. Nevertheless, the performance is, in general similar to previous cases.

𝛽
𝑝 = 2 𝑝 = 3, 𝛼1 = 0

𝛼1 = 0 𝛼1 = 0.2 𝛼1 = 0.4 𝛼2 = 0 𝛼2 = 0.6 𝛼2 = 0.8
it res it res it res it res it res it res

1 42 3.9e-9 54 5.7e-7 72 4.3e-7 27 2.3e-11 34 9.5e-11 37 1.07e-7
1.5 41 4.9e-7 53 9.3e-7 71 4.8e-7 26 5.1e-8 33 1.5e-7 37 9.8e-11
2 56 5.7e-8 53 4.2e-7 70 6.9e-7 nc - 33 2.3e-9 36 3.9e-7
2.5 nc - nc - 70 4.5e-7 nc - 33 4.8e-11 nc -
3 nc - nc - nc - nc - 33 1.3e-11 nc -
3.5 nc - nc - nc - nc - 32 2.1e-8 nc -
4 nc - nc - nc - nc - nc - nc -
4.5 nc - nc - nc - nc - nc - nc -
5 nc - nc - nc - nc - nc - nc -
5.5 nc - nc - nc - nc - nc - nc -
6 nc - nc - nc - nc - nc - nc -

Tab. 2 Numerical results for a Hilbert matrix of size 5 × 5

Finally, Table includes the results of pseudoinverse calculation for a random matrix of size 300 × 200. In this
case, Chebyshev’s method performs better than the most of schemes under study, as it need a very low number of
iterations to converge to the pseudoinverse, although 𝑝 = 2 can converge even with values of 𝛽 = 6 or higher.

6. Conclusions
In this paper, we have developed a parametric family of iterative methods for computing inverse and pseudoinverse
of a complex matrix, having arbitrary order of convergence. Moreover, we have shown in Theorems 2.5 and 3.5
that the order of the suggested method in (2.1) depends on the first non-zero parameter. The proposed parametric
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𝛽
𝑝 = 2 𝑝 = 3, 𝛼1 = 0

𝛼1 = 0 𝛼1 = 0.6 𝛼1 = 0.8 𝛼2 = 0 𝛼2 = 0.6 𝛼2 = 0.8
it res it res it res it res it res it res

1 19 5.4e-8 56 6.7e-7 109 9.7e-7 13 4.9e-15 16 1.2e-9 18 5.7e-14
1.5 19 1.3e-11 55 6.0e-7 107 9.3e-7 12 4.3e-8 16 4.2e-13 17 3.8e-10
2 18 5.4e-8 54 6.5e-7 106 8.1e-7 12 1.5e-10 15 2.1e-8 17 6.8e-13
2.5 nc - 53 7.7e-7 104 9.7e-7 nc - 15 6.1e-10 nc -
3 nc - 52 9.7e-7 103 9.7e-7 nc - 15 2.1e-11 nc -
3.5 nc - 52 7.7e-7 103 8.0e-7 nc - 15 3.5e-8 nc -
4 nc - nc - 102 8.5e-7 nc - nc - nc -
4.5 nc - nc - 101 9.2e-7 nc - nc - nc -
5 nc - nc - 101 8.1e-7 nc - nc - nc -
5.5 nc - nc - 100 9.0e-7 nc - nc - nc -
6 nc - nc - 100 8.1e-7 nc - nc - nc -

Tab. 3 Numerical results for the estimation of the pseudoinverse of a random matrix of size 300 × 200 with 𝑋0 = 𝛽
𝐴𝑇

‖𝐴‖2

family in (2.1) is a generalization of other methods which are obtained for particular values of the parameters.
The numerical experiments show the feasibility and effectiveness of the new methods, for both nonsingular and
rectangular matrices with or without full rank and arbitrary size.
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Abstract

We present Einstein equations in the so-called Fully Constrained Formulation (FCF). This formulation has
two different sectors: the elliptic sector formed by the Hamiltonian and Momentum constraints together with the
equations derived from the gauge choice, and the hyperbolic sector which encodes the evolution of the rest of
degrees of freedom of the spacetime metric including the gravitational waves. We present a modification of both
sectors that keeps local uniqueness properties but has a better behaviour regarding the relativistic expansion of the
equations. We also comment on numerical properties of this reformulation.

1. Introduction
Astrophysical scenarios containing compact objects are modeled by complex spacetimes which require, in general,
to solve Einstein equations numerically. This is also true in the case of complex cosmological models. In the
3+1 decomposition of Einstein equations, spacetime is foliated through spacelike hypersurfaces. Doing this, the
equations are decomposed in a set of elliptic equations, also called constraint equations, and a set of hyperbolic
equations, also called evolution equations.

Constraint equations are only solved initially in the case of the approach by free evolution schemes. It is well
known that if we evolve in time analytically some given initial data that satisfies the constraint equations using the
evolution equations, then this data will also satisfy the constraint equations in posterior times, see [5]. This is true
theoretically, but it may not be the case numerically. Formulations that solve the constraint equations on each time
step are called constrained schemes. This work focuses on these schemes, and in particular in the so-called Fully
Constrained Formulation (FCF) of the Einstein equations [2, 4].

This document is structured as follows. In Section 2 we introduce Einstein equations and the geometry of
foliations. Section 3 describes technical details of a new reformulation of the FCF. In Section 4 we present the
solution of the spacetime geometry of a neutron star considering the new reformulation of the FCF.We compare our
solution with the one obtained with LORENE library, which employs spectral methods. We also make a comparison
between our solution with the modification of the FCF equations and other approximate formulation that neglects
the hyperbolic sector; this comparison confirms the accuracy improvement in the proposed reformulation of the
FCF equations. Finally, in Section 5 we draw some conclusions and comment on future steps. From now on we
use geometrical units in which 𝑐 = 𝐺 = 1, where 𝑐 denotes the speed of light and 𝐺 the universal constant of
gravitation.

2. Einstein equations and foliations

Einstein Equations tells us how spacetime is curved according to the energy andmatter content. These equations
read

𝐺𝜇𝜈 = 8𝜋𝑇𝜇𝜈 , (2.1)

where 𝐺𝜇𝜈 is the Einstein tensor, representing the information about the geometry of spacetime, and 𝑇𝜇𝜈 is the
energy-momentum tensor, concerning the distribution of energy and momentum. Einstein equations are a set of 10
non-linear coupled partial differential equations. They have exact solution only in a very few special cases, mostly
in presence of symmetries. In general, they need to be solved numerically and this is the goal ofNumerical Relativity.

Globally hyperbolic spacetimes allow to chose coordinates (𝑡, 𝑥𝑖) such that level sets 𝑡 = constant are spacelike
hypersurfaces, that is, every tangent vector of these hypersurfaces is spacelike. Spacetime is thus foliated through
spacelike hypersurfaces. The normal vector to these hypersurfaces is associatedwith the so-called Eulerian observer.
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One important variable in Numerical Relativity is the lapse function 𝑁 (𝑡, 𝑥𝑖), which is the factor connecting the
lapse of proper time 𝜏 of this observer and the lapse of coordinate time 𝑡:

𝑑𝜏 = 𝑁 (𝑡, 𝑥𝑖)𝑑𝑡. (2.2)

Another important variable is the shift vector 𝛽(𝑡, 𝑥𝑖), which can be seen as the velocity between the Eulerian
observer and the curves 𝑥𝑖 = constant:

𝑥𝑖𝑡+𝑑𝑡 = 𝑥
𝑖
𝑑𝑡 − 𝛽𝑖 (𝑡, 𝑥𝑖)𝑑𝑡. (2.3)

As the curves 𝑥𝑖 = constant are not associated with any observer in general, the shift vector can be superluminical.
This does not represent any physical propagation velocity, but just a foliation choice. The metric tensor of spacetime
can be expressed as

𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 = −𝑁2𝑑𝑡2 + 𝛾𝑖 𝑗 (𝑑𝑥𝑖 + 𝛽𝑖) (𝑑𝑥 𝑗 + 𝛽 𝑗𝑑𝑡), (2.4)

where 𝛾𝑖 𝑗 is the 3-metric in each hypersurface 𝑡 = constant, also called the spatial metric. Therefore, Einstein
equations can be decomposed in a set of evolution equations that have a hyperbolic character, and another set of
constraint equations with elliptic character which have to be satisfied in each hypersurface and only depend on the
spatial coordinates 𝑥𝑖 .

3. Fully Constrained Formalism

The next manipulations are motivated by previous works and ideas described in [5]. First, we introduce a time
independent flat background metric 𝑓𝑖 𝑗 , which coincides with 𝛾𝑖 𝑗 at spatial infinity, and the following conformal
decomposition:

𝛾𝑖 𝑗 = 𝜓4�̃�𝑖 𝑗 . (3.1)

We call 𝛾𝑖 𝑗 the conformal metric and 𝜓 := (𝛾/ 𝑓 )1/12 is the conformal factor, where 𝛾 = det 𝛾𝑖 𝑗 and 𝑓 = det 𝑓𝑖 𝑗 .
Let us denote by 𝐾 𝑖 𝑗 the extrinsic curvature on each hypersurface. We define the tensor 𝐴𝑖 𝑗 as the traceless part of
𝐾 𝑖 𝑗 :

𝐴𝑖 𝑗 = 𝐾 𝑖 𝑗 − 1
3
𝐾𝛾𝑖 𝑗 , (3.2)

where 𝐾 represents the trace of extrinsic curvature. We also define ℎ𝑖 𝑗 = �̃�𝑖 𝑗 − 𝑓 𝑖 𝑗 . Moreover, the gauge freedom
of Einstein equations allow us to impose 4 extra conditions. In our case these will be 𝐾 = 0 and

D𝑘 �̃�𝑘𝑖 = 0, (3.3)

where D is the Levi-Civita connection associated with 𝑓 𝑖 𝑗 . The first condition is called maximal slicing and the
second one generalized Dirac gauge. The next step is introducing a conformal decomposition of the extrinsic
curvature,

𝐾 𝑖 𝑗 = 𝜓10 �̂�𝑖 𝑗 , (3.4)

and at the same time its longitudinal/transverse decomposition,

�̂�𝑖 𝑗 = (𝐿𝑋)𝑖 𝑗 + �̂�𝑖 𝑗𝑇𝑇 , (3.5)

introducing in this way the vector field 𝑋 𝑖 and the traceless and transverse tensor �̂�𝑖 𝑗𝑇𝑇 ,D𝑖 �̂�
𝑖 𝑗
𝑇𝑇 = 0. 𝐿 is the Killing

operator. These last two definitions are motivated by the resolution of local uniqueness issues as it can be checked
in [3].
Finally, we introduce two new fields

¤𝑋 𝑖 = 𝜕𝑡𝑋 𝑖 ,
𝑉 𝑖 = 2𝑁𝜓−6𝑋 𝑖 − 𝛽𝑖 ,

in order to fix accuracy issues as we will discuss later on. These last two variables are introduced originally in this
work. The following projections of the energy-momentum tensor are introduced for completeness,

𝑆𝑖 𝑗 = 𝑇𝜇𝜈𝛾
𝜇
𝑖 𝛾

𝜈
𝑗 ,

𝑆𝑖 = −𝛾𝑖𝜇𝑇𝜇𝜈𝑛𝜈 ,
𝑆 = 𝛾𝑖 𝑗𝑆𝑖 𝑗 ,

𝐸 = 𝑇𝜇𝜈𝑛
𝜇𝑛𝜈 ,
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and also the rescaled quantities 𝑆∗𝑖 = 𝜓
6𝑆𝑖 , 𝑆∗ = 𝜓6𝑆 and 𝐸∗ = 𝜓6𝐸 . After all these definitions, we end up with an

evolution equation for ℎ𝑖 𝑗 ,

𝜕𝑡ℎ
𝑖 𝑗 = 𝛽𝑘D𝑘ℎ𝑖 𝑗 − ℎ𝑖𝑘D𝑘 𝛽 𝑗 − ℎ𝑘 𝑗D𝑘 𝛽𝑖 + 23 ℎ

𝑖 𝑗D𝑘 𝛽𝑘

+2𝑁𝜓−6 �̂�𝑖 𝑗𝑇𝑇 + (𝐿𝑉)𝑖 𝑗 − 𝑋 𝑗D𝑖 (2𝑁𝜓−6) − 𝑋 𝑖D 𝑗 (2𝑁𝜓−6) + 2
3
𝑓 𝑖 𝑗𝑋 𝑘D𝑘 (2𝑁𝜓−6),

(3.6)

and another one for �̂�𝑖 𝑗𝑇𝑇 ,

𝜕𝑡 �̂�
𝑖 𝑗
𝑇𝑇 = D𝑘

(
𝛽𝑘 �̂�𝑖 𝑗

)
− �̂�𝑘 𝑗D𝑘 𝛽𝑖 − �̂�𝑖𝑘D𝑘 𝛽 𝑗 + 23 �̂�

𝑖 𝑗D𝑘 𝛽𝑘 + 2𝑁𝜓−6�̃�𝑘𝑙 �̂�𝑖𝑘 �̂� 𝑗𝑙

+3
4
𝑁𝜓−6�̃�𝑖 𝑗 �̃�𝑙𝑘 �̃�𝑛𝑚 �̂�𝑘𝑚 �̂�𝑙𝑛 + 𝑁𝜓2 �̃�𝑖 𝑗∗ −

1
4
𝑁𝜓2 �̃��̃�𝑖 𝑗 − 1

2
(�̃�𝑖𝑘D𝑘ℎ𝑙 𝑗 + �̃�𝑘 𝑗D𝑘ℎ𝑖𝑙)D𝑙 (𝑁𝜓2)

+D𝑘
(
𝑁𝜓2

2

)
�̃�𝑘𝑙D𝑙ℎ𝑖 𝑗 − 8𝜋𝑁𝜓10𝑆𝑖 𝑗 + 4𝜋𝑁𝑆∗�̃�𝑖 𝑗

−(𝐿 ¤𝑋)𝑖 𝑗 + 4�̃�𝑖𝑘 �̃� 𝑗𝑙D𝑘𝜓D𝑙 (𝑁𝜓) + 4�̃�𝑖𝑘 �̃� 𝑗𝑙D𝑙𝜓D𝑘 (𝑁𝜓) − 2�̃�𝑖 𝑗 �̃�𝑘𝑙D𝑘𝜓D𝑙 (𝑁𝜓)

+𝑁𝜓
2

2
�̃�𝑘𝑙D𝑘

(D𝑙ℎ𝑖 𝑗 ) − �̃�𝑖𝑘 �̃� 𝑗𝑙D𝑘D𝑙 (𝑁𝜓2),

(3.7)

where

�̃�
𝑖 𝑗
∗ =

1
2

(
−D𝑙ℎ𝑖𝑘D𝑘ℎ 𝑗𝑙 − �̃�𝑘𝑙 �̃�𝑚𝑛D𝑚ℎ𝑖𝑘D𝑛ℎ 𝑗𝑙 + �̃�𝑛𝑙D𝑘ℎ𝑚𝑛 (�̃�𝑖𝑘D𝑚ℎ 𝑗𝑙 + �̃� 𝑗𝑘D𝑚ℎ𝑖𝑙)

)
+1
4
�̃�𝑖𝑘 �̃� 𝑗𝑙D𝑘ℎ𝑚𝑛D𝑙 �̃�𝑚𝑛,

and

�̃� =
1
4
�̃�𝑘𝑙D𝑘ℎ𝑚𝑛D𝑙 �̃�𝑚𝑛 − 12 �̃�

𝑘𝑙D𝑘ℎ𝑚𝑛𝐷𝑛�̃�𝑚𝑙 .

There is an issue concerning the post-newtonian order of the variables appearing in these equations. This means
to expand variables in powers of 1/𝑐 in the approximation of low gravity and low velocity of the sources. These
orders can be decuded from [1]. For instance, in equation (3.6) 𝜕𝑡ℎ𝑖 𝑗 has leading post-newtonian order of 1/𝑐5
which matches with the right hand side post-newtonian order. This is thanks to the introduction of the vector field
𝑉 𝑖 . If this were not the case, cancellations on the lower-order side must happen theoretically but it may not be the
case numerically. A previous expression of (3.6) in [3], undergoes this problem as well as the equation (3.7): the
left hand side has order 1/𝑐6, meanwhile the terms of the last two lines of the right hand side of this equation have
order 1/𝑐4. This order correction is still a work in progress, but we already reduced the numbers of terms that
should cancel analytically to get a lower order of 1/𝑐6.

The constraint equations are the ones from the original elliptic sector of the FCF equations with some modifica-
tions and simplifications by the use of the vector field 𝑉 𝑖 , and additional elliptic equations for the variables 𝑉 𝑖 , ¤𝑋 𝑖 .
The whole elliptic sector is presented hereinafter (the post-newtonian order is placed beside each equation):

Δ𝑋 𝑖 + 1
3
D𝑖D 𝑗𝑋

𝑗 = −�̃�𝑖𝑚
(
D𝑘 �̃�𝑚𝑙 − 12D𝑚�̃�𝑘𝑙

)
�̂�𝑘𝑙 + 8𝜋�̃�𝑖 𝑗 (𝑆∗) 𝑗 = O

(
1
𝑐3

)
; (3.8)

�̃�𝑘𝑙D𝑘D𝑙𝜓 = −2𝜋𝜓−1𝐸∗ − 1
8
𝜓−7�̃�𝑖𝑙 �̃� 𝑗𝑚 �̂�𝑙𝑚 �̂�𝑖 𝑗 + 18𝜓�̃� = O

(
1
𝑐2

)
; (3.9)

�̃�𝑖𝑘D𝑖D𝑘 (𝑁𝜓2) = 2𝜓−1�̃�𝑖𝑘D𝑘𝜓D𝑖 (𝑁𝜓2) − 2𝜓−2 (𝑁𝜓2)�̃�𝑖𝑘D𝑘𝜓D𝑖𝜓 + 34𝜓
−8 (𝑁𝜓2)�̃�𝑖𝑙 �̃� 𝑗𝑚 �̂�𝑙𝑚 �̂�𝑖 𝑗

+1
4
(𝑁𝜓2) �̃� + 4𝜋𝜓−2 (𝑁𝜓2)𝑆∗ = O

(
1
𝑐4

)
;

(3.10)

Δ𝑉 𝑖 + 1
3
D𝑖D 𝑗𝑉

𝑗 = −ℎ𝑘𝑙D𝑘D𝑙𝑉 𝑖 − 13 ℎ
𝑖𝑘D𝑘D 𝑗𝑉

𝑗 + 2𝑁𝜓−6
(
ℎ𝑘𝑙D𝑘D𝑙𝑋 𝑖 + 13 ℎ

𝑖𝑘D𝑘D𝑙𝑋 𝑙
)

D𝑘D𝑙 (2𝑁𝜓−6)
(
�̃�𝑘𝑙𝑋 𝑖 + 1

3
�̃�𝑖𝑘𝑋 𝑙

)
+ D𝑘 (2𝑁𝜓−6)

(
2�̃�𝑘𝑙D𝑘𝑋 𝑖 + 13 �̃�

𝑖𝑘D𝑙𝑋 𝑙 + 13 �̃�
𝑖 𝑗D 𝑗𝑋

𝑘 − �̂�𝑖𝑘
)
= O

(
1
𝑐5

)
;

(3.11)

FCF FORMULATION OF EINSTEIN EQUATIONS

150



Δ ¤𝑋 𝑗 + 1
3
D 𝑗D𝑖 ¤𝑋 𝑖 =

𝛽𝑘D𝑖D𝑘 �̂�𝑖 𝑗 − D𝑖 �̂�𝑖𝑘D𝑘 𝛽 𝑗 − �̂�𝑖𝑘D𝑖D𝑘 𝛽 𝑗 + 23 �̂�
𝑖 𝑗D𝑖D𝑘 𝛽𝑘 + 53D𝑖 �̂�

𝑖 𝑗D𝑘 𝛽𝑘

−1
2
𝑁𝜓−6�̃� 𝑗𝑙D𝑙

(
�̃�𝑖𝑛�̃�𝑘𝑚 �̂�

𝑛𝑚 �̂�𝑖𝑘
)
− 𝜓−8�̃� 𝑗𝑙 �̃�𝑖𝑛�̃�𝑘𝑚 �̂�𝑛𝑚 �̂�𝑖𝑘D𝑙 (𝑁𝜓2) + 8𝜓−7𝑁�̃� 𝑗𝑙 �̃�𝑖𝑛�̃�𝑘𝑚 �̂�𝑛𝑚 �̂�𝑖𝑘D𝑙𝜓

+2𝑁𝜓−6D𝑖 (�̃�𝑘𝑙 �̂�𝑖𝑘 �̂� 𝑗𝑙) − 16𝜓−7𝑁�̃�𝑘𝑙 �̂�𝑖𝑘 �̂� 𝑗𝑙D𝑙𝜓 + 2𝜓−8�̃�𝑘𝑙 �̂�𝑖𝑘 �̂� 𝑗𝑙D𝑙 (𝑁𝜓2)

−1
2
D𝑖 (𝑁𝜓2)D𝑙ℎ𝑖𝑘D𝑘ℎ 𝑗𝑙 − 16 �̃�

𝑘 𝑗D𝑘ℎ𝑖𝑙D𝑖D𝑙 (𝑁𝜓2) − �̃�𝑖𝑘D𝑖ℎ 𝑗𝑙D𝑘D𝑙 (𝑁𝜓2)
−8𝑁�̃�𝑖𝑘D𝑖ℎ 𝑗𝑙D𝑘𝜓D𝑙𝜓 + 4𝑁�̃� 𝑗𝑙D𝑙ℎ𝑖𝑘D𝑖𝜓D𝑘𝜓 + 4𝜓−1�̃�𝑖𝑘D𝑖ℎ 𝑗𝑙

(D𝑙 (𝑁𝜓2)D𝑘𝜓 + D𝑘 (𝑁𝜓2)D𝑙𝜓)
−4𝜓−1�̃� 𝑗𝑙D𝑙ℎ𝑖𝑘D𝑖 (𝑁𝜓2)D𝑘𝜓 + �̃�𝑖 𝑗∗∗D𝑖 (𝑁𝜓2) + 𝑁𝜓2D𝑖 �̃�𝑖 𝑗∗∗ −

1
2
𝑁𝜓2�̃�𝑖 𝑗D𝑖 �̃�

−8𝜋𝜓−2𝐸∗�̃� 𝑗𝑙D𝑙 (𝑁𝜓2) + 16𝜋𝜓−1𝑁𝐸∗�̃� 𝑗𝑙D𝑙𝜓 + 16𝜋𝜓−1𝑁𝑆∗�̃� 𝑗𝑙𝐷𝑙𝜓

−8𝜋𝑁𝜓10D𝑖𝑆𝑖 𝑗 − 8𝜋𝜓8𝑆𝑖 𝑗D𝑖 (𝑁𝜓2) − 64𝜋𝜓9𝑁𝑆𝑖 𝑗D𝑖𝜓 = O
(
1
𝑐4

)
,

(3.12)

where

�̃�
𝑖 𝑗
∗∗ =

1
2

(
−�̃�𝑘𝑙 �̃�𝑚𝑛D𝑚ℎ𝑖𝑘D𝑛ℎ 𝑗𝑙 + �̃�𝑛𝑙D𝑘ℎ𝑚𝑛 (�̃�𝑖𝑘D𝑚ℎ 𝑗𝑙 + �̃� 𝑗𝑘D𝑚ℎ𝑖𝑙)

)
+ 1
4
�̃�𝑖𝑘 �̃� 𝑗𝑙D𝑘ℎ𝑚𝑛D𝑙 �̃�𝑚𝑛.

We can see how the elliptic sector can be solved hierarchically and this sector now is decoupled in equations
including terms with progressively lower post-newtonian orders: note that in equation (3.10) we solve 𝑁𝜓2 as we
find that it has post-newtonian order 1/𝑐4 instead of 1/𝑐2 as 𝑁 , see [1].

In the next Section we present the first tests of the proposed modified equations in this formulation by solving
the spacetime geometry of a neutron star.

4. Results and discussion
In the following we set ℎ𝑖 𝑗 = 0 in such a way we can compare our results with the ones obtained with the xCFC
formulation which imposes this condition, see [3], and can be seen as an approximation to the FCF. As a test we
use a neutron star model with an equatorial radius of 𝑅𝑒 = 12.859 km, central density 𝜌𝑐 = 7.91 · 1014 g/cm3 and
angular velocity 𝜔 = 606 rad/s. We consider that the star is composed of a perfect fluid with polytropic equation of
state 𝑝 = 𝐶𝜌Γ, where 𝑝 is the pressure, Γ = 2 and 𝐶 = 145731 (cgs units). For this compact object, spacetime is
stationary and we can adapt the coordinate time 𝑡 to this stationarity, setting the derivatives with respect to 𝑡 in (3.6)
and (3.7) to zero. Moreover, this spacetime is axisymmetric; we use spherical orthonormal coordinates adapting
them to this axisymmetry and fixing the rotation axis at 𝜃 = 0, being 𝜃 the polar angle in spherical orthonormal
coordinates.

In order to compare elliptic sectors in both xCFC and modified FCF formulations, we will focus on this work
on equations (3.8)–(3.12) regarding the modified FCF scheme. By using spherical orthonormal coordinates and
considering axisymmetry, we just solve equations in the 2-dimensions. The mesh consist in 100 points in the
radial coordinate 𝑟 and 32 points in polar angle 𝜃. We use one ghost cell to properly compute the discretization of
derivatives close to the numerical domain boundaries. All discretizations of the differential operators are 2nd order
and we use the LAPACK library to invert the Laplacian operators. In some equations the variable under resolution
appears outside the main Laplacian operator in the source term; here we apply fix-point iterative methods with a
relaxation factor.

Concerning boundary conditions, we apply periodicity in the polar angle 𝜃 and for the radial coordinate we
set 𝑢(𝑟, 𝜃) = ±𝑢(𝑟, 𝜋 − 𝜃) for the inner boundary, where 𝑢 represents a generic variable and the election of the
sign depends on the symmetry of this variable. At the outer boundary we impose a Robin condition, assuming
𝑢 = 𝑢0+𝑀/𝑟𝑛, which is equivalent to impose 𝜕𝑢/𝜕𝑟 = −𝑛(𝑢−𝑢0)/𝑟 , and only 𝑛 and 𝑢0 need to be specified. We have
𝑛 = 1 for scalars fields and 𝑛 = 2 for vector fields. 𝑢0 is the asymptotic value of the variable at spatial infinity 𝑟 →∞.

In Figure 1 we show the results obtained for the numerical solutions of the variables 𝑋 , 𝜙 and 𝑁 . Only the
angular component of 𝑋 𝑖 , 𝑋 𝜙 , is non-zero. We plot the radial profile of these variables at 𝜃 = 𝜋/2. Figure 2 shows
the numerical solution of the new introduced vector field𝑉 𝑖 , and the shift vector 𝛽𝑖 directly computed from𝑉 𝑖 . For
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151



this vector fields again only the angular components 𝑉 𝜙 and 𝛽𝜙 are non-zero. We plot the radial profile of these
variables at 𝜃 = 𝜋/2.

Fig. 1 Radial profiles of 𝑋 𝜙 , the conformal factor 𝜓 and the lapse function 𝑁 at 𝜃 = 𝜋/2.

Fig. 2 Radial profiles of 𝑉 𝜙 and third component of the shit vector 𝛽𝜙 at 𝜃 = 𝜋/2.

Finally, the numerical solution for the other new vector field introduced ¤𝑋 𝑖 is shown in Figure 3. Here only the
angular component, ¤𝑋 𝜙 , is exactly equal to zero. Therefore, we plot the radial profile of ¤𝑋𝑟 and ¤𝑋 𝜃 at 𝜃 = 𝜋/2.
This is the first time that the vector field ¤𝑋 is computed numerically. Being a time derivative, it must be zero as our
spacetime is stationary. Nevertheless, we get values different from zero due to the fact that the tensor ℎ𝑖 𝑗 has been
neglected. In Figures 1– 3, the radial outer boundary is placed at 1.5 times the equatorial star radius 𝑅.

Fig. 3 Radial profiles of ¤𝑋𝑟 and ¤𝑋 𝜃 at 𝜃 = 𝜋/2.
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A deeper analysis of the accuracy has been carried out by considering different resolutions in the radial coordi-
nate as well as different locations of the outer boundary. Placing further the outer boundary, we expect to increase
accuracy in the numerical solutions of our variables. This is expected since placing further the outer boundary
translate into a closer tend to the main decay of the variables as 𝑟 →∞, as we know that spacetime is asymptotically
flat.

In other to numerically check the accuracy of our results, we compute the residuals as the comparison between
the solution obtained with LORENE [6], and our numerical solutions; specifically,

𝜎( 𝑓 ) = max | 𝑓 − 𝑓LORENE |, (4.1)

where 𝑓 and 𝑓LORENE are the numerical solutions computed by us and by LORENE, respectively.

Figure 4 shows the residuals of the lapse function 𝑁 , the conformal factor and the shift vector in logarithmic
scale in terms of the spatial radial resolution also in logarithmic scale, employing the xCFC and modified FCF
equations. Each colour refers to a specific location of the outer boundary; for example, 𝐵/𝑅 = 1.5 means that the
outer boundary has been placed at 1.5 times the equatorial coordinate radius of the neutron star, 𝐵 would be the
size of the radial grid.

Fig. 4 Residuals of the the lapse function 𝑁 (left), conformal factor 𝜓 (center) and shift vector 𝛽𝜙 (right) versus the spatial
resolution of the radial coordinate. Logarithmic scale is employed in both axis. Asterisks correspond to xCFC and circles to
FCF. Each colour/line is linked with a grid size according to the common legend.

In all cases, the main reason to increase accuracy above a certain radial reasonable resolution is the location of
the outer boundary for both the xCFC and the modified FCF equations: the further the outer boundary is located,
the better the numerical accuracy for all the variables. This is a key point in the numerical resolution of the elliptic
sector and we also expect to find a similar behavior for the numerical resolution of the hyperbolic sector in future
works, taking into account that this hyperbolic sector encodes the gravitational radiation of the studied astrophysical
scenario.

We lose some accuracy for the lapse function 𝑁 in the modified FCF case, but this could be because we have to
deal with a spatial derivative of the lapse function in the source terms. This fact does not happen in the xCFC case
(see [3], to check the exact expressions in the elliptic sector for this formulation). The difference in the residuals de-
crease when increasing the radius of the location of the outer boundary and are expected to be comparable for good
resolutions. We want to explore in more details the possibility of including the spatial derivative on the right hand
side of (3.10) in the discretization of the elliptic operator on the left hand side, so checking weather the numerical
accuracy of the lapse function can increase. When radial resolution is increased we observe a slightly improvement
in the values of the residuals, but they cannot be noticed in Figures 4 due to the logarithmic scales of the vertical axis.
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For the vector fields 𝑉 𝑖 and 𝛽𝑖 , the numerical resolution of the modified FCF equations provide a much better
accuracy. In the case of the shift vector 𝛽𝑖 we gain around two orders of magnitude. This is also quite reasonable
since the introduction of the 𝑉 𝑖 vector is strongly related to the shift vector. We want to remind that for the xCFC
case, an elliptic equation for the shift vector is solved, see [3], while in the modified FCF equations the vector 𝑉 𝑖 is
solved and then the shift vector is computed directly from the vector 𝑉 𝑖 definition.

Going from the xCFC to the modified FCF equations, we also have the possibility of including non zero ℎ𝑖 𝑗
values in the source of the equations in the elliptic sector, thus getting better accuracy in the computation of our
numerical variables. This is indeed the case for a rotating neutron star, where a conformally flat metric cannot
reproduce the geometry of this spacetime. This is actually a step for future works: include non-zero values for ℎ𝑖 𝑗 ,
include the corresponding hyperbolic sector, and take into account these terms also in the sources of the equations
of the elliptic sector.

Despite the lack of reduction of the post-newtonian orders of the source terms in equation (3.7), we can take
advantage of the fact that these terms should be neglected up to 1/𝑐6 order to get an estimate of the ℎ𝑖 𝑗 components,
by solving the following elliptic equation:

(Δℎ)𝑖 𝑗 = 2(𝑁𝜓2)−1
(
8𝑁 𝑓 𝑖𝑘 𝑓 𝑗𝑙D𝑙𝜓D𝑘𝜓 − 2𝑁 𝑓 𝑖 𝑗 𝑓 𝑘𝑙D𝑘𝜓D𝑙𝜓 + 𝑓 𝑖𝑘 𝑓 𝑗𝑙D𝑘D𝑙 (𝑁𝜓2)

+(𝐿 ¤𝑋)𝑖 𝑗 + 8𝜋𝑁𝜓10𝑆𝑖 𝑗 − 4𝜋𝑁𝑆∗ 𝑓 𝑖 𝑗
)
.

This point should be further analyzed in next works to check if a better proposal can be obtained. Moreover, we
also want to numerically solve these equations and check our results.

5. Conclusions
We have been accomplished the first step towards a Fully Relativistic Formulation in the Fully Constrained Formal-
ism. Constrained formulations allow to carry out long term simulations without constraint equations violations.
Besides, it posses the properties of local uniqueness, hierarchical resolutions and correct relativistic expansion with
the exception of those terms mentioned in equation (3.7).

It remains for the future to check accuracy in complex numerical simulations, as well as include the hyperbolic
sector of the evolution equations. This has huge impact in the calibration of gravitational waves templates. Another
possible project would be to use leading terms in simplified numerical simulations for cosmological applications,
e.g., to compute gravitational waves estimates in cosmological contexts, where requirements of being far away from
the source (as in the famous quadrupole formula) do not apply.
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New Galilean spacetimes to model an expanding universe
Daniel de la Fuente Benito
Universidad de Oviedo, Spain

Abstract
We introduce a new family relevant in the context of a generalized Newton-Cartan Theory: the Galilean

Generalized Robertson-Walker spacetimes. We study its geometrical structure and analyse the completeness of its
inextensible free falling observers. Additionally, we find some sufficient geometric conditions which guarantee a
global splitting of a Galilean spacetime as a Galilean Generalized Robertson-Walker spacetime.

1. Introduction
General Relativity is so far the most accurate and successful theory to describe the spacetime structure and the
gravitational phenomena. The evolution of the universe on a large scale was aptly described in the first half of the
20th century by means of the Robertson-Walker cosmological models (or fairly, Friedmann-Lemaître-Robertson-
Walker models). These models assume that the matter distribution and the “space relative to the family of observers
commovil with the matter” are homogeneous and isotropic. These hypotheses may be weakened in order to describe
a universe in a more accurate scale. With this objective, much more recently, new cosmological models have been
introduced, as the Generalized Robertson-Walker (GRW) spacetimes [5]. This kind of relativistic spacetimes has
been intensively studied from a mathematical perspective (see, for instance, [8], [12, 13], [15], [19, 20].)

However, the geometric formulation of the Newtonian’s Gravitation, firstly postulated by E. Cartan [10, 11],
after the appearance of the Einstein’s General Relativity Theory, is still of interest and significant for several reasons.

On one hand, it formulates the classical Newtonian gravitation as a covariant theory and shows that certain
results previously considered as characteristic or singular of the theory of Relativity are shared by the (geometric)
gravitational Newton-Cartan Theory. In fact, the Newtonian gravity also arises as a consequence of the curvature of
a connection in the spacetime, which does not come from any semi-Riemannian metric. Moreover, in the geometric
formulation of Newtonian’s Gravity Theory, the spacetime structure is dynamical in the sense that it participates
in the unfolding of physics rather than being a fixed backdrop against which it unfolds (see [16] and classical
references therein).

On the other hand, it allows to establish from an accurate and intrinsic way the limit relation between the
Newtonian theory of Gravitation and General Relativity.

The notion of symmetry is clearly basic in Physics. On a geometrical spacetime model, symmetry is usually
based on the assumption of the existence of a one-parameter group of transformations generated by a Killing or,
more generally, by a conformal vector field (see, [22]). Another important question is that a geometric approach
enables possible generalizations of Newtonian Theory, via the assumption of certain symmetries on Galilean
spacetimes (see Section 2), which are the geometrical “arena" for the Newton-Cartan gravitation. So, in [17] the
author studies the symmetry imposed on a Galilean spacetime by the cosmological principle, obtaining the Galilean
model analogous to the relativistic Robertson-Walker spacetimes.

In this work, we introduce a new family of Galilean geometrical models, which generalize the non-relativistic
Robertson-Walker spacetimes, in the same way as GRW spacetimes generalize the Friedmann-Lemaître-Robertson-
Walker spacetimes: the Galilean Generalized Robertson-Walker (GGRW) spacetimes (Sect. 3). A GGRW
spacetime possesses an infinitesimal symmetry given by the existence of a timelike irrotational conformally
Leibnizian (ICL) vector field. Several geometrical properties and physical interpretations for this family of
spacetimes are given in Section 3, as the possible existence of singularities or the completeness of its free falling
observers. Section 4 is devoted to the study of Galilean spacetimes admitting a timelike irrotational conformally
Leibnizian vector field . We show that an ICL Galilean spacetime must be locally a GGRW spacetime. Finally,
Section 5 is devoted to face the following kind of splitting problems: under what geometrical assumptions an ICL
spacetime globally decomposes as a GGRW spacetime.

2. Set up
Recall that a Leibnizian structure on a (non-relativistic) spacetime 𝑀 is a pair (Ω, 𝑔) consisting of a differential 1-
formΩ ∈ Λ1 (𝑀), nowhere null (Ω𝑝 ≠ 0, ∀𝑝 ∈ 𝑀) and a positive definite metric 𝑔 on its kernel. Specifically, let us
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denote byAn(Ω) = {𝑣 ∈ 𝑇𝑀 , Ω(𝑣) = 0} the smooth 𝑛-distribution induced on𝑀 byΩ. If we denote by Γ(𝑇𝑀) the
set of smooth vector fields on 𝑀 , we may construct the subset Γ(An(Ω)) = {𝑉 ∈ Γ(𝑇𝑀) /𝑉𝑞 ∈ An(Ω), ∀𝑝 ∈ 𝑀}.
So, the map

𝑔 : Γ(An(Ω)) × Γ(An(Ω)) −→ 𝐶∞ (𝑀), (𝑉,𝑊) ↦→ 𝑔(𝑉,𝑊),
is smooth, bilinear, symmetric and positive definite. Hence, 𝑀 is endowed with a sub-Riemannian structure defined
on the bundle An(Ω), i.e., the annihilator of the degenerate metric Ω ⊗ Ω (see [6] and [7], for details). The triad,
(𝑀,Ω, 𝑔)) is called Leibnizian spacetime.
Points of 𝑀 are usually called events. The Euclidean vector space (An(Ω𝑝) , 𝑔𝑝) is called the absolute space

at 𝑝 ∈ 𝑀 , and the linear form Ω𝑝 is the absolute clock at 𝑝. A tangent vector 𝑣 ∈ 𝑇𝑝𝑀 is named spacelike if
Ω𝑝 (𝑣) = 0 and, otherwise, timelike. Additionally, if Ω𝑝 (𝑣) > 0 (resp. Ω𝑝 (𝑣) < 0), 𝑣 points out the future (resp.
the past).

An observer in a Leibnizian spacetime 𝑀 is a timelike future unit smooth curve 𝛾 : 𝐽 −→ 𝑀 , i.e., its velocity
𝛾′ satisfies that Ω(𝛾′(𝑠)) = 1 for all 𝑠 ∈ 𝐽. The parameter 𝑠 is called the proper time of the observer 𝛾. A vector
field 𝑍 ∈ Γ(𝑇𝑀) with Ω(𝑍) = 1 is called a field of observers, this is, its integral curves are observers.
When the smooth distribution An(Ω) is integrable (equivalently, if the absolute clock Ω satisfies Ω ∧ 𝑑Ω = 0),

the Leibnizian spacetime (𝑀,Ω, 𝑔) is said to be locally sincronizable, and making use of the Frobenius Theorem
(see [21]), it may be foliated by a family of spacelike hypersurfaces {F𝜆}. In this case, it is well-known that
each 𝑝 ∈ 𝑀 has a neighbourhood where Ω = 𝑓 𝑑𝑡, for certain smooth functions 𝑓 > 0, 𝑡, and the hypersurfaces
{𝑡 = constant} locally coincide with a leaf of the foliation F . Thus, any observer may be synchronized through the
“compromise time” 𝑡, obtained rescaling its proper time. In the more restrictive case 𝑑Ω = 0, then the Leibnizian
spacetime (𝑀,Ω, 𝑔) is called proper time locally synchronizable, and one has, locally, Ω = 𝑑𝑡. Now, observers are
synchronized directly by its proper time (up to a constant). WhenΩ is exact, Ω = 𝑑𝑡 for some function 𝑡 ∈ 𝐶∞ (𝑀),
which is called the absolute time function. In this case, any observer may be assumed to be parametrized by 𝑡.
Notice that the notion of (local and local proper time) synchronizability is intrinsic to the Leibnizian structure,
applicable for every observer, in contrast to the relativistic setting, where the analogous concepts have meanings
only for fields of observers.

According to [7], a field of observers is called Leibnizian if the stages Φ𝑠 of its local flows are Leibnizian
diffeomorphisms, that is, they preserve the absolute clock and space, i.e.,

Φ∗𝑠Ω = Ω, and Φ∗𝑠𝑔 = 𝑔.

On the other hand, the inertia principle must be codified through a connection on the spacetime. However, a
Leibnizian structure has not a canonical affine connection associated. Then, it is required to introduce a compatible
connection with the absolute clock Ω and the space metric 𝑔, i.e., a connection ∇ such that
(a) ∇Ω = 0 (equivalently, Ω(∇𝑋𝑌 ) = 𝑋 (Ω(𝑌 )) for any 𝑋,𝑌 ∈ Γ(𝑇𝑀)).
(b) ∇𝑔 = 0 (i.e., 𝑍 (𝑔(𝑉,𝑊)) = 𝑔(∇𝑍𝑉,𝑊) + 𝑔(∇𝑍𝑊,𝑉) for any 𝑍 ∈ Γ(𝑇𝑀) and 𝑉,𝑊 spacelike vector fields).
Such a connection is named Galilean. A Galilean spacetime (𝑀,Ω, 𝑔,∇) is a Leibnizian spacetime endowed
with a Galilean connection ∇. In addition, ∇ is said symmetric if its torsion vanishes identically (Tor∇ (𝑋,𝑌 ) =
∇𝑋𝑌 −∇𝑌 𝑋− [𝑋,𝑌 ] ≡ 0). From a physical point of view, a symmetric connection is desirable since it is completely
determined by its geodesics, i.e., by the free falling observers of 𝑀 . From now on, we will only consider symmetric
Galilean connections on the spacetime.

Given two Galilean spacetimes (𝑀,Ω, 𝑔,∇) and (𝑀 ′,Ω′, 𝑔′,∇′), a diffeomorphism 𝐹 : 𝑀 −→ 𝑀 ′ is said to
be Galilean if 𝐹∗Ω′ = Ω, 𝐹∗𝑔′ = 𝑔 and 𝐹∗∇′ = ∇, i.e., ∇′

𝑑𝐹 (𝑋 )𝑑𝐹 (𝑌 ) = ∇𝑋𝑌 .
For each fixed field of observers 𝑍 on aGalilean spacetime (𝑀,Ω, 𝑔,∇), the gravitational field induced by∇ in 𝑍

is given by the spacelike vector field G = ∇𝑍 𝑍 . The vorticity or Coriolis field of 𝑍 is the 2−form 𝜔(𝑍) = 1
2Rot(𝑍),

defined as
𝜔(𝑍) (𝑉,𝑊) = 1

2

(
𝑔(∇𝑉 𝑍,𝑊) − 𝑔(∇𝑊 𝑍,𝑉)

)
∀𝑉,𝑊 ∈ Γ(An(Ω)).

The main result of [7, Th.5.27] claims that, for a fixed field of observers 𝑍 on a Leibnizian spacetime (𝑀,Ω, 𝑔)
with 𝑑Ω = 0, the set of all symmetric Galilean connections is bijectively mapped onto

(
Γ(𝑇𝑀),Λ2 (An(Ω))

)
. Each

symmetric Galilean connection ∇ is mapped to
(
G(𝑍),Rot(𝑍)

)
. Thus, the gravitational field and the vorticity of a

field of observers determine a unique symmetric Galilean geometry of the spacetime.
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Additionally, a Leibnizian field of observers 𝑍 in a Galilean spacetime (𝑀,Ω, 𝑔,∇) is named Galilean if it is
affine for ∇, that is, 𝐿𝑍∇ = 0, where 𝐿 denotes the Lie derivative. Finally, a Galilean spacetime is said Newtonian
if the (symmetric) connection ∇ restricted to the spacelike vectors is flat, and it admits an irrotational Galilean field
of observers. This kind of spacetimes has traditionally represented the classical (non-relativistic) geometric model
of gravity.

3. Galilean Generalized Robertson-Walker spacetimes
In this section we introduce a new family of Galilean geometric models, which are the classical version of the
relativistic Generalized Robertson-Walker spacetimes defined in [5].

Definition 3.1 Let 𝐼 ⊆ R be a real interval, (𝐹, ℎ) a 𝑛-dimensional connectedRiemannianmanifold, and 𝑓 ∈ 𝐶∞ (𝐼)
a smooth positive function on 𝐼. A Galilean spacetime (𝑀,Ω, 𝑔,∇) is called Galilean Generalized Robertson-
Walker spacetime (GGRW) if 𝑀 = 𝐼 × 𝐹, Ω = 𝑑𝜋𝐼 , 𝑔 is the restriction to the bundle An(Ω) of the following
(degenerate) metric on 𝑀 ,

𝑔 = ( 𝑓 ◦ 𝜋𝐼 )2 𝜋∗𝐹 ℎ, (3.1)
where 𝜋𝐼 , 𝜋𝐹 are the canonical projections onto the open interval 𝐼 and the fiber 𝐹 respectively, and ∇ is the only
symmetric Galilean connection on 𝑀 such that

∇𝜕𝑡 𝜕𝑡 = 0, 𝑎𝑛𝑑 Rot 𝜕𝑡 = 0, (3.2)

where 𝜕𝑡 = 𝜕/𝜕𝑡 is the global coordinate vector field associated to 𝑡 := 𝜋𝐼 .
The vector field 𝜕𝑡 defines a field of observers in 𝑀 (Ω(𝜕𝑡 ) = 1), which we will call commovil observers, by the

similarity with the relativistic Robertson-Walker spacetimes. Then, the conditions (3.2) in above definition mean
that commovil observers are free falling and they do not rotate. Notice that from [7, Th.5.27], the conditions (3.2)
determine the (symmetric) Galilean connection on 𝑀 .

Example Let us consider a GGRW with 𝐼 = R and 𝐹 = R𝑛 endowed with the usual Euclidean metric. If
𝑓 (𝑡) = constant, then the Galilean connection coincides with the standard flat connection of the affine space R𝑛+1.
In addition, the commovil observers satisfy the necessary conditions to assure the Newtonian character of this
spacetime. More physically relevant examples are given in the next section.

3.1. Completeness of free falling observers in a GGRW spacetime
We now proceed to analyze when the inextensible free falling trajectories in a GGRW spacetime are complete.
Physically we are looking for geometric assumptions that guarantee that every free falling observer lives forever.
First, we have an analogous result to the geodesic normalization lemma in semi-Riemannian manifolds.

Lemma 3.2 Let 𝛾 be a geodesic in a GGRW spacetime. Then, Ω(𝛾′) is constant along the trajectory of 𝛾.

The relevant cases correspond with Ω(𝛾′) = 0 or 1. The first one (Ω(𝛾′) = 0) means that 𝛾 is spacelike and
contained in a leaf F𝑡 of the foliation of Ω. As ∇ coincides with the Levi-Civita connection of (F𝑡 , 𝑓 (𝑡)2 ℎ), the
completeness of this kind of geodesics is equivalent to the geodesic completeness of (𝐹, ℎ). Thus, from now on
we will deal with free falling observers (𝛾 geodesic with Ω(𝛾′) = 1).

Theorem 3.3 AGGRW spacetime is geodesically complete if and only if 𝐼 = R and the fiber (𝐹, ℎ) is (geodesically)
complete.

4. Irrotational conformally Leibnizian spacetimes
In this section we present a wider family of Galilean spacetimes which locally exhibit the structure of a GGRW
spacetime. As a previous step, we introduce the concept of conformally Leibnizian field of observers, generalizing
the well-known notion of Leibnizian observer.

Definition 4.1 Let (𝑀,Ω, 𝑔) be a Leibnizian spacetime. A vector field 𝑋 is called spatially conformally Leibnizian
vector field if

𝐿𝑋Ω = 𝜇Ω, (4.1)
and the Lie derivative of the absolute space metric satisfies

𝐿𝑋 𝑔 = 2𝜆 𝑔, (4.2)

for some smooth functions 𝜆, 𝜇 ∈ 𝐶∞ (𝑀). If, additionally, both functions coincide, i.e., 𝜆 = 𝜇, then 𝑋 is named
conformally Leibnizian vector field.
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Note that a conformally Leibnizian vector field is Leibnizian if and only if the conformal factor 𝜆 is identically
zero [7].

Remark 4.2 Condition (4.1) may be also expressed as

𝑑Ω(𝑋,𝑌 ) + 𝑌 (Ω(𝑋)) = 𝜇Ω(𝑌 ), ∀𝑌 ∈ Γ(𝑇𝑀),

and means that distribution An(Ω) is invariant along the flow of vector field 𝑋 . So, if this distribution is integrable,
the flow of 𝑋 carries each leaf of the foliation to another one. Analogously, assumption (4.2) is equivalent to

𝑋 (𝑔(𝑉,𝑊)) = 𝜆 𝑔(𝑉,𝑊) + 𝑔( [𝑋,𝑉],𝑊) + 𝑔( [𝑋,𝑊], 𝑉), ∀𝑉,𝑊 ∈ Γ(An(Ω)).

The following result shows that GGRW spacetimes admit a timelike conformally Leibnizian vector field.

Proposition 4.3 Let (𝑀 = 𝐼 × 𝐹,Ω = 𝑑𝑡, 𝑔,∇) be a GGRW spacetime with scale factor 𝑓 ∈ 𝐶∞ (𝐼). Then, the
vector field 𝐾 := ( 𝑓 ◦ 𝜋𝐼 ) 𝜕𝑡 is irrotational and conformally Leibnizian and, consequently, it satisfies the identity

∇𝑋𝐾 = ( 𝑓 ′ ◦ 𝜋𝐼 ) 𝑋, ∀𝑋 ∈ Γ(𝑇𝑀). (4.3)

Definition 4.4 Let (𝑀,Ω, 𝑔,∇) be a Galilean spacetime, whose absolute clock is closed (𝑑Ω = 0). If 𝑀 admits a
timelike vector field 𝐾 ∈ Γ(𝑇𝑀) satisfying

∇𝑋𝐾 = 𝜌 𝑋, ∀𝑋 ∈ Γ(𝑇𝑀), 𝑤ℎ𝑒𝑟𝑒 𝜌 ∈ 𝐶∞ (𝑀), (4.4)

𝑀 is called Irrotational Conformally Leibnizian spacetime (ICL).

Remark 4.5 Notice that condition (4.4) directly implies that 𝐾 is conformally Leibnizian and Rot(𝐾) (𝑉,𝑊) = 0,
for all spacelike vector fields 𝑉,𝑊 .

As a first consequence of Definition 4.4, we obtain that functions Ω(𝐾) and 𝜌 are constant on each leaf of the
foliation induced by Ω.

Lemma 4.6 Let (𝑀,Ω, 𝑔,∇) be a ICL spacetime with irrotational conformally Leibnizian vector field 𝐾 and
conformal factor 𝜌. Then

𝑉
(
Ω(𝐾)) = 0 𝑎𝑛𝑑 𝑉 (𝜌) = 0, ∀𝑉 ∈ Γ(An(Ω)).

We have just seen that each GGRW is an ICL spacetime. Next theorem ensures that any ICL spacetime is locally
a GGRW spacetime.

Theorem 4.7 Let (𝑀,Ω, 𝑔,∇) be an ICL spacetime. For each 𝑝 ∈ 𝑀 , there exist an open neighbourhood of 𝑝,U,
and a Galilean diffeomorphism Ψ : 𝑁 −→ U, where 𝑁 is a GGRW spacetime.

5. Global GGRW decompositions
We know that an ICL spacetime is locally a GGRW spacetime. Now, our aim here consists in looking for additional
assumptions on the geometry of an ICL spacetime which lead to a global splitting as a GGRW spacetime. This type
of question has been yet discussed several times in the relativistic setting (see for instance, [8], [14], [15] and [4]),
i.e., under what conditions on the geometry of a relativistic spacetime, this admits a global decomposition as a
warped product space or, in particular, as a GRW spacetime.

Theorem 5.1 A Gailean spacetime
(
𝑀,Ω, 𝑔,∇) , whose 1-form Ω is exact, admits a global decomposition as a

GGRW spacetime if and only if it is an ICL spacetime with a timelike irrotational conformally vector field 𝐾 , such
that the flow of the associated field of observers, 𝑍 := 1

Ω(𝐾 )𝐾 , is well defined and onto in a domain 𝐼 × F for some
interval 𝐼 ⊆ R and some leaf of the foliation F induced by Ω.

Remark 5.2 (i) Note that the hypothesis on the absolute clockΩ automatically holds when the spacetime is simply
connected. (ii) Observe that the assumption on the flow of 𝑍 trivially holds when 𝑍 is complete.

Taking into account the previous Remark, we can assert
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Corollary 5.3 Let
(
𝑀,Ω, 𝑔,∇) be an ICL spacetime with timelike irrotational conformally Leibnizian vector field

𝐾 . If the absolute clock Ω is exact and 1
Ω(𝐾 )𝐾 is complete, then 𝑀 globally splits as a GGRW spacetime.

To end this work, we present a global splitting result when the spacetime is spatially compact, that is, when the
leaves of the spacelike foliation are compact.

Theorem 5.4 Let
(
𝑀,Ω, 𝑔,∇) be an ICL spacetime with Ω exact. If the leaves of the foliation induced by Ω are

compact, then 𝑀 is a GGRW spacetime.
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Abstract

This work aims to develop and implement a numerical model, including dispersion suitable for tsunami
simulations. A latitude-longitude coordinate formulation to account for the effects of curvature is presented. A
relaxation procedure is then applied to obtain a system of balance laws amenable to be discretized with explicit
and efficient numerical methods. Here we follow [5] to develop an efficient finite-volume numerical method. The
resulting numerical model has been applied to an experimental test case, which shows the efficiency and accuracy
of the method.

1. Introduction
In fluid dynamics, dispersion of waves refers, in general, to frequency dispersion. That means that waves of
different wavelengths travel at different celerity. Water waves propagate on the water surface, with gravity and
surface tension as the restoring forces. As a result, water with a free surface is considered a dispersive medium. It
is well-known that the usual shallow water equations (SW) do not consider the effects of dispersive waves.
Figure 1 illustrates this fact showing snapshots of the evolution of a wave over a plane beach. There, one can

see how the (SW) (in black) tend to predict faster velocity for the front of the wave when compared with laboratory
data (in red). The Stokes linear theory (or Airy wave theory) explains this situation. It states that the speed of wave
propagation, or more precisely the phase velocity 𝐶𝐴𝑖𝑟 𝑦 , is a quantity that is given in terms of the typical depth 𝐻
and the local wave-number 𝑘 , more explicitly

𝐶2𝐴𝑖𝑟 𝑦 = 𝑔𝐻
tanh(𝑘𝐻)
𝑘𝐻

, (1.1)

whereas the phase velocity of the (SW) is given by 𝐶2𝑆𝑊 = 𝑔𝐻. The previous relation also called a linear dispersion
relation, reveals the dispersive character of the water wave theory. Therefore (SW) cannot take into account the
effects associated with dispersive waves. That also explains the shifting on the computed numerical simulation in
Figure 1, since the speed propagation of the (SW), 𝐶𝑆𝑊 , is faster than the one given by the linear theory, 𝐶𝐴𝑖𝑟 𝑦 .
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Fig. 1 Comparison of experiments data (red) and simulated ones with (SW) (black) at different times.

Concerning mathematical models that can simulate dispersive water waves, a great effort has been made in
recent years to derive systems for shallow water flows that include long, non-linear water waves, such as Tsunami
water waves. The development of non-hydrostatic pressure models for coastal water waves has been the topic of
many studies over the past 30 years. These models can solve many relevant features of coastal water waves, such
as dispersion, non-linearity, shoaling, refraction, diffraction, and run-up. The central hypothesis in the derivation
consists of splitting the pressure into a hydrostatic and a non-hydrostatic part (see Casulli [6]). In this work, the
non-hydrostatic pressure system derived by Bristeau et al. in [3] written in spherical coordinates is considered.
Concerning the nature of non-hydrostatic pressure systems, it is well known that they differ from a hyperbolic

system and responds instead to a mixed hyperbolic and elliptic problem. Due to the mixed hyperbolic-elliptic
nature of non-hydrostatic systems, the complexity of the corresponding numerical schemes increases. For example,
the incompressibility equation appearing in the equations introduced in [3] makes the system a hyperbolic-elliptic
problem. This restriction makes that explicit schemes cannot be applied to the system since they may have a
very restrictive stability condition, or even worse, it may result in an unconditionally unstable method. Therefore,
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implicit schemes must be applied, and several works can be found in the literature (see, for example, [11, 16, 17]
and references therein). Numerical methods applied to non-hydrostatic pressure systems typically use a projection-
correction type scheme. Usually, it combines finite-volume techniques to solve the underlying hyperbolic part in
a first step and finite-differences or finite-elements for solving the elliptic or non-hydrostatic dispersive terms in a
second, involving the resolution of a linear system at each time step.
However, there is a recent new alternative to simulate dispersive water waves with hyperbolic PDE systems

(see [2, 9, 10, 15] and references therein). In the same vein, we propose a novel first-order system of balance laws
in this work that can be seen as a modification of the model. The novel system is obtained using a reformulation
of the original governing equations written in spherical coordinates by coupling the divergence constraint of the
velocity with the remaining balance laws. That is done with the aid of an evolution equation for the depth-integrated
non-hydrostatic pressure, similar to the so-called hyperbolic divergence cleaning considered in [9, 10]. Therefore,
the final governing PDE system introduced here is a system of balance laws and is thus amenable for an explicit
discretization via high-order numerical schemes.
The organization of this paper is as follows: in the next section, the PDE system in spherical coordinates is

introduced. In Section 3, some references for the design of a well-balanced Finite Volume numerical scheme are
given. Some numerical comparisons are presented in Section 4 to check the efficiency and the ability of the method
to simulate planetary waves or tsunami waves over realistic bathymetry. Finally, some conclusions are drawn.

2. PDE system
2.1. The hyperbolic-elliptic non-hydrostatic pressure system in spherical coordinates
Weconsider the non-hydrostatic systemfirst derived byBristeau et al in [3] that canmodel dispersive non-hydrostatic
free-surface flows. The governing PDE are obtained by a process of depth-averaging of the incompressible Euler
equations with respect to the vertical direction. The total pressure is decomposed into a sum of hydrostatic and
non-hydrostatic pressure. The governing equations are given by




𝜕𝑡ℎ + 𝜕𝑥𝑞𝑥 + 𝜕𝑦𝑞𝑦 = 0,

𝜕𝑡𝑞𝑥 + 𝜕𝑥
(
𝑞2𝑥
ℎ
+ 𝑞𝑝

)
+ 𝜕𝑦

( 𝑞𝑥𝑞𝑦
ℎ

)
+ (𝑔ℎ + 2𝑝) 𝜕𝑥𝜂 − 2𝑝𝜕𝑥ℎ = 0,

𝜕𝑡𝑞𝑦 + 𝜕𝑥
( 𝑞𝑥𝑞𝑦
ℎ

)
+ 𝜕𝑦

(
𝑞2𝑦

ℎ
+ 𝑞𝑝

)
+ (𝑔ℎ + 2𝑝) 𝜕𝑦𝜂 − 2𝑝𝜕𝑦ℎ = 0,

𝜕𝑡𝑞𝑤 + 𝜕𝑥
( 𝑞𝑥𝑞𝑤

ℎ

)
+ 𝜕𝑦

( 𝑞𝑦𝑞𝑤
ℎ

)
= 2𝑝,

𝜕𝑥𝑞𝑥 + 𝜕𝑦𝑞𝑦 + 𝑞𝑥
ℎ
𝜕𝑥 (ℎ − 2𝜂) +

𝑞𝑦

ℎ
𝜕𝑦 (ℎ − 2𝜂) + 2𝑞𝑤

ℎ
= 0,

(2.1)

where 𝑔 is the gravity; ℎ is the thickness of the water layer; 𝐻 is the bottom depth and 𝑞𝑥 , 𝑞𝑦 , 𝑞𝑤 are the
depth-averaged discharges in the 𝑥, 𝑦, and 𝑧 direction respectively. The depth-averaged non-hydrostatic pressure is
denoted by 𝑝 =

𝑞𝑝

ℎ
.

We will describe here a summary of the followed process to write the governing equations in spherical
coordinates. First, we will consider the underlying hydrostatic system (SW) that can be obtained from (2.1) by
setting 𝑝 = 0 and suppressing the last incompressibility condition. To do that, we follow [5], and the underlying
hydrostatic (SW) reads




𝜕𝑡ℎ𝜎 + 1
𝑅

(
𝜕𝜃

(
𝑄 𝜃
cos(𝜑)

)
+ 𝜕𝜑𝑄𝜑

)
= 0,

𝜕𝑡𝑄 𝜃 + 1
𝑅
𝜕𝜃

(
𝑄2𝜃

ℎ𝜎 cos(𝜑)

)
+ 1
𝑅
𝜕𝜑

(
𝑄 𝜃𝑄𝜑

ℎ𝜎

)
− 𝑄 𝜃𝑄𝜑

𝑅ℎ𝜎
tan(𝜑) + 𝑔ℎ𝜎

𝑅 cos2 (𝜑) 𝜕𝜃𝜂𝜎 = 0,

𝜕𝑡𝑄𝜑 + 1
𝑅
𝜕𝜃

(
𝑄 𝜃𝑄𝜑

ℎ𝜎 cos(𝜑)

)
+ 1
𝑅
𝜕𝜑

(
𝑄2𝜑

ℎ𝜎

)
+

(
𝑄2𝜑

𝑅ℎ𝜎
+ 𝑔ℎ𝜎𝜂𝜎
𝑅 cos(𝜑)

)
tan(𝜑) + 𝑔ℎ𝜎

𝑅 cos(𝜑) 𝜕𝜑𝜂𝜎 = 0,

(2.2)

where
ℎ𝜎 = ℎ cos(𝜑), 𝐻𝜎 = 𝐻 cos(𝜑), 𝜂𝜎 = ℎ𝜎 − 𝐻𝜎 , 𝑄𝜑 = 𝑞𝜑 cos(𝜑), 𝑄 𝜃 = 𝑞𝜃 cos(𝜑),
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denote the conserved variables, 𝑅 is the radius, (𝜃, 𝜑) the longitude and latitude, and 𝑞𝜃 , 𝑞𝜑 are the longitudinal
and latitudinal averaged discharges in the normal direction (Fig. 2 ).

Fig. 2 Sketch of the unknowns for the system in spherical coordinates.

Now, we proceed to include the non-hydrostatic terms as well as the incompressibility condition written in
spherical coordinates. To do that, as in [5], we consider the gradient and divergence operators in spherical
coordinates:

∇( 𝑓 ) =
(

1
𝑅 cos(𝜑) 𝜕𝜃 𝑓

1
𝑅
𝜕𝜑ℎ

)
, ∇ · ®𝑓 = 1

𝑅 cos(𝜑)
(
𝜕𝜃 𝑓1 + 𝜕𝜑 ( 𝑓2 cos(𝜑))

)
.

Taking that into account, the non-hydrostatic pressure system (2.1) can be written in spherical coordinates as
follows 



𝜕𝑡 ℎ𝜎 + 1
𝑅

(
𝜕𝜃

(
𝑄 𝜃
cos(𝜑)

)
+ 𝜕𝜑𝑄𝜑

)
= 0,

𝜕𝑡𝑄 𝜃 +
1
𝑅
𝜕𝜃

(
𝑄2𝜃

ℎ𝜎 cos(𝜑) +
𝑄𝑝

cos(𝜑)

)
+ 1
𝑅
𝜕𝜑

(
𝑄 𝜃𝑄𝜑

ℎ𝜎

)
− 𝑄 𝜃𝑄𝜑

𝑅ℎ𝜎
tan(𝜑)

+ 𝑔ℎ𝜎 + 2𝑝𝜎
𝑅 cos2 (𝜑) 𝜕𝜃𝜂𝜎 − 2

𝑝𝜎

𝑅 cos2 (𝜑) 𝜕𝜃 ℎ𝜎 = 0

𝜕𝑡𝑄𝜑 + 1
𝑅
𝜕𝜃

(
𝑄 𝜃𝑄𝜑

ℎ𝜎 cos(𝜑)

)
+ 1
𝑅
𝜕𝜑

(
𝑄2𝜑
ℎ𝜎
+𝑄𝑝

)

+
(
𝑄2𝜑
𝑅ℎ𝜎

+ 𝑔ℎ𝜎𝜂𝜎
𝑅 cos(𝜑)

)
tan(𝜑) + 𝑔ℎ𝜎 + 2𝑝𝜎

𝑅 cos(𝜑) 𝜕𝜑𝜂𝜎 − 2 𝑝𝜎
cos(𝜑) 𝜕𝜑ℎ𝜎 = 0,

𝜕𝑡𝑄𝑤 + 1
𝑅

(
𝜕𝜃

(
𝑄 𝜃𝑄𝑤
ℎ

)
+ 𝜕𝜑

(
𝑄𝜑𝑄𝑤

ℎ

))
= 2𝑝𝜎 ,

1
𝑅
𝜕𝜃

(
𝑄 𝜃
cos(𝜑)

)
+ 𝜕𝜑𝑄𝜑 + 1

𝑅

(
𝑄 𝜃
ℎ𝜎

𝜕𝜃

(
ℎ𝜎 − 2𝜂𝜎
cos(𝜑)

)
+ 𝑄𝜑
ℎ𝜎

𝜕𝜑

(
ℎ𝜎 − 2𝜂𝜎
cos(𝜑)

))
+ 2𝑤𝜎 = 0

(2.3a)

(2.3b)

(2.3c)

(2.3d)

(2.3e)

where 𝑄𝑝 = ℎ𝑝𝜎 , 𝑝𝜎 = 𝑝 cos(𝜑), and 𝑄𝑤 = 𝑞𝑤 cos(𝜑).

2.2. The relaxed non-hydrostatic pressure system of balance laws in spherical coordinates
Here we follow the standard ideas described in [9, 10], where authors obtain a hyperbolic relaxation system
from the hyperbolic-elliptic equations introduced in [3] in Cartesian coordinates. Therefore, we replace the last
incompressibility condition in (2.3e) by the relaxed equation

𝜕𝑡𝑄𝑝 + 1
𝑅

(
𝜕𝜃

(
𝑄 𝜃𝑄𝑝

ℎ𝜎 cos(𝜑) + 𝑐
2 𝑄 𝜃
cos(𝜑)

)
+ 𝜕𝜑

(
𝑄𝜑𝑄𝑝

ℎ𝜎 cos(𝜑) + 𝑐
2𝑄𝜑

))

+𝑐
2

𝑅

𝑄 𝜃
ℎ𝜎

𝜕𝜃

(
ℎ𝜎 − 2𝜂𝜎
cos(𝜑)

)
+ 𝑐

2

𝑅

𝑄𝜑

ℎ𝜎
𝜕𝜑

(
ℎ𝜎 − 2𝜂𝜎
cos(𝜑)

)
= −2𝑐2𝑤𝜎 ,

(2.4)

where 𝑐 = 𝛼
√
𝑔𝐻0 is a given constant celerity, 𝐻0 being a typical still water depth and 𝛼 > 1. The approximation

is based on a modified system in which the divergence constraint on the velocity field is coupled with the other
conservation laws following the ideas of the so-called hyperbolic divergence cleaning techniques (see [8–10, 19]).
We suggest a formulation in which the divergence errors are transported with a finite speed 𝑐.

Remark 1 Note that when 𝛼→∞, system (2.3a)-(2.3d) and (2.4) formally converges to system (2.3a)-(2.3e).

Remark 2 Note that when 𝛼 = 0, and we consider an initial condition 𝑤 = 𝑝 = 0, then we recover the classical
(SW) in spherical coordinates.
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3. Numerical scheme
In this work, we have adapted the ideas introduced in [5] to obtain an explicit high order well-balanced method
for the system of balance laws (2.3a)-(2.3d) and (2.4). A finite volume method is considered based on a first-order
path-conservative scheme and high-order reconstruction operator.
Structured grids on the 𝜃 − 𝜑 plane are considered. We use the 𝐻𝐿𝐿 scheme written as a Polynomial Viscosity

Method following [7] and a third order reconstruction operator described in [12], that has a compact stencil. We
use the three step TVD RK method [14] that is also third order accurate in time. Therefore, the resulting scheme is
third order accurate in space and time. The CFL condition reads as follows:

Δ𝑡 = 𝐶𝐹𝐿min




𝑅Δ𝜃Δ𝜑 cos(𝜑𝑖)(
𝑄 𝜃,𝑖
ℎ
+

√︁
𝑔ℎ𝑖 + 𝑝𝑖 + 𝑐2

)
Δ𝜑 +

(
𝑄𝜑,𝑖

ℎ
+

√︁
𝑔ℎ𝑖 + 𝑝𝑖 + 𝑐2

)
Δ𝜃



, (3.1)

0 ≤ 𝐶𝐹𝐿 ≤ 1,where Δ𝜃 and Δ𝜑 are the mesh sizes in the 𝜃 and 𝜑 directions. To speed up the simulations, a parallel
GPU implementation has been performed following the ideas described in [4, 12, 18], and in all the numerical test
we set 𝛼 = 3 or 𝛼 = 0 to account for non-hydrostatic or hydrostatic simulations respectively.

4. Numerical results
In this section, we simulate the evolution of a tsunami in the south-western coast of Chile to check the performance
of the numerical model and its ability to simulate planetary waves or tsunami waves over a realistic bathymetry.
We remark that although (𝜃, 𝜑) are expressed in radians in the description of the numerical method, the

description of the computational domains will be given in degrees, as it is usual in geophysics. Thus, the notation
(𝜃, �̄�) will be used to represent the longitude and latitude in degrees.
We consider a uniform Cartesian grid of the rectangular domain [270, 294] × [−30,−15] in the 𝜃 − �̄� plane (in

degrees) with Δ�̄� = Δ𝜃 = 1′′, that is 2880×1800 cells. The mean radius of the Earth is set to 𝑅 = 6371009.4𝑚, and
the CFL parameter is set to 0.8. Open boundary conditions are prescribed at the four boundaries. The integration
time was [0, 𝑇], 𝑇 = 10000 𝑠. The topo-bathymetry (see Fig. 3) of the area has been interpolated from the ETOPO1
Global Relief Model (see [1]). Next, a seafloor deformation generated by an earthquake has been computed using
the Okada model. This seafloor deformation is instantaneously transmitted to the water column to generate the
initial tsunami profile (see the perturbation on the free-surface in Fig. 3). The initial velocities, as well as the
non-hydrostatic pressure, are set to zero. Concerning the numerical treatment of wet/dry fronts, here we follow
the ideas described in [13], adapted to the reconstruction operator defined in [12]. Some temporal series provided

Fig. 3 Left, the topo-bathymetry of the south-western coast of Chile. Right, the free-surface initial condition computed with
the Okada model and a sketch of the displacement of the Dart buoys.

by Dart Buoys located at 𝐷𝐵1 = (273.659,−17.982), 𝐷𝐵2 = (286.571,−20.473), 𝐷𝐵3 = (286.017,−26.743)
are given (see Fig. 3). We are interested in compare time series provided by the Dart buoys in the three locations
against the computed numerical simulations from the new non-hydrostatic model.
Fig. 4 shows the numerical results for the free-surface elevation obtained with the hydrostatic (SW) (𝛼 = 0) and

with the non-hydrostatic model (𝛼 = 3) at times 𝑇 = 1500 𝑠 and 𝑇 = 4500 𝑠. There it can be observed the standard
dispersive pattern obtained with a non-hydrostatic dispersive model.
Figs. 5-7 show the comparison between the numerical computed temporal series and the field data provided

by the Dart Buoys. The comparison exhibits the ability of the presented non-hydrostatic model to capture high-
frequency dispersive waves in contrast with the hydrostatic system (SW). Moreover, the results agree with the
Stokes linear theory: the leading wave given by the hydrostatic model tends to propagate faster than the one given
by the non-hydrostatic model, and the amplitude of the front wave tends to be more accurate according to the
field data. Therefore both amplitude and frequency of the waves are captured on all wave gauges successfully by
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Fig. 4 Free surface elevation at times 𝑇 = 1500 and 𝑇 = 4500 (left and right resp.) The numerical results obtained with the
hydrostatic model (𝛼 = 0) are placed in the upper panels, and the ones obtained with the non-hydrostatic model (𝛼 = 3) are
placed at the lower panels.
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Fig. 5 Time series comparison against field data given by the Dart Buoy 𝐷𝐵1.
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Fig. 6 Time series comparison against field data given by the Dart Buoy 𝐷𝐵2.
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Fig. 7 Time series comparison against field data given by the Dart Buoy 𝐷𝐵3.

Simulated time: 10000 𝑠. Third order scheme
Model Comput. time # times FTRT

Hydrostatic SW (𝛼 = 0) 659.29 15.17
Non-hydrostatic (𝛼 = 3) 1271.92 7.86

Tab. 1 Computational effort. Wall-clock times on a NVIDIA Tesla V100.

the non-hydrostatic model. The comparison with experimental data emphasizes the need to consider a dispersive
model to capture the waves’ shape faithfully.
Table 1 shows the execution times on a NVIDIA Tesla V100 GPU for 𝛼 = 0 (SW) and 𝛼 = 3. In view of the

obtained results, we can conclude that the non-hydrostatic model can achieve a good computational performance
with an additional computational cost that is only about 1.93 times the cost of a simple (SW) simulation.

5. Conclusions
Anewfirst-order system of balance laws for shallow dispersive/non-hydrostatic free surface flows has been proposed
to incorporate dispersive effects in the propagation of waves. The model is written in spherical coordinates to take
into account the curvature effects of the Earth. The presented model corresponds to a relaxed approximation of
the dispersive system derived by Bristeau et al in [3] written in spherical coordinates. The relaxation procedure
follows ideas presented in [9, 10]. The big advantage of our new reformulation is that it can be easily discretized
with explicit and high order accurate numerical schemes for systems of balance laws, without requiring the solution
of an elliptic problem at each time step.
The numerical scheme employed here follows the ideas presented in [4,7,12]. As it can be seen in the numerical

test, the numerical model can simulate dispersive water waves.
To allow simulations faster than real-time, an efficient GPU implementation of the numerical method has been

carried out. The wall-clock times needed for non-hydrostatic simulations with the new model proposed in this
paper are at most a factor of 1.93 higher than the wall clock times needed for a simple shallow water model, but
which is not able to capture the correct dispersion characteristics of non-hydrostatic water waves.
The proposed numerical model presented in this work provides an efficient and accurate approach to model

dispersive effects in the propagation of waves near coastal areas and intermediate waters.
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New contributions to the control of PDEs and their applications
Enrique Fernández-Cara1
Universidad de Sevilla, Spain

Abstract

This paper deals with some recent achievements in control theory. Specifically, we will consider the null
controllability problem for a quasi-linear parabolic PDE. We present some theoretical and numerical results. We
also exhibit the results of a numerical experiment.

1. Introduction
Let Ω ⊂ R𝑁 be an open bounded regular domain (𝑁 ≤ 3) and let 𝑇 > 0 be given. We will mainly consider the
system 


𝑦𝑡 − ∇ · (𝑎(𝑦)∇𝑦) = 𝑣1̃𝜔 , (𝑥, 𝑡) ∈ 𝑄 := Ω × (0, 𝑇),
𝑦 = 0, (𝑥, 𝑡) ∈ Σ := 𝜕Ω × (0, 𝑇),
𝑦(𝑥, 0) = 𝑦0 (𝑥), 𝑥 ∈ Ω.

(1.1)

Here, we assume that 𝜔 ⊂⊂ Ω is a nonempty open set (the control domain), 1̃𝜔 ∈ 𝐶∞0 (Ω) satisfies 0 < 1̃𝜔 ≤ 1
in 𝜔 and 1̃𝜔 = 0 outside 𝜔 and 𝑎 ∈ 𝐶3 (R) possesses bounded derivatives of order ≤ 3 and satisfies

0 < 𝑚 ≤ 𝑎(𝑟) ≤ 𝑀 ∀𝑟 ∈ R.

Obviously, we can interpret the control 𝑣 = 𝑣(𝑥, 𝑡) as a heat source term and the state 𝑦 = 𝑦(𝑥, 𝑡) as the associated
temperature distribution in 𝑄.
We will be concerned with the theoretical and numerical local null controllability of (1.1). Specifically, we will

establish the existence of null controls when the initial state 𝑦0 is small, we will present a related iterative algorithm
and we will describe a numerical method for their computation.
The ideas and results that follow have been taken from [6] and [3]. They can be adapted to the solution of many

other control problems; see for instance [2, 4] and the references therein. In particular, they serve to compute null
controls for the Navier-Stokes and other similar equations, see [5].

2. The existence of null controls
The first main result in this contribution is the following:

Theorem 2.1 Under the previous assumptions on the coefficient 𝑎, there exists 𝜀 > 0 such that, if 𝑦0 ∈ 𝐻10 (Ω) ∩
𝐿∞ (Ω) and ‖𝑦0‖𝐻 1 + ‖𝑦0‖𝐿∞ ≤ 𝜀, there exists a control 𝑣 ∈ 𝐿2 (𝜔 × (0, 𝑇)) and an associated solution to the
nonlinear system (1.1) satisfying

𝑦(𝑥, 𝑇) = 0 in Ω. (2.1)

In order to prove Theorem 2.1, we can employ a technique relying on the so called Liusternik’s Inverse Function
Theorem, see [1].
Thus, in view of the regularizing effect, we can assume that 𝑦0 ∈ 𝐻3 (Ω) ∩ 𝐻10 (Ω) and is small in this space.

Then, we consider the linearized system at zero



𝑦𝑡 − 𝑎(0)Δ𝑦 = 𝑣1̃𝜔 + ℎ(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄,
𝑦 = 0, (𝑥, 𝑡) ∈ Σ,
𝑦(𝑥, 0) = 𝑦0 (𝑥), 𝑥 ∈ Ω.

(2.2)

It is well known that, under some appropriate assumptions on ℎ, (2.2) is null-controllable. More precisely, the
adjoint of (2.2) is given by 


− 𝜑𝑡 − 𝑎(0)Δ𝜑 = 𝐹 (𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄,
𝜑 = 0, (𝑥, 𝑡) ∈ Σ,
𝜑(𝑥, 𝑇) = 𝜑𝑇 (𝑥), 𝑥 ∈ Ω,

(2.3)
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Fig. 1 The mesh. Number of vertices: 7425. Number of tetrahedrons: 38976.

where 𝜑𝑇 ∈ 𝐿2 (Ω); the announced null controllability property is implied by a well known Carleman inequality
that can be established for any solution to a system of the form (2.3).
In a second step, we rewrite the null controllability problem for (1.1) as an equation in a well chosen space of

“admissible" state-control pairs:
H(𝑦, 𝑣) = (0, 𝑦0), (𝑦, 𝑣) ∈ 𝑌 . (2.4)

Here, 𝑌 is a space of couples (𝑦, 𝑣) satisfying, among other things, the following properties∫∫
𝑄
𝜌2 |𝑦 |2 +

∫∫
𝜔×(0,𝑇 )

𝜌20 |𝑣 |2 < +∞

and ∫∫
𝑄
�̂�2 |𝑦𝑡 − 𝑎(0)Δ𝑦 − 𝑣1̃𝜔 |2 < +∞,

where 𝜌, 𝜌0 and �̂� are appropriate weight functions that blow up to +∞ as 𝑡 → 𝑇 . Formally, the definition ofH is
the following:

H(𝑦, 𝑣) := (𝑦𝑡 − ∇ · (𝑎(𝑦)∇𝑦) − 𝑣1̃𝜔 , 𝑦(· , 0)) ∀(𝑦, 𝑣) ∈ 𝑌 .
Then, we apply Liusternik’s Theorem and we deduce the (local) desired result. To this purpose, we previously

have to establish some nontrivial estimates for the null controls and the associated states of (2.2).

3. A convergent algorithm
The computation of a null control of (1.1) is not a simple task; here, we will argue as in [2, 6], taking advantage of
the surjectivity ofH ′(0, 0).
Thus, let𝑌 be the Hilbert space where we can find a solution (𝑦, 𝑣) to (2.4). We introduce the following iterative

algorithm:

ALG 1:

1. Choose (𝑦0, 𝑣0) ∈ 𝑌 .
2. Then, for given 𝑛 ≥ 0 and (𝑦𝑛, 𝑣𝑛) ∈ 𝑌 , compute

(𝑦𝑛+1, 𝑣𝑛+1) = (𝑦𝑛, 𝑣𝑛) − H ′(0, 0)−1 (H (𝑦𝑛, 𝑣𝑛) − (0, 𝑦0)). (3.1)

In these iterates, we useH ′(0, 0)−1, which is by definition an inverse to the left ofH ′(0, 0).
Note thatALG 1 is an elementary quasi-Newtonmethod and consequently has the following interesting property:

the finite dimensional approximations of the iterates lead to a set of algebraic systems whose coefficient matrices
are always the same.
In our second main result, we prove the convergence of ALG 1 and we furnish some estimates:
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Fig. 2 Evolution of the error at logarithmic scale.

Theorem 3.1 Let 𝑦0 ∈ 𝐻10 (Ω) ∩ 𝐿∞ (Ω) be given with ‖𝑦0‖𝐻 10 + ‖𝑦0‖𝐿∞ ≤ 𝜀 (𝜀 is furnished by Theorem 2.1).
There exists 𝜅 ∈ (0, 1) such that, if (𝑦0, 𝑣0) ∈ 𝑌 and

‖(𝑦0, 𝑣0) − (𝑦, 𝑣)‖𝑌 ≤ 𝜅,
then the (𝑦𝑛, 𝑣𝑛) converge to (𝑦, 𝑣) and satisfy

‖(𝑦𝑛+1, 𝑣𝑛+1) − (𝑦, 𝑣)‖𝑌 ≤ 𝜃‖(𝑦𝑛, 𝑣𝑛) − (𝑦, 𝑣)‖𝑌 (3.2)

for all 𝑛 ≥ 0 for some 𝜃 ∈ (0, 1).

Remark 3.2 A natural question is whether Theorems 2.1 and 3.1 also hold for similar systems with PDEs of the
form

𝑦𝑡 − ∇ · (𝑎(𝑥, 𝑡; 𝑦)∇𝑦) = 𝑣1̃𝜔 and/or 𝑦𝑡 − ∇ · (𝑎(𝑥, 𝑡;∇𝑦)∇𝑦) = 𝑣1̃𝜔 ,
that is, with nonlinear diffusion coefficients nonhomogeneous in space and time and eventually depending on the
gradient. In both cases, the answer is yes, provided they are regular enough, see [4]. �

(a) Computed control (b) Associated state

Fig. 3 The computed control and the associated state at 𝑥1 = 0.68.
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4. A numerical method for the solution of (3.1)
The computation of (𝑦𝑛+1, 𝑣𝑛+1) in (3.1) can be achieved following the Fursikov-Imanuvilov method [7].
The strategy is to take

𝑦 = 𝜌−2𝐿∗𝑝, 𝑣 = −𝜌20 1̃𝜔 𝑝
��
𝜔×(0,𝑇 ) , (4.1)

where 𝐿∗𝑝 := −𝑝𝑡 − 𝑎(0)Δ𝑝 and 𝑝 is the unique solution to the Lax-Milgram problem



∫∫
𝑄

(
𝜌−2𝐿∗𝑝𝐿∗𝑝′ + 1̃𝜔 𝑝𝑝′

)
=

∫∫
𝑄
ℎ𝑝′ +

∫
Ω
𝑦0 (𝑥)𝑝′(𝑥, 0) 𝑑𝑥

∀𝑝′ ∈ 𝑃, 𝑝 ∈ 𝑃
(4.2)

(𝑃 is an appropriate Hilbert space of functions 𝑝 with 𝐿∗𝑝 ∈ 𝐿2𝑙𝑜𝑐 (𝑄)). Accordingly, we set H ′(0, 0)−1 (ℎ, 𝑦0) =
(𝑦, 𝑣), with 𝑦 and 𝑣 respectively given by (4.1) and (4.2).
Note that (4.2) is the weak formulation of a boundary-value problem for 𝑝 that is second-order in time and

fourth-order in space.
Unfortunately, it is not easy to construct and handle finite dimensional spaces 𝑃ℎ ⊂ 𝑃 (except in the particular

case 𝑁 = 1). Thus, it is convenient to introduce a mixed formulation (as in [5, 6]) and then reduce to finite
dimension. This leads to numerical approximations with 𝑃ℓ-piecewise continuous functions that furnish good
results; see the details in [3].

5. A numerical experiment
The quasi-Newton method has been applied to the solution to the null controllability problem for (1.1) with the
following data:

• 𝑁 = 2, Ω = (0, 1) × (0, 1), 𝜔 = (0.2, 0.8) × (0.2, 0.8), 𝑇 = 0.5.

• 𝑦0 (𝑥1, 𝑥2) = sin(𝜋𝑥1) sin(𝜋𝑥2).
• 𝑎(𝑠) = exp(−2 exp(−0.3𝑠)).
The computations have been performed with the FreeFem++ package; see http://www.freefem.org//ff++.

The stopping criterion for ALG 1 has been ‖𝑦𝑛+1 − 𝑦𝑛‖𝐿2/‖𝑦𝑛+1‖𝐿2 ≤ 𝜀0, where 𝑦𝑛 is the computed state
and 𝜀0 = 10−5. The mesh, the error evolution, the computed control and state and their spatial 𝐿2 norms are
displayed in Fig. 1–4.

(a) Computed control (b) Associated state
Fig. 4 Evolution in time of the 𝐿2 norms of the control and the state.
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Abstract
We study saddle-node bifurcations of canard limit cycles in PWL systems by using singular perturbation theory

tools. We distinguish two cases: the subcritical and the supercritical. In the subcritical case, we find saddle-node
bifurcations of canard cycles both with head and without head. Moreover, we detect a transition between them. In
the supercritical case, we find situations with two saddle-node bifurcations, which take place exponentially close
in the parameter space; one of headless canards and another of canards with head. There, three canard cycles can
coexist.

1. Introduction
The classical canard explosion is a phenomenon that occurs in limit cycles of planar slow-fast systems. It was
discovered and analyzed by Benoit et al. in 1981 [2] in the Van der Pol oscillator and consists on the fast transition,
by changing one parameter of the system, from a small amplitude Hopf-like limit cycle to a relaxation oscillation
cycle.
The analysis of the slow-fast dynamics is done by using tools from Geometric Singular Perturbation Theory.

The main idea consist on reconstructing the global behavior by splitting and then joining, in a suitable way, the
fast and slow dynamics. Under hyperbolicity conditions, Fenichel Theorem describes the existence of invariant
slow manifolds close to compact parts of the fast nullcline and also describes the stability properties of these
slow manifolds [5]. However, when the fast nullcline folds, which is the case in the canard phenomenon, normal
hyperbolicity is lost, and Fenichel Theorem cannot be applied. Different sophisticated techniques have been
developped in order to analyze this behavior around the fold, such as, for instance, the blow up technique [7].
On the other hand, some authors have analyzed the possibility of reproducing the canard phenomenon in systems

more amenable to study, such as, piecewise linear (PWL) systems. Even when some dynamical aspects of the
slow-fast behavior had been observed in PWL systems, it has taken some time to understand the way of reproducing
the slow-fast dynamics properly, see [4] and references therein.
In [6], the authors reproduced part of the canard explosion phenomenon in the PWL context, in particular the

one involving hyperbolic headless canards. Here we present the main results obtained in [3], where we consider
an extension of the system analyzed in [6], which allows for the existence of both canards with and without head
and both, hyperbolic and non-hyperbolic canard cycles. In particular, the system is able to reproduce saddle-node
bifurcations of canard limit cycles.
The obtained results in [3] are comparable with those obtained for smooth vector fields, by Krupa and Szmolyan

in [7]. Furthermore, we have found new scenarios that, as far as we are concerned, had not been previously reported
in the smooth framework. Surprisingly, we find situations where two saddle-node bifurcations of canard cycles
take place, one of headless canards and another one of canards with head. In such a case, we show the coexistence
of three canard limit cycles.
The outline of this work is given as follows. First, in Section 2, we review the canard explosion and saddle-node

canard cycles in the smooth case. Second, in Section 3, we introduce the PWL systems which we focus on and we
present the Main Results. Finally, Section 4 is devoted to present some conclusions.

2. Background on canard cycles: canard explosion.
Canard solutions take place in planar differential slow-fast systems, that is, systems of the form [2, 7],{

𝜀 ¤𝑥 = 𝑓 (𝑥, 𝑦, 𝑎, 𝜀),
¤𝑦 = 𝑔(𝑥, 𝑦, 𝑎, 𝜀),

(2.1)

where 𝑓 , 𝑔 ∈ C𝑟 , 𝑟 ≥ 3, 𝑎 ∈ R, 0 < 𝜀 � 1 and the dot denotes the derivative with respect to the temporal variable
𝜏. After the rescaling in time 𝑡 = 𝜏/𝜀, system (2.1) writes as{

𝑥 ′ = 𝑓 (𝑥, 𝑦, 𝑎, 𝜀),
𝑦′ = 𝜀𝑔(𝑥, 𝑦, 𝑎, 𝜀),

(2.2)

XXVI CONGRESO DE ECUACIONES DIFERENCIALES Y APLICACIONES
XVI CONGRESO DE MATEMÁTICA APLICADA
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where the prime denotes the derivative with respect to the fast time 𝑡. Systems (2.1) and (2.2) are equivalent through
the identity when 𝜀 > 0, but they have not the same limit for 𝜀 = 0. In fact, the limit of system (2.1), called slow
subsystem, is a semi-explicit Differential Algebraic Equation (DAE), where the relation between the variables is
given by

𝑆 = {(𝑥, 𝑦) : 𝑓 (𝑥, 𝑦, 𝑎, 0) = 0}.
Assuming that 𝑓𝑦 (𝑥, 𝑦, 𝑎, 0) ≠ 0 it follows that 𝑆 is the graph of a differentiable function 𝑦 = 𝜑𝑎 (𝑥), and the DAE
reduces to the differential equation

𝑓𝑥 (𝑥, 𝜑𝑎 (𝑥), 𝑎, 0) ¤𝑥 = − 𝑓𝑦 (𝑥, 𝜑𝑎 (𝑥), 𝑎, 0)𝑔(𝑥, 𝜑𝑎 (𝑥), 𝑎, 0), (2.3)

which is called the reduced equation. On the other hand, the limit for 𝜀 = 0 of system (2.2), called fast subsystem, is
a differential equation having 𝑆 as the locus of every equilibrium point. From here 𝑆 is called the critical manifold.
Canard cycles develop along a branch born at a Hopf bifurcation, at 𝑎 = 𝑎𝐻 , and the canard explosion takes

place at a value which is at a distance of𝑂 (𝜀) from the 𝑎𝐻 . This means that very close to the bifurcation point 𝑎𝐻 ,
before the explosion, the cycles have the characteristics of typical Hopf cycles. This Hopf bifurcation arises only
for 𝜀 > 0 and is usually known as a singular Hopf bifurcation [1].
The existence of saddle-node bifurcation of canard cycles in the smooth framework has been analyzed in [7].

There, the authors consider two different cases, depending whether the Hopf bifurcation where the cycle is born is
supercritical or subcritical. Thus, after proving the existence of the maximal canard, they distinguish two different
scenarios:

• Supercritical case: In Theorem 3.3, authors state the existence of a family of periodic orbits. These periodic
orbits can be stable Hopf-type limit cycles, canard limit cycles or relaxation oscillations. To analyze the
stability of the canard limit cycles, they use theway in-way out function 𝑅(𝑠), which is the limit of the integral
of the divergence along the slow manifolds when 𝜀 → 0. In Theorem 3.4, assuming that this function is
negative, the authors state that the canard limit cycles of the family are stable.

• Subcritical case: In Theorem 3.5, authors state the existence of other family of periodic orbits. The orbits of
that family can be unstable Hopf-type limit cycles, canard limit cycles or relaxation oscillations. Again, to
analyze the stability of canard cycles, they use the way in-way out function 𝑅(𝑠). In Theorem 3.6, assuming
that this function has exactly one simple zero at 𝑠 = 𝑠𝑙 𝑝,0, the authors state that there exists a function 𝑠𝑙 𝑝 (

√
𝜀)

having limiting point at 𝑠𝑙 𝑝,0 when 𝜀 → 0, such that canard limit cycles are unstable for 𝑠 < 𝑠𝑙 𝑝 (
√
𝜀) and

stable for 𝑠 > 𝑠𝑙 𝑝 (
√
𝜀).

3. Statement of the piecewise linear system and Main Results.
In this section, first we introduce the family of PWL differential systems considered in [3] and after that we stay the
main results, whose proofs can be consulted there.
The class of planar differential systems considered in [3] reads,{

𝑥 ′ = 𝑦 − 𝑓 (𝑥, 𝑎, 𝑘, 𝑚, 𝜀),
𝑦′ = 𝜀(𝑎 − 𝑥), (3.1)

where the prime denotes the derivative with respect to the time 𝑡, (𝑥, 𝑦)𝑇 ∈ R2, 0 < 𝜀 � 1, and the 𝑥-nullcline is
defined by the graph of the continuous PWL function with four segments given by

𝑓 (𝑥, 𝑎, 𝑘, 𝑚, 𝜀) =



𝑥 + 1 − 𝑘 (√𝜀 − 1) − 𝑚(√𝜀 + 𝑎), if 𝑥 < −1
−𝑘 (𝑥 + √𝜀) − 𝑚(√𝜀 + 𝑎), if − 1 < 𝑥 ≤ −√𝜀,
𝑚(𝑥 − 𝑎), if |𝑥 | ≤ √𝜀,
𝑥 − √𝜀 + 𝑚(√𝜀 − 𝑎), if 𝑥 >

√
𝜀,

(3.2)

with 𝑘 > 0, 𝑎 ∈ R and |𝑚 | < 2√𝜀.
Note that, the phase space is splitted into four regions: the lateral half-planes 𝐿𝐿 = {(𝑥, 𝑦) : 𝑥 ≤ −1} and

𝑅 = {(𝑥, 𝑦) : 𝑥 ≥ √𝜀}, and the central bands 𝐿 = {(𝑥, 𝑦) : −1 ≤ 𝑥 ≤ −√𝜀} and𝐶 = {(𝑥, 𝑦) : |𝑥 | ≤ √𝜀}. Restricted
to any of these regions, the vector field is linear.
We proceed now to present the main results in [3]. These results concern to the existence of a one parameter

family of canard limit cycles in the PWL system (3.1)-(3.2), and to the description about how this family organizes
along a curve in the plane (𝑥, 𝑎), where 𝑥 is the width of the canard limit cycle and 𝑎 is the parameter value. The
results also provide information about the stability of the limit cycles.
In the first result in [3], it is assured that the starting point of the curve organizing the family of limit cycles

exhibited by system (3.1)-(3.2) takes place at a Hopf-like bifurcation. At this bifurcation a limit cycle appears after
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the change of stability of the singular point, just like in the Hopf bifurcation. The difference between both kind of
bifurcations is the relation between the amplitude of the limit cycle and the bifurcation value, this relation is linear
in the Hopf-like bifurcation and a square root in the Hopf bifurcation.
Next theorem, which we include subsequently, is devoted to the existence of the maximal canard trajectory,

that is, a trajectory connecting the attracting and the repelling branches of the slow manifold.

Theorem 3.1 Set 𝑚 = ±√𝜀. There exist a value 𝜀0 > 0 and a function 𝑎 = �̃�(𝑘, 𝜀;𝑚), analytic as a function of
(𝑘,√𝜀), defined in the open set𝑈 = (0, +∞) × (0, 𝜀0) and such that, for (𝑘, 𝜀) ∈ 𝑈, a solution of system (3.1)-(3.2)
starting in the attracting branch of the slow manifold, 𝜇𝑅, connects to the repelling branch of the slow manifold,
𝜇𝐿 , if and only if 𝑎 = �̃�(𝑘, 𝜀;𝑚). In such case, the time of flight of the transition is 𝜏𝐶 (𝑘, 𝜀;𝑚) > 0. First terms of
the expansions of �̃�(𝑘, 𝜀;𝑚) and 𝜏𝐶 (𝑘, 𝜀;𝑚) are given as follows,

�̃�(𝑘, 𝜀;𝑚) =




𝑒
𝜋√
3 − 1

𝑒
𝜋√
3 + 1

√
𝜀 − 𝑒

𝜋√
3(

𝑒
𝜋√
3 + 1

)2
(
1 − 𝑘2
𝑘2

)
𝜀3/2 +𝑂 (𝜀2), if 𝑚 = −√𝜀,

− 𝑒
𝜋√
3 − 1

𝑒
𝜋√
3 + 1

√
𝜀 − 𝑒

𝜋√
3(

𝑒
𝜋√
3 + 1

)2
(
1 − 𝑘2
𝑘2

)
𝜀3/2 +𝑂 (𝜀2), if 𝑚 =

√
𝜀,

(3.3)

and

𝜏𝐶 (𝑘, 𝜀;𝑚) =




2𝜋√
3
1√
𝜀
− 1 + 𝑘

𝑘
− 1 − 𝑘

2

2𝑘2
√
𝜀 +𝑂 (𝜀), if 𝑚 = −√𝜀,

2𝜋√
3
1√
𝜀
− 1 + 𝑘

𝑘
+ 1 − 𝑘

2

2𝑘2
√
𝜀 +𝑂 (𝜀), if 𝑚 =

√
𝜀.

(3.4)

The existence of the maximal canard trajectory, together with the divergence of the flow in a neighborhood of
the slow manifold, provide the arguments used in [3] to prove the following result about the existence of canard
cycles of any suitable width. To state the result in a proper way we introduce the following values

𝑥𝑟 = −(1 + 𝑘) + 𝑘
√
𝜀 − 𝜆𝑠𝐿 (

√
𝜀 + 𝑎), 𝑥𝑠 = −

√
𝜀 − 𝜆𝑠𝐿 (

√
𝜀 + 𝑎). (3.5)

These values correspond with the end points of the interval such that limit cycles having width contained in (𝑥𝑟 , 𝑥𝑠)
are canard limit cycles. In fact, limit cycles having width 𝑥 < 𝑥𝑟 are relaxation oscillations whereas limit cycles
having width 𝑥 > 𝑥𝑠 are still under the effect of the Hopf-like bifurcation.

Theorem 3.2 Fix 𝜀0 sufficiently small and set 𝑚 = ±√𝜀. There exists a function 𝑎 = �̂�(𝑘, 𝜀, 𝑥0;𝑚), 𝐶∞ function
of (𝑘,√𝜀, 𝑥0), defined in the open set𝑈 = (0, +∞) × (0, 𝜀0) × (𝑥𝑟 , 𝑥𝑠), fulfilling

|�̂�(𝑘, 𝜀, 𝑥0;𝑚) − �̃�(𝑘, 𝜀;𝑚) | ≈ |𝑥0 |𝑒−
𝑥0
𝜀3/2 𝑥0 ∈ [−1, 𝑥𝑠),

|�̂�(𝑘, 𝜀, 𝑥0;𝑚) − �̃�(𝑘, 𝜀;𝑚) | ≈ |𝑥0 − 𝑥𝑟 |𝑒−
𝑥0−𝑥𝑟
𝜀 𝑥0 ∈ (𝑥𝑟 ,−1),

with �̃�(𝑘, 𝜀;𝑚) the function defined in Theorem 3.1, and such that, for (𝑘, 𝜀, 𝑥0) ∈ 𝑈 and 𝑎 = �̂�(𝑘, 𝜀, 𝑥0;𝑚) system
(3.1)-(3.2) possesses a canard limit cycle, Γ𝑥0 , passing through (𝑥0, 𝑓 (𝑥0)). The canard limit cycle is headless if
𝑥0 ∈ (−1, 𝑥𝑠) and with head if 𝑥0 ∈ (𝑥𝑟 ,−1).
Previous result describes the canard explosion taking place in the PWL framework. There, it can be observed

that the slope of the explosion is different before and after the maximal canard.
In the following result, the stability of the canard limit cycles obtained in the previous theorem is established.

The results are divided into two theorems, depending on whether the Hopf-like bifurcation is supercritical or
subcritical.

Theorem 3.3 Set 𝜀 > 0 small enough, 𝑚 = −√𝜀, 𝑥0 ∈ (𝑥𝑟 , 𝑥𝑢) ∪ [−1, 𝑥𝑠) and 𝑎 = �̂�(𝑘, 𝜀, 𝑥0;𝑚). Let Γ𝑥0 be the
canard limit cycle of system (3.1)-(3.2) whose existence has been proved in Theorem 3.2. The following statements
hold:

a) For 𝑘 ≤ 1, the canard limit cycle Γ𝑥0 is hyperbolic and stable.
b) For 𝑘 > 1, there exist exactly two values 𝑥1 ∈ (−1, 𝑥𝑠) and 𝑥2 ∈ (𝑥𝑟 , 𝑥𝑢) such that the canard limit cycle Γ𝑥0

is hyperbolic and stable if 𝑥0 ∈ (𝑥𝑟 , 𝑥2) ∪ (𝑥1, 𝑥𝑠), hyperbolic and unstable if 𝑥0 ∈ (𝑥2, 𝑥𝑢) ∪ (−1, 𝑥1), and a
saddle-node canard cycle if 𝑥0 = 𝑥1 and 𝑥0 = 𝑥2.
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Theorem 3.4 Set 𝜀 > 0 small enough, 𝑚 =
√
𝜀, 𝑥0 ∈ (𝑥𝑟 , 𝑥𝑢) ∪ [−1, 𝑥𝑠) and 𝑎 = �̂�(𝑘, 𝜀, 𝑥0;𝑚). Let Γ𝑥0 be the

canard limit cycle of system (3.1)-(3.2) whose existence has been proved in Theorem 3.2. The following statements
hold:

a) For 𝑘 < 1, there exists exactly one value 𝑥1 ∈ (−1, 𝑥𝑠) such that Γ𝑥0 is an hyperbolic limit cycle, if
𝑥0 ∈ (𝑥𝑟 , 𝑥𝑢) ∪ (−1, 𝑥𝑠) \ {𝑥1}, and a saddle-node canard cycle, if 𝑥0 = 𝑥1. Moreover, Γ𝑥0 is stable if 𝑥0 < 𝑥1
and unstable if 𝑥0 > 𝑥1.

b) For 𝑘 = 1, the canard limit cycle Γ𝑥0 is hyperbolic and stable if 𝑥0 ∈ (𝑥𝑟 , 𝑥𝑢) and hyperbolic and unstable if
𝑥0 ∈ (−1, 𝑥𝑠).

c) For 𝑘 > 1, there exists exactly one value 𝑥2 ∈ (𝑥𝑟 , 𝑥𝑢) such that Γ𝑥0 is hyperbolic, if 𝑥0 ∈ (𝑥𝑟 , 𝑥𝑢) ∪ (−1, 𝑥𝑠) \
{𝑥2}, and a saddle-node canard cycle, if 𝑥0 = 𝑥2. Moreover, Γ𝑥0 is stable if 𝑥0 < 𝑥2 and unstable if 𝑥0 > 𝑥2.

Subsequently, in the last main result, it is stated that for every width between the smallest canard cycle and the
relaxation oscillation cycle, that is for every 𝑥0 ∈ (𝑥𝑟 , 𝑥𝑢) ∪ [−1, 𝑥𝑠), there exist values of the parameters such that
system (3.1)-(3.2) exhibits a saddle-node canard limit cycle Γ𝑥0 of width 𝑥0.

Theorem 3.5 Consider system (3.1)-(3.2) with𝑚 = −√𝜀 or𝑚 =
√
𝜀. For each 𝑥0 ∈ (𝑥𝑟 , 𝑥𝑢) ∪ (−1, 𝑥𝑠), there exists

a value 𝜀0 and a function 𝑘𝑥0 (𝜀) defined for 𝜀 ∈ (0, 𝜀0), such that system (3.1)-(3.2) with parameters 𝑘 = 𝑘𝑥0 (𝜀)
and 𝑎 = �̂�(𝑘𝑥0 (𝜀), 𝜀, 𝑥0;𝑚) exhibits the saddle-node canard Γ𝑥0 whose existence has been stated in Theorem 3.3
for 𝑚 = −√𝜀 and in Theorem 3.4 for 𝑚 =

√
𝜀, respectively.

4. Conclusions.
In [3], we have analyzed the existence of saddle-node bifurcation of canard cycles in PWL systems. We have
revised in the PWL context the known results in the smooth framework [7]. Let us point out the similarities and
differences that we have found:
Canard cycles in [7] develop along a branch born at a Hopf bifurcation, at 𝑎 = 𝑎𝐻 , and the canard explosion

takes place at a value which is at a distance of 𝑂 (𝜀) from the 𝑎𝐻 . In the PWL context, we have checked that the
canard explosion takes place at a value which is at a distance of 𝑂 (√𝜀) from the 𝑎𝐻 .
In the Supercritical case, 𝑚 = −√𝜀: System (3.1)-(3.2) is able to reproduce the dynamics in the smooth case

with 𝑘 ≤ 1, that is, the existence of a family of stable canard cycles. By letting 𝑘 increase, we have found new
scenarios that have not been reported in the smooth framework. Specifically, when 𝑘 > 1, we find situations where
two saddle-node bifurcations of canard cycles take place, one of headless canards and another one of canards with
head. In this case, three canard limit cycles can coexist.
In the Subcritical case, 𝑚 =

√
𝜀: In this case, system (3.1)-(3.2) can reproduce the dynamics in the smooth

case, with the benefit that in the PWL case we can control the different behaviors that appear in an easier way.
Concretely, we have proved the existence of saddle-node bifurcation of headless canards for 𝑘 < 1, and of canards
with head for 𝑘 > 1.
It has been stated in Theorem 3.5 that in both subcritical and supercritical cases, for every height between the

smallest canard cycle and the relaxation oscillation cycle there exist parameters 𝑘 and 𝜀 such that a saddle-node
canard limit cycle with this height exists.
The use of this simpler family of slow-fast systems to reproduce canard dynamics bring us some information

which could be interesting when revisiting the smooth context. In particular, conditions 𝑘 < 1 and 𝑘 > 1 organizing
the dynamics in the main results, suggest the importance of the ratio between the slopes of the fast nullcline in
order to exhibit or not saddle-node canard cycles with head. Bearing this in mind, we believe that only saddle-node
canard cycles with head can appear when the slope of the repelling branch of the critical manifold is larger than the
slope of the attracting branches of the critical manifold. As this is not the case in the Van der Pol system, we can
expect only headless saddle-node canard cycles there.
Last, we would like to point out that some quantitative information obtained in [3] could be relevant for

applications. For instance, we highlight the period of the canard cycles and the location of the saddle-node canards
in terms of the parameter. Finally, the dependence between the height of a canard cycle and the bifurcation
parameter 𝑎 at which it appears could be approximated from the estimation |�̃� − �̂� | appearing in Theorem 3.2.
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On the Amplitudes of Spherical Harmonics of Gravitational Potencial
and Generalised Products of Inertia
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Abstract

The vector field of the force of gravitational attraction due to an extended rigid body (of arbitrary irregular
geometrical shape, and with an arbitrary internal mass distribution inside it) at any point outside the body can
be derived from the gradient of a scalar field, its gravitational potential. In terms of spherical polar coordinates
(distance from the origin, colatitude or latitude, and longitude) that potential can be expanded as an absolutely
convergent series of spherical harmonics, involving Legendre polynomials and associated Legendre functions of
the first kind depending on the colatitude (or the latitude) and circular functions depending on the longitude.
In the present contributed paper we establish, in terms of the so–called “integrals of inertia” (or “generalised

products of inertia”) of the body, general formulae for the amplitudes (i.e., for the coefficients) of the different
zonal, tesseral, and sectorial harmonics of any degree and order in the said series expansion of the gravitational
potential outside the body.

Key words and expressions: Celestial Mechanics, Potential Theory, extended rigid body, gravitational potential,
Legendre functions, spherical harmonics, inertia integrals (generalised products of inertia).

Mathematics Subject Classification (MSC) 2020: 70 F 15, 33 C 55, 42 C 10, 86 A 20.

1. Introduction: Theoretical Context and Scope
We consider the usual model of three–dimensional space R 3 , endowed with the well–known algebraic, geometric
and topological structures of a linear, affine and Euclidean space over the field R of the real numbers.
We also consider a rigid body of arbitrary geometrical shape containing a mass distribution inside its volume.

A simple mathematical model for this situation is provided by a bounded, connected open subset D in ordinary
space R 3 , delimited by a closed and sufficiently smooth surface S = 𝜕D (the boundary ofD ). We further
assume that this distribution of matter is characterised by an arbitrary scalar function of position describing the
local density of mass at each point of the body (say, in a neighbourhood of the point); although in principle this
function can be supposed to be bounded and Riemann–integrable over the volume of the body, for certain purposes
it should be assumed to be of the class C ( 1

(D ⊆ R 3 , R
)
over the said volume of the body.

In particular, this model provides us with a first approach to the study of the force field of gravitational attraction
created by many celestial bodies (and, more specifically, the Earth).
It is a well–known fact in some branches of Space Technology and Mathematical and Physical Sciences (e. g.,

Vector Analysis, Potential Theory, Celestial Mechanics, Astrodynamics, Physical Geodesy, Geophysics) that the
vector field corresponding to the gravitational force of attraction created by a mass distribution confined inside an
open, bounded and connected set contained in ordinary, three dimensional space can be expressed in terms of the
gradient of a single scalar function of position, known as the (scalar) potential of that vector field.
Moreover, if spherical polar coordinates ( 𝑟 , 𝜃 , 𝜆 ) are chosen to analyse this issue, that scalar potential can

be expressed in the form of an absolutely convergent series of spherical harmonics in which products of associated
Legendre functions of the first kind (depending on cos 𝜃 , the cosine of the colatitude 𝜃 ) and elementary circular
functions (namely, cosine and sine functions) of integer multiples of the longitude 𝜆 are involved.
The so–called integrals of inertia (also known as inertial integrals or inertia integrals) were introduced as a

generalisation of the triple integrals (taken over the whole volume of the body) that define the position vector of the
centre of mass of the body and its moments and products of inertia. For this reason they are also called generalised
products of inertia. Accordingly, the volume integrals defining both the centre of mass and the moments and
products of inertia of the body are viewed as particular instances of inertia integrals.
The preceding statements and comments, as well as most of the theoretical background concerning this paper,

can be documented in detail and justified with the help of some pertinent bibliographical references. For example
(just to mention but a few of them), Brouwer and Clemence, [2], Chapter III, pp. 115–133; Cid and Ferrer, [3],
Chapter 7, pp. 185–216, and Appendix B, pp. 443-479; Fitzpatrick, [4], Chapter 12, pp. 265–309; Heiskanen and
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(pp. 177–183)
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Moritz, [5], Chapter 1, pp. 1–45, and Chapter 2, §2.5–§2.6, pp. 57–63; MacMillan, [6], Chapter II, pp. 24–95, and
Chapter VII, pp. 325–406; Roy, [7], Chapter 7, §7.5, pp. 201–206, and Chapter 11, §11.7, p. 342.

In the present paper we derive general expressions, in terms of inertia integrals, for the coefficients of the diverse
(zonal, tesseral, and sectorial) spherical harmonics of any degree 𝑛 and order 𝑘 occurring in the series expansion
of the gravitational potential.

2. Some Basic Concepts and Notations
• We consider the usual affine and Euclidean three–dimensional space R 3 , and a fixed, inertial Cartesian
reference frame 𝑂 𝑥 1 𝑥 2 𝑥 3 , or 𝑂 𝑥 𝑦 𝑧 , with its origin at a point 𝑂 in R 3 . This rectangular coordinate system
is determined by the choice of point 𝑂 and an ordered basis { i 1 , i 2 , i 3 } that we also suppose orthonormal and
positively oriented (right–handed or dextrorse basis) in Euclidean vector space R 3 . This spatial coordinate frame
is also denoted {𝑂 , { i 1 , i 2 , i 3 }} .
• Given a point 𝑃 in R 3 , it position vector with respect to this Cartesian reference frame 𝑂 𝑥 𝑦 𝑧 is

−−−→
𝑂 𝑃 ≡ r ≡ x = 𝑥 i 1 + 𝑦 i 2 + 𝑧 i 3 ≡ ( 𝑥 , 𝑦 , 𝑧 ) ( i 1 , i 2 , i 3 ) ≡ ( 𝑥 , 𝑦 , 𝑧 ) . (2.1)

• Let D ⊆ R 3 be a bounded domain or bounded region (a connected open subset) in R 3 , delimited by a
closed and smooth surface S = 𝜕D (the boundary of D ), and D = D ∪ 𝜕D its topological closure.
• Let 𝑄 ∈ D be an arbitrary point in this domain, located in space by its position vector (relative to the above

Cartesian coordinate system),
−−−−→
𝑂𝑄 = 𝜉 i 1 + 𝜂 i 2 + 𝜁 i 3 ≡ ( 𝜉 , 𝜂 , 𝜁 ) . The Euclidean distance between 𝑄

and 𝑃 , that is, the Euclidean norm of the position vector of 𝑃 relative to 𝑄 , is

𝑄 𝑃 = | | −−−→𝑄 𝑃 | | =
√︃
( 𝑥 − 𝜉 ) 2 + ( 𝑦 − 𝜂 ) 2 + ( 𝑧 − 𝜁 ) 2 . (2.2)

• In what follows the notations for the position variables of the orthogonal curvilinear system of spherical
polar coordinates will be ( 𝑟 , 𝜃 , 𝜆 ) , where 𝑟 = | | −−−→𝑂 𝑃 | | = | | r | | stands for the radius vector of 𝑃 (Euclidean
distance of point 𝑃 from the origin 𝑂 of the coordinate system), 𝜃 designates the colatitude of 𝑃 (that is, the
polar angle of the radius vector, measured from the positive part of the 𝑂 𝑧 ≡ 𝑂 𝑥 3 coordinate axis), and 𝜆 is
the longitude of 𝑃 (azimuthal angle –measured from the positive part of the 𝑂 𝑥 ≡ 𝑂 𝑥 1 coordinate axis– that
locates the plane that contains point 𝑃 and is orthogonal to the coordinate plane 𝑂 𝑥 𝑦 ≡ 𝑂 𝑥 1𝑥 2 .
Accordingly, 𝑟 ≥ 0 , i.e., 𝑟 ∈ [ 0 , +∞ ) = R + ∪ { 0 } ; 0 ≤ 𝜃 ≤ 𝜋 , that is, 𝜃 ∈ [ 0 , 𝜋 ] ; and

0 ≤ 𝜆 < 2 𝜋 , or 𝜆 ∈ [ 0 , 2 𝜋 ) .
• For any point 𝑄 ∈ D . its position in space will be characterized by means of its Cartesian coordinates

( 𝜉 , 𝜂 , 𝜁 ) , related to its spherical polar coordinates ( 𝜌 , Θ , Λ ) by means of the equations
𝜉 = 𝜌 sinΘ cosΛ , 𝜂 = 𝜌 sinΘ sinΛ , 𝜁 = 𝜌 cosΘ , with 𝜉 2 + 𝜂 2 + 𝜁 2 = 𝜌 2 . (2.3)

• In a similar way, let 𝑃 ∈ R 3 \ D be an exterior point, with Cartesian and spherical polar coordinates
( 𝑥 , 𝑦 , 𝑧 ) and ( 𝑟 , 𝜃 , 𝜆 ) , respectively,

𝑥 = 𝑟 sin 𝜃 cos𝜆 , 𝑦 = 𝑟 sin 𝜃 sin𝜆 , 𝑧 = 𝑟 cos 𝜃 , and 𝑥 2 + 𝑦 2 + 𝑧 2 = 𝑟 2 . (2.4)

• We consider a distribution of matter confined in the bounded domain D . The Newtonian potential of the
gravitational attraction created at point 𝑃 ( 𝑥 , 𝑦 , 𝑧 ) , at which a mass 𝑚 𝑃 is located outside of the body, by a
systems of material points 𝑄 ( 𝜉 , 𝜂 , 𝜁 ) contained in a domain D , is given by ( [2], Ch. III, §2, Eqs. (5)–(6), p.
117; [3], Ch. 7, §7.1, Eq. (7.1.2), p. 185, and §7.2, §§7.2.1, Eq. (7.2.6), p. 187; [4], Ch. 12, §12.4, Eq. (12.4.6), p.
290; [5], Ch. 1, §1.2, Eq. (1.11), pp. 3–4; [6], Ch. II, §20, Eq. (1), p. 24; [7], Ch. 7, §7.5, p. 202 )

𝑉 ( 𝑃 ) = G 𝑚 𝑃

∫ ∫ ∫
D

𝑑 𝑚 (𝑄 )
| |−−−→𝑄 𝑃 | |

= G 𝑚 𝑃

∫ ∫ ∫
D

𝜌 𝑣𝑜𝑙. (𝑄 )
| |−−−→𝑄 𝑃 | |

𝑑 𝑣 (𝑄) , (2.5)

where G is the universal gravitational constant, while 𝑑 𝑚 (𝑄 ) is the differential element of mass (or elementary
mass) at point 𝑄 , and | |−−−→𝑄 𝑃 | | is the Euclidean distance between 𝑄 and 𝑃 . In practice one takes 𝑚 𝑃 = 1 , the unit
mass. As for G , its value in SI units is G ≈ 6.67259 × 10 − 11 N m 2 / kg 2 = 6.67259 × 10 − 11 m 3 / kg s 2 .
If 𝜌 𝑣𝑜𝑙. (𝑄 ) is the local density of mass at point 𝑄 , and 𝑑 𝑣 (𝑄 ) the differential element of volume in the
neighbourhood of 𝑄 , then the differential element of mass can be expressed as 𝑑 𝑚 (𝑄 ) = 𝜌 𝑣𝑜𝑙. (𝑄 ) 𝑑 𝑣 (𝑄 ) .
• This function 𝑉 turns out to be harmonic at points outside the domain D (and consequently satisfiesLaplace’s

equation Δ𝑉 = ∇ 2𝑉 = 0 outside D ), while it satisfies Poisson’s equation Δ𝑉 = ∇ 2𝑉 = − 4 𝜋 G 𝜌 in D .
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• Let 𝑛 be a non–negative integer number, and 𝑘 a non–negative integer between 0 and 𝑛 , that is,
𝑛 ∈ N ∪ { 0 } , and 𝑘 ∈ { 0 , 1 , 2 , · · · , 𝑛 } . The Legendre polynomial of degree 𝑛 in the independent variable
𝑡 is denoted 𝑃𝑛 (𝑡) , while 𝑃 𝑘𝑛 (𝑡) will be the associated Legendre function of the first kind of degree 𝑛 and order
𝑘 . Note that for 𝑘 = 0 , 𝑃 0𝑛 (𝑡) = 𝑃𝑛 (𝑡) . For the purposes of the present paper, the scalar variable 𝑡 will be
taken as the cosine function of the colatitude.
• Within the framework of this theory of (surface) spherical harmonics, terms of the form 𝑃𝑛 (𝑡) are called

zonal harmonics of degree 𝑛 . Terms 𝑃 𝑘𝑛 (𝑡) cos (𝑘 𝜆) and 𝑃 𝑘𝑛 (𝑡) sin (𝑘 𝜆) with 0 ≠ 𝑘 ≠ 𝑛 are tesseral
harmonics of degree 𝑛 and order 𝑘 , while 𝑃 𝑛𝑛 (𝑡) cos (𝑛 𝜆) and 𝑃 𝑛𝑛 (𝑡) sin (𝑛 𝜆) are known as sectorial harmonics
of degree 𝑛 (and order 𝑛 ).

3. On the Series Expansion of the Gravitational Potential in Terms of Spherical Harmonics
• Taking 𝑚 𝑃 = 1 , the gravitational potential given in Eq. (2.5) can be recast in the form ( [3], Ch. 7, §7.6, §§7.6.1,
p. 206, Eq. (7.6.4); [4], Chapter 12, §12.1, p. 275, Eqs. (12.1.23)–(12.1.24), and §12.2, p. 279, Eq. (12.2.5); [5] Ch.
2, §2.5, Eqs. (2.37)–(2.38) and (2.39)–(2.40), pp. 59–60, with notations as in Ch. 1, §1.13, Eqs. (1.67), p. 29; [7]
Ch. 11 §11.7 p. 342 )

𝑉 =
G 𝑀
𝑟

{
1 + 1

𝑀

∞∑︁
𝑛 = 1

∫ ∫ ∫
D

( 𝜌
𝑟

)𝑛
[ 𝑃 𝑛 ( cos 𝜃 ) 𝑃 𝑛 ( cosΘ )

+ 2
𝑛∑︁

𝑘 = 1

( 𝑛 − 𝑘 ) !
( 𝑛 + 𝑘 ) ! 𝑃

𝑘
𝑛 ( cos 𝜃 ) 𝑃 𝑘𝑛 ( cosΘ ) cos { 𝑘 (Λ − 𝜆 ) }

]
𝑑 𝑚

}
, (3.1)

where 𝑀 stands for the total mass of the distribution of matter contained in the domain D .
• Introducing an auxiliary quantity 𝑅 = sup

{
𝜌 = | | −−−→𝑂𝑄 | | = distance (𝑂 , 𝑄 ) /𝑄 ∈ D

}
( [3], Ch. 7,

§7.6, §§7.6.1, p. 206; [4], Ch. 12, §12.1, p. 275 ), and defining the following coefficientes ( [3], pp. 206–207, Eqs.
(7.6.5); [5] Ch. 2, §2.5, Eqs. (2.38), p. 59, and Eqs. (2.40), p. 60 ),

𝐽 𝑛 = − 1
𝑀

∫ ∫ ∫
D

( 𝜌
𝑅

)𝑛
𝑃 𝑛 ( cosΘ ) 𝑑 𝑚 , (3.2)

𝐶 𝑘
𝑛 = − 2

𝑀

( 𝑛 − 𝑘 ) !
( 𝑛 + 𝑘 ) !

∫ ∫ ∫
D

( 𝜌
𝑅

)𝑛
𝑃 𝑘𝑛 ( cosΘ ) cos 𝑘 Λ 𝑑 𝑚 , (3.3)

𝑆 𝑘𝑛 = − 2
𝑀

( 𝑛 − 𝑘 ) !
( 𝑛 + 𝑘 ) !

∫ ∫ ∫
D

( 𝜌
𝑅

)𝑛
𝑃 𝑘𝑛 ( cosΘ ) sin 𝑘 Λ 𝑑 𝑚 , (3.4)

the preceding potential (3.1) takes on the form ( [3], Eq. (7.6.6)), p. 207; [5], Eqs. (2.39)–(2.40), pp. 59–60 )

𝑉 =
G 𝑀
𝑟

{
1 −

∞∑︁
𝑛 = 1

(
𝑅

𝑟

)𝑛 [
𝐽 𝑛 𝑃 𝑛 ( cos 𝜃 ) +

𝑛∑︁
𝑘 = 1

𝑃 𝑘𝑛 ( cos 𝜃 )
(
𝐶 𝑘
𝑛 cos 𝑘 𝜆 + 𝑆 𝑘𝑛 sin 𝑘 𝜆

) ] }

=
G 𝑀
𝑟

{
1 −

∞∑︁
𝑛 = 1

(
𝑅

𝑟

)𝑛 [
𝐽 𝑛 𝑃 𝑛 ( cos 𝜃 ) +

𝑛∑︁
𝑘 = 1

(
𝐶 𝑘
𝑛 𝑃

𝑘
𝑛 ( cos 𝜃 ) cos 𝑘 𝜆 + 𝑆 𝑘𝑛 𝑃 𝑘𝑛 ( cos 𝜃 ) sin 𝑘 𝜆

) ] }

=
G 𝑀
𝑟

{
1 −

∞∑︁
𝑛 = 1

(
𝑅

𝑟

)𝑛
[ 𝐽 𝑛 𝑃 𝑛 ( cos 𝜃 )

+
𝑛∑︁

𝑘 = 1

(
𝐶 𝑘
𝑛

{
𝑃 𝑘𝑛 ( cos 𝜃 ) cos 𝑘 𝜆

} + 𝑆 𝑘𝑛 {
𝑃 𝑘𝑛 ( cos 𝜃 ) sin 𝑘 𝜆

} ) ] }

=
G 𝑀
𝑟

{
1 −

∞∑︁
𝑛 = 1

(
𝑅

𝑟

)𝑛 [
𝐽 𝑛 𝑃 𝑛 ( cos 𝜃 ) +

𝑛∑︁
𝑘 = 1

(
𝐶 𝑘
𝑛 C 𝑘𝑛 ( 𝜃 , 𝜆 ) + 𝑆 𝑘𝑛 S 𝑘𝑛 ( 𝜃 , 𝜆 )

) ] }
, (3.5)

where the notations C 𝑘𝑛 ( 𝜃 , 𝜆 ) and S 𝑘𝑛 ( 𝜃 , 𝜆 ) represent the surface spherical harmonics, namely
C 𝑘𝑛 ( 𝜃 , 𝜆 ) = 𝑃 𝑘𝑛 ( cos 𝜃 ) cos 𝑘 𝜆 , S 𝑘𝑛 ( 𝜃 , 𝜆 ) = 𝑃 𝑘𝑛 ( cos 𝜃 ) sin 𝑘 𝜆 . (3.6)

• The above constants 𝐽 𝑛 , 𝐶
𝑘
𝑛 , and 𝑆 𝑘𝑛 , introduced in Eqs. (3.2)–(3.4), are measures of the amplitudes

of the various harmonics C 0𝑛 ( 𝜃 , 𝜆 ) = 𝑃 𝑛 ( cos 𝜃 ) , C 𝑘𝑛 ( 𝜃 , 𝜆 ) , and S 𝑘𝑛 ( 𝜃 , 𝜆 ) , respectively ( [7], §11.7, p.
342).
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♣ In what follows we will propose general expressions for the adimensional coefficients (3.2), (3.3), and (3.4),
in terms of inertia integrals (4.5) of the body (see below).

4. Mathematical Formulae and Results Invoked in the Derivation of General Expressions for the Amplitudes
In this Section we collect some formulae and results to which we resort in our considerations and developments
leading to the construction of general expression for the coefficients of the spherical harmonics of the gravitational
potential.

4.1. Legendre Functions of the First Kind
• To calculate those coefficients, we will start from the following algebraic expression of the associated Legendre
function of the first kind of degree 𝑛 and order 𝑘 ( [3], App. B, §B.2, §§B.2.1, p. 453; [5], Ch. 1, §1.11, Eq. (1.62),
p. 24; [6], Ch. VII, §197, Eq. (8), p. 370 ),

𝑃 𝑘𝑛 ( 𝑡 ) =

(
1 − 𝑡 2 ) 𝑘/2
2 𝑛

𝑠∑︁
𝑗 = 0
(− 1 ) 𝑗 ( 2 𝑛 − 2 𝑗 ) !

𝑗 ! ( 𝑛 − 𝑗 ) ! ( 𝑛 − 𝑘 − 2 𝑗 ) ! 𝑡 𝑛− 𝑘 − 2 𝑗 , (4.1)

where 𝑠 is the greatest integer number ≤ ( 𝑛 − 𝑘 ) / 2 ; i.e., 𝑠 = ( 𝑛 − 𝑘 ) / 2 or 𝑠 = ( 𝑛 − 𝑘 − 1 ) / 2 ,
whichever is an integer. That is, 𝑠 = ( 𝑛 − 𝑘 ) / 2 or 𝑠 = ( 𝑛 − 𝑘 − 1 ) / 2 according as 𝑛 − 𝑘 is even or odd.
In other words, number 𝑠 is the integer part of ( 𝑛 − 𝑘 ) / 2 .
• Taking 𝑡 = cosΘ allows us to rewrite the preceding algebraic expression (4.1) in the trigonometric form

𝑃 𝑘𝑛 ( cosΘ ) =
sin 𝑘 Θ
2 𝑛

𝑠∑︁
𝑗 = 0
(− 1 ) 𝑗 ( 2 𝑛 − 2 𝑗 ) !

𝑗 ! ( 𝑛 − 𝑗 ) ! ( 𝑛 − 𝑘 − 2 𝑗 ) ! ( cosΘ )
𝑛− 𝑘 − 2 𝑗 Θ , (4.2)

• In particular, when 𝑘 = 0 , the Legendre polynomial of degree 𝑛 ( [3], App. B, §B.2, §§B.2.1 Eq. (B.2.6),
p. 452; ) reads

𝑃 𝑛 ( 𝑡 ) =
1
2 𝑛

𝑟∑︁
ℓ = 0
(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !

ℓ ! ( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) ! 𝑡 𝑛− 2 ℓ , (4.3)

𝑃 𝑛 ( cosΘ ) =
1
2 𝑛

𝑟∑︁
ℓ = 0
(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !

ℓ ! ( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) ! ( cosΘ )
𝑛− 2 ℓ , (4.4)

where 𝑟 is the integer part of 𝑛 / 2 .

4.2. Integrals of Inertia of a Body
• The general definition of this concept (also known as inertial integrals, integrals of inertia, or generalised
products of inertia of the body) obeys the formula ( [4], Ch. 12, §12.4, p. 293; [6], Ch. II, §50, p. 89 )

𝐼 𝑖 , 𝑗 , 𝑘 = 𝐼 𝑖 𝑗 𝑘 =
∫ ∫ ∫

D
𝜉 𝑖 𝜂 𝑗 𝜁 𝑘 𝑑 𝑚 , where 𝑖 , 𝑗 , 𝑘 𝑖 are non–negative integers. (4.5)

For a given non–negative integer number 𝑛 , integrals 𝐼 𝑖 , 𝑗 , 𝑘 , with 𝑖 , 𝑗 , 𝑘 non–negative integers such that
𝑖 + 𝑗 + 𝑘 = 𝑛 , are also called moments of orden 𝑛 .
• When dealing with spherical harmonics of degree 𝑛 we will furthermore consider that 𝑖 + 𝑗 + 𝑘 = 𝑛 =

degree of the harmonic .
• Some authors use these integrals only in the case of harmonics of low degree ( [2], Ch. III, §6, p. 126 for

𝑛 = 3 , and §7, p 126, for 𝑛 = 4 ; [7], Ch. 7, §7.5, p. 204 for 𝑛 = 3 ).
• Obviously ( [4], p. 293), 𝐼 0 , 0 , 0 = 𝑀 = total mass of the body . Fitzpatrick ( [4], Ch. 12, §12.7, Eqs.

(12.7.1)–(12.7.4), pp. 306–307 ) gives explicit expressions for the terms of the gravitational potential up to degree
3, in terms of spherical coordinates, with the amplitudes of the spherical harmonics, namely coefficients

𝐽 1 , 𝐶
1
1 , 𝑆

1
1 , 𝐽 2 , 𝐶

1
2 , 𝑆

1
2 , 𝐶

2
2 , 𝑆

2
2 , 𝐽 3 , 𝐶

1
3 , 𝑆

1
3 , 𝐶

2
3 , 𝑆

2
3 , 𝐶

3
3 , 𝑆

3
3 ,

represented in terms of inertia integrals as linear combinations of the said integrals up to order three.

♣ Here we shall establish that the coeficientes 𝐽 𝑛 , 𝐶 𝑘
𝑛 , and 𝑆 𝑘𝑛 of the harmonics of degree 𝑛 depend on

linear combinations of integrals 𝐼 𝑖 , 𝑗 , 𝑘 with 𝑖 + 𝑗 + 𝑘 = 𝑛 = degree of the harmonic .
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4.3. Multiple–angle Formulae
According to Weisstein [9], for a positive integer 𝑘 ,

sin (𝑘 𝛼) =
ℎ∑︁
𝑝 = 0
(− 1 ) 𝑝

(
𝑘

2 𝑝 + 1

)
sin 2 𝑝 + 1 𝛼 cos 𝑘 − 2 𝑝 − 1 𝛼 , (4.6)

cos (𝑘 𝛼) =
𝐻∑︁
𝑝 = 0
(− 1 ) 𝑝

(
𝑘

2 𝑝

)
sin 2 𝑝 𝛼 cos 𝑘 − 2 𝑝 𝛼 , (4.7)

where ℎ is the integer part of ( 𝑘 − 1 ) / 2 , and 𝐻 denotes the integer part of 𝑘 / 2 .

4.4. The Multinomial Theorem
• TheMultinomial Theorem (attributed to Johann Bernoulli and Leibniz) is a generalisation of Newton´s Binomial
Theorem that provides us with a formula for the non–negative entire powers of a polynomial (say, multinomial)
expression. Let 𝑚 be a positive integer number, and 𝑛 a non–negative integer.
• Consider a multinomial expression ( 𝑎 1 + 𝑎 2 + · · · + 𝑎𝑚 ) with 𝑚 terms (𝑚 monomials). Then, from

Abramowitz and Stegun ( [1], Ch. 24, §24.1, §§24.1.2, §§§24.1.2.I, p. 823), and Weisstein [8],

( 𝑎 1 + 𝑎 2 + · · · + 𝑎𝑚 ) 𝑛 =

(
𝑚∑︁
𝑖 = 1

𝑎 𝑖

) 𝑛

=
∑︁

𝑛 1 + 𝑛 2 + · · · + 𝑛𝑚 = 𝑛

𝑛 !
𝑛 1 ! 𝑛 2 ! · · · 𝑛𝑚 ! 𝑎 𝑛 11 𝑎 𝑛 22 · · · 𝑎 𝑛𝑚𝑚

=
∑︁

𝑛 1 + 𝑛 2 + · · · + 𝑛𝑚 = 𝑛

(
𝑛

𝑛 1 , 𝑛 2 , · · · , 𝑛𝑚

) 𝑚∏
𝑖 = 1

𝑎 𝑛 𝑖𝑖 , (4.8)

where the sum of the (non–negative) exponents 𝑛 𝑖 ∈ N ∪ { 0 } is 𝑛 : ∑𝑚
𝑖 = 1 𝑛 𝑖 = 𝑛 . Note that the sum is taken

over all combinations of non–negative integers 𝑛 1 , 𝑛 2 , · · · , 𝑛𝑚 such that 𝑛 1 + 𝑛 2 + · · · + 𝑛𝑚 = 𝑛 .
• The multinomial coefficients (or multinomial numbers) are(

𝑛

𝑛 1 , 𝑛 2 , · · · , 𝑛𝑚

)
=

𝑛 !
𝑛 1 ! 𝑛 2 ! · · · 𝑛𝑚 ! . (4.9)

• The number of monomials in the above sums is
( 𝑛 + 𝑚 − 1 ) !
𝑛 ! (𝑚 − 1 ) ! . (4.10)

• In particular we are interested in the special case of the multinomial formula for 𝑚 = 3 . More specifically,
the trinomial expansion of 𝜌 2 = 𝜉 2 + 𝜂 2 + 𝜁 2 ( MacMillan [6], Ch. VII, §204, p. 383 ), namely

𝜌 2 ℓ =
(
𝜌 2

)ℓ
=

(
𝜉 2 + 𝜂 2 + 𝜁 2

) ℓ
=

∑︁
ℓ1 + ℓ2 + ℓ3 = ℓ

ℓ !
ℓ1 ! ℓ2 ! ℓ3 !

𝜉 2 ℓ1 𝜂 2 ℓ2 𝜁 2 ℓ3 , (4.11)

ℓ 𝑗 ≥ 0 integer numbers. The number of terms of an expanded trinomial is

( ℓ + 3 − 1 ) !
ℓ ! ( 3 − 1 ) ! =

( ℓ + 2 ) !
ℓ ! 2 !

=
( ℓ + 2 ) ( ℓ + 1 )

2
, (4.12)

where ℓ is the exponent to which the trinomial is raised.

5. Formulae for the Amplitudes of Spherical Harmonics in terms of Inertia Integrals
Theorem 5.1 Coefficients of zonal harmonics. Let 𝑟 be the integer part of 𝑛 / 2 . Then

𝐽 𝑛 = − 1
2 𝑛 𝑀 𝑅 𝑛

𝑟∑︁
ℓ = 0
(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !

( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) !

( ∑︁
ℓ1 + ℓ2 + ℓ3 = ℓ

1
ℓ1 ! ℓ2 ! ℓ3 !

𝐼 2 ℓ1 , 2 ℓ2 , 𝑛− 2 ℓ1 − 2 ℓ2

)
. (5.1)
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Proof From the definition (3.2) and the trigonometric form (4.4) of the Legendre polynomial of degree 𝑛 ,

𝐽 𝑛 = − 1
𝑀

∫ ∫ ∫
D

( 𝜌
𝑅

)𝑛
𝑃 𝑛 ( cosΘ ) 𝑑 𝑚

= − 1
𝑀 𝑅 𝑛

1
2 𝑛

∫ ∫ ∫
D
𝜌 𝑛

𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
ℓ ! ( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) ! ( cosΘ )

𝑛− 2 ℓ 𝑑 𝑚

= − 1
2 𝑛 𝑀 𝑅 𝑛

∫ ∫ ∫
D

𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
ℓ ! ( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) ! 𝜌

𝑛 cos 𝑛− 2 ℓ Θ 𝑑 𝑚

= − 1
2 𝑛 𝑀 𝑅 𝑛

∫ ∫ ∫
D
I𝐽𝑛 𝑑 𝑚 = − 1

2 𝑛 𝑀 𝑅 𝑛
I 𝐽𝑛 .

The integrand I𝐽𝑛 of I 𝐽𝑛 will be treated in the following way,

I𝐽𝑛 =
𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
ℓ ! ( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) ! ( 𝜌 cosΘ )

𝑛− 2 ℓ
(
𝜌 2

) ℓ

=
𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
ℓ ! ( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) ! 𝜁

𝑛− 2 ℓ
(
𝜉 2 + 𝜂 2 + 𝜁 2

) ℓ

=
𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
ℓ ! ( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) ! 𝜁

𝑛− 2 ℓ
( ∑︁
ℓ1 + ℓ2 + ℓ3 = ℓ

ℓ !
ℓ1 ! ℓ2 ! ℓ3 !

𝜉 2 ℓ1 𝜂 2 ℓ2 𝜁 2 ℓ3

)

=
𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) !

( ∑︁
ℓ1 + ℓ2 + ℓ3 = ℓ

1
ℓ1 ! ℓ2 ! ℓ3 !

𝜉 2 ℓ1 𝜂 2 ℓ2 𝜁 𝑛− 2 ℓ + 2 ℓ3
)

=
𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) !

( ∑︁
ℓ1 + ℓ2 + ℓ3 = ℓ

1
ℓ1 ! ℓ2 ! ℓ3 !

𝜉 2 ℓ1 𝜂 2 ℓ2 𝜁 𝑛− 2 ℓ1 − 2 ℓ2
)
.

Note that 𝑛 − 2 ℓ + 2 ℓ3 = 𝑛 − 2 ℓ1 − 2 ℓ2 − 2 ℓ3 + 2 ℓ3 = 𝑛 − 2 ℓ1 − 2 ℓ2 . And integral I 𝐽𝑛 reads

I 𝐽𝑛 =
∫ ∫ ∫

D

𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
ℓ ! ( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) ! 𝜌 𝑛 cos 𝑛− 2 ℓ Θ 𝑑 𝑚

=
𝑟∑︁
ℓ = 0

(− 1 ) ℓ ( 2 𝑛 − 2 ℓ ) !
( 𝑛 − ℓ ) ! ( 𝑛 − 2 ℓ ) !

( ∑︁
ℓ1 + ℓ2 + ℓ3 = ℓ

1
ℓ1 ! ℓ2 ! ℓ3 !

𝐼 2 ℓ1 , 2 ℓ2 , 𝑛− 2 ℓ1 − 2 ℓ2

)
,

from which (5.1) follows.
�

Theorem 5.2 Coefficients of tesseral and sectorial harmonics of the C 𝑘𝑛 ( 𝜃 , 𝜆 ) type:

𝐶 𝑘
𝑛 = − 2

2 𝑛 𝑀 𝑅 𝑛
( 𝑛 − 𝑘 ) !
( 𝑛 + 𝑘 ) !

©«
𝑠∑︁
𝑗 = 0
(− 1 ) 𝑗 ( 2 𝑛 − 2 𝑗 ) !

( 𝑛 − 𝑗 ) ! ( 𝑛 − 𝑘 − 2 𝑗 ) !

×
[

𝑝∑︁
ℓ = 0
(− 1 ) ℓ

(
𝑘

2 ℓ

) { ∑︁
𝑗 1 + 𝑗 2 + 𝑗 3 = 𝑗

1
𝑗 1! 𝑗 2! 𝑗 3!

𝐼 𝑘 − 2 ℓ+2 𝑗 1 , 2 ℓ + 2 𝑗 2 , 𝑛− 𝑘 − 2 𝑗 1 − 2 𝑗 2

}])
,

(5.2)

with 𝑠 = integer part of ( 𝑛 − 𝑘 ) / 2 , and 𝑝 = integer part of 𝑘 / 2 .
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Theorem 5.3 Coefficients of tesseral and sectorial harmonics of the S 𝑘𝑛 ( 𝜃 , 𝜆 ) type:

𝑆 𝑘𝑛 = − 2
2 𝑛 𝑀 𝑅 𝑛

( 𝑛 − 𝑘 ) !
( 𝑛 + 𝑘 ) !

©
«

𝑠∑︁
𝑗 = 0
(− 1 ) 𝑗 ( 2 𝑛 − 2 𝑗 ) !

( 𝑛 − 𝑗 ) ! ( 𝑛 − 𝑘 − 2 𝑗 ) !
[

𝑞∑︁
ℓ = 0
(− 1 ) ℓ

(
𝑘

2 ℓ + 1

)

{ ∑︁
𝑗 1 + 𝑗 2 + 𝑗 3 = 𝑗

1
𝑗 1! 𝑗 2! 𝑗 3!

𝐼 𝑘 − 2 ℓ+2 𝑗 1 −1, 2 ℓ + 2 𝑗 2+1 , 𝑛− 𝑘 − 2 𝑗 1 − 2 𝑗 2

}])
, (5.3)

where 𝑠 = integer part of ( 𝑛 − 𝑘 ) / 2 , and 𝑞 = integer part of ( 𝑘 − 1 ) / 2 .

Remark 5.4 The proof of these last theorems follows the approach and treatment of the case of the coefficients of
zonal harmonics.
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Abstract
The population model of Busenberg and Travis is a paradigmatic model in ecology and tumour modelling

due to its ability to capture interesting phenomena like the segregation of populations. Its singular mathematical
structure enforces the consideration of regularized problems to deduce properties as fundamental as the existence
of solutions. In this article we perform a weakly nonlinear stability analisys of a general class of regularized
problems to study the convergence of the instability modes in the limit of the regularization parameter. We
demonstrate with some specific examples that the pattern formation observed in the regularized problems, with
unbounded wave numbers, is not present in the limit problem due to the amplitude decay of the oscillations. We
also check the results of the stability analysis with direct finite element simulations of the problem. In this short
communication, we omit the proofs of our results.

In [4], Busenberg and Travis introduced a class of singular cross-diffusion problems under the assumption that
the spatial relocation of each species is due to a diffusion flow which depends on the densities of all the involved
species. In the case of two species, if 𝑢1, 𝑢2 denote their densities, the flow, in its simplest form, may be assumed
to be determined by the total population 𝑢1 + 𝑢2, and thus the conservation laws for both species lead to the system

𝜕𝑡𝑢1 − div
(
𝑢1 (∇𝑢1 + ∇𝑢2)

)
= 𝑓1 (𝑢1, 𝑢2), (0.1)

𝜕𝑡𝑢2 − div
(
𝑢2 (∇𝑢1 + ∇𝑢2)

)
= 𝑓2 (𝑢1, 𝑢2). (0.2)

The functions 𝑓1 and 𝑓2 capture some ecological features of the populations, such as growth, competition, etc. As
usual, the equations (0.1)-(0.2) are complemented with non-negative initial data and non-flow boundary conditions.
The system (0.1)-(0.2) is called a cross-diffusion system because the flow of each species depend upon the

densities of the other species. We call it singular because the resulting diffusion matrix is singular. Indeed, when
rewritting (0.1)-(0.2) in matrix form, for u = (𝑢1, 𝑢2), we get the equation

𝜕𝑡u − div(A(u)∇u) = f (u), with A(u) =
(
𝑢1 𝑢1
𝑢2 𝑢2

)
,

where the divergence is applied by rows. The full and singular structure of A introduces serious difficulties in the
mathematical analysis of the problem, as we shall comment later.
In his seminal paper [14], Turing introduced a mechanism explaining how spatially uniform equilibria may

evolve, small perturbations mediating, into stable equilibria with non-trivial spatial structure. He considered a
system of the type

𝜕𝑡𝑢1 − Δ𝑢1 = 𝑓1 (𝑢1, 𝑢2), (0.3)
𝜕𝑡𝑢2 − 𝜎Δ𝑢2 = 𝑓2 (𝑢1, 𝑢2), (0.4)

with 𝜎 > 0, and proved that when 𝜎 is small or large enough then the stable equilibria of the dynamical system

𝜕𝑡𝑣1 = 𝑓1 (𝑣1, 𝑣2), (0.5)
𝜕𝑡𝑣2 = 𝑓2 (𝑣1, 𝑣2), (0.6)

are not stable for the diffusion system (0.3)-(0.4) and that, in their place, non-uniform equilibria with spatial
structure become the new stable solutions. This mechanism is known as Turing instability or Turing bifurcation.
In this article we study Turing instability for the cross-diffusion singular system (0.1)-(0.2). We already know

that some cross-diffusion systems, such as the paradigmatic SKT model introduced by Shigesada, Kawasaki and
Teramoto [13], exhibit Turing instability when cross-diffusion coefficients are large in comparison with self-
diffusion coefficients, see e.g. [10, 11]. However, the singularity of the diffusion matrix of the system (0.1)-(0.2),
not present in the SKT model, introduces important mathematical difficulties to the analysis of this system.
Regarding the existence of solutions of (0.1)-(0.2), it has been proved only in some special situations: for a

bounded spatial domainΩ ⊂ R (Bertsch et al. [2]) and forΩ = R𝑛 (Bertsch et al. [3]). In their proofs, the following
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observation is crucial: adding the two equations of (0.1)-(0.2) shows that if a solution of this system does exist then
the total population, 𝑢 = 𝑢1 + 𝑢2, satisfies the porous medium type equation

𝜕𝑡𝑢 − div(𝑢∇𝑢) = 𝑓 (𝑢), (0.7)

for which the theory of existence and uniqueness of solutions is well established. In particular, if the initial data
of the total population is bounded away from zero and if 𝑓 is regular enough with 𝑓 (0) ≥ 0, it is known that
the solution of (0.7) remains positive and smooth for all time. This allows to introduce the change of unknowns
𝑤𝑖 = 𝑢𝑖/𝑢, for 𝑖 = 1, 2, into the original problem (0.1)-(0.2) to deduce the equivalent formulation

𝜕𝑡𝑢 − div(𝑢∇𝑢) = 𝐹1 (𝑢, 𝑤1), (0.8)
𝜕𝑡𝑤1 − ∇𝑢 · ∇𝑤1 = 𝐹2 (𝑢, 𝑤1), (0.9)

for certain well-behaved functions 𝐹1 and 𝐹2. Being the structure of the system (0.8)-(0.9) of parabolic-hyperbolic
nature, parabolic regularization of the system by adding the term −𝛿Δ𝑤1 to the left hand side of (0.9), and the
consideration of the characteristics defined by the field ∇𝑢 are the main ingredients of the proofs made by Bertsch
et al. [2, 3].
In [9] we followed a different approach to prove the existence of solutions of the original system (0.1)-(0.2)

for a bounded domain Ω ⊂ R. We directly performed a parabolic regularization of the system by introducing a
cross-diffusion perturbation term while keeping the porous medium type equation satisfied by 𝑢. More concretely,
we considered the system

𝜕𝑡𝑢1 − div
(
𝑢1 (∇𝑢1 + ∇𝑢2)

) − 𝛿
2
Δ(𝑢1 (𝑢1 + 𝑢2)) = 𝑓1 (𝑢1, 𝑢2), (0.10)

𝜕𝑡𝑢2 − div
(
𝑢2 (∇𝑢1 + ∇𝑢2)

) − 𝛿
2
Δ(𝑢2 (𝑢1 + 𝑢2)) = 𝑓2 (𝑢1, 𝑢2), (0.11)

and then used previous results for cross-diffusion systems [6, 7, 12] to establish the existence of solutions of the
approximated problems. Then, BV estimates similar to those obtained in [2] allowed to prove the convergence of
the sequence (𝑢 (𝛿)1 , 𝑢 (𝛿)2 ) to a solution of the original problem. Let us finally mention that the system (0.1)-(0.2) is
a limit case of a general type of problems with diffusion matrix given by

A(u) =
(
𝑎11𝑢1 𝑎12𝑢1
𝑎21𝑢2 𝑎22𝑢2

)
,

for which, if 𝑎𝑖𝑖 > 0, for 𝑖 = 1, 2, and 𝑎11𝑎22 > 𝑎12𝑎21 then the existence of solutions in ensured for any spatial
dimension of Ω, see [8]. In addition, it has been shown that this kind of systems, when set in the whole space
Ω = R𝑛, may be obtained as mean field limits [5].
Concerning Turing instability, since the diffusion matrix, A(u), corresponding to the system (0.1)-(0.2) is

singular, the linearization of this system about an equilibrium of the dynamical system (0.5)-(0.6) does not provide
any information on the behaviour of the equilibrium in the spatial dependent case. Thus, our approach to the
investigation of Turing instability for the system (0.1)-(0.2) relies on the study of this property for approximating
problems like (0.10)-(0.11) and its limit behaviour.
We prove that linear instability is always present in the limit 𝛿 → 0, which is the case when the sequence of

solutions of the approximated problems (0.10)-(0.11) converges to the solution of the original problem (0.1)-(0.2).
Interestingly, the linear analysis also establishes that the main instability wave number is unbounded as 𝛿→ 0.
For a clearer understanding of this convergence of a increasingly oscillating sequence of functions to a 𝐵𝑉

function (the solution of (0.1)-(0.2) ensured in [2, 9]), we perform a weakly nonlinear analysis (WNA) which
allows to gain insight into the behaviour of the amplitude of the main instability mode as 𝛿 → 0. As expected,
we find that the amplitude of the instability modes vanishes in the limit 𝛿 → 0 resulting, therefore, coherent with
the 𝐵𝑉 convergence. In addition, this result also suggests that the uniform equilibrium is stable for the original
problem. We furthermore check these analytical results by numerically comparing the WNA approximation to a
FEM approximation of the nonlinear problem.

1. Main results
For simplicity, we study Turing instability for the one-dimensional spatial setting which has also the advantage of
a well stablished existence theory for the case of a bounded domain [2, 9]. By redefining the functions 𝑓1, 𝑓2, we
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185



can fix without loss of generality Ω = (0, 𝜋) and then rewrite problem (0.1)-(0.2) together with the usual auxiliary
conditions as

𝜕𝑡𝑢1 − 𝜕𝑥
(
𝑢1 (𝜕𝑥𝑢1 + 𝜕𝑥𝑢2)

)
= 𝑓1 (𝑢1, 𝑢2) in 𝑄𝑇 , (1.1)

𝜕𝑡𝑢2 − 𝜕𝑥
(
𝑢2 (𝜕𝑥𝑢1 + 𝜕𝑥𝑢2)

)
= 𝑓2 (𝑢1, 𝑢2) in 𝑄𝑇 , (1.2)

𝑢1 (𝜕𝑥𝑢1 + 𝜕𝑥𝑢2) = 𝑢2 (𝜕𝑥𝑢1 + 𝜕𝑥𝑢2) = 0 on Γ𝑇 , (1.3)
𝑢1 (0, ·) = 𝑢10, 𝑢2 (0, ·) = 𝑢20 in Ω, (1.4)

where 𝑄𝑇 = (0, 𝑇) × Ω and the initial data 𝑢10, 𝑢20 are non-negative functions. We assume a competitive Lotka-
Volterra form for the reaction term, this is, 𝑓𝑖 (𝑢1, 𝑢2) = 𝑢𝑖 (𝛼𝑖−𝛽𝑖1𝑢1−𝛽𝑖2𝑢2), for 𝑖 = 1, 2, and for some non-negative
parameters 𝛼𝑖 , 𝛽𝑖 𝑗 , for 𝑖, 𝑗 = 1, 2.
In order to deal with several types of regularized problems we introduce, for positive 𝛿 and 𝑏, the uniformly

parabolic cross-diffusion system

𝜕𝑡𝑢1 − 𝜕𝑥
(
𝑑 𝛿11 (u)𝜕𝑥𝑢1 + 𝑑 𝛿12 (u)𝜕𝑥𝑢2

)
= 𝑓 𝑏1 (u) in 𝑄𝑇 , (1.5)

𝜕𝑡𝑢2 − 𝜕𝑥
(
𝑑 𝛿21 (u)𝜕𝑥𝑢1 + 𝑑 𝛿22 (u)𝜕𝑥𝑢2

)
= 𝑓 𝑏2 (u) in 𝑄𝑇 , (1.6)

𝑑 𝛿11 (u)𝜕𝑥𝑢1 + 𝑑 𝛿12 (u)𝜕𝑥𝑢2 = 𝑑 𝛿21 (u)𝜕𝑥𝑢1 + 𝑑 𝛿22 (u)𝜕𝑥𝑢2 = 0 on Γ𝑇 , (1.7)
𝑢1 (0, ·) = 𝑢10, 𝑢2 (0, ·) = 𝑢20 in Ω, (1.8)

where the diffusion matrix 𝐷 𝛿 (u) = (𝑑 𝛿𝑖 𝑗 (u)) and the Lotka-Volterra function f𝑏 (u) = ( 𝑓 𝑏1 (u), 𝑓 𝑏2 (u)) satisfy the
assumptions 𝐻𝐷:

1. 𝐷 𝛿 (u) is linear in u and affine in 𝛿, so that it allows the decompositions

𝐷 𝛿 (u) = 𝐷0 (u) + 𝛿𝐷1 (u) = 𝐷 𝛿1𝑢1 + 𝐷 𝛿2𝑢2,

for some matrices 𝐷 𝛿𝑖 for 𝑖 = 1, 2, being the coefficients of 𝐷 𝛿 (u) given by

𝑑 𝛿𝑖 𝑗 (u) = 𝑑10𝑖 𝑗 𝑢1 + 𝑑11𝑖 𝑗 𝑢1𝛿 + 𝑑20𝑖 𝑗 𝑢2 + 𝑑21𝑖 𝑗 𝑢2𝛿,

for some non-negative constants 𝑑𝑚𝑛𝑖 𝑗 , for 𝑖, 𝑗 , 𝑚 = 1, 2 and 𝑛 = 0, 1.

2. We assume that 𝑑 𝛿𝑖𝑖 (u) > 0 for 𝑖 = 1, 2, and that det(𝐷 𝛿 (u)) is an increasing function with respect to 𝛿
satisfying det(𝐷 𝛿 (u)) > 0 if 𝛿 > 0 and u ∈ R2+.

3. For 𝑖, 𝑗 = 1, 2, 𝑓 𝑏𝑖 (𝑢1, 𝑢2) = 𝑢𝑖 (𝛼𝑏𝑖 − 𝛽𝑏𝑖1𝑢1 − 𝛽𝑏𝑖2𝑢2) for some non-negative 𝛼𝑏𝑖 , 𝛽𝑏𝑖 𝑗 such that 𝛼𝑏𝑖 → 𝛼𝑖 and
𝛽𝑏𝑖 𝑗 → 𝛽𝑖 𝑗 as 𝑏 → 0. Moreover, using the notation 𝛼0𝑖 = 𝛼𝑖 and 𝛽0𝑖 𝑗 = 𝛽𝑖 𝑗 , we assume, for 𝑏 ≥ 0,

𝛽𝑏22𝛼
𝑏
1 − 𝛽𝑏12𝛼𝑏2 > 0, 𝛽𝑏11𝛼

𝑏
2 − 𝛽𝑏21𝛼𝑏1 > 0,

det(𝐵𝑏) > 0, tr(𝐵𝑏) ≥ 0, where 𝐵𝑏 =
(
𝛽𝑏𝑖 𝑗

)
.

(1.9)

Observe that (1.9) ensures the existence of a stable coexistence equilibrium for the dynamical system (0.5)-(0.6),
given by

u∗ =
(
𝑢∗1, 𝑢

∗
2
)
=

(
𝛽𝑏22𝛼

𝑏
1 − 𝛽𝑏12𝛼𝑏2

𝛽𝑏11𝛽
𝑏
22 − 𝛽𝑏12𝛽𝑏21

,
𝛽𝑏11𝛼

𝑏
2 − 𝛽𝑏21𝛼𝑏1

𝛽𝑏11𝛽
𝑏
22 − 𝛽𝑏12𝛽𝑏21

)
. (1.10)

There are two examples of 𝐷 𝛿 (u) in which we are specially interested. The first, due to its simplicity for the
calculations. We set

𝐷 𝛿 (u) =
((1 + 𝛿)𝑢1 𝑢1

𝑢2 (1 + 𝛿)𝑢2

)
, (1.11)

for which det(𝐷 𝛿 (u)) = 𝛿(2 + 𝛿)𝑢1𝑢2. According to [8], the second hypothesis of 𝐻𝐷 guarantees the well-
posedness of the problem (1.5)-(1.8) corresponding to this diffusion matrix. The second example corresponds to
the approximation used in [9] for proving the existence of 𝐵𝑉 solutions of the original problem (1.1)-(1.4):

𝐷 𝛿 (u) =
(
(1 + 𝛿)𝑢1 + 𝛿

2 𝑢2 (1 + 𝛿
2 )𝑢1

(1 + 𝛿
2 )𝑢2 𝛿

2 𝑢1 + (1 + 𝛿)𝑢2

)
, (1.12)
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for which det(𝐷 𝛿 (u)) = 1
2𝛿(1 + 𝛿) (𝑢1 + 𝑢2)2.

The approximation of the reaction terms introduced in the system (1.5)-(1.8) is not essential. Its aim is to
support the specific example we deal with in Theorem 1.3, but can be ignored (𝑏 = 0) in the general linear and
weakly nonlinear analysis of Theorems 1.1 and 1.2. Nevertheless, we state these results taking it into account. Our
first result gives conditions under which linear instability arises. The following notation is used:

𝐾 = 𝐷f𝑏 (u∗) =
(−𝛽𝑏11𝑢∗1 −𝛽𝑏12𝑢∗1
−𝛽𝑏21𝑢∗2 −𝛽𝑏22𝑢∗2

)
.

Theorem 1.1 (Linear instability) Assume 𝐻𝐷 , with 𝑏 ≥ 0. Let u∗ be the coexistence equilibrium defined by
(1.10). If

tr(𝐾−1𝐷 𝛿 (u∗)) > 0 for all 𝛿 ≥ 0 (1.13)

then there exists 𝛿𝑐 > 0 such that if 𝛿 < 𝛿𝑐 then u∗ is a linearly unstable equilibrium for problem (1.5)-(1.8). In
such situation, the wave number of the main instability mode tends to infinity as 𝛿→ 0.
Condition (1.13) is equivalent to

𝑑 𝛿11 (u∗)𝛽𝑏22𝑢∗2 + 𝑑 𝛿22 (u∗)𝛽𝑏11𝑢∗1 < 𝑑 𝛿12 (u∗)𝛽𝑏21𝑢∗2 + 𝑑 𝛿21 (u∗)𝛽𝑏12𝑢∗1 (1.14)

and introduces a further restriction on the matrix of competence coefficients. Roughly speaking, for 𝐵𝑏 to fulfil both
(1.9) and (1.14), its elements must be such that intra-population joint competence is larger than inter-population
joint competence (condition (1.9)) and one of the inter-population competence coefficients is large in comparison
with the others (condition (1.14)). A numeric example we shall work with along the article is

𝐵𝑏 =

(
1

𝑏

2
2 1

)
, with 𝑏 ∈ (0, 12 ). (1.15)

Assuming the forms of 𝐷 𝛿 (u∗) given in Examples 1 and 2, see (1.11) and (1.12), we have that the conditions (1.9)
and (1.14) on 𝐵𝑏 are satisfied if 𝛿 < 𝑏/4 (Example 1) or 𝛿 < 𝑏𝑢∗1𝑢∗2/(𝑢∗1 + 𝑢∗2)2 (Example 2). Therefore, the most
meaningful case when 𝛿 is close to zero is satisfied by both diffusion matrices.

Our second result allows to estimate not only the instability wave numbers provided by the linear analysis but
also the amplitude corresponding to these modes. The approximation of the steady state solution is obtained using
a weakly nonlinear analysis (WNA) based on the method of multiple scales.

Theorem 1.2 Assume the hypothesis of Theorem 1.1 and let 𝜀2 = (𝛿𝑐 − 𝛿)/𝛿𝑐 be a small number. Then, there exist
sets of data problem such that the stationary WNA approximation to the solution u of problem (1.5)-(1.8) is given
by

v(𝑥) = u∗ + 𝜀𝝆
√︁
𝐴∞ cos(𝑘𝑐𝑥) + 𝜀2𝐴∞

(
v20 + v22 cos(2𝑘𝑐𝑥)

) +𝑂 (𝜀3), (1.16)

where 𝑘𝑐 ∈ Z is the critical wave number corresponding to 𝛿𝑐 , 𝐴∞ is a positive constant and 𝝆, v20 and v22 are
constant vectors.

Our third result focuses on the limit behaviour of the critical parameters and the amplitude when 𝛿 → 0, this
is, when the solutions of the approximated problems converge to the solution of the original singular problem. For
the sake of simplicity, we limit our study to the following example:

𝜕𝑡𝑢1 − 𝜕𝑥
(
𝑢1 (𝜕𝑥𝑢1 + 𝜕𝑥𝑢2)

)
= 𝑢1 (1 − 𝑢1), (1.17)

𝜕𝑡𝑢2 − 𝜕𝑥
(
𝑢2 (𝜕𝑥𝑢1 + 𝜕𝑥𝑢2)

)
= 𝑢2 (4 − (2𝑢1 + 𝑢2)), (1.18)

whose solutions we approximate by the two-parameter family of solutions of

𝜕𝑡𝑢1 − 𝜕𝑥
(
𝑢1 ((1 + 𝛿)𝜕𝑥𝑢1 + 𝜕𝑥𝑢2)

)
= 𝑢1 (1 − (𝑢1 + 𝑏2𝑢2)), (1.19)

𝜕𝑡𝑢2 − 𝜕𝑥
(
𝑢2 (𝜕𝑥𝑢1 + (1 + 𝛿)𝜕𝑥𝑢2)

)
= 𝑢2 (4 − (2𝑢1 + 𝑢2)). (1.20)
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Onone hand, Theorem1.1 ensures the existence of 𝛿𝑐 > 0 such that, for any 𝑏 ≥ 0, the equilibriumu∗ = 1
1−𝑏 (1 − 2𝑏, 2)

of (1.19)-(1.20) becomes unstable for 𝛿 < 𝛿𝑐 , with an associated critical wave number such that 𝑘𝑐 →∞ as 𝛿→ 0.
On the other hand, for 𝛿 < 𝑏/4 and 𝑏 → 0, the sequence of solutions of (1.19)-(1.20) converges to a solution of

(1.17)-(1.18) in the space 𝐵𝑉 (0, 𝑇, 𝐿∞ (Ω)) ∪ 𝐿∞ (0, 𝑇 ; 𝐵𝑉 (Ω)). Therefore, for the approximation (1.16) provided
by the weakly nonlinear analysis to remain valid for all 𝛿 > 0, the corresponding amplitude 𝐴∞ must vanish in the
limit 𝛿→ 0, making in this way compatible the increase of oscillations with its 𝐵𝑉 regularity.

Theorem 1.3 Set 𝛼 = (1, 4), and let 𝐷 𝛿 (u) and 𝐵𝑏 be given by (1.11) and (1.15), respectively, for 𝑏 < 1/2 and
0 < 𝛿 < 𝑏/4. Then, there exists 𝛿𝑐 (𝑏) > 0 such that if 𝛿 < 𝛿𝑐 (𝑏) then u∗ = 1

1−𝑏 (1 − 2𝑏, 2) is linearly unstable for
problem (1.5)-(1.8). In addition,

lim
𝑏→0

𝛿𝑐 (𝑏) = 0, lim
𝑏→0

𝑘𝑐 (𝑏) = ∞,

and the amplitude provided by the weakly nonlinear analysis satisfies

lim
𝑏→0

𝐴∞ (𝑏) = 0.

In particular, the weakly nonlinear approximation v given by (1.16) satisfies v→ u∗ uniformly in Ω as 𝑏 → 0.

2. Numerical experiments
In order to analyze the quality of the approximation provided by the WNA, as well as the properties stated in
Theorems 1.1 to 1.3, we compare it to a numerical approximation of the evolution problem computed though the
finite element method (FEM).
For the FEM approximation, we used the open source software deal.II [1] to implement a time semi-implicit

schemewith a spatial linear-wise finite element discretization. For the time discretization, we take in the experiments
a uniform time partition of time step 𝜏 = 0.01. For the spatial discretization, we take a uniform partition of the
interval Ω = (0, 𝜋) with spatial step depending on the predicted wave number of the pattern, see Table 1.
Let, initially, 𝑡 = 𝑡0 = 0 and set (𝑢01, 𝑢02) = (𝑢10, 𝑢20). For 𝑛 ≥ 1, the discrete problem is: Find 𝑢𝑛1 , 𝑢𝑛2 ∈ 𝑆ℎ such

that

1
𝜏

(
𝑢𝑛1 − 𝑢𝑛−11 , 𝜒)ℎ + (

𝑑 𝛿11 (u𝑛)𝜕𝑥𝑢𝑛1 + 𝑑 𝛿12 (u𝑛)𝜕𝑥𝑢𝑛2 , 𝜕𝑥 𝜒
)ℎ =

(
𝑓 𝑏1 (𝑢𝑛1 , 𝑢𝑛2 ), 𝜒)ℎ , (2.1)

1
𝜏

(
𝑢𝑛2 − 𝑢𝑛−12 , 𝜒)ℎ + (

𝑑 𝛿21 (u𝑛)𝜕𝑥𝑢𝑛1 + 𝑑 𝛿22 (u𝑛)𝜕𝑥𝑢𝑛2 , 𝜕𝑥 𝜒
)ℎ =

(
𝑓 𝑏2 (𝑢𝑛1 , 𝑢𝑛2 ), 𝜒)ℎ , (2.2)

for every 𝜒 ∈ 𝑆ℎ , the finite element space of piecewise Q1-elements. Here, (·, ·)ℎ stands for a discrete semi-inner
product on C(Ω).
Since (2.1)-(2.2) is a nonlinear algebraic problem, we use a fixed point argument to approximate its solution,

(𝑢𝑛1 , 𝑢𝑛2 ), at each time slice 𝑡 = 𝑡𝑛, from the previous approximation (𝑢𝑛−11 , 𝑢𝑛−12 ). Let 𝑢𝑛,01 = 𝑢𝑛−11 and 𝑢𝑛,02 = 𝑢𝑛−12 .
Then, for 𝑘 ≥ 1 the linear problem to solve is: Find (𝑢𝑛,𝑘1 , 𝑢𝑛,𝑘2 ) such that for for all 𝜒 ∈ 𝑆ℎ

1
𝜏

(
𝑢𝑛,𝑘1 − 𝑢𝑛−11 , 𝜒)ℎ + (

𝑑 𝛿11 (u𝑛,𝑘−1)𝜕𝑥𝑢𝑛,𝑘1 + 𝑑 𝛿12 (u𝑛,𝑘−1)𝜕𝑥𝑢𝑛,𝑘2 , 𝜕𝑥 𝜒
)ℎ

=
(
𝑢𝑛,𝑘1 (𝛼𝑏1 − 𝛽𝑏11𝑢𝑛,𝑘−11 − 𝛽𝑏12𝑢𝑛,𝑘−12 ), 𝜒)ℎ ,

1
𝜏

(
𝑢𝑛,𝑘2 − 𝑢𝑛−12 , 𝜒)ℎ + (

𝑑 𝛿21 (u𝑛,𝑘−1)𝜕𝑥𝑢𝑛,𝑘1 + 𝑑 𝛿22 (u𝑛,𝑘−1)𝜕𝑥𝑢𝑛,𝑘2 , 𝜕𝑥 𝜒
)ℎ

=
(
𝑢𝑛,𝑘2 (𝛼𝑏2 − 𝛽𝑏21𝑢𝑛,𝑘−11 − 𝛽𝑏22𝑢𝑛,𝑘−12 )𝜒)ℎ .

We use the stopping criteria

max
(‖𝑢𝑛,𝑘1 − 𝑢𝑛,𝑘−11 ‖2, ‖𝑢𝑛,𝑘2 − 𝑢𝑛,𝑘−12 ‖2

)
< tol𝐹𝑃 ,

for values of tol𝐹𝑃 chosen empirically, and set (𝑢𝑛1 , 𝑢𝑛2 ) = (𝑢𝑛,𝑘1 , 𝑢𝑛,𝑘2 ). Finally, we integrate in time until a
numerical stationary solution, (𝑢𝑆1 , 𝑢𝑆2 ), is achieved. This is determined by

max
(‖𝑢𝑛,11 − 𝑢𝑛−11 ‖2, ‖𝑢𝑛,12 − 𝑢𝑛−12 ‖2) < tol𝑆 ,

where tol𝑆 is chosen empirically too. In the following experimentswe always fix tol𝐹𝑃 = 1.𝑒−07 and tol𝑆 = 1.𝑒−12.

TURING INSTABILITY ANALYSIS OF A SINGULAR CROSS-DIFFUSION PROBLEM

188



Simulation 1 Simulation 2 Simulation 3
𝑏 3.85e-02 9.91e-03 4.42e-03
𝛿(𝑏) 4.53e-05 2.94e-06 5.83e-07
𝑘𝑐 (𝑏) 10 20 30
𝐴∞ (𝑏) 1.21e-02 3.1e-03 1.4e-03
Number of nodes 128 256 512
Time steps to stationary 3.e+04 1.9e+05 4.4e+05
Execution time (hours) 1.67 19.26 84.77

Tab. 1 Data set for the Experiment 1. Wave numbers and times are rounded. Execution time measured for a
standard laptop with i7 processor.

2.1. Experiment 1
We investigate the behaviour of the instabilities arising in the solutions of the approximated problems (1.5)-(1.8)
when 𝛿→ 0. Our main aim is to check if the predictions of the weakly nonlinear analysis stated in Theorem 1.3 are
captured by the FEM approximation too. Thus, we use the diffusion matrix 𝐷 𝛿 (u) and the competence parameters
𝐵𝑏 given by (1.11) and (1.15), respectively.
We run three simulations according to the choice of 𝑏, see Table 1, and fix 𝛿 = 0.95𝛿𝑐 (𝑏) in all of them, so that

u∗ is unstable and pattern formation follows.
In Fig. 1 we show the typical onset and transmission of disturbances found in all the experiments. In this figure

and in the following we plot only the first component of the solution, being the behaviour of the second component
similar. After a fast decay of the initial data towards the unstable equilibrium, a perturbation with the wave number
predicted by the linear analysis grows from one side of the boundary to the rest of the domain until reaching the
steady state, see Fig. 2. In the latter figure, we may check the good accordance between the FEM and the WNA
approximations which, in numeric figures, have a relative difference of the order 10−5.
In Fig. 3 we show three interesting behaviours of solutions when 𝛿 → 0. In the left panel, the shrinking

amplitude of the stationary patterns while the wave number increases. The equilibrium has been subtracted from
the solution to center the pattern in 𝑦 = 0. The center panel shows the time evolution of the amplitude (log scale) as
given by the exact solution of the Stuart-Landau equation. We readily see that the stabilization time is a decreasing
function of 𝛿. This fact together with the increment of the wave number when 𝛿→ 0 results in very high execution
times, see Table 1. Finally, the third panel shows how the variation of the numerical stationary solution∫

Ω
|𝜕𝑥𝑢1 (𝑇, 𝑥) |𝑑𝑥

is an increasing function of 𝛿 and tends to zero as 𝛿 → 0, in agreement with the regularity of solutions stated by
the theoretical results.

2.2. Experiment 2
We repeated Experiment 1 replacing the diffusion matrix 𝐷 𝛿 (u) by that defined in (1.12) In Table 2 we show the
relative differences in 𝐿 𝑝 , given by

RD𝑝 (𝜑1, 𝜑2) = ‖𝜑1 − 𝜑2‖𝐿
𝑝

‖𝜑1‖𝐿𝑝 , (2.3)

of the critical bifurcation parameter, 𝛿𝑐 , the stationary solution of the FEM approximation, u(𝑇, ·), the WNA
approximation, v, and the pattern amplitude, 𝐴∞, corresponding to both approximations of the original diffusion
matrix. We see that although the critical bifurcation parameter is clearly affected by the approximation scheme, the
FEM and WNA approximations provided by both schemes are in a very good agreement, as well as the amplitudes
of the instability patterns, suggesting that in the limit 𝛿 → 0 both sequences of approximations converge to the
same limit.
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Simulation 1 Simulation 2 Simulation 3
RD∞ (𝛿 (𝐸1)𝑐 , 𝛿 (𝐸2)𝑐 ) 0.136 0.117 0.113
RD2 (u(𝐸1) (𝑇, ·), u(𝐸2) (𝑇, ·)) 3.74e-06 8.68e-07 5.41e-07
RD2 (v(𝐸1) , v(𝐸2) ) 3.46e-06 2.13e-07 4.19e-08
RD∞ (𝐴(𝐸1)∞ , 𝐴(𝐸2)∞ ) 2.90e-03 6.82e-04 2.99e-4

Tab. 2 Comparison between the results obtained with the approximation diffusion matrices corresponding to
Example 1 (E1) and Example 2 (E2), given by (1.11) and (1.12) respectively. RD𝑝 denotes the relative difference
in 𝐿𝑝 , see (2.3).
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Fig. 1 Typical evolution of disturbances
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Fig. 2 Experiment 1. WNA and FEM approximations corresponding to Simulations 1 to 3 (left to right). Notice
the different scales in the ordinates axis showing the decreasing amplitude of the oscillations.
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Fig. 3 Experiment 1. Behaviour of the patterns as 𝛿→ 0.
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Weakly nonlinear analysis of a system with nonlocal diffusion
Gonzalo Galiano1, Julián Velasco1
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Abstract

We study, through a weakly nonlinear analysis, the pattern formation for a system of partial differential
equations of the Shigesada-Kawasaki-Teramoto type with nonlocal diffusion in the one-space dimensional case
with periodic boundary conditions. We obtain the pattern of the solutions for values of the bifurcation parameter
in the proximity of the onset of instabilities. Finally, we compare the results of the nonlocal model with those of
the usual local diffusion model.

1. Introduction
Let 𝑇 > 0. We consider the following nonlocal diffusion problem. Find 𝑢𝑖 : [0, 𝑇] ×R→ R+, for 𝑖 = 1, 2, such that

𝜕𝑡𝑢𝑖 (𝑡, 𝑥) =
∫
R
𝐽 (𝑥 − 𝑦) (𝑝𝑖 (u(𝑡, 𝑦)) − 𝑝𝑖 (u(𝑡, 𝑥)))𝑑𝑦 + 𝛾 𝑓𝑖 (u(𝑡, 𝑥)), (1.1)

𝑢𝑖 (0, 𝑥) = 𝑢0𝑖 (𝑥), (1.2)

for (𝑡, 𝑥) ∈ 𝑄𝑇 = [0, 𝑇] × R, and for some 𝑢0𝑖 : R → R+, periodic functions of period 𝐿. The diffusion kernel,
𝐽 : R→ R+, is an even function with compact support included in (−𝐿/2, 𝐿/2). We assume 𝐽 ∈ 𝐿∞ (R) ∩ 𝐵𝑉 (R),
and 𝑢0𝑖 ∈ 𝐿∞ (0, 𝐿) ∩ 𝐵𝑉 (0, 𝐿). Here, R+ = [0,∞), u = (𝑢1, 𝑢2), and, for 𝑖, 𝑗 = 1, 2, 𝑖 ≠ 𝑗 , the diffusion and
reaction functions are given by

𝑝𝑖 (u) = 𝑢𝑖 (𝑐𝑖 + 𝑎𝑖𝑢𝑖 + 𝑢 𝑗 ), 𝑓𝑖 (u) = 𝑢𝑖
(
𝛼𝑖 − (𝛽𝑖1𝑢1 + 𝛽𝑖2𝑢2)

)
, (1.3)

for some non-negative constant coefficients 𝛾, 𝑐𝑖 , 𝑎𝑖 , 𝛼𝑖 , 𝛽𝑖 𝑗 .
Problem (1.1)-(2.1) is a nonlocal version of the clasical Shigesada-Kawasaki-Teramoto (SKT) populationmodel,

see [4]. For the relationship between local and nonlocal diffusion models, see the monograph by Andreu et al. [1]

2. Existence and uniqueness of solution
Theorem 2.1 Assume the above conditions and 𝑎𝑖 + 𝛽𝑖𝑖 > 0 for 𝑖 = 1, 2. Then, there exists a unique strong solution
(𝑢1, 𝑢2) of problem (1.1)-(1.2) with 𝑢𝑖 ≥ 0 a. e. in 𝑄𝑇 and such that, for 𝑖 = 1, 2 and 𝑡 ∈ [0, 𝑇],

𝑢𝑖 ∈ 𝑊1,∞ (0, 𝑇 ; 𝐿∞ (R)) ∩ 𝐶 ( [0, 𝑇]; 𝐿∞ (R)) ∩ 𝐵𝑉𝑙𝑜𝑐 (R))

Proof If 𝑢𝑖 are periodic funtions, then the right hand side of equation (1.1) is a periodic funtion with period 𝐿 and,
for fixed 𝑥, the integrand is nonzero outside the interval (𝑥 − 𝐿/2, 𝑥 + 𝐿/2). Defining a periodic extension of 𝐽 of
period 𝐿, that we will denote by 𝐽𝑝 , the integral in (1.1) may be computed from the corresponding integral in any
interval of legth 𝐿. Thus, we reformulate the problem (1.1)-(2.1) as defined in the bounded domain [0, 𝐿]:

𝜕𝑡𝑢𝑖 (𝑡, 𝑥) =
∫ 𝐿

0
𝐽𝑝 (𝑥 − 𝑦)

(
𝑝𝑖 (u(𝑡, 𝑦)) − 𝑝𝑖 (u(𝑡, 𝑥))

)
𝑑𝑦 + 𝛾 𝑓𝑖 (u(𝑡, 𝑥)), (2.1)

𝑢𝑖 (0, 𝑥) = 𝑢0𝑖 (𝑥), (2.2)

for (𝑡, 𝑥) ∈ [0, 𝑇] × [0, 𝐿]. Theorem 1 in [2] implies the existence of a unique solution to this problem. The
periodic extension of this solution to R is a solution to our original problem (1.1)−(1.2). The uniqueness follows
from the uniqueness result in [2]. �

In the following, we will use the notation 𝐽 instead of 𝐽𝑝 .
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Gijón, 14-18 junio 2021
(pp. 192–196)

CEDYA/CMA 192 ISBN 978-84-18482-21-2



3. Linear stability and bifurcation parameter
Under suitable assumptions on the coefficients 𝛼𝑖 and 𝛽𝑖 𝑗 , the coexistence equilibrium

ũ =
( 𝛽22𝛼1 − 𝛽12𝛼2
𝛽11𝛽22 − 𝛽12𝛽21 ,

𝛽11𝛼2 − 𝛽21𝛼1
𝛽11𝛽22 − 𝛽12𝛽21

)
(3.1)

is a constant stationary solution of equation (1.1). In what follows, and for simplicity, we will consider 𝐿 = 2𝜋.
We also introduce the notation Δ𝑛𝑙𝑢 = 𝐽 ∗ 𝑢 − 𝑢.
The linearization of problem (1.1)-(1.2) around ũ suggests to look for a solution of the form: u = 𝝆𝑒𝜆𝑡 cos(𝑛𝑥 −

Φ𝑛), with 𝝆 ∈ R2. The resulting matrix eigenvalue problem is

𝐴𝑛𝝆 = 𝜆𝝆, where 𝐴𝑛 = 𝛾𝐾 − 𝜅(𝑛)𝐷,
with 𝜅(𝑛) =

∫ 𝜋

−𝜋 𝐽 (𝑥)
(
1 − cos(𝑛𝑥))𝑑𝑥 ≥ 0, and

𝐾 := 𝐷f (ũ) =
(−𝛽11�̃�1 −𝛽12�̃�1
−𝛽21�̃�2 −𝛽22�̃�2

)
, 𝐷 =

(
𝑑1 + 2𝑎11�̃�1 + 𝑎12�̃�2 𝑎12�̃�1

𝑎21�̃�2 𝑑2 + 𝑎21�̃�1 + 2𝑎22�̃�2

)
. (3.2)

We are going to assume that the uniform problem in space is stable, so 𝐾 has two real eigenvalues and his
determinant is positive.
Matrix 𝐴𝑛 has two different real eigenvalues for any 𝑛 and one of the eigenvalues is negative.
We want to find a bifurcation parameter such that the problem is stable on one side of the threshold and unestable

on the other side, that is, the matrix has zero as eigenvalue for certain value 𝑛 for the threshold value.
The weakly nonlinear analysis follows the local case in [3].
In the study of the linear stability of the local problem in a bounded domain we are concerned in the arrays

𝐴𝑘 = 𝛾𝐾 − 𝑘2𝐷 with 𝑘 a natural number.
We want to obtain a condition than implies that the expression 𝑑𝑒𝑡 (𝐴𝑘 ) attains a minimum value 0 for some

value 𝑘 > 0. We oberserve that 𝐷𝑒𝑡 (𝐴𝑘 ) is a polynomial of degree 2 in the variable 𝑘2:

ℎ(𝑘2) = 𝑑𝑒𝑡 (𝛾𝐾 − 𝑘2𝐷) = 𝛾2𝑑𝑒𝑡 (𝐾) + 𝛾𝑞𝑘2 + 𝑘4𝑑𝑒𝑡 (𝐷)
where

𝑞 = 𝛽11�̃�1 (2𝑎22�̃�2 + 𝑑2) + 𝛽22�̃�2 (2𝑎11�̃�1 + 𝑑1) + 𝑎12�̃�2 (𝛽22�̃�2 − 𝛽21�̃�1) + 𝑎21�̃�1 (𝛽11�̃�1 − 𝛽12�̃�2)

If we want the parabolyc expression to have a positive root, we need 𝑞 < 0.
The only possible negative terms in 𝑞 are 𝛽22�̃�2 − 𝛽21�̃�1 and 𝛽11�̃�1 − 𝛽12�̃�2.
It can be proved that these two terms have different sign. In this work we will assume 𝛽22�̃�2 − 𝛽21�̃�1 < 0 and

then, we will consider as bifurcation parameter 𝑏 := 𝑎12. We will use the superscript 𝑏 to highlight the dependence
on 𝑏 of the quantities.
In [3] it is proved that there exists a thershold value 𝑏𝑐 and a unique value 𝑘𝑐 > 0 such that ℎ𝑏

𝑐 (𝑘2𝑐) = 0, and
for any 𝑏 > 𝑏𝑐 there exist intervals (𝑥1, 𝑥2) such that ℎ𝑏 (𝑘) < 0 for 𝑘2 ∈ (𝑘21, 𝑘22). Furthermore the size of the
interval increases in 𝛾
In our nonlocal problem in a bounded domain, instead of 𝑘2 we have to consider 𝜅(𝑛) for 𝑛 ∈ N. So, for 𝛾 big

enough, there exist a natural number 𝑛 and a threshold 𝑏∗𝑛 > 𝑏𝑐 such that 𝑑𝑒𝑡 (𝛾𝐾 − 𝜅(𝑛)𝐷𝑏
∗
𝑛 ) = 0.

In the weakly nonlinear approximation we must consider 𝑏∗𝑛 as the threshold value of the bifurcation parameter
instead of 𝑏𝑐 . However, we will use, for simplicity, 𝑏𝑐 in the equations in the following section.

Remark 3.1 We oberve that the temporal evolution of the amplitudes associated to a same wavelength (the cos(nx)
term and the sin(nx) term) satisfafy the same equation, so we can consider Φ𝑛 is independent in time.

4. Weakly nonlinear analysis
We follow [3].
Let 𝑏𝑐 be the bifurcation threshold. We will consider the expansions

𝑏 = 𝑏𝑐 + 𝜀𝑏1 + 𝜀2𝑏2 + 𝜀3𝑏3 +𝑂 (𝜀4)
w = 𝜀w1 + 𝜀2w2 + 𝜀3w3 +𝑂 (𝜀4)
𝜕𝑡 = 𝜀𝜕𝑇1 + 𝜀2𝜕𝑇2 + 𝜀3𝜕𝑇3 +𝑂 (𝜀4)
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then
𝜕𝑡w = 𝜀2𝜕𝑇1w1 + 𝜀3 (𝜕𝑇1w2 + 𝜕𝑇2w1) +𝑂 (𝜀4)

We will use the following notation for the nonlocal diffusion terms:

L𝑏 = L𝑏𝑐 +
3∑︁
𝑗=1
𝜀 𝑗

(
𝑏 𝑗 �̃�2 𝑏 𝑗 �̃�1
0 0

)
Δ𝑛𝑙

where
L𝑏𝑐 = 𝛾𝐾 + 𝐷𝑏𝑐Δ𝑛𝑙

Substituting the above expansion into our nonlinear problem and collecting at each order in 𝜀, we obtain the
following succesion of linear problems:

Order 𝜀 :
The linear system L𝑏𝑐w1 = 0 has solutions:

w1 = 𝐴(𝑇1, 𝑇2)𝜌𝑐𝑜𝑠(𝑘𝑐𝑥 −Φ)

with 𝜌 ∈ 𝑘𝑒𝑟 (𝛾𝐾 − 𝜅(𝑘𝑐)𝐷𝑏𝑐 ) .
We can select

𝝆 = (1, 𝑀)𝑡 , with 𝑀 =
−𝛾𝐾21 + 𝐷𝑏𝑐21 𝜅(𝑘𝑐)
𝛾𝐾22 − 𝐷𝑏𝑐22 𝜅(𝑘𝑐)

< 0

Order 𝜀2 :
We have the system:

L𝑏𝑐w2 = 𝜕𝑇1w1 −
1
2
(Q𝐾 (w1,w1) + Δ𝑛𝑙Q𝑏𝑐𝐷 (w1,w1)) − 𝑏1

(
�̃�2 �̃�1
0 0

)
Δ𝑛𝑙w1 =: F

where
𝜕𝑇1w1 = 𝜕𝑇1𝐴(𝑇1, 𝑇2)𝜌𝑐𝑜𝑠(𝑘𝑐𝑥 −Φ)

Q𝐾 (w1,w1) = 𝐴(𝑇1, 𝑇2)2Q𝐾 (𝜌, 𝜌)𝑐𝑜𝑠2 (𝑘𝑐𝑥 −Φ) = 12 𝐴(𝑇1, 𝑇2)
2Q𝐾 (𝜌, 𝜌)

(
1 + 𝑐𝑜𝑠(2𝑘𝑐𝑥 − 2Φ)

Q𝑏𝑐𝐷 (w1,w1) = 𝐴(𝑇1, 𝑇2)2Q𝑏
𝑐

𝐷 (𝜌, 𝜌)𝑐𝑜𝑠2 (𝑘𝑐𝑥 −Φ)
since Δ𝑛𝑙𝑐𝑜𝑠( 𝑗 𝑘𝑐𝑥 − 𝑗Φ) = −𝜅( 𝑗 𝑘𝑐)𝑐𝑜𝑠( 𝑗 𝑘𝑐𝑥 − 𝑗Φ), we have

Δ𝑛𝑙𝑄
𝑏𝑐

𝐷 (w1,w1) = −
1
2
𝜅(2𝑘𝑐)𝐴(𝑇1, 𝑇2)2𝑄𝑏𝑐𝐷 (𝜌, 𝜌)𝑐𝑜𝑠(2𝑘𝑐𝑥 − 2Φ)

Δ𝑛𝑙w1 = −𝜅(𝑘𝑐)𝐴(𝑇1, 𝑇2)𝜌𝑐𝑜𝑠(𝑘𝑐𝑥 −Φ)
So, we have the following source term in the system:

F = −1
4
𝐴(𝑇1, 𝑇2)2

∑︁
𝑗=0,2
M 𝑗 (𝜌, 𝜌)𝑐𝑜𝑠( 𝑗 𝑘𝑐𝑥) +

(
𝜕𝑇1𝐴𝜌 + 𝑏1𝜅(𝑘𝑐)𝐴(�̃�2 + �̃�1𝑀, 0)𝑡

)
𝑐𝑜𝑠(𝑘𝑐𝑥 −Φ)

with
M 𝑗 = Q𝐾 − 𝜅( 𝑗 𝑘𝑐)Q𝑏𝑐𝐷

The functions 𝑐𝑜𝑠(𝑘𝑐𝑥−Φ) and 𝑐𝑜𝑠(2𝑘𝑐𝑥−2Φ) are linearly independent, so the solvability Fredholm condition
is satisfied if the source term has no component in 𝑐𝑜𝑠(𝑘𝑐𝑥 −Φ).
We deduce, that we need 𝑇1 = 𝑏1 = 0.
If we assume this condition we can solve the linear problems and we obtain:

L𝑏𝑐w2 = 𝐴(𝑇2)2
∑︁
𝑗=0,2
(𝛾𝐾 − 𝜅( 𝑗 𝑘𝑐)𝐷𝑏𝑐 )w2 𝑗𝑐𝑜𝑠( 𝑗 𝑘𝑐𝑥 − 𝑗Φ)

and so, w2 𝑗 verify the systems:
𝐿 𝑗w2 𝑗 = −14M 𝑗 (𝜌, 𝜌), para 𝑗 = 0, 2
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with 𝐿 𝑗 = 𝛾𝐾 − 𝜅( 𝑗 𝑘𝑐)𝐷𝑏𝑐 , and finally

w2 = 𝐴(𝑇2)2 (w20 + w22𝑐𝑜𝑠(2𝑘𝑐𝑥 − 2Φ))

Order 𝜀3:
In this case, the system reads:

L𝑏𝑐w3 = 𝜕𝑇2w1 − Q𝐾 (w1,w2) − Δ𝑛𝑙Q𝑏
𝑐

𝐷 (w1,w2) −
(
�̃�2 �̃�1
0 0

)
𝑏2Δ𝑛𝑙w1 =: G, (4.1)

where
𝜕𝑇2w1 = 𝜕𝑇2𝐴(𝑇2)𝜌𝑐𝑜𝑠(𝑘𝑐𝑥 −Φ)

Q𝐾 (w1,w2) = 𝐴(𝑇2)3Q𝐾 (𝜌,w20)𝑐𝑜𝑠(𝑘𝑐𝑥 −Φ) + 𝐴(𝑇2)3Q𝐾 (𝜌,w22)𝑐𝑜𝑠(𝑘𝑐𝑥 −Φ)𝑐𝑜𝑠(2𝑘𝑐𝑥 − 2Φ)

= 𝐴(𝑇2)3
( (Q𝐾 (𝜌,w20) + 12Q𝐾 (𝜌,w22)

)
𝑐𝑜𝑠(𝑘𝑐𝑥 −Φ) + 12Q𝐾 (𝜌,w22)𝑐𝑜𝑠(3𝑘𝑐𝑥 − 3Φ)

)
and

Δ𝑛𝑙Q𝑏𝑐𝐷 (w1,w2) = −𝐴(𝑇2)3
( (Q𝑏𝑐𝐷 (𝜌,w20) + 12Q𝑏𝑐𝐷 (𝜌,w22)

)
𝜅(𝑘𝑐)𝑐𝑜𝑠(𝑘𝑐𝑥 −Φ)

+1
2
Q𝑏𝑐𝐷 (𝜌,w22)𝜅(3𝑘𝑐)𝑐𝑜𝑠(3𝑘𝑐𝑥 − 3Φ)

)
The source term is, in this case

G =
(
𝜕𝑇2𝐴𝜌 + 𝐴G(1)1 + 𝐴3G

(3)
1

)
𝑐𝑜𝑠(𝑘𝑐𝑥 −Φ) +G3𝐴3𝑐𝑜𝑠(3𝑘𝑐𝑥 − 3Φ)

with
G(1)1 = (�̃�2 + �̃�1𝑀)𝜅(𝑘𝑐)𝑏2 (1, 0)𝑡

G(3)1 = −(M1 (𝜌,w20) + 12M1 (𝜌,w22)
)

G3 = −12M3 (𝜌,w22)

The Fredholm condition is satisfied if G ∈ 𝐾𝑒𝑟 ((L𝑏𝑐 )∗)⊥.
The vectorial space𝐾𝑒𝑟 ((L𝑏𝑐 )∗) has dimension 1.The elements of this space aremultples ofΨ = 𝜼𝑐𝑜𝑠(𝑘𝑐𝑥−𝛼)

with 𝛼 ∈ R, 𝜼 = (1, 𝑀∗) ∈ 𝐾𝑒𝑟 (𝛾𝐾 𝑡 − 𝜅(𝑘𝑐) (𝐷𝑏𝑐 )𝑡 ) .
If we define

�̂� = −G(1)1 · 𝜼
𝝆 · 𝜼 > 0, �̂� =

G(3)1 · 𝜼
𝝆 · 𝜼 ,

We obtain the Stuart-Landau equation in the supercritical case �̂� > 0:

𝜕𝑇2𝐴 = �̂�𝐴 − �̂�𝐴3

and the weakly nonlinear approximation of the limit in time of the solution:

w = 𝜀𝝆

√︂
�̂�

�̂�
𝑐𝑜𝑠(𝑘𝑐𝑥 −Φ) + 𝜀2 �̂�

�̂�
(w20 + w22𝑐𝑜𝑠(2𝑘𝑐𝑥 − 2Φ)) +𝑂 (𝜀3).

5. Numerical simulations.
We consider a finite difference discretization in space and an explicit discretization in time for problem (1.1)-(1.2).
We must use a discrete space length ℎ small enough to have an adequate number or discrete points in the domain of
the nonlocal kernel. In Fig. 1, we show the the numerical approximation of the asymptotic solution in time (for a
set of parameters) for the nonlinear problem (1.1)-(1.2) and the weakly nonlinear approximation. We took ℎ = 2𝜋

100
and a triangular kernel with support in [− 𝜋10 , 𝜋10 ] and variance 2.
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Fig. 1 Nonlocal solution and the weakly nonlinear approximation. The parameters are 𝑑1 = 𝑑2 = 0.1, 𝑎11 = 1.𝑒 − 4,
𝑎21 = 0.3, 𝑎22 = 0.1, 𝛼1 = 1.2, 𝛼2 = 1.0, 𝛽11 = 0.5, 𝛽12 = 0.4, 𝛽21 = 0.38, 𝛽22 = 0.41, 𝛾 = 49.75. With these data, we
have 𝑏𝑐 = 5.297, 𝑛 = 3, 𝑏∗3 = 5.328. Thus we took 𝑏 := 𝑎12 = 5.5

Remark 5.1 (Rescaling of the nonlocal kernel) Let 𝑢 be a 2𝜋−periodic function twice continuously differentiable
in [0, 2𝜋], and assume that the support of 𝐽 is contained in [-1,1]. Then, we have:

lim
𝜀→0

𝑐1
𝜀3

∫ 𝑥0+𝜋

𝑥0−𝜋
𝐽
( 𝑦 − 𝑥
𝜀

)
(𝑢(𝑦) − 𝑢(𝑥))𝑑𝑦 = 𝑢𝑥𝑥 (𝑥0)

where 𝑐−11 = 1
2

∫ 1
−1 𝐽 (𝑥)𝑥2𝑑𝑥. We consider the rescaling 𝐽𝜀 (𝑥) =

𝑐1
𝜀3
𝐽 ( 𝑥𝜀 ), so that, for fixed 𝑛,

𝜅𝜀 (𝑛) =
∫ 1

−1
𝐽𝜀 (𝑥)

(
1 − cos(𝑛𝑥))𝑑𝑥 = 𝑐1

𝜀3

∫ 𝜀

−𝜀
𝐽
( 𝑥
𝜀

) (
1 − cos(𝑛𝑥))𝑑𝑥 = 𝑐1

∫ 1

−1
𝐽 (𝑡) 1 − cos(𝑛𝜀𝑡)

𝜀2
𝑑𝑡 → 𝑛2

as 𝜀 → 0. Thus, the weakly nonlinear approximation of the rescaled nonlocal diffusion problem converges, when
𝜀 → 0, to the weakly nonlinear approximation of the corresponding local diffusion problem.
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Abstract

In this work it is illustrated how the urgent computing (UC) capabilities in the tsunami natural hazard frame-
work are strengthening the monitoring and analysis functions of the European Emergency Response Coordination
Centre (ERCC) and its Situational Awareness Sector (SAS) by helping to design the multi-hazard advice service
at global level and on a 24/7 operational basis. In this context, the ARISTOTLE-eENHSP project (All Risk Inte-
grated System TOwards Trans-boundary hoListic Early-warning - enhanced European Natural Hazards Scientific
Partnership) has been designed to offer a flexible and scalable system that can provide new hazard-related services
to the ERCC.

1. Introduction
"When a disaster strikes, every minute counts. An immediate, coordinated and pre-planned response saves lives".
The Emergency Response Coordination Centre (ERCC) has been established exactly for this reason: to enable
the EU and its Member States to respond to overwhelming natural and man-made disasters in a timely and
efficient manner. This is one of the key messages presented by the ERCC in the European Civil Protection and
Humanitarian Aid Operations (ECHO) factsheet and it is on the basis goal of the ARISTOTLE-eENHSP project
(see http://aristotle.ingv.it).

Fig. 1 Geographical distribution of the ARISTOTLE-eENHSP Consortium.

ARISTOTLE-eENHSP has been designed to offer a flexible and scalable system that can provide new hazard-
related services to the ERCC. The ARISTOTLE consortium includes 18 partner institutions operating in the
Meteorological andGeophysical domains (see Fig. 1). It builds on a consolidated andmulti-disciplinary partnership
consisting of world-leading scientific centres in the areas of Earth and Climate sciences (see Fig. 2), providing
operational and monitoring services, early warning and information systems as well as contributing to innovation
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and research actions. The ARISTOTLE-eENHSP Consortium is currently providing advice in a multi-hazard
fashion for the following inter-related hazards:

• Earthquakes,
• Tsunamis,
• Volcanic eruptions,
• Severe Weather events,
• Flooding events and
• Wildfires/Forest fires.

The operational capacity of the ARISTOTLE-eENHSP service relies on a blueprint in which experts from each
of the different hazard groups provide the collective expertise into a multi-hazard virtual 24/7 operational centre,
named “Multi-Hazard Board” (MHB). The MHB, composed of a representative of each hazard group, brings
together the best information from the multi-hazard perspective in a single and unified multi-hazard scientific
assessment of the ongoing and future events provided to the ERCC and SAS in two different modes, the Emergency
and the Routine modes. Both modes facilitate the accommodation to the different temporal scales of both, the
hazards considered, as well as the relative preparatory actions or feedback required for effective emergency response.
The EDANYA Group of the University of Málaga participates in this consortium since 2018 providing services

of Faster than Real Time (FTRT) tsunami computations with the numerical model Tsunami-HySEA.

Fig. 2 The experienced multi-hazard scientific ARISTOTLE-eENHSP Partnership and related hazards.

2. The tsunami service
Tsunami-HySEA (see [1, 2]) is a finite-volume numerical model that solves the 2D non-linear shallow water
equations in spherical coordinates. It has been developed by the EDANYA group of the University of Málaga
specifically for simulations of seismically induced tsunamis. Implemented for graphic processing unit (GPU)
architecture, Tsunami-HySEA is a robust, reliable and accurate model capable of simulating the generation,
propagation and inundation of a tsunami in a region covered by a grid with several million cells in only a few
minutes. This model has been extensively validated under the standard benchmarks proposed by the National
Tsunami Hazards Mitigation Program (NTHMP) of the U.S.A. (see [3,4]) and has been extensively tested in several
scenarios and compared with other well-established tsunami models (see [5, 6]).
Tsunami-HySEA has been implemented using CUDA andMPI in order to take advantage of the massive parallel

architecture of multi-GPU clusters, so that the computing time required could be dramatically reduced with respect
to the use of a single CPU core or even a multi-core processor and, at the same time, numerical resolution could be
increased still computing extremely fast. Many features are included in Tsunami-HySEA, such as the possibility
of using nested meshes, direct output of time series, the computation of the initial seafloor deformation using the
Okada (1992) model, support for rectangular or triangular faults, etc. By means of a very efficient implementation,
the model is able to simulate 8 hours of real time tsunami in the Mediterranean Sea (in a mesh with 10 million
volumes and a resolution of 30 arc-sec) in 257 seconds using two NVidia Tesla P100, or even in 284 seconds with
one NVidia Tesla V100.

WHAT IS THE HUMANITARIAN AID REQUIRED AFTER TSUNAMI?

198



TheARISTOTLE tsunami service (TS) is integrated in the SPADA (Scientific ProductsArchiving andDocument
Assembly) IT platform that gathers the scientific, exposure and preliminary impact informations which are used by
the multi-hazard operational board to assembly the reports. This platform relies on existing and newly developed
web services. The TS workflow (see Fig. 3) consists on four steps: the system is triggered by an end-user who is on
duty in the service. Using the earthquake parameters that can be provided by different seismic monitoring sources,
the scenario parameterization is defined and it is sent to the supercomputation resources (in this case located at
INGV and the University of Málaga). In this step a message passing system (RabbitMQ) is used between the
SPADA system and the supercomputing services. Depending on the earthquake epicenter location the system is
able to automatically select an optimal computational grid size and refinement level depending on the seismological
parameters. For example, as it will be presented in the next section, if the epicenter is located in the Mediterranean
Sea, the system automatically performs 8 hours of wallclock simulation in a 2 arc-min resolution grid, then detects
the limits where the tsunami waves has arrived and later performs a second simulation in a new domain with more
resolution (30 arc-sec). Depending on the event magnitude, the computation time can last from a few seconds to the
order of minutes. The current outputs of the tsunami service system are: maximum wave height in the considered
domain, wave arrival time and maximum wave height along coast locations.

Fig. 3 Scheme of the tsunami service workflow implementation in the ARISTOTLE.

This workflow is scalable depending on different aspects, like the computation resources or the Digital Terrain
Models (DTM) available. As consequence, the numerical computation output could be improved in different ways:
for instance by improving the grid resolution (even using nested meshes in specific areas of interest), or even
providing not only one scenario output but considering an ensemble of cases that could deliver even a Probabilistic
Tsunami Forecast (PTF). We are studying these possibilities in H2020 European projects like ChEESE (Center
of Excellence (CoE) in Solid Earth) (UE-H2020. Grant agreement: N𝑜 823844), or more recently, eFlows4HPC
(Enabling dynamic and Intelligent workflows in the future EuroHPC ecosystem) (UE -H2020-JTI-EuroHPC-2019-
1. Reference: 955558).

3. Outputs and computation time
The system outputs are delivered to the European Emergency Response Coordination Centre (ERCC) in a multi-
hazard report providing expert analysis made by an expert panel in the different involved hazards. In our case, the
tsunami service outputs are relevant in the sense that they have to be easily readable by the endusers. These aspects
have been agreed with all the consortium components related with the TS. For instance, an enhanced semaphore
colorbar has been designed where each semaphore color: green, yellow, orange and red has been subdivided into
three subcolors. The output is clear even for endusers with a basic information (see Fig. 4. Left). The arrival times
figure output has been also improved with the addition of a jet colormap that completes the information given by
the isochrons.
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Fig. 4 Izmir (Turkey) 2020 tsunami. Left: max. wave amplitude. Right: arrival times.

To illustrate the computational efficiency of the system, in the next table are shown the computation times
required to perform the process described in the previous section. In this case it is simulated one hour of wallclock
propagation of the tsunami in the 2 arc-min resolution and then the same time in a 30 arc-min resolution grid
adapted to the domain where the tsunami waves have arrived. The total time is 38.48 seconds in a single P100
NVidia GPU.
Scenario Resolution Wallclock simul. time Nr. cells Comp. Time Postproc. time Total time
Izmir 2 arc-min 60 mins (3600 secs) 1305 x 480 = 626400 1.15 secs
Izmir 30 arc-sec 60 mins (3600 secs) 460 x 336 = 154560 2.22 secs 35.11 secs 38.48 secs

4. Conclusions
The ARISTOTLE-eENHSP project is strengthening the European response capacities to assist Member States in
responding to natural disasters when national capacities are overwhelmed. ARISTOTLE has its own operational
multi-hazard capacities in order to ensure that the EU can provide better crisis emergency support with maximum
efficiency and minimal bureaucracy. The EDANYA group role in this project is related to the Tsunami Service with
the develop and tuning of the system. In fact, the 8-9 technology readiness level (TRL) achieved with Tsunami-
HySEA in this service makes it operational and at the same time scalable to incorporate the new state of the art
techniques when they are available.
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On Keller-Segel systems with fractional diffusion
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Abstract

In this note we review some recent results on the parabolic-elliptic and parabolic-parabolic Keller-Segel model
with fractional diffusion. Furthermore, we consider with particular emphasis the parabolic-hyperbolic case with
a fractional Laplacian. In particular we prove certain new results. Namely, first, we prove the existence of
solution for analytic initial data and then we establish the finite time singularity formation for initial data in this
class. Finally, we obtain a new equation describing unidirectional wave propagation for the parabolic-hyperbolic
Keller-Segel system.

1. The parabolic-parabolic and parabolic-elliptic Keller-Segel systems
Even if as of 2021 no “standard model" of the origin of life has yet emerged, most currently accepted models state
that life arose on Earth between 3800 and 4100 million years ago. These first forms of life where single-celled
organisms. For most of the History of life on Earth there were only unicellular organisms. However, now there are
many different fungi, algae, plants and animals that are multicellular organisms (they are formed by aggregations of
cells working together). Thus, even if we know that these single-celled organism eventually formed multicellular
organisms (around 1500 millions of years ago), the origins of multicellularity are one of the most interesting topics
in biology because we still do not know the details of how multicellularity arised.
A particular situation where cells form a cluster, in a process known as cell aggregation, arises when the motion

of the cells is driven by a chemical gradient, i.e. the cells attempt to move towards higher (or lower) concentration of
some chemical substance. This process is usually called chemotaxis. Then, multicellular aggregates and eventually
tissue-like assemblies are formed when individual cells attach to each other as a consequence of the chemotactic
movement and when this aggregation leads to subsequent cellular differentiation. That is, for instance, the case of
the slime mold Dictyostelium Discoideum and bacterial populations, such as of Escherichia coli and Salmonella
typhimurium.
A preliminary step towards a better understanding of chemotaxis and cell aggregation, was given by Keller &

Segel with their 1970 classical paper [18] (see also the prior work by Patlak [21]). In this paper, Keller and Segel
proposed a nonlinear system of PDEs of cross-diffusive type. After a number of simplifications, the following PDE
system appears as a model of cell aggregation as a consequence of chemotactic movement:

𝜕𝑡𝑢 = −(−Δ)𝛼/2𝑢 + ∇ · (𝑢∇𝑣) + 𝑓 (𝑢, 𝑣) (1.1)
𝜏𝜕𝑡𝑣 = 𝜈Δ𝑣 + 𝑢 − 𝜆𝑣. (1.2)

Here (−Δ)𝛼/2 denotes the fractional laplacian, 𝑢 and 𝑣 denote the cells and chemical concentration, respectively, and
𝜏, 𝜈, 𝜆 ≥ 0 are fixed constants. In most of the applications, the forcing is typically 𝑓 (𝑢, 𝑣) = 0 or 𝑓 (𝑢) = 𝑟𝑢(1− 𝑢).
System (1.1)-(1.2) is known as the parabolic-parabolic Keller-Segel equation (ppKS).
Diffusions given by −(−Δ)𝛼/2𝑢 for 𝛼 < 2 arise naturally when studying feeding strategies of some organisms in

certain situations. For instance, these fractional diffusions have been reported for amoebas [19], microzooplancton
[4], flying ants [23], fruit flies [12], jackals [2] and even humans! [22].
Following the works by T. Hillen, K. Painter & M. Winkler [17] and references therein, equations (1.1)-(1.2)

also appear in the modelization of cancer invasion of healthy tissues. In particular, the model (1.1)-(1.2) with
𝑓 (𝑢, 𝑣) = 𝑟𝑢(1 − 𝑢) appears as a valid approximation of the three-component urokinase plasminogen invasion.
The casewhen 𝜏 = 0, (1.1)-(1.2) is known as the parabolic-elliptic Keller-Segel equations (peKS) and, besides its

interest in regards to aggregation and chemotaxis, this equation also arises as a model of other physical phenomena.
In particular, the (peKS) equation (with 𝛼 = 2, 𝜈 = 1, 𝜆 = 0 and 𝑓 ≡ 0) is, formally, similar to the two-dimensional,
incompressible Navier-Stokes written in vorticity form 𝜔 = curl𝑣:

𝜕𝑡𝜔 = Δ𝜔 + ∇ · (𝜔∇⊥𝜓), −Δ𝜓 = 𝜔.

The (peKS) equation also arises as a model of gravitational collapse and star formation [1]. Thus, every new
mathematical result regarding equations (1.1)-(1.2) has potential implications in Applied Sciences.

XXVI CONGRESO DE ECUACIONES DIFERENCIALES Y APLICACIONES
XVI CONGRESO DE MATEMÁTICA APLICADA
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Using the Keller-Segel model (1.1)-(1.2), aggregation is mathematically equivalent to a finite time singularity
of the type

lim
𝑡→𝑇
max
𝑥
𝑢(𝑥, 𝑡) = ∞. (1.3)

Then, the question we want to answer is the following: Can the (ppKS) or the (peKS) systems develop a
finite time singularity of the type of (1.3)?
For the simpler case of the (peKS) equations this question is nowadays well understood. Specifically, it is known

that the aggregation of cells is very sensitive to changes in the dimension of the spatial domain and the order of the
diffusion, 𝛼. In particular, in the one dimensional case, (peKS) equation was first studied by Escudero [13]. He
proved the global existence of solution in the case 1 < 𝛼 ≤ 2. This result was later improved by Bournaveas &
Calvez [6], where the authors proved finite time singularities for the case 0 < 𝛼 < 1 and the existence of 𝐾 > 0 such
that, for the case 𝛼 = 1 and initial data satisfying the smallness restriction

∫
𝑢0 (𝑥1)𝑑𝑥1 ≤ 𝐾, there exists a global

smooth solution. Furthermore, based on numerical simulations, Bournaveas & Calvez, reported the existence of
finite time singularities in the case 𝛼 = 1 for large initial data. This conjecture is in agreement with the two
dimensional case and 𝛼 = 2, where there are finite time singularities depending on the mass of the initial data

𝑀 =
∫
R2
𝑢0 (𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2.

More precisely, when 𝑀 < 8𝜋, the solutions are globally defined and smooth while if 𝑀 > 8𝜋 the solutions
develop a finite time singularity (see for instance the paper by A. Blanchet, J. Dolbeault & B. Perthame [5] and the
references therein). The singularity formation for the two dimensional case with 𝛼 < 2 has been proved by D. Li,
J. Rodrigo & X. Zhang [20]. Systems akin to (peKS) with a nonlinear fractional diffusion have also been studied
in [16] and [7].
In a fruitful collaboration with Jan Burczak, we were able to

• Lack of threshold behavior for the critical (𝛼 = 1) (peKS) equation. One of our results [8] for the
one-dimensional (peKS) equations with 𝛼 = 1 is that smooth solutions can be defined for all later times,
i.e. every initial data leads to a global solution. Furthermore, the solutions are globally bounded (in fact,
they decay to the homogeneous steady state) if the initial mass is small enough (with a smallness condition
of order 𝑂 (1)). This was a very surprising result that disproved the previous conjecture by Bournaveas &
Calvez [6].

• Global existence for the supercritical (𝛼 < 𝑑) (peKS) equation with logistic forcing. In the case where a
logistic forcing of the type

𝑓 (𝑢) = 𝑟𝑢(1 − 𝑢), 0 < 𝑟
is considered into the (peKS) equations, we proved that, if 𝑑 = 1, 2 denotes the spatial dimension, we could
find a range

𝑑 − 𝑐1 (𝑟) < 𝛼 ≤ 𝑑, (1.4)

with 𝑐1 (𝑟) explicit such that there exist global in time classical solutions to the SP equations with 𝛼 in the
range (1.4) [9, 11]. Furthermore, we could also find a second range,

𝑑 − 𝑐2 (𝑟) < 𝛼 ≤ 𝑑, (1.5)

where 𝑐2 (𝑟) is explicit, such that there exist global in time weak solutions to the SP equations with 𝛼 in the
range (1.5). Note that, in 𝑑 dimensions, the case 𝛼 = 𝑑 corresponds to the critical case with respect to the
total mass ∫

𝑢(𝑥)𝑑𝑥.

Consequently, these results are the first global well-posedness results in supercritical ranges (1.4) and (1.5)
for a Keller-Segel type equation. As a consequence of these results, we obtained that aggregation is not
possible for 𝛼 in (1.4) if there is a logistic growth. In the one dimensional case 𝑑 = 1, these results are
also interesting when compared to other classical nonlinear, one-dimensional drift-diffusion equations as the
Burgers equation, where 𝛼 ≥ 1 is a required for global classical solution (with large initial data) to exist.
In the case of two spatial dimensions 𝑑 = 2, the proof of the global existence of classical solutions is based
in a new delicate pointwise estimate for the two-dimensional fractional Laplacian

(−Δ)𝛼/2𝑢(𝑥1, 𝑥2) ≥ 𝐶𝛼,𝛿 𝑢(𝑥1, 𝑥2)
1+ 𝛼
2−𝛿

‖𝜙‖1+
𝛼
2−𝛿

𝐶 𝛿

,
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where 𝜕𝑥1𝜕𝑥2𝜙 = 𝑢 and (𝑥1, 𝑥2) is such that max
𝑦1 ,𝑦2

𝑢(𝑦1, 𝑦2) = 𝑢(𝑥1, 𝑥2). This inequality is interesting by itself
as it may be applied in many other PDE problems.

• Dynamical properties of (ppKS) equation with logistic forcing. In [10] we study dynamical properties of
the (ppKS) system with logistic forcing. Remarkably, this model exhibits a spatio-temporal chaotic behavior,
where a number of peaks emerge. We were able to prove the existence of an attractor and provide an upper
bound on the number of peaks that the solution may develop. Finally, we perform a numerical analysis
suggesting that there is a finite time blowup if the diffusion is weak enough, even in presence of a damping
logistic term.

2. The parabolic-hyperbolic Keller-Segel system
In what follows we study the following system arising in tumor angiogenesis

𝜕𝑡𝑢 = −(−Δ)𝛼/2𝑢 + 𝜕𝑥 (𝑢𝑞), for 𝑥 ∈ T, 𝑡 ≥ 0, (2.1)
𝜕𝑡𝑞 = 𝑢𝑟−1𝜕𝑥𝑢, for 𝑥 ∈ T, 𝑡 ≥ 0, (2.2)

where 𝑢 is a non-negative scalar function, 𝑞 is a zero-mean function, T denotes the domain [−𝜋, 𝜋] with periodic
boundary conditions, 0 < 𝛼 ≤ 2, 1 ≤ 𝑟 ≤ 2 and (−Δ)𝛼/2 = Λ𝛼 is the fractional Laplacian.
This system was proposed by Othmers & Stevens [24] based on biological considerations as a model of tumor

angiogenesis. In that context, 𝑢 is the density of vascular endothelial cells and 𝑞 = 𝜕𝑥 log(𝑣) where 𝑣 is the
concentration of the signal protein known as vascular endothelial growth factor (VEGF).
Equation (2.1) appears as a singular limit of the following Keller-Segel model of aggregation of the slime mold

Dictyostelium discoideum [18] (see also Patlak [21])


𝜕𝑡𝑢 = −(−Δ)𝛼/2𝑢 − 𝜒∇ · (𝑢∇𝐺 (𝑣)),

𝜕𝑡𝑣 = 𝜈Δ𝑣 +
(
𝑢𝑟

𝑟
+ 𝜆

)
𝑣,

(2.3)

when 𝐺 (𝑣) = log(𝑣) and the diffusion of the chemical 𝜈 is negligible.
This system was studied in [14, 15]. In particular

• Local existence and decay. In [15] the local well-posedness for arbitrary 𝐻3 non-negative initial data,
0 ≤ 𝛼 ≤ 2 and 1 ≤ 𝑟 ≤ 2 was proved. We would like to emphasize that that the sign of the initial data plays
the role of a stability condition and helps us to avoid derivative loss. Furthermore, the solution verifies the
following global bound: for 𝑟 > 1

‖𝑢(𝑡)‖𝑟𝐿𝑟
𝑟 (𝑟 − 1) +

‖𝑞(𝑡)‖2
𝐿2

2
+ 1
𝑟 − 1

∫ 𝑡

0

∫
T
(−Δ)𝛼/2𝑢𝑢𝑟−1𝑑𝑥𝑑𝑠 ≤ ‖𝑢0‖

𝑟
𝐿𝑟

𝑟 (𝑟 − 1) +
‖𝑞0‖2𝐿2
2

, (2.4)

while, if 𝑟 = 1,

∫
T
(𝑢 log(𝑢)−𝑢+1)𝑑𝑥+

‖𝑞(𝑡)‖2
𝐿2

2
+
∫ 𝑡

0

∫
T
(−Δ)𝛼/2𝑢 log(𝑢)𝑑𝑥𝑑𝑠 ≤

∫
T
(𝑢0 log(𝑢0)−𝑢0+1)𝑑𝑥+

‖𝑞0‖2𝐿2
2

.

(2.5)

• Global well-posedness for arbitrary initial data in the critical regime for 𝑟 = 2. Notice that the equations
(2.1)-(2.2) verify the following scaling symmetry: for every 𝜆 > 0

𝑢𝜆 (𝑥, 𝑡) = 𝜆
2𝛼−2
𝑟 𝑢 (𝜆𝑥, 𝜆𝛼𝑡) , 𝑞𝜆 (𝑥, 𝑡) = 𝜆𝛼−1𝑞 (𝜆𝑥, 𝜆𝛼𝑡) .

In [14], the global well-posedness for arbitrary 𝐻2 non-negative initial data and the critical diffusion 𝛼 = 3/2
was proved. Similarly, the two-dimensional case is also studied for the critical value 𝛼 = 2 and global
well-posedness is also presented. Due to the hyperbolic character of the equation for 𝑞, prior available
global existence results of classical solution for equation (2.1) impose several assumptions [25–27] and the
references therein.
Our results removed some of the previous conditions. On the one hand, we prove global existence for arbitrary
data in the cases 𝑑 = 1 and 𝛼 ≥ 1.5 and 𝑑 = 2 and 𝛼 = 2. On the other hand, in the cases where we have to
impose size restrictions on the initial data, the Sobolev spaces are bigger than 𝐻2. A question that remains
open is the trend to equilibrium. From (2.4) is clear that the solution (𝑢(𝑡), 𝑞(𝑡)) tends to the homogeneous
state, namely (〈𝑢0〉, 0). However, the rate of this convergence is not clear.
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2.1. Local well-posedness for analytic initial data
Equations (2.1)-(2.2) can be written as

𝜕𝑡ℎ = −Λ𝛼ℎ + 𝜕𝑥 (ℎ𝑞) + 〈𝑢0〉𝜕𝑥𝑞, for 𝑥 ∈ T, 𝑡 ≥ 0, (2.6)
𝜕𝑡𝑞 = (ℎ + 〈𝑢0〉)𝑟−1𝜕𝑥ℎ, for 𝑥 ∈ T, 𝑡 ≥ 0, (2.7)

where ℎ = 𝑢 − 〈𝑢0〉. Without lossing generality we consider 〈𝑢0〉 = 1. Then we have that

Theorem 1 Define
𝜈(𝑡) = 1 − 𝜃𝑡,

for
𝜃 > 1 + ‖ℎ0‖𝜈 (0) + 𝐶𝑟 (1 + ‖ℎ0‖𝑟−1𝜈 (0) ) + ‖𝑞0‖𝜈 (0) .

Let us consider (ℎ0, 𝑞0) such that

‖ℎ(𝑡)‖𝜈 (𝑡) =
∞∑︁

𝑛=−∞
| ℎ̂(𝑛, 𝑡) |𝑒𝜈 (𝑡) |𝑛 | < ∞,

‖𝑞(𝑡)‖𝜈 (𝑡) =
∞∑︁

𝑛=−∞
|𝑞(𝑛, 𝑡) |𝑒𝜈 (𝑡) |𝑛 | < ∞.

Then, there exist a sufficiently short time and a unique local solution which is analytic in a complex strip with
sufficiently small width.

Proof We define the scale of spaces

A𝜈 (𝑡) =
{
𝑢 ∈ 𝐿2, 𝑒𝜈 (𝑡) |𝑛 | �̂�(𝑛) ∈ ℓ1

}
with norm

‖𝑢‖𝜈 (𝑡) = ‖𝑒𝜈 (𝑡) |𝑛 | �̂�(𝑛)‖ℓ1 .
We observe that the previous spaces are a Banach Algebra

‖ 𝑓 𝑔‖𝜈 (𝑡) ≤ ‖ 𝑓 ‖𝜈 (𝑡) ‖𝑔‖𝜈 (𝑡) .

We compute

𝑑

𝑑𝑡
‖𝐹‖𝜈 (𝑡) =

∞∑︁
𝑛=−∞

𝜈′(𝑡) |𝑛|𝑒𝜈 (𝑡) |𝑛 | |𝐹 (𝑛, 𝑡) | +
∞∑︁

𝑛=−∞
𝑒𝜈 (𝑡) |𝑛 |Re

(
𝜕

𝜕𝑡
𝐹 (𝑛, 𝑡) 𝐹 (𝑛, 𝑡)

|𝐹 (𝑛, 𝑡) |

)

≤
∞∑︁

𝑛=−∞
𝜈′(𝑡) |𝑛|𝑒𝜈 (𝑡) |𝑛 | |𝐹 (𝑛, 𝑡) | +

 𝜕𝜕𝑡 𝐹

𝜈 (𝑡)

.

Then, if 0 < 𝜈(𝑡) is a decreasing function we find a regularizing contribution coming from 𝜈′. This regularizing
contribution is reflecting the fact that the strip of analyticity is shrinking. At this point it is easy to find the estimate

𝑑

𝑑𝑡
(‖ℎ‖𝜈 (𝑡) + ‖𝑞‖𝜈 (𝑡) ) ≤ 𝜈′(𝑡) (‖𝜕𝑥ℎ‖𝜈 (𝑡) + ‖𝜕𝑥𝑞‖𝜈 (𝑡) ) − ‖(−Δ)𝛼/2ℎ‖𝜈 (𝑡)

+ (1 + ‖ℎ‖𝜈 (𝑡) )‖𝜕𝑥𝑞‖𝜈 (𝑡) + ‖𝜕𝑥ℎ‖𝜈 (𝑡) (𝐶𝑟 (1 + ‖ℎ‖𝑟−1𝜈 (𝑡) ) + ‖𝑞‖𝜈 (𝑡) )
≤ 0,

where in the last line we have fix

𝜃 > 1 + ‖ℎ0‖𝜈 (0) + 𝐶𝑟 (1 + ‖ℎ0‖𝑟−1𝜈 (0) ) + ‖𝑞0‖𝜈 (0) .

�

Wewant to remark that the previous result does not require any sign condition on ℎ nor the parabolic term (−Δ)𝛼/2.
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2.2. Finite time blow up for the inviscid case
We consider the inviscid system

𝜕𝑡𝑢 = 𝜕𝑥 (𝑢𝑞), for 𝑥 ∈ T, 𝑡 ≥ 0, (2.8)
𝜕𝑡𝑞 = 𝑢𝑟−1𝜕𝑥𝑢, for 𝑥 ∈ T, 𝑡 ≥ 0. (2.9)

and prove the following result:

Theorem 2 Let us consider 𝑟 = 1. Then there exist smooth initial data such that the corresponding solution to
(2.8)-(2.9) blows up in finite time.

Proof Assume that 0 ≤ 𝑢0 (𝑥), is an even function such that 𝑢0 (0) = 𝜕2𝑥𝑢0 (0) = 0. Assume also that 𝑞0 is an odd
function such that 𝜕𝑥𝑞0 (0) = 0. We note that the symmetry is preserved, i.e. as long as the solution exist, 𝑢(𝑥, 𝑡)
remains even and 𝑞(𝑥, 𝑡) remains odd.
The proof is similar to the one in [3]. We argue by contradiction: assume that a a global classical solution exists

for this initial data. Then we want to prove that some quantity blows up. We define the following quantities

𝑈𝑖 (𝑡) = 𝜕𝑖𝑥𝑢(𝑥, 𝑡)
����
𝑥=0
, 𝑄𝑖 (𝑡) = 𝜕𝑖𝑥𝑞(𝑥, 𝑡)

����
𝑥=0
.

Then we have

𝑑

𝑑𝑡
𝑈0 = 𝑈1𝑄0 +𝑄1𝑈0

= 𝑄1𝑈0,

so
𝑈0 (𝑡) = 𝑈0 (0)𝑒

∫ 𝑡
0 𝑄1 (𝑠)𝑑𝑠 = 0.

In the same way,

𝑑

𝑑𝑡
𝑄1 = 𝑈2.

𝑑

𝑑𝑡
𝑈2 = 𝑈3𝑄0 + 3𝑈2𝑄1 + 3𝑈1𝑄2 +𝑄3𝑈0

= 3𝑈2𝑄1

= 3
𝑑

𝑑𝑡
𝑄1𝑄1,

so
𝑑2

𝑑𝑡2
𝑄1 =

𝑑

𝑑𝑡
𝑈2 (𝑡) = 𝑑

𝑑𝑡

3
2
𝑄1 (𝑡)2,

and that implies the finite time blow up of 𝑄1 and𝑈2. �

2.3. Wave propagation
Finally we turn our attention to the wave-like form of the system (2.6)-(2.7). Indeed, we observe that the system
(2.6)-(2.7) with

〈𝑢0〉 = 𝑟 = 1,
can be written as the following bidirectional non-local wave equation

𝜕2𝑡 𝑞 = −(−Δ)𝛼/2𝜕𝑡𝑞 + 𝜕2𝑥 (𝜕−1𝑥 𝜕𝑡𝑞𝑞) + 𝜕2𝑥𝑞. (2.10)

Then, if 𝜀 is a small parameter and we consider the unknown

𝑞 = 𝜀 𝑓 ,

we find the equation

𝜕2𝑡 𝑓 = −(−Δ)𝛼/2𝜕𝑡 𝑓 + 𝜀𝜕2𝑥 (𝜕−1𝑥 𝜕𝑡 𝑓 𝑓 ) + 𝜕2𝑥 𝑓 . (2.11)
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To find the equation describing unidirectional waves we change to far-field variables

𝜉 = 𝑥 − 𝑡, 𝜏 = 𝜀𝑡.

We can apply the chain rule to compute

𝜕

𝜕𝑡
𝑓 (𝜒(𝑥, 𝑡), 𝜏(𝑡)), 𝜕2

𝜕𝑡2
𝑓 (𝜒(𝑥, 𝑡), 𝜏(𝑡))

and, as a consequence, we find that

𝜕2𝜉 𝑓 − 2𝜀𝜕𝜏𝜕𝜉 𝑓 + 𝜀2𝜕2𝜏 𝑓 = (−Δ)𝛼/2𝜕𝜉 𝑓 − 𝜀(−Δ)𝛼/2𝜕𝜏 𝑓 + 𝜀𝜕2𝜉 (𝜕−1𝜉 (−𝜕𝜉 𝑓 + 𝜀𝜕𝜏 𝑓 ) 𝑓 ) + 𝜕2𝜉 𝑓 . (2.12)

Then, if we neglect terms of order 𝑂 (𝜀2), we obtain the asymptotic equation

−2𝜀𝜕𝜏𝜕𝜉 𝑓 = (−Δ)𝛼/2𝜕𝜉 𝑓 − 𝜀(−Δ)𝛼/2𝜕𝜏 𝑓 − 𝜀𝜕2𝜉 (𝜕−1𝜉 𝜕𝜉 𝑓 ) 𝑓 ). (2.13)

Integrating in 𝜉,

−2𝜀𝜕𝜏 𝑓 + 𝜀(−Δ) (𝛼−1)/2𝐻𝜕𝜏 𝑓 = (−Δ)𝛼/2 𝑓 − 2𝜀 𝑓 𝜕𝜉 𝑓 . (2.14)

Changing back to our previous notation for the independent variables, we conclude

𝜕𝑡 𝑓 − 12 (−Δ)
(𝛼−1)/2𝐻𝜕𝑡 𝑓 = − 12𝜀 (−Δ)

𝛼/2 𝑓 + 𝑓 𝜕𝑥 𝑓 . (2.15)
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Abstract

In this work, an arbitrary high order numerical discretization for a density dependent multilayer shallow-water
model is presented. The model can be written as a system of hyperbolic PDE equations and it is especially
suited for simulations of density driven gravity currents within the shallow-water framework. The proposed
discretization is composed by an unlimited high order accurate (ADER) Discontinuous Galerkin (DG) method,
which is then limited a posteriori with the MOOD paradigm, resulting in great resolution capabilities in smooth
regions alongside a robust and accurate respond for strong gradients or discontinuities. A numerical strategy to
preserve non-trivial stationary solutions is also discussed. Some numerical results are shown including density
driven currents where laboratory data is available.

1. Introduction
A wildly used model for the simulation of geophysical flows is shallow-water (or Saint-Venant) model. In shallow-
water flows, the vertical component of the velocity is neglected and the horizontal component is assumed to be
constant along the vertical direction. In thisway, the dimension of the problem is reduced by one, allowing to improve
dramatically the computational times for large scale simulations. This approach has been successfully used in many
practical applications (see [10, 18, 19]). However, the horizontally constant velocity hypothesis can seriously limit
the amount of information that the model is able to provide and that may be relevant for the problem. To address
this issue, multilayer shallow-water models are developed, where the vertical direction is subsequently divided
in computational layers and the shallow-water hypotheses are performed in each layer individually (see [4, 5]).
This allows, for instance, to recover a detailed vertical profile of the velocity and the cost of a slightly higher
computational times. Of course, some mechanism for the interaction between layers must be considered. For
instance, [7, 17] assume immiscible layers meanwhile for multilayer shallow-water systems considered in [3, 15],
a continuous mass and momentum exchange between the layers is considered. The incorporation of the mass and
momentum transfer between layers is performed via non-conservative terms. The multilayer shallow-water model
considered in this work includes density effects throughout density dependent pressure terms. A full description of
the derivation of the model can be found at [16] and [2].
The Discontinuous Galerkin (DG) method itself dates back to the early work by Reed and Hill in [21]. This

methods allows to easily reach high order in space. In more recent work, it is combined with an arbitrary high
order derivatives (ADER) procedure, which allows to reach arbitrary high order in time (see [12]). The ADER
approach is based on the approximated solution of Riemann problems by means of a fixed point algorithm in each
element locally. This combination leads naturally to high order, single step and fully discrete numerical schemes.
However, this approach is unlimited, in the sense that there is no mechanism to prevent the apparition of spurious
oscillations near strong gradients or discontinuities. As a limiting technique, we use a multi-dimensional optimal
order detection (MOOD) (see [13]), which is a posteriori approach to the problem of limiting. The unlimited
solution of the ADER-DG scheme is tested to study its admissibility in terms of spurious oscillations but also other
physical criteria like positivity. If the solution is found inadequate, then the MOOD technique will switch to a
robust second order accurate finite volume method in order to compute the limited solution.
Another issue of paramount importance for the long time numerical stability of the numerical scheme are the

ability of the scheme to preserve stationary solutions ( [6,9]). Indeed, many practical applications often consist on
a perturbation of an equilibria state, and thus exactly preserving this state is of great importance. Here, we propose
a procedure to exactly preserve non-trivial stationary solutions in the ADER-DG framework.
Due to space restrictions, these techniques will be presented in a non-exhaustivemanner. However, the interested

reader has references available throughout the text.
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2. Model description
Here, we briefly present the density dependent multilayer shallow-water model considered in this work. A full
description and derivation of the model can be found at [16]. The full system of equations for the model in one
dimension is,




𝜕𝑡ℎ + 𝜕𝑥 ©«
ℎ
𝑀∑︁
𝛽=1

𝑢𝛽
ª®¬
= 0,

𝜕𝑡 (ℎ𝜃𝛼) + 𝜕𝑥 (ℎ𝜃𝛼𝑢𝛼) = 1
𝑙𝛼

(
𝜃𝛼+ 12𝐺𝛼+ 12 − 𝜃𝛼− 12𝐺𝛼− 12

)
,

𝜕𝑡 (ℎ𝜃𝛼𝑢𝛼) + 𝜕𝑥 (ℎ𝜃𝛼𝑢2𝛼) + 𝑔ℎ𝜃𝛼𝜕𝑥𝜂 +
𝑔 𝑙𝛼
2
(ℎ𝜕𝑥 (ℎ𝜃𝛼) − ℎ𝜃𝛼𝜕𝑥ℎ) (2.1)

+𝑔
𝑀∑︁

𝛽=𝛼+1
𝑙𝛽

(
ℎ𝜕𝑥 (ℎ𝜃𝛽) − ℎ𝜃𝛼𝜕𝑥ℎ

)
=
1
𝑙𝛼

(
𝑢𝛼+ 12 𝜃𝛼+ 12𝐺𝛼+ 12 − 𝑢𝛼− 12 𝜃𝛼− 12𝐺𝛼− 12

)
,

where ℎ is the total height of the water column, 𝜂 = ℎ + 𝑧𝑏 is the free surface, and 𝑧𝑏 is the bathymetry function.
Additionally, 𝑢𝛼 refers to the horizontal velocity while 𝜃𝛼 is the relative density of the fluid in the 𝛼-layer. Finally,
𝐺𝛼± 12 𝛼 = 1, . . . , 𝑀 , are the mass transference terms between layers.
System (2.1) is obtained under the closure hypothesis that the layer thickness is proportional to the total height,

ℎ𝛼 = 𝑙𝛼ℎ, with 𝑙𝛼 ∈ [0, 1], 𝛼 = 1, . . . , 𝑀 such that
∑𝑀
𝛼=1 𝑙𝛼 = 1. Under this assumption, we are able to give an

expression for the mass transference terms,

𝐺𝛼+ 12 =
𝛼∑︁
𝛽=1

𝑙𝛽
(
𝜕𝑡ℎ + 𝜕𝑥 (ℎ𝑢𝛽)

)
=

𝛼∑︁
𝛽=1

𝑙𝛽
©«
𝜕𝑥 (ℎ𝑢𝛽) − 𝜕𝑥 ©«

𝑀∑︁
𝛾=1

𝑙𝛾ℎ𝑢𝛾
ª®¬
ª®¬
. (2.2)

We assume no mass transference at the bottom and free surface, 𝐺1/2 = 𝐺𝑀+1/2 = 0, and 𝜃𝛼+1/2 and 𝑢𝛼+1/2 are
some approximations of 𝑢 and 𝜃 at the layers interfaces, for example a simple arithmetic mean. Note that the full
system (2.1) reduces to the standard shallow water equations for the particular case 𝑀 = 1 and 𝜃 = 1.
The full PDE system (2.1) has an infinity number of stationary solutions. Indeed, the standard shallow-water

stationary solutions with constant free surface 𝜂 are also solution of the system (2.1) if a homogeneous density
profile is considered,

𝜃𝛼 = cte, 𝑢𝛼 = 0, for 𝛼 = 1, . . . , 𝑀, 𝜂 = cte.

However, system (2.1) also admits lake-at-rest stationary solutions corresponding to non-trivial density profiles.
Stationary solutions with 𝑢𝛼 = 0, 𝛼 = 1, . . . , 𝑀 for the system (2.1) correspond to the solutions of the following
ODE system,

𝑃𝛼 := 𝑔ℎ𝜃𝛼𝜕𝑥𝜂 + 𝑔𝑙𝛼2 (ℎ𝜕𝑥 (ℎ𝜃𝛼) − ℎ𝜃𝛼𝜕𝑥ℎ) + 𝑔
𝑀∑︁

𝛽=𝛼+1
𝑙𝛽

(
ℎ𝜕𝑥 (ℎ𝜃𝛽) − ℎ𝜃𝛼𝜕𝑥ℎ

)
= 0. (2.3)

Once the free surface is fixed, this equation can be solved iteratively by solving first the upper layer and sequentially
going downwards throughout the lower layers. In particular we are interested in those with a constant free surface
and a vertically stratified density profile, that is,

𝜂(𝑥) = ℎ(𝑥) + 𝑧𝑏 (𝑥) = cte, 𝜃 (𝑧) = 𝜃𝑠𝑢𝑟 𝑓 𝑎𝑐𝑒 + 𝛾(𝜂 − 𝑧). (2.4)

Unfortunately, due to the numerical discretization performed on the full system of PDE equations (2.1), this profile
is not a stationary solution of (2.3) and cannot be directly preserved unless the bathymetry is the constant function.
However, system (2.3) can be solved recursively, which results into a stratified density profile that could be seen
as an approximation of (2.4) associated to the multilayer approach. In particular, those solutions are given by the
following expression,

𝑢𝛼 = 0, 𝜂(𝑥) = 𝑧𝑏 (𝑥) + ℎ(𝑥) = cte,
𝜃𝑀 (𝑥) = 𝜃𝑀 ≥ 1,

𝜃𝛼 (𝑥) = 𝜃𝛼 ℎ2(𝑀−𝛼) (𝑥) +
𝑀∑︁

𝛽=𝛼+1
𝑆2(𝑀−𝛽) (𝑀 − 𝛼 + 1)𝜃𝛽 ℎ2(𝑀−𝛽) (𝑥),

(2.5)
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with

𝑆𝛽 (𝛼) = (𝛽 + 1) · 𝐴 𝛽+2
2 +1
(𝛼),

𝐴𝑝 (𝑘) =

{
1 if 𝑝 ≥ 𝑘,
(𝑝 − 1)∏𝑘−𝑝

𝛾=2 (1 + (𝑝 − 2)𝐶𝛾−1) if 𝑝 < 𝑘,

𝐶𝛾 = 𝐶𝛾−1 − 1
𝑄𝛾

,

𝑄𝛾 = 𝑄𝛾−1 + 𝛾 + 1,
𝐶0 = 𝑄0 = 1,

where 𝜃𝛼 is a free choice constant fixed by the initial conditions, that determines the vertical profile of the density.
For more details relative to this model, we refer the reader to [16].

3. Numerical discretization
In this section we provide brief description of the numerical scheme used on (2.1). If the interested reader wants
to know more we refer them to [13, 14].
System (2.1) may be written as follows,

𝜕𝑡𝒘 + 𝜕𝑥𝑭𝐶 (𝒘) + 𝑷(𝒘, 𝜕𝑥𝒘, 𝜕𝑥𝜂) − 𝑻 (𝒘, 𝜕𝑥𝒘) = 0, (3.1)

where 𝒘 is the vector of the conserved variables,

𝒘 = (ℎ | ℎ𝜃𝛼 | ℎ𝜃𝛼𝑢𝛼)𝑇 ∈ R2𝑀+1, (3.2)

the physical convective flux 𝐹𝐶 (𝒘) is given by,

𝐹𝐶 (𝒘) =
(
ℎ𝑢𝛼 | ℎ𝜃𝛼𝑢𝛼 | ℎ𝜃𝛼 𝑢2𝛼

)𝑇
∈ R2𝑀+1, (3.3)

and 𝑷(𝒘, 𝜕𝑥𝒘, 𝜕𝑥𝜂) corresponds to the pressure term, which depends on the relative density 𝜃𝛼 and the free surface
𝜂, and has the following form,

𝑷(𝒘, 𝜕𝑥𝒘, 𝜕𝑥𝜂) = (0 | 0 | 𝑃𝛼) ∈ R2𝑀+1, (3.4)

where

𝑃𝛼 = 𝑔ℎ𝜃𝛼𝜕𝑥𝜂 + 𝑔 𝑙𝛼2 (ℎ𝜕𝑥 (ℎ𝜃𝛼) − ℎ𝜃𝛼𝜕𝑥ℎ) + 𝑔
𝑀∑︁

𝛽=𝛼+1
𝑙𝛽 (ℎ𝜕𝑥 (ℎ𝜃𝛽) − ℎ𝜃𝛼𝜕𝑥ℎ). (3.5)

Finally, the term 𝑻 (𝒘, 𝜕𝑥𝒘) corresponds to the mass, density, and momentum exchange between layers:

𝑻 (𝒘, 𝜕𝑥𝒘) = (
0
��� 1
𝑙𝛼

(
𝜃𝛼+ 12𝐺𝛼+ 12 − 𝜃𝛼− 12𝐺𝛼− 12

) ��� 1
𝑙𝛼

(
𝑢𝛼+ 12 𝜃𝛼+ 12𝐺𝛼+ 12 − 𝑢𝛼− 12 𝜃𝛼− 12𝐺𝛼− 12

))𝑇
∈ R2𝑀+1. (3.6)

The system of equations (3.1) is solved by applying the family of pure Discontinuous Galerkin methods P𝑁P𝑁 .
The numerical scheme is formulated as a predictor-corrector method: in the first step, a predictor solution, which
consist on a high order approximation of the solution at the following time step, is computed by means of a local
Cauchy problem, without interaction with the neighbours states. In the next step, the corrector will make use of
these predictor solution to compute a high order in space and time approximation of the solution of system (2.1) at
the next time step.
The usual one dimensional considerations relative to the domain discretizations into non-overlaping conforming

set of elements are considered. The computation domain Ω is discretized into 𝑇𝑖 = [𝑥𝑖− 12 , 𝑥𝑖+ 12 ], 𝑖 = 1, . . . , 𝑁𝑠
elements, where 𝑁𝑠 is the total number of cells with a constant length Δ𝑥 = 𝑥𝑖+ 12 − 𝑥𝑖− 12 .
We will make use of the following notation: for any variable 𝑓 defined on a volume 𝑇𝑖 , we will denote by 𝑓𝑖± 12

the values at the interface, depending on whether it is the right or left side of the cell. However, when the values
correspond to projected states into the interface, it will be generally denoted with the super index 𝑓 ±, depending
on whether they correspond to the left or to the right side of the intercell.
In the following, the discrete solution of the PDE system (3.1) at time 𝑡𝑛 is denoted by 𝒘ℎ (𝑥, 𝑡𝑛) and is defined

in terms of piecewise polynomials of degree 𝑁 on the spatial direction. We shall denote by Uℎ the space of
piecewise polynomials up to degree 𝑁 so that 𝒘ℎ (·, 𝑡𝑛) ∈ Uℎ . In this work, a nodal basis defined by the Lagrange
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interpolation polynomials over the (𝑁 +1) Gauss-Legendre quadrature nodes on the element𝑇𝑖 is adopted. As usual
in the discontinuous Galerkin (DG) approach, the discrete solution 𝒘ℎ may be discontinuous across the intercells,
as in finite volume methods. At each cell 𝑇𝑖 , the discrete solution is written in terms of the nodal spatial basis
functions Φ𝑙 (𝑥) and some unknown degrees of freedom �̂�𝑛𝑖,𝑙 ,

𝒘ℎ (𝑥, 𝑡𝑛) =
∑︁
𝑙

�̂�𝑛𝑖,𝑙Φ𝑙 (𝑥) := �̂�𝑛𝑖,𝑙Φ𝑙 (𝑥), for 𝑥 ∈ 𝑇𝑖 , (3.7)

where the Einstein summation convention over two repeated indices has been considered. The spatial basis functions
are defined on the reference interval [0, 1].
The ADER-DG method results from multiplying the governing PDE system (3.1) with a test functionΦ𝑘 ∈ Uℎ

and integrate over the space-time control volume 𝑇𝑖 × [𝑡𝑛, 𝑡𝑛+1]. This results in the expression,
∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇𝑖

Φ𝑘𝜕𝑡𝒘 𝑑𝑥𝑑𝑡 +
∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇𝑖

Φ𝑘 (𝜕𝑥𝑭𝐶 (𝒘) 𝑑𝑥𝑑𝑡 + 𝑷(𝒘, 𝜕𝑥𝒘, 𝜕𝑥𝜂) − 𝑻 (𝒘, 𝜕𝑥𝒘)) 𝑑𝑥𝑑𝑡 = 0. (3.8)

The discrete solution 𝒘ℎ (𝑥, 𝑡𝑛) is allowed to jump across element interfaces, which means that the resulting jump
terms have to be properly taken into account. In our scheme this is achieved via numerical flux functions in the
form of approximate Riemann solvers that follows the path-conservative approach that was developed by Parés
and collaborators in the finite volume framework [8, 20] and which has later been extended to the discontinuous
Galerkin finite element framework in [11, 22]. The Riemann solver used in this work is detailed in [16].
In the ADER-DG framework, the higher order in time is achieved with the use of an element-local space-time

predictor, denoted by qℎ (𝑥, 𝑡) in the following, and which will be discussed in more detail later. Using (3.7), and
after some computation on (3.8), we arrive to the following weak formulation,

(∫
𝑇𝑖

Φ𝑘Φ𝑙 𝑑𝑥

) (
�̂�𝑛+1𝑖,𝑙 − �̂�𝑛𝑖,𝑙

)
−

∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇 ◦𝑖
(𝜕𝑥Φ𝑘 · 𝑭𝐶 (qℎ)) 𝑑𝑥𝑑𝑡

+
∫ 𝑡𝑛+1

𝑡𝑛
Φ𝑘,𝑖+ 12D

−
𝑖+ 12

(
q−
ℎ,𝑖+ 12

, q+
ℎ,𝑖+ 12

, 𝑧𝑏
−
ℎ,𝑖+ 12

, 𝑧𝑏
+
ℎ,𝑖+ 12

)
+Φ𝑘,𝑖− 12D

+
𝑖− 12

(
q−
ℎ,𝑖− 12

, q+
ℎ,𝑖− 12

, 𝑧𝑏
−
ℎ,𝑖− 12

, 𝑧𝑏
+
ℎ,𝑖− 12

)
𝑑𝑡

+
∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇 ◦𝑖

Φ𝑘 (𝑷(qℎ , 𝜕𝑥qℎ , 𝜕𝑥𝜂ℎ) − 𝑻 (qℎ , 𝜕𝑥qℎ)) 𝑑𝑥𝑑𝑡 = 0, (3.9)

where 𝑇◦𝑖 corresponds to the interior of 𝑇𝑖 and 𝑓ℎ stands for the projection of 𝑓 onto the spaceUℎ . Moreover,D±𝑖± 12
are the numerical flux at the cell interface given by the Riemann solver.

3.1. ADER-DG space-time predictor
We focus now on the computation of the predictor solution qℎ (𝑥, 𝑡), based on a weak formulation of the governing
PDE system in space-time. The PDE system (2.1) is approximated with a so-called Cauchy problem in the small, i.e.
without considering the interaction with the neighbour elements. Again, a similar space-time basis is considered
to expand the predictor solution,

qℎ (𝑥, 𝑡) =
∑︁
𝑙

𝜃𝑙 (𝑥, 𝑡)q̂𝑖𝑙 := 𝜃𝑙 (𝑥, 𝑡)q̂𝑖𝑙 , (3.10)

with themulti-index 𝑙 = (𝑙0, 𝑙1) andwhere the space-time basis functions 𝜃𝑙 (𝑥, 𝑡) = 𝜑𝑙0 (𝜏)𝜑𝑙1 (𝜉) are again generated
from the same one-dimensional nodal basis functions as before. Proceeding now similarly to the system (3.9), we
multiply (3.1) by a space-time function and integrate over the space-time control volume 𝑇𝑖 × [𝑡𝑛, 𝑡𝑛+1]. However,
since we are only interested in an element local predictor solution, without interactions with the neighbor elements,
the jump terms across interfaces are not taken into account. This leads to,

∫
𝑇𝑖

𝜃𝑘 (𝑥, 𝑡𝑛+1)qℎ (𝑥, 𝑡𝑛+1) 𝑑𝑥 −
∫
𝑇𝑖

𝜃𝑘 (𝑥, 𝑡𝑛)q0ℎ (𝑥, 𝑡𝑛) 𝑑𝑥 −
∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇𝑖

𝜕𝑡𝜃𝑘 (𝑥, 𝑡)qℎ (𝑥, 𝑡) 𝑑𝑥𝑑𝑡

= −
∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇𝑖

𝜃𝑘 (𝑥, 𝑡) (𝜕𝑥𝑭𝐶 (qℎ) + 𝑷(qℎ , 𝜕𝑥qℎ , 𝜕𝑥𝜂ℎ) − 𝑻 (qℎ , 𝜕𝑥qℎ)) 𝑑𝑥𝑑𝑡. (3.11)

Using the local space-time ansatz (3.10), Eq. (3.11) becomes a local nonlinear system for the unknown degrees of
freedom q̂𝑖𝑙 of the space-time polynomials qℎ . The solution to the system can be found via a fixed point algorithm,
that will converge, at most, in 𝑁 + 1 iterations for linear homogeneous systems. The initial guess q0ℎ (𝑥, 𝑡) for the
iterative algorithm is simply set as the solution at time 𝑡𝑛, 𝒘ℎ (𝑥, 𝑡𝑛).
This completes the description of the unlimited high order accurate and fully discrete ADER-DG schemes.
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3.2. Preserving stationary solutions in the ADER-DG framework
We describe now the techniques developed to construct arbitrary high order ADER-DG numerical schemes that
preserve exactly a set of stationary solutions corresponding to a stationary stratified fluid.
The first step consist on determining a local stationary solution 𝒖𝑒,𝑖 (𝑥), 𝑥 ∈ 𝑇𝑖 of the family (2.5) at each time

step. Although the stationary solution is calculated at each time step, we subsequentially drop the time dependence
to simplify the notation. Notice that the family of stationary solutions (2.5) with 𝑢𝛼,𝑒,𝑖 = 0, 1 ≤ 𝛼 ≤ 𝑀 are fully
determined by setting ℎ𝑒,𝑖 and 𝜃1,𝑒,𝑖 , . . . 𝜃𝑀,𝑒,𝑖 . Particularly, 𝜂𝑖 ,

𝜂𝑖 =
1
Δ𝑥

∫ 𝑥
𝑖+ 12

𝑥
𝑖− 12

(ℎℎ (𝑥, 𝑡𝑛) + 𝑧𝑏ℎ (𝑥)) 𝑑𝑥,

where again we have denoted by 𝑓ℎ the discrete representation of 𝑓 onto the polynomial spaceUℎ . Similarly, the
constants 𝜃1,𝑒,𝑖 , . . . 𝜃𝑀,𝑒,𝑖 are computed solving,

1
Δ𝑥

∫ 𝑥
𝑖+ 12

𝑥
𝑖− 12

(ℎ𝜃)𝛼,𝑒,𝑖 (𝑥, 𝜂𝑖 , 𝜃𝛼,𝑖 , · · · , 𝜃1,𝑖) 𝑑𝑥 = 1
Δ𝑥

∫ 𝑥
𝑖+ 12

𝑥
𝑖− 12

(ℎ𝜃)ℎ,𝛼 (𝑥, 𝑡𝑛) 𝑑𝑥, 1 ≤ 𝛼 ≤ 𝑀.

Using these constant, we are able to compute the stationary solution 𝒖𝑒,𝑖 (𝑥). Note that this local stationary solutions
satisfy the pressure terms (2.3) at each cell,

𝑷(𝒖𝑒,𝑖 , 𝜕𝑥𝒖𝑒,𝑖 , 𝜕𝑥𝜂𝑖) = 0. (3.12)

Now, we could replace the numerical scheme (3.9) by the following well-balanced ADER-DG equivalent
numerical scheme,

©«
∫
𝑇𝑖

Φ𝑘Φ𝑙 𝑑𝑥
ª®®¬
(
�̂�𝑛+1𝑖,𝑙 − �̂�𝑛𝑖,𝑙

)
−

∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇 ◦𝑖
(𝜕𝑥Φ𝑘 · 𝑭𝐶 (qℎ)) 𝑑𝑥𝑑𝑡

+
∫ 𝑡𝑛+1

𝑡𝑛
Φ𝑘,𝑖+ 12D

−
𝑖+ 12

(
q−
ℎ,𝑖+ 12

, q+
ℎ,𝑖+ 12

, 𝑧𝑏
−
ℎ,𝑖+ 12

, 𝑧𝑏
+
ℎ,𝑖+ 12

)
+Φ𝑘,𝑖− 12D

+
𝑖− 12

(
q−
ℎ,𝑖− 12

, q+
ℎ,𝑖− 12

, 𝑧𝑏
−
ℎ,𝑖− 12

, 𝑧𝑏
+
ℎ,𝑖− 12

)
𝑑𝑡

+
∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇 ◦𝑖

Φ𝑘 (𝜕𝑥𝑭𝐶 (qℎ) − 𝑻 (qℎ , 𝜕𝑥qℎ)) 𝑑𝑥𝑑𝑡

+
∫ 𝑡𝑛+1

𝑡𝑛

∫
𝑇 ◦𝑖

Φ𝑘
(
𝑷(qℎ , 𝜕𝑥qℎ , 𝜕𝑥𝜂ℎ) − 𝑷((𝒖𝑒,𝑖)ℎ , 𝜕𝑥 (𝒖𝑒,𝑖)ℎ , 𝜕𝑥 (𝜂𝑒,𝑖)ℎ)

)
𝑑𝑥𝑑𝑡 = 0, (3.13)

Moreover, the extrapolated values at the intercells, denoted by q±
ℎ,𝑖± 12

, are computed in the following way,

q−
ℎ,𝑖+ 12

= 𝒖𝑒,𝑖 (𝑥𝑖+ 12 ) + �̂�
−
ℎ,𝑖+ 12

,

where �̂�−
ℎ,𝑖+ 12

is the extrapolation on the cell interface of the fluctuation (𝒒ℎ,𝑖 − (𝒖𝑒,𝑖)ℎ), that is,

�̂�−
ℎ,𝑖+ 12

= (𝒒ℎ,𝑖 − (𝒖𝑒,𝑖)ℎ) (𝑥𝑖+ 12 ).

Similarly,
q+
ℎ,𝑖+ 12

= 𝒖𝑒,𝑖+1 (𝑥𝑖+ 12 ) + �̂�
−
ℎ,𝑖+ 12

,

where
�̂�+
ℎ,𝑖+ 12

= (𝒒ℎ,𝑖+1 − (𝒖𝑒,𝑖+1)ℎ) (𝑥𝑖+ 12 ).
A similar procedure is applied in the ADER step, where a high order local approximation of the solution

𝒘ℎ (𝑥, 𝑡𝑛+1) is computed by considering a fluctuation with respect to the local stationary solution 𝒖𝑒,𝑖 (𝑥).
Finally, to clean possible spurious oscillations due to the absence of numerical viscosity in a stationary solution,

we could perform the following procedure: first we compute the average of the fluctuation with respect to the local
stationary solution,

𝒘ℎ,𝑖 =
1
Δ𝑥

∫ 𝑥
𝑖+ 12

𝑥
𝑖− 12

𝒘ℎ (𝑥, 𝑡𝑛) − 𝒖𝑒,𝑖 (𝑥) 𝑑𝑥.

if
��𝒘ℎ,𝑖 �� is less than a small threshold, then 𝒘ℎ (𝑥, 𝑡𝑛) is redefined as follows,

𝒘ℎ (𝑥, 𝑡𝑛) = 𝒖𝑒,𝑖 (𝑥) + 𝒘ℎ,𝑖 .
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4. Numerical test
We briefly demonstrate the capacity of the numerical scheme for preserving stationary solutions and to provide
accurate results for complex density-driven flows. We first began considering a small perturbation of a lake-at-rest
stationary solution with 𝑀 = 3 and with the following non-constant bathymetry and free surface functions,

𝜂(𝑥, 0) = 2 + 1
10
𝑒−5 𝑥

2
, 𝑧𝑏 (𝑥) = 12 𝑒

−𝑥2 ,

defined in the channel with 𝑥 ∈ [−5, 5] with just 50 elements and a forth order in space and time numerical scheme.
Wall type boundary conditions are set and the initial condition for the relative density is given by equation (2.5)
with the constant 𝜃1 = 1.01, 𝜃2 = 0.02 and 𝜃3 = 0. Figures 1 to 2 depicts the solution. As expected, a new stratified
density profile is reached once a new free surface is achieved, and this new stationary solution is kept for long
simulation times.
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Fig. 1 Perturbation of a lake-at-rest steady state with non-constant density profile at 𝑡 = 0 seconds. Left: free surface and
bottom. Right: density profile.
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Fig. 2 Perturbation of a lake-at-rest steady state with non-constant density profile. Left: difference of relative densities
between times 𝑡 = 500 and 𝑡 = 0 seconds. Right: velocity at time 𝑡 = 500 seconds.

Finally, we show a simulation where a comparison with experimental laboratory data presented in [1]. We
consider a flat channel 𝑥 ∈ [0, 3] and a lock exchange of relative density between two fluids with density 𝜌0 =
1000Kg/m3 and 𝜌1 = 1034Kg/m3. The fluid with density 𝜌1 is within a gatebox of 0.1 meters placed on the left
of the channel, which is then released into the fluid 𝜌1. The total height of the water is 0.3 meters. Figure 3 (left)
depict the initial condition through a heat map of the relative density for a simulation with 𝑀 = 30 layers and just
80 discretization points. To mimic the laboratory experiment in [1], wall-type boundary conditions are considered.
Figure 3 (right) shows the simulation at final time 𝑡 = 25 seconds, whereas figure 4 and 5 shows the evolution of
the front position as the number of layers 𝑀 increase. As we can see, we reach outstanding data agreement at
approximately 𝑀 = 30 layers.
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Fig. 3 Lock-exchange experiment in a flat channel: initial condition (left) and relative density at final time 𝑡 = 25 seconds.
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Fig. 4 Lock-exchange experiment in a flat channel: comparison on the evolution of the front position computed with the
numerical scheme versus the laboratory data for 20 layers (left) and 25 layers (right).
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Fig. 5 Lock-exchange experiment in a flat channel: comparison on the evolution of the front position computed with the
numerical scheme versus the laboratory data for 30 layers (left) and 40 layers (right).

5. Conclusions
We have briefly presented a novel discretization based on an ADER-DG numerical scheme for a shallow water
model with a density dependent pressure term. The numerical scheme is arbitrary high order in space and time
and exhibits great accuracy at smooth regions, while providing great results near strong discontinuities thanks to
the MOOD strategy combined with a robust path-conservative solver. Finally, a novel strategy for preserving non-
trivial stationary solutions in the ADER-DG framework has been presented. The numerical results are promising,
showing excellent data agreement, and will help to increase our knowledge of density driven currents.

Acknowledgements
This research has been partially supported by the Spanish Government and FEDER through the coordinated
Research project RTI2018-096064-B-C1 and RTI2018-096064-B-C2, The Junta de Andalucía research project
P18-RT-3163 and the Junta de Andalucia-FEDER-University of Málaga Research project UMA18-FEDERJA-161.

AN ARBITRARY HIGH ORDER DISCONTINOUS GALERKING NUMERICAL SCHEME

214



References
[1] C. Adduce, G. Sciortino, and S. Proietti. Gravity currents produced by lock exchanges: Experiments and simulations with a two-layer
shallow-water model with entrainment. Journal of Hydraulic Engineering, 138(2):111–121, 2012.

[2] E. Audusse, M.-O. Bristeau, M. Pelanti, and J. Sainte-Marie. Approximation of the hydrostatic navier–stokes system for density stratified
flows by a multilayer model: Kinetic interpretation and numerical solution. Journal of Computational Physics, 230(9):3453 – 3478,
2011.

[3] Emmanuel Audusse and Marie-Odile Bristeau. A well-balanced positivity preserving “second-order” scheme for shallow water flows on
unstructured meshes. Journal of Computational Physics, 206(1):311–333, 2005.

[4] Emmanuel Audusse and Marie-Odile Bristeau. Finite-volume solvers for a multilayer saint-venant system. Applied Mathematics and
Computer Science, 17:311–320, 10 2007.

[5] Emmanuel Audusse, Marie-Odile Bristeau, Benoît Perthame, and Jacques Sainte-Marie. A multilayer saint-venant system with mass
exchanges for shallow water flows. derivation and numerical validation. ESAIM: Mathematical Modelling and Numerical Analysis,
45(1):169–200, 2011.

[6] Alfredo Bermúdez and Ma Elena Vázquez. Upwind methods for hyperbolic conservation laws with source terms. Computers & Fluids,
23(8):1049–1071, 1994.

[7] François Bouchut and Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete and Continuous
Dynamical Systems-series B, 13:739–758, 06 2010.

[8] Manuel Castro, José M. Gallardo, and Carlos Parés. High order finite volume schemes based on reconstruction of states for solving
hyperbolic systems with nonconservative products. applications to shallow-water systems. Mathematics of Computation, 75(255):1103–
1134, 2006.

[9] Manuel J Castro and Carlos Parés. Well-balanced high-order finite volume methods for systems of balance laws. Journal of Scientific
Computing, 82(2):48, 2020.

[10] M. de la Asunción, M.J. Castro, J.M. Mantas, and S. Ortega. Numerical simulation of tsunamis generated by landslides on multiple gpus.
Advances in Engineering Software, 99:59 – 72, 2016.

[11] M. Dumbser, M. Castro, C. Parés, and E.F. Toro. ADER schemes on unstructured meshes for non-conservative hyperbolic systems:
Applications to geophysical flows. Computers and Fluids, 38:1731–1748, 2009.

[12] Michael Dumbser and Claus-Dieter Munz. Building blocks for arbitrary high order discontinuous galerkin schemes. Journal of Scientific
Computing, 27(1-3):215–230, 2006.

[13] Michael Dumbser, Olindo Zanotti, Raphaël Loubère, and Steven Diot. A posteriori subcell limiting of the discontinuous galerkin finite
element method for hyperbolic conservation laws. Journal of Computational Physics, 278:47–75, Dec 2014.

[14] C. Escalante, M. Dumbser, and M.J. Castro. An efficient hyperbolic relaxation system for dispersive non-hydrostatic water waves and its
solution with high order discontinuous galerkin schemes. Journal of Computational Physics, 394:385–416, 2019.

[15] Enrique Fernández-Nieto, E H. Koné, and T Chacón Rebollo. A multilayer method for the hydrostatic navier-stokes equations: A
particular weak solution. Journal of Scientific Computing, 60, 08 2014.

[16] Ernesto Guerrero Fernández, Manuel Jesús Castro-Díaz, and Tomás Morales de Luna. A second-order well-balanced finite volume
scheme for the multilayer shallow water model with variable density. Mathematics, 8(5):848, 2020.

[17] Nouh Izem, Mohammed Seaid, and Mohamed Wakrim. A discontinuous galerkin method for two-layer shallow water equations.
Mathematics and Computers in Simulation, 120:12–23, feb 2016.

[18] Miguel Lastra, José MMantas, Carlos Ureña, Manuel J Castro, and José A García-Rodríguez. Simulation of shallow-water systems using
graphics processing units. Mathematics and Computers in Simulation, 80(3):598–618, 2009.

[19] Jorge Macias, Manuel J. Castro, José Manuel González-Vida, Marc de la Asunción, and Sergio Ortega. HySEA: An operational GPU-
based model for Tsunami Early Warning Systems. In EGU General Assembly Conference Abstracts, EGU General Assembly Conference
Abstracts, page 14217, May 2014.

[20] C. Parés. Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM Journal on Numerical Analysis,
44(1):300–321, 2006.

[21] William H Reed and TR Hill. Triangular mesh methods for the neutron transport equation. Technical report, Los Alamos Scientific Lab.,
N. Mex.(USA), 1973.

[22] S. Rhebergen, O. Bokhove, and J.J.W. van der Vegt. Discontinuous Galerkin finite element methods for hyperbolic nonconservative
partial differential equations. Journal of Computational Physics, 227:1887–1922, 2008.

E. GUERRERO FERNÁNDEZ, M.J. CASTRO D ÍAZ, M. DUMBSER AND T. MORALES DE LUNA
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Picard-type iterations for solving Fredholm integral equations
José M. Gutiérrez1, Miguel Á. Hernández-Verón1

Universidad de La Rioja, Spain

Abstract

The theoretical solution of Fredholm integral equations involves the calculus of the inverse of an operator.
However, for practical purposes, the calculus of this inverse could be not possible or very complicated. For this
reason, our aim in this talk is to use iterative methods for approaching such inverse and therefore the solution of
the given integral equation. In fact, we use Newton’s method to obtain a method with quadratic convergence.
In addition, we also use Chebyshev’s method to obtain a method with cubic convergence. Next, we extend this
idea to iterative methods with a given order of convergence. Finally, we propose the construction of Picard-type
iterative methods that do not use derivatives or inverse operators.

1. Introduction
The goal of this work is to obtain an approximate solution of Fredholm integral equations of second kind given by

𝑦(𝑥) = 𝑓 (𝑥) + 𝜆
∫ 𝑏

𝑎
𝐾 (𝑥, 𝑡)𝑦(𝑡) 𝑑𝑡, 𝑠 ∈ [𝑎, 𝑏], 𝜆 ∈ R, (1.1)

where 𝑓 (𝑥) ∈ C[𝑎, 𝑏] is a given function and the function 𝐾 (𝑥, 𝑡) is a known function in [𝑎, 𝑏] × [𝑎, 𝑏], called
kernel of the integral equation. In this equation, 𝑦(𝑥) ∈ C[𝑎, 𝑏] is the unknown function to be determined.
We introduce the operator K : C[𝑎, 𝑏] → C[𝑎, 𝑏], given by

[K(𝑦)] (𝑠) =
∫ 𝑏

𝑎
𝐾 (𝑥, 𝑡)𝑦(𝑡) 𝑑𝑡, 𝑠 ∈ [𝑎, 𝑏] .

So, the equation (1.1) can be written in the following form

(I − 𝜆K)𝑦(𝑥) = 𝑓 (𝑥). (1.2)

Therefore, its solution is given by obtaining 𝑦(𝑥) in (1.2):

𝑦(𝑥) = (I − 𝜆K)−1 𝑓 (𝑥). (1.3)

Formula (1.3) provides the exact solution of integral equations (1.1) in a theoretical manner. But in practice, it
could be very complicated (or even impossible) the calculus of the inverse (I − 𝜆K)−1. To avoid this difficulty, we
propose the use of iterative methods for approaching this inverse and therefore the solution of the integral equation.

2. Approximating the inverse (I − 𝜆K)−1.
Now, we consider the problem of the approximation of the inverse of the linear operator 𝐴 = I − 𝜆K by means of
iterative methods for solving nonlinear equations.
To do this, we introduce the following sets:

• L(C[𝑎, 𝑏], C[𝑎, 𝑏]) is the set of bounded linear operators from the Banach space C[𝑎, 𝑏] on itself.
• 𝐺𝐿 (C[𝑎, 𝑏], C[𝑎, 𝑏]) is the set of invertible operators in L(C[𝑎, 𝑏], C[𝑎, 𝑏]).

Given a linear operator 𝐴 ∈ 𝐺𝐿 (C[𝑎, 𝑏], C[𝑎, 𝑏]), our target is to solve the equation

T (𝐻) = 0, where T (𝐻) = 𝐻−1 − 𝐴 (2.1)

by means of iterative methods.
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2.1. Newton’s method
Our first choice is to use Newton’s iteration, that in this case can be written in the following way (see [5] for details):{

𝑁0 ∈ L(C[𝑎, 𝑏], C[𝑎, 𝑏]) given,
𝑁𝑚+1 = 𝑁𝑚 − [T ′(𝑁𝑚)]−1T (𝑁𝑚), 𝑚 ≥ 0.

The application of this iterative scheme to the integral equation (3.1) allows us to construct a sequence of functions
{𝑦𝑚 (𝑥)}𝑚≥0 given by 



𝑁0 ∈ L(C[𝑎, 𝑏], C[𝑎, 𝑏]) given,
𝑦0 (𝑥) = 𝑁0 𝑓 (𝑥),
𝑁𝑚 = 2𝑁𝑚−1 − 𝑁𝑚−1𝐴𝑁𝑚−1, 𝑚 ≥ 0,
𝑦𝑚 (𝑥) = 𝑁𝑚 𝑓 (𝑥),

(2.2)

that, under adequate conditions, converge to the solution. We would like to highlight that this sequence depends on
the choice of a good initial approximation 𝐻0 for the inverse operator 𝐴 = I − 𝜆K and on the function 𝑓 (𝑥) that
appears as “independent term” in the integral equation. In [5] we can see local and semilocal convergence results
for the iterative scheme (2.2) together with some numerical examples.

2.2. Chebyshev’s method
Now we consider Chebyshev’s method for solving (2.1),{

𝐶0 ∈ L(C[𝑎, 𝑏], C[𝑎, 𝑏]) given,
𝐶𝑚+1 = 𝐶𝑚 −

[
𝐼 + 12𝐿T (𝐶𝑚)

] [T ′(𝐶𝑚)]−1T (𝐶𝑚), 𝑚 ≥ 0,

where 𝐿F (𝐶𝑚) = [F ′(𝐶𝑚)]−1F ′′(𝐶𝑚) [F ′(𝐶𝑚)]−1F (𝐶𝑚). At a first glance, we can think that inverse operators
must be used in this algorithm. But we can do the same as in Newton’s method to see that Chebyshev’s method
does not use them (see [3] for more details). Actually, Chebyshev’s iteration can be written in the form{

F ′(𝐶𝑚) (𝑃𝑚 − 𝐶𝑚) = −F (𝐶𝑚), 𝑘 ≥ 0,
F ′(𝐶𝑚) (𝐶𝑚+1 − 𝑃𝑚) = − 12F ′′(𝐶𝑚) (𝑃𝑚 − 𝐶𝑚)2.

(2.3)

Then we can also avoid the use of inverse operators for approximating 𝐶𝑚+1.
In consequence, Chebyshev’s method for approximating the inverse operator takes the form:

{
𝐶0 ∈ L(C[𝑎, 𝑏], C[𝑎, 𝑏]) given,
𝐶𝑚+1 = 3𝐶𝑚 − 3𝐶𝑚𝐴𝐶𝑚 + 𝐶𝑚𝐴𝐶𝑚𝐴𝐶𝑚, 𝑚 ≥ 0. (2.4)

The application of the iterative scheme (2.4) to the integral equation (3.1) allows us to construct another sequence
of functions {𝑦𝑚 (𝑥)}𝑚≥0 given by




𝐶0 ∈ L(C[𝑎, 𝑏], C[𝑎, 𝑏]) given,
𝑦0 (𝑥) = 𝐶0 𝑓 (𝑥),
𝐶𝑚+1 = 3𝐶𝑚 − 3𝐶𝑚𝐴𝐶𝑚 + 𝐶𝑚𝐴𝐶𝑚𝐴𝐶𝑚, 𝑚 ≥ 0,
𝑦𝑚 (𝑥) = 𝐶𝑚 𝑓 (𝑥).

(2.5)

As in the case of Newton’s method (2.2), this sequence depends on the choice of a good initial approximation 𝐶0
for the inverse operator 𝐴 = I −𝜆K and on the function 𝑓 (𝑥). The increase in computational cost is rewarded with
the increase in the order of convergence, passing from quadratic to cubic order of convergence.

2.3. Methods with a prefixed order of convergence
The next step is to generalize the iterative schemes (2.2) and (2.6), obtained from Newton’s and Chebyshev’s
methods respectively. Our idea is to construct iterative schemes, with a prefixed order of convergence, that do not
use inverse operators for approximating the inverse of an operator.
For this, we observe that both Newton’s and Chebyshev’s methods satisfy equalities in the form

I − 𝑁𝑘𝐴 = I − (2𝑁𝑘−1 − 𝑁𝑘−1𝐴𝑁𝑘−1)𝐿 = (I − 𝑁𝑘−1𝐴)2,

J.M. GUTIÉRREZ AND M.A. HERNÁNDEZ-VERÓN
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I − 𝐶𝑘𝐴 = I − (3𝐶𝑘−1 − 3𝐶𝑘−1𝐴𝐶𝑘−1 + 𝐶𝑘−1𝐴𝐶𝑘−1𝐿𝐶𝑘−1)𝐴 = (I − 𝐶𝑘−1𝐴)3.
Therefore, following the procedure developed in [1] or [6] to generate an iterative scheme with order of convergence
𝑝 ≥ 2, we can consider a sequence 𝑇𝑘 = 𝜙(𝑇𝑘−1) such that I − 𝑇𝑘𝐴 = (I − 𝑇𝑘−1𝐴) 𝑝 , that is,

𝑇𝑘𝐴 = I − (I − 𝑇𝑘−1𝐴) 𝑝 =
𝑝−1∑︁
𝑗=0

(
𝑝

𝑗 + 1

)
(−1) 𝑗 (𝑇𝑘−1𝐴) 𝑗𝑇𝑘−1𝐴.

The application of the previous iterative scheme to the integral equation (3.1) allows us to construct a sequence
of functions {𝑦𝑚 (𝑥)}𝑚≥0 that generalizes the previous ones. Actually, for 𝑝 ≥ 2, it is given by




𝑇0 ∈ L(C[𝑎, 𝑏], C[𝑎, 𝑏]) given,
𝑦0 (𝑥) = 𝑇0 𝑓 (𝑥),

𝑇𝑚 =
𝑝−1∑︁
𝑗=0

(
𝑝

𝑗 + 1

)
(−1) 𝑗 (𝑇𝑚−1𝐴) 𝑗𝑇𝑚−1, 𝑚 ≥ 1,

𝑦𝑚 (𝑥) = 𝑇𝑚 𝑓 (𝑥).

(2.6)

Both local and semilocal convergence of these iterative schemes have been studied in [6], together with an analysis
of the starting points for the application of these iterative schemes considered.

3. Picard-type iterations
Another procedure to approximate a solution of the integral equation (1.1) is to write it as a functional equation
defined between two Banach spaces and to consider different iterative schemes for solving it. So, we introduce the
function 𝐹 : Ω ⊆ C[𝑎, 𝑏] −→ C[𝑎, 𝑏], where Ω is a nonempty convex domain in C[𝑎, 𝑏], with

𝐹 (𝑦) (𝑥) = 𝑦(𝑥) − 𝜆
∫ 1

0
𝐾 (𝑥, 𝑡)𝑦(𝑡) 𝑑𝑡 − 𝑓 (𝑥). (3.1)

We are interested in solving the equation 𝐹 (𝑦) = 0 by means of iterative schemes. Observe that a solution
of this equation is a solution of equation (1.1) and vice versa. So, starting from an initial approximation of 𝑦∗, a
solution of the equation 𝐹 (𝑦) = 0, a sequence {𝑦𝑛} of approximations is constructed such that lim𝑛 𝑦𝑛 = 𝑦∗. Note
that the sequence {‖𝑦𝑛 − 𝑦𝑛−1‖} is strictly decreasing and, at every step, a better approximation to the solution 𝑦∗
is obtained.
We can obtain the sequence of approximations {𝑦𝑛} by different ways, depending on the considered iterative

scheme. To approximate such a solution we can apply the well-known method of successive approximations [7],
which is also known as Picard’s method [4, 8] when it comes to approximate a solution of the equation 𝐹 (𝑦) = 0
and defined by 𝑦𝑛+1 = 𝑦𝑛 − 𝐹 (𝑦𝑛), 𝑛 ≥ 0, with 𝑦0 given in Ω ⊆ C[𝑎, 𝑏]. This iterative scheme has the drawback
of its linear convergence, however it is an iterative scheme that does not use derivatives or inverses of operators.
A commonly used iterative scheme is the best-known is Newton’s method, whose algorithm is the following:{

𝑦0 given in Ω,
𝑦𝑛+1 = 𝑦𝑛 − [𝐹 ′(𝑦𝑛)]−1𝐹 (𝑦𝑛), 𝑛 = 0, 1, 2 . . .

(3.2)

In practice it is not easy to construct the iterative scheme (3.2) for operators defined on infinite dimension
spaces. The main difficulties arise, at each step, in the calculus of the inverse of the linear operator 𝐹 ′(𝑦𝑛) or,
equivalently, in solving the associated linear equation. Next, we study the value of the inverse operator of 𝐹 ′(𝑦).
So, by applying certain algebraic manipulations [2], we can obtain that:

[𝐹 ′(𝑦)]−1𝜙(𝜉) = 𝜙(𝜉) + 𝜆[I − 𝜆K]−1K𝜙(𝜉), for 𝜙 ∈ C[𝑎, 𝑏] and 𝜉 ∈ C[𝑎, 𝑏] .

Now, as a consequence of the last equation, we can rewrite an iteration of the iterative scheme of Newton (2.1)
as follows

𝑦𝑛+1 (𝑥) = 𝑦𝑛 (𝑥) − 𝐹 (𝑦𝑛) (𝑥) − 𝜆[I − 𝜆K]−1K𝐹 (𝑦𝑛) (𝑥)
= 𝜆K𝑦𝑛 (𝑥) + 𝑓 (𝑥) − 𝜆[I − 𝜆K]−1K𝐹 (𝑦𝑛) (𝑥).

Notice that, if |𝜆 |‖K‖ < 1, by Banach Lemma, it follows that there exists the operator (I − 𝜆K)−1.
Now, as in the previous section 2.1, we approximate (I −𝜆K)−1 by means the Newton sequence, then we define

the following Ulm-type algorithm
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𝑧0 and 𝑁0 given inΩ and L(C[𝑎, 𝑏], C[𝑎, 𝑏]) respectively,
𝑧𝑘+1 = 𝜆K𝑧𝑘 + 𝑓 − 𝜆𝑁𝑘K𝐹 (𝑧𝑘 ),
𝑁𝑘+1 = 2𝑁𝑘 − 𝑁𝑘𝐴𝑁𝑘 𝑛 = 0, 1, 2 . . .

(3.3)

where, as Section 1, we have donoted: I − 𝜆K = 𝐴.
Therefore, we present aUlm-type iterative scheme that sharesmany properties of Picard iterative scheme, namely

it is derivative-free and does not use inverse operators, although preserving the quadratic order of convergence that
characterizes Newton’s method. These features allow us to design an efficient iterative method. Actually, with a
very reduced number of iterations, we can find competitive approximations to the solution of the involved Fredholm
integral equation (1.1). This is one of the main targets of our research: to justify that it is enough to consider a few
steps in our iterative procedure to reach a good approach to the solution.
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High-order well-balanced methods for systems of balance laws based on
collocation RK ODE solvers
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Abstract
The aim of this work is to develop high-order well-balanced schemes for 1d systems of balance laws. A

general methodology for developing such numerical methods was proposed by two of the authors that requires
the computation, at every cell and at every time step, of the stationary solution whose cell average is equal to the
numerical approximation already obtained. Since solving these problems can be difficult and expensive, our goal
is to introduce a general procedure that can be applied to any one-dimensional system of balance laws based on
the application of collocation RK methods to approximate the stationary solution with given cell-average.

1. Introduction
Let us consider 1d systems of balance laws of the form

𝑈𝑡 + 𝐹 (𝑈)𝑥 = 𝑆(𝑈)𝐻𝑥 , (1.1)

where 𝑈 (𝑥, 𝑡) takes value in Ω ⊂ R𝑁 , 𝐹 : Ω → R𝑁 is the flux function; 𝑆 : Ω → R𝑁 ; and 𝐻 is a known
function from R→ R (possibly the identity function 𝐻 (𝑥) = 𝑥), which is supposed to be continuous. We suppose
that system (1.1) is strictly hyperbolic, i.e., the Jacobian 𝐽 (𝑈) of the flux function has 𝑁 real distinct eigenvalues
𝜆1 (𝑈), · · · , 𝜆𝑁 (𝑈) and associated eigenvectors 𝑟1 (𝑈), · · · , 𝑟𝑁 (𝑈). Moreover, we suppose that 𝜆𝑖 (𝑈) ≠ 0, 𝑖 =
1, . . . , 𝑁 .
The system (1.1) has nontrivial stationary solutions that satisfy the ODE system:

𝐹 (𝑈)𝑥 = 𝑆(𝑈)𝐻𝑥 , (1.2)

or
𝐽 (𝑈)𝑈𝑥 = 𝑆(𝑈)𝐻𝑥 . (1.3)

A numerical method is said to be well-balanced if it preserves (in some sense) stationary solutions. This
property is important when the waves generated by small perturbations of an equilibrium are to be simulated:
numerical errors should not break the equilibrium. The research on the idea of constructing numerical schemes
that preserve some equilibria has been developed by many authors: see, for instance, [2] , [1], [3], [11], [16], [18],
[20], [21], [22], [24], [14], [8], [15], [9], [7]. See [6] and their references for a recent review on this topic.
We consider high-order finite-volume numerical methods for (1.1) of the form:

𝑑𝑈𝑖
𝑑𝑡

= − 1
Δ𝑥

(
𝐹𝑖+ 12 (𝑡) − 𝐹𝑖− 12 (𝑡)

)
+ 1
Δ𝑥
𝑆𝑖 , (1.4)

where:

• 𝑈𝑖 (𝑡) is the approximation of the average of the exact solution at the 𝑖th cell, 𝐼𝑖 =
[
𝑥𝑖− 12 , 𝑥𝑖+ 12

]
, at time 𝑡:

𝑈𝑖 (𝑡) � 1Δ𝑥
∫ 𝑥

𝑖+ 12

𝑥
𝑖− 12

𝑈 (𝑥, 𝑡) 𝑑𝑥,

where the length of the cells Δ𝑥 is supposed to be constant for simplicity;

• 𝐹𝑖+ 12 = F(𝑈𝑡 ,−
𝑖+ 12
,𝑈𝑡 ,+

𝑖+ 12
), where F is a consistent numerical flux and 𝑈𝑡 ,±

𝑖+ 12
are the reconstructed states at the

intercells:
𝑈𝑡 ,−
𝑖+ 12

= 𝑃𝑡𝑖 (𝑥𝑖+ 12 ), 𝑈𝑡 ,+
𝑖+ 12

= 𝑃𝑡𝑖+1 (𝑥𝑖+ 12 ).
Here 𝑃𝑡𝑖 (𝑥) is the approximation of the solution at the 𝑖th cell given by a reconstruction operator of order 𝑝
applied to the sequence of cell values {𝑈𝑖 (𝑡)}:

𝑃𝑡𝑖 (𝑥) = 𝑃𝑖 (𝑥; {𝑈 𝑗 (𝑡)} 𝑗∈S𝑖 ),
where S𝑖 denotes the set of indices of the cells belonging to the stencil of the cell 𝐼𝑖;

XXVI CONGRESO DE ECUACIONES DIFERENCIALES Y APLICACIONES
XVI CONGRESO DE MATEMÁTICA APLICADA
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• finally,

𝑆𝑖 ≈
∫ 𝑥

𝑖+ 12

𝑥
𝑖− 12

𝑆(𝑃𝑡𝑖 (𝑥))𝐻𝑥 (𝑥) 𝑑𝑥. (1.5)

Given a function𝑈, the following notation

�̄�𝑖 =
1
Δ𝑥

∫ 𝑥𝑖+1/2

𝑥𝑖−1/2
𝑈 (𝑥) 𝑑𝑥, 𝑈𝑖 ≈ �̄�𝑖 , 𝑈𝑖+1/2 ≈ 𝑈 (𝑥𝑖+1/2), ∀𝑖,

is used to denote its cell averages, the approximations to its cell averages and its point values at the intercells,
respectively.

2. Well-balanced numerical methods
The key point in [4], [5] is to transfer the well-balanced property to the reconstruction operator:

Definition 2.1 Given a stationary solution𝑈∗, the reconstruction operator is said to be well-balanced for𝑈∗ if

𝑃𝑖 (𝑥) = 𝑈∗ (𝑥), ∀𝑥 ∈ [𝑥𝑖− 12 , 𝑥𝑖+ 12 ], ∀𝑖, (2.1)

where 𝑃𝑖 is the approximation of𝑈∗ given by the reconstruction operator from the vector {�̄�∗𝑖 } of cell-averages of
𝑈∗.

One can easily prove that the numerical method (1.4) with

𝑆𝑖 =
∫ 𝑥

𝑖+ 12

𝑥
𝑖− 12

𝑆(𝑃𝑡𝑖 (𝑥))𝐻𝑥 (𝑥) 𝑑𝑥, (2.2)

is exactly well-balanced if the reconstruction operator is well-balanced for every stationary solution 𝑈∗, which
means that the vector of its cell-averages {�̄�∗𝑖 } (or its approximations {𝑈∗𝑖 } if a quadrature formula is used to
compute them) is an equilibrium of (1.4).
However, in general a standard reconstruction operator is not expected to be well-balanced. The following

algorithm allows us to design a well-balanced reconstruction operator 𝑃𝑖 on the basis of a standard operator 𝑄𝑖 ,
provided that 𝑄𝑖 is exact for the null function (see [4]):

Algorithm 2.2 Given a family of cell values {�̄�𝑖}, at every cell 𝐼𝑖:
1. Find, if possible, the stationary solution𝑈∗𝑖 (𝑥) in the stencil of cell 𝐼𝑖 such that:

1
Δ𝑥

∫ 𝑥
𝑖+ 12

𝑥
𝑖− 12

𝑈∗𝑖 (𝑥) 𝑑𝑥 = �̄�𝑖 . (2.3)

Otherwise, take𝑈∗𝑖 ≡ 0.
2. Apply the reconstruction operator to the cell values {𝑉 𝑗 } 𝑗∈𝑆𝑖 given by

𝑉 𝑗 = �̄� 𝑗 − 1Δ𝑥
∫ 𝑥

𝑗+ 12

𝑥
𝑗− 12

𝑈∗𝑖 (𝑥) 𝑑𝑥, 𝑗 ∈ S𝑖 ,

to obtain:
𝑄𝑖 (𝑥) = 𝑄𝑖 (𝑥; {𝑉 𝑗 } 𝑗∈S𝑖 ).

3. Define
𝑃𝑖 (𝑥) = 𝑈∗𝑖 (𝑥) +𝑄𝑖 (𝑥). (2.4)

Another difficulty may come from the use of quadrature formulas to compute the cell-averages and the integral
of the source term at the right-hand side of (1.4). In this case, the numerical method is still well-balanced if:

• the quadrature formula is also applied to compute the integrals appearing in the first two steps of Algorithm
2.2;
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• 𝑆𝑖 is computed as follows:

𝑆𝑖 = 𝐹
(
𝑈𝑡 ,∗𝑖 (𝑥𝑖+ 12 )

)
− 𝐹

(
𝑈𝑡 ,∗𝑖 (𝑥𝑖− 12 )

)
+ Δ𝑥

𝑠∑︁
𝑚=1

𝑏𝑚
(
𝑆(𝑃𝑡𝑖 (𝑥𝑚𝑖 )) − 𝑆(𝑈𝑡 ,∗𝑖 (𝑥𝑚𝑖 ))

)
𝐻𝑥 (𝑥𝑚𝑖 ), (2.5)

where 𝑈𝑡 ,∗𝑖 is the stationary solution found in the first step of the reconstruction procedure at the 𝑖th cell
and time 𝑡, and 𝑥𝑚𝑖 , 𝑏𝑚, 𝑚 = 1, . . . , 𝑠 are respectively the nodes and the weights of the selected quadrature
formula, whose order of accuracy is bigger or equal than 𝑝.

Notice that, at every cell and at every time step, the following nonlinear problem has to be solved:
Find𝑈 such that

𝐽 (𝑈)𝑈𝑥 = 𝑆(𝑈)𝐻𝑥 , 1
Δ𝑥

∫ 𝑥𝑖+1/2

𝑥𝑖−1/2
𝑈 (𝑥) 𝑑𝑥 = 𝑈𝑖 , (2.6)

where 𝑈𝑖 is an approximation of the cell-average at the 𝑖th cell of the solution of (1.1) that we are looking for. In
addition, once the solution 𝑈∗𝑖 of (2.6) has been found, one has to solve two Cauchy problems in order to extend
it to the cells belonging to the stencil. Specifically, (1.3) with initial condition 𝑈 (𝑥𝑖+1/2) = 𝑈∗ (𝑥𝑖+1/2) has to be
solved forward in space and (1.3) with final condition𝑈 (𝑥𝑖−1/2) = 𝑈∗ (𝑥𝑖−1/2) backward in space.
Solving these local nonlinear problems can be difficult if the analytic expression of the solutions of (1.3) are not

known either in explicit or implicit form. We propose here to approximate their solutions by solving the following
numerical problems:

Problem 2.3 (Local problem (LP)) Given an index 𝑖 and a state𝑈𝑖 ∈ Ω, find approximations

𝑈∗,𝑚𝑖, 𝑗 , 𝑚 = 1, . . . , 𝑠, 𝑗 ∈ S𝑖; 𝑈∗,𝑖±1/2𝑖 ;

of the values
𝑈∗𝑖 (𝑥𝑚𝑗 ), 𝑚 = 1, . . . , 𝑠, 𝑗 ∈ S𝑖; 𝑈∗𝑖 (𝑥𝑖±1/2);

where𝑈∗𝑖 is the stationary solution that satisfies
𝑠∑︁
𝑚=1

𝑏𝑚𝑈
∗
𝑖 (𝑥𝑚𝑖 ) = 𝑈𝑖 . (2.7)

The numerical methods issues from this strategy are not expected to be exactly well-balanced, but they will be
well-balanced according to the following definition:

Definition 2.4 The numerical method (1.4) is said to be well-balanced with order 𝑞 ≥ 𝑝 if for every stationary
solution𝑈∗ of (1.1) and for every Δ𝑥, there exists an equilibrium {𝑈∗Δ𝑥,𝑖} of (1.4) such that

�̄�∗𝑖 = 𝑈
∗
Δ𝑥,𝑖 +𝑂 (Δ𝑥𝑞), ∀𝑖. (2.8)

The sequence {𝑈∗Δ𝑥,𝑖} is said to be a discrete stationary solution.

3. RK Collocation methods
We propose here to solve the local problems (LP) using a RK collocation method with Butcher tableau

𝑐1 𝑎1,1 . . . 𝑎1,𝑠
𝑐2 𝑎2,1 . . . 𝑎2,𝑠
...

...
. . .

...
𝑐𝑠 𝑎𝑠,1 . . . 𝑎𝑠,𝑠

𝑏1 . . . 𝑏𝑠 .

Remember that, given a Cauchy problem {
𝑈𝑥 = 𝐺 (𝑥,𝑈),
𝑈 (𝑥𝑖0−1/2) = 𝑈𝑖0−1/2,

(3.1)

and a uniform mesh of nodes 𝑥𝑖+1/2 = 𝑥𝑖−1/2 + Δ𝑥, 𝑖 = 𝑖0, 𝑖0 + 1, . . . , the numerical solutions are computed as
follows:

𝑈𝑖+1/2 = 𝑈𝑖−1/2 + Δ𝑥ΦΔ𝑥 (𝑈𝑖−1/2), 𝑖 = 𝑖0, 𝑖0 + 1, . . . (3.2)
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where

ΦΔ𝑥 (𝑈𝑖−1/2) =
𝑠∑︁
𝑗=1

𝑏 𝑗𝐾
𝑗
𝑖 .

𝐾1𝑖 , . . . , 𝐾
𝑠
𝑖 solve the nonlinear system

𝐾
𝑗
𝑖 = 𝐺

(
𝑥
𝑗
𝑖 ,𝑈

𝑖−1/2 + Δ𝑥
𝑠∑︁
𝑙=1

𝑎 𝑗 ,𝑙𝐾
𝑙
𝑖

)
, 𝑗 = 1, . . . , 𝑠, (3.3)

where
𝑥
𝑗
𝑖 = 𝑥𝑖−1/2 + 𝑐 𝑗Δ𝑥, 𝑗 = 1, . . . , 𝑠. (3.4)

Gauss-Legendremethods will be considered here, in which 𝑥1𝑖 , . . . , 𝑥
𝑠
𝑖 and 𝑏1, . . . , 𝑏𝑠 are respectively the quadrature

points and the weights of the Gauss quadrature formula in the interval [𝑥𝑖−1/2, 𝑥𝑖+1/2]. This quadrature formula will
be used to compute the averages at the cells.
The key-point of collocation methods is that they can be interpreted as follows:

𝑈𝑖+1/2 = 𝑃𝑖 (𝑥𝑖+1/2),
where 𝑃𝑖 is the only polynomial of degree 𝑠 that satisfies:{

𝑃𝑖 (𝑥𝑖−1/2) = 𝑈𝑖−1/2,
𝑃′𝑖 (𝑥 𝑗𝑖 ) = 𝐺 (𝑥

𝑗
𝑖 , 𝑃𝑖 (𝑥

𝑗
𝑖 )), 𝑗 = 1, . . . , 𝑠. (3.5)

Because of this interpretation, it can be shown that these methods are symmetric or reversible in the following sense
(see [13]):

ΦΔ𝑥 ◦Φ−Δ𝑥 = 𝐼𝑑, or equivalently ΦΔ𝑥 = Φ−1−Δ𝑥 . (3.6)

Let us describe how these methods are used to solve the local problems. Given a cell 𝐼𝑖 , let us suppose that its
stencil is

S𝑖 = {𝑖 − 𝑙, . . . , 𝑖 + 𝑟}.
The local problem solver based on the collocation RK methods is then as follows:

Algorithm 3.1 Numerical solver for the local problems (LP) using collocation RK methods.

• Find𝑈𝑖−1/2, 𝐾1𝑖 , . . . , 𝐾
𝑠
𝑖 such that




𝐽
(
𝑈𝑚𝑖

)
𝐾𝑚𝑖 = 𝑆

(
𝑈𝑚𝑖

)
𝐻𝑥 (𝑥𝑚𝑖 ), 𝑚 = 1, . . . , 𝑠,

𝑠∑︁
𝑚=1

𝑏𝑚𝑈
𝑚
𝑖 = 𝑈𝑖 ,

where

𝑈𝑚𝑖 = 𝑈𝑖−1/2 + Δ𝑥
𝑠∑︁
𝑘=1

𝑎𝑚,𝑘𝐾
𝑘
𝑖 , 𝑚 = 1, . . . , 𝑠.

• Compute:

𝑈𝑖+1/2 = 𝑈𝑖−1/2 + Δ𝑥
𝑠∑︁
𝑚=1

𝑏𝑚𝐾
𝑚
𝑖 .

• The approximated solution is then obtained at the rest of the stencil from the values at the intercell by applying
the RK collocation method backward and forward in space.

The output of the local solver with the notation of (LP) is then:

𝑈∗,𝑚𝑖, 𝑗 = 𝑈𝑚𝑗 , 𝑚 = 1, . . . , 𝑠, 𝑗 = 𝑖 − 𝑙, . . . 𝑖 + 𝑟; 𝑈∗,𝑖−1/2𝑖 = 𝑈𝑖−1/2, 𝑈∗,𝑖+1/2𝑖 = 𝑈𝑖+1/2.

It can be shown that the approximations of Cauchy problems (3.1) with 𝐺 (𝑥,𝑈) = 𝐽 (𝑈)−1𝑆(𝑈)𝐻𝑥 using
the RK collocation method are discrete stationary solution of the numerical schemes, what proves that they are
well-balanced with order 2𝑠. The reversibility of RK collocation methods plays a crucial role in the proof. Notice
that there are not explicit methods which have this property.
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223



Method Error (𝑖 = 1) Error (𝑖 = 2) Error (𝑖 = 3)
SM𝑖 1.34E-3 2.43E-6 1.74E-8

CDWBM𝑖 5.37E-15 5.15E-16 2.51E-14

Tab. 1 Test 1. Errors in 𝐿1 norm for SM𝑖 and CDWBM𝑖 (𝑖 = 1, 2, 3) with respect to the stationary solution for the 200-cell
mesh at time 𝑡 = 5𝑠.

4. Numerical experiments
The following choices have been made in order to build the well-balanced schemes introduced in this paper:

• For the first and second order well-balanced numerical schemes, the second-order 1-stage Gauss-Legendre
collocation method is applied, whereas the 2-stage Gauss-Legendre collocation method is used for the third
order schemes.

• The midpoint rule is considered for first and second order schemes, and the 2-point Gauss quadrature rule
for third order schemes.

• The Rusanov numerical flux is considered.

• We apply the trivial reconstruction operator for the first order scheme; the MUSCL reconstruction for the
second order scheme (see [23]); and the CWENO reconstruction for the third order scheme (see [17], [10]).

• First, second and third order TVD Runge-Kutta methods are used for solving the ODE system (1.4): see [12].

The following notation is introduced to denote the methods considered:

• SM𝑖, 𝑖 = 1, 2, 3: numerical method of order 𝑖 based on the Rusanov flux and the standard, not well-balanced,
reconstruction operators.

• CDWBM𝑖, 𝑖 = 1, 2, 3: numerical method of order 𝑖 based on the Rusanov flux and the well-balanced
reconstruction operator in which the discrete stationary solutions and local problems are obtained by applying
the Gauss-Legendre collocation method as described in the previous section.

The numerical experiments have been performed in a computer equipped with Intel(R) Xeon(R) CPU E3-1220
v3 @ 3.10GHz with 8Mb cache using one single core.

4.1. Test 1: Burgers equation with a nonlinear source term
We consider the Burgers equation with the non-linear source term 𝑆(𝑈) = sin(𝑈):



𝑈𝑡 +

(
𝑈2

2

)
𝑥

= sin(𝑈), 𝑥 ∈ R, 𝑡 > 0,
𝑈 (𝑥, 0) = 𝑈0 (𝑥).

(4.1)

We consider 𝑥 ∈ [−1, 1], 𝑡 ∈ [0, 5] and CFL= 0.9. As initial condition, we consider the stationary solution
which solves the Cauchy problem 


𝑑𝑈

𝑑𝑥
=
sin(𝑈)
𝑈

,

𝑈 (−1) = 2.
𝑈 (−1, 𝑡) = 2 is imposed at 𝑥 = −1 and free boundary conditions are considered at 𝑥 = 1.
Table 1 shows the errors corresponding to SM𝑖 and CDWBM𝑖, 𝑖 = 1, 2, 3 respectively for a 200-cell mesh. As

expected, only the well-balanced methods preserve the stationary solutions.

4.2. Test 2: shallow water equations with Manning friction
Let us consider the shallow water equations with Manning friction:



ℎ𝑡 + 𝑞𝑥 = 0,
𝑞𝑡 +

(
𝑞2

ℎ
+ 1
2
𝑔ℎ2

)
𝑥

= 𝑔ℎ𝐻𝑥 − 𝑘𝑞 |𝑞 |
ℎ𝜂

.
(4.2)

This system is used to model the flow of water in a one-dimensional channel,with a bottom that applies a friction
force on the water. Here, the variable 𝑥 makes reference to the axis of the channel and 𝑡 is the time; 𝑞(𝑥, 𝑡) and
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(a) SM𝑖, 𝑖 = 1, 2, 3. 𝑡 = 0.015𝑠.
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(b) CDWBM𝑖, 𝑖 = 1, 2, 3. 𝑡 = 0.015𝑠.
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(c) SM𝑖, 𝑖 = 1, 2, 3.. 𝑡 = 2𝑠.
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(d) CDWBM𝑖, 𝑖 = 1, 2, 3.. 𝑡 = 2𝑠.

Fig. 1 Test 2. Differences between the stationary solution and the reference and numerical solutions at times 𝑡 = 0.015, 2𝑠
for ℎ. Number of cells: 100.

ℎ(𝑥, 𝑡) are the discharge and the thickness, respectively; 𝑢 = 𝑞/ℎ is the depth-averaged velocity; 𝑔 is the gravity;
𝐻 (𝑥) is the depth function measured from a fixed reference level; 𝑘 is the Manning friction coefficient; and 𝜂 is a
parameter equal to 73 .
Following [19], we consider 𝑥 ∈ [0, 1], 𝑘 = 0.01 and the depth function

𝐻 (𝑥) = 1 − 1
2
𝑒cos(4𝜋𝑥) − 𝑒−1

𝑒 − 𝑒−1 . (4.3)

The initial condition𝑈0 (𝑥) = [ℎ0 (𝑥), 𝑞0 (𝑥)]𝑇 is

ℎ0 (𝑥) =


ℎ∗ (𝑥) + 0.05, if 𝑥 ∈

[
2
7
,
3
7

]
∪

[
4
7
,
5
7

]
,

ℎ∗ (𝑥), otherwise,
𝑞0 (𝑥) =



𝑞∗ (𝑥) + 0.5, if 𝑥 ∈

[
2
7
,
3
7

]
∪

[
4
7
,
5
7

]
,

𝑞∗ (𝑥), otherwise,
(4.4)

where 𝑈∗ (𝑥) = [ℎ∗ (𝑥), 𝑞∗ (𝑥)]𝑇 is the supercritical stationary solution that satisfies 𝑞(0) = 1 and ℎ(0) = 0.3. The
numerical simulation is run until 𝑡 = 2𝑠 using a uniform mesh with 100 cells.
Figure 1 shows the differences between the stationary solution and the numerical solutions at times 𝑡 = 0.015

and 2𝑠 with SM𝑖, 𝑖 = 1, 2, 3 and CDWBM𝑖, 𝑖 = 1, 2, 3 for ℎ (the graphs are similar for 𝑞). A reference solution
has been computed with a first order well-balanced scheme on a fine mesh (1600 cells). As expected, only the
well-balanced methods are able to recover the stationary solutions. This is clear in Table 2 where the errors in 𝐿1
norm with respect to the stationary solution at time 𝑡 = 2𝑠 are shown for the 100-cell mesh.
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Method Error (𝑖 = 1) Error (𝑖 = 2) Error (𝑖 = 3)
ℎ 𝑞 ℎ 𝑞 ℎ 𝑞

SM𝑖 2.42 6.12 3.57E-3 4.87E-3 1.39E-3 4.30E-4
CDWBM𝑖 3.73E-16 3.60E-16 1.80E-15 1.99E-15 2.64E-15 8.93E-15

Tab. 2 Test 2. Errors in 𝐿1 norm for SM𝑖 and CDWBM𝑖 (𝑖 = 1, 2, 3) with respect to the stationary solution for the 100-cell
mesh at time 𝑡 = 2𝑠.

5. Conclusions
Following the methodology introduced in [4], we have described a general strategy in order to build a family of
high-order well-balanced numerical methods that can be applied to general 1d systems of balance laws. Due to
the difficulty of solving the ODE satisfied by the stationary solutions, sometimes the first step of the reconstruction
procedure is required to be numerically solved: the application of the collocation RK methods to deal with these
problems have been detailed in this work. The numerical methods have been applied to some systems of balance
laws what allows us to check that the well-balanced property is fulfilled.
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Abstract

Wepresent in this paper an algorithm to solve pure-convection problemswith a conservative Lagrange-Galerkin
formulation in the framework of the finite element method. The integrals obtained from the Lagrange-Galerkin
formulation will be computed with an algorithm which leads to conservation of mass up to machine accuracy,
when we transfer information from the mesh moved by the characteristic curves of the convection operator to the
current mesh. The algorithm to compute the integrals considers the intersection of meshes composed by triangles
(2-dimensions) and tetrahedra (3-dimensions) with straight sides. Wewill illustrate the good features of themethod
in terms of stability, accuracy and mass conservations in different pure-convection tests with non-divergence-free
velocity fields.

1. Introduction
Nowadays, in the resolution of problems related with fluids, such as aerodynamics, combustion and heat transfer,
we usually find convection-dominated equations. However, its resolution via finite element methods is not straight-
forward, since the treatment of the convective terms is a source of numerical problems due to the fact that the
standard Galerkin formulation is unstable.
One methodology that brings about the stabilization of the convective term in a natural way is related to the

Lagrangian description of the flow. Here, we use the information of the characteristic curves of the convection
operator in order to integrate the equation in time. In the so-called Lagrange-Galerkin method (also known as
Characteristic-Galerkin or semi-Lagrange-Galerkin method), see [1, 2], we identify each domain point x as a fluid
particle at time 𝑡𝑛 and seek backward in time the position of this particle at time 𝑡𝑛−1, that we call the foot of the
characteristic curve X(x, 𝑡𝑛; 𝑡𝑛−1), where the numerical solution 𝑢ℎ (x, 𝑡𝑛−1)) is known. The set of the feet of the
characteristic curves defines a backwards convected mesh, and the weak formulation of the problem performs a
𝐿2-projection of the known solution from this convected mesh to the fixed mesh.
In the context of Lagrange-Galerkin schemes, Colera et al. [3] derived a conservative Lagrange-Galerkin

formulation to solve pure-convection and convection-diffusion equations in the case of non-divergence-free velocity
fields. The method is mainly based on formulating a conservation integral equation for a weighted mass, that can
be discretized in time and in space with any order of accuracy, and is posed so that the terms that appear in the
formulation can be easily computed by means of standard finite element operations.
Although the weak formulation in [3] leads to mass conservation, the right-hand side of the equation consists

on an integral of functions that are defined in different element spaces (associated with the current triangulation
and its backwards convected mesh). In [3], the integrals are computed with high-order quadrature rules [4], which
is the reason the method proposed there is named “nearly-conservative”. Since the basis functions of the fixed
mesh are not polynomials, but only piecewise polynomials, over the elements of the convected mesh, the use of
quadrature rules over such elements does not produce an exact result.
In this work, we propose an algorithm based on an appropriate mesh intersection procedure to accurately

compute the right-hand side integral of the weak formulation. This techniques leads to better accuracy in the mass
conservation property and also it improves the stability properties of the Lagrange-Galerkin scheme. Following
Farrell et al. [5] we call this technique “supermesh technique”.
The layout of the paper is as follows: Section 2 starts with the presentation of the conservative Lagrange-

Galerkin formulation of pure convection problems with non-divergence-free velocity fields and concludes with the
weak formulation of the problem in the framework of the finite element method. Section 3 constitutes the core
of the paper, where we explain the numerical procedure to implement the “supermesh technique” to compute the
integral of the right hand side term of the weak formulation of the problem, to transfer information from the moved
mesh to the current mesh. In Section 4 we present numerical results to show the good properties of the proposed
algorithm, in terms of stability, accuracy and mass conservation. Finally, some conclusions and comments are
collected in Section 5.
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2. Conservative Lagrange-Galerkin formulation for pure-convection problems
Let us consider the conservative form of a pure-convection equation for the scalar variable 𝑢 = 𝑢(x, 𝑡){ 𝜕𝑢

𝜕𝑡
+ ∇ · (a𝑢) = 0 in Ω × (0, 𝑇]

𝑢(x, 0) = 𝑢0 (x) in Ω,
(2.1)

withΩ ⊂ R𝑑 (with 𝑑 = 2, 3) a bounded domain with smooth boundary 𝜕Ω, and a(x, 𝑡) a regular velocity field with
possible non-null divergence (we do not assume incompressible velocity). To solve numerically the problem (2.1)
by means of a Lagrange-Galerkin scheme we have to divide the time interval 𝐼 = [0, 𝑇] with a constant step size
Δ𝑡 = 𝑡𝑛 − 𝑡𝑛−1. Associated with the velocity field a(x, 𝑡) we can define the characteristic curves X(x, 𝑡𝑛; 𝑡) of the
convective or material derivative operator 𝐷/𝐷𝑡 = 𝜕/𝜕𝑡 + a · ∇ that correspond to the position backward in time
of a fluid particle at time 𝑡 ≤ 𝑡𝑛 that will reach the domain point x at instant of time 𝑡𝑛. X(x, 𝑡𝑛; 𝑡) is the solution to
the system of equations {

𝑑X(x, 𝑡𝑛; 𝑡)
𝜕𝑡

= a (X(x, 𝑡𝑛; 𝑡), 𝑡) 𝑡 < 𝑡𝑛,

X(x, 𝑡𝑛; 𝑡𝑛) = x.
(2.2)

To obtain the weak conservative Lagrangian-Galerkin formulation of problem (2.1) we multiply the equation
by a test function 𝑣 = 𝑣(x, 𝑡) that satisfies the equation 𝐷𝑣/𝐷𝑡 = 0. Then, we obtain the expression

𝜕 (𝑢𝑣)
𝜕𝑡
+ ∇ · (a𝑢𝑣) = 0. (2.3)

Now, we integrate (2.3) in the domain Ω̃(𝑡), that evolves backward in time from 𝑡𝑛 to 𝑡 < 𝑡𝑛 according to the
velocity field a(x, 𝑡) and it is defined by the family of characteristic curves X(x, 𝑡𝑛; 𝑡)

Ω̃(𝑡) := {
X ∈ R𝑑 : X = X(x, 𝑡𝑛; 𝑡), x ∈ Ω}

with Ω̃(𝑡𝑛) = Ω. Therefore, applying the Gauss theorem to the second term followed by the Reynolds theorem, we
obtain the weak formulation of equation (2.3) as a temporal derivative over a integral extended to the fluid volume
Ω̃(𝑡). For all test functions we have

𝑑

𝑑𝑡

∫
Ω̃(𝑡)

𝑢𝑣𝑑𝑋 = 0 →
∫
Ω
𝑢𝑛 (x)𝑣𝑛 (x)𝑑𝑥 =

∫
Ω̃(𝑡𝑛−1)

𝑢𝑛−1 (X)𝑣𝑛−1 (X)𝑑𝑋, (2.4)

2.1. Finite element discretizacion and convected finite element space
The equation (2.4) forces us to consider an integration domain Ω̃(𝑡) that moves with the fluid particles, as well
as test functions 𝑣(x, 𝑡) that remain constant along the fluid trajectories. Then, we chose as integration domain at
instant of time 𝑡𝑛 the set Ωℎ := Ω̃(𝑡𝑛), a polygonal domain that approximates Ω and over which we define a regular
triangulation Tℎ composed of triangles (in 2D) or tetrahedra (in 3D).
Associated with the triangulation Tℎ we define a conforming finite element space 𝑉ℎ where the numerical

solution 𝑢𝑛ℎ (x) (shorthand for 𝑢ℎ (x, 𝑡𝑛)) is computed. To do so, we consider a reference element �̂� ∈ R𝑑 and define
�̂�ℎ as the space 𝑃𝑚 of polynomial functions of degree less or equal to 𝑚 and denote it dimension by 𝑛𝑣 . For each
element 𝐾 ∈ Tℎ we define the one-to-one affine mapping 𝐹𝐾 : �̂� → 𝐾

F𝐾 : �̂� −→ 𝐾, x = 𝐽𝐾 x̂ + b𝐾 , 𝐽𝐾 ∈ R𝑑×𝑑 and b𝐾 ∈ R𝑑 . (2.5)

and we denote 𝑉ℎ the resulting conforming finite element space and 𝑁𝑣 the number of mesh nodes.
Now, each element𝐾 ∈ Tℎ which composes domainΩℎ is convected backwards in time from 𝑡𝑛 to 𝑡𝑛−1 obtaining

𝐾𝑛−1 as the geometric place of the so-called feet of the characteristic curves X(x, 𝑡𝑛; 𝑡𝑛−1) with x ∈ 𝐾 , for which
we use the shorthand X𝑛−1 (x). We are going to consider an approximation 𝐾𝑛−1ℎ of 𝐾𝑛−1 given by the following
isoparametric transformation

F̃𝑛−1𝐾 : x̂ ∈ �̂� −→ Xℎ ∈ 𝐾𝑛−1ℎ , X𝑛−1ℎ (x̂) =
𝑛𝑣∑︁
𝑖=1

X𝑛−1 (v𝑖)�̂�𝑖 (x̂) , (2.6)

with v𝑖 the coordinates of the 𝑖-th local node of 𝐾 and �̂�𝑖 the 𝑖-th elemental nodal basis function of �̂�ℎ . The
transformation F̃𝑛−1𝐾 incurs an error in the approximation of X𝑛−1 (x) consistent with the space finite element
discretization, i.e.,

|X𝑛−1 (x) − X𝑛−1ℎ (x) | = O(ℎ𝑚+1),
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Note that X𝑛−1 (v𝑖) must be computed for the 𝑁𝑣 mesh nodes {v𝑖}𝑁𝑣𝑖=1 solving numerically the differential
equation (2.2). Moreover, the transformation F̃𝑛−1𝐾 has the advantage that X𝑛−1ℎ (x) and x share the same natural
coordinates in the reference element [1, 6], that is,

X𝑛−1 (x) ' X𝑛−1ℎ (x) := F̃𝑛−1𝐾

(
F−1𝐾 (x)

)
. (2.7)

For each 𝐾 ∈ Tℎ , the definition of the isoparametric transformation F̃𝑛−1𝐾 of (2.6) leads to an element 𝐾𝑛−1ℎ with
polynomial edges of degree𝑚, the order of the finite element space approximation �̂�ℎ , and which is an aproximation
of the real convected element 𝐾𝑛−1. Let T̃𝑛−1ℎ be the mesh composed by these approximate convected elements
T̃𝑛−1ℎ :=

{
𝐾𝑛−1ℎ : 𝐾 ∈ Tℎ

}
. In the present paper we are going to consider linear finite elements, 𝑚 = 1, in order to

have approximated convected elements 𝐾𝑛−1ℎ with straight edges (sides in 3D). We can see Fig. 1 for an explanatory
scheme of the above explanation.

v̂3

v̂1

v̂2

v1

v3

v2

X(v3, tn; tn−1)

X(v1, tn; tn−1)

X(v2, tn; tn−1)

X
n−1

h
(x)

∈ Th

K̃
n−1

h
∈ T̃

n−1

h

K̃
n−1

x = FK(x̂)

X
n−1

h
= F̃

n−1

K
(x̂)

Fig. 1 Convected nodes X𝑛−1 (v𝑖) backward in time from triangle 𝐾 ∈ Tℎ . From the convected nodes, we approximate the
real convected element by an isoparametric 𝐾𝑛−1

ℎ
∈ T̃𝑛−1

ℎ
element via application X𝑛−1

ℎ
(x) = F̃𝑛−1𝐾

(
F−1𝐾 (x)

)
.

Now, let us consider a function 𝑣ℎ (x, 𝑡) which verifies 𝐷𝑣ℎ/𝐷𝑡 = 0 and 𝑣𝑛ℎ (x) ∈ 𝑉ℎ . Since 𝑣ℎ is constant along
the fluid trajectories, we can make the approximation 𝑣𝑛−1ℎ

(
X𝑛−1ℎ (x)) = 𝑣𝑛ℎ (x). Moreover, 𝑣𝑛−1ℎ belongs to the

convected finite element space

𝑉𝑛−1ℎ :=
{
𝑣𝑛−1ℎ : 𝑣𝑛−1ℎ

(
X𝑛−1ℎ (x)

)
= 𝑣𝑛ℎ (x) ∈ 𝑉ℎ

}
,

and hence 𝑉𝑛−1ℎ is also a 𝑃𝑚 space, but associated to the mesh T̃𝑛−1ℎ instead of Tℎ .
Finally, with the definition of Ωℎ , Ω̃𝑛−1ℎ and their associated triangulations Tℎ , T̃𝑛−1ℎ and the finite element

spaces 𝑉ℎ , 𝑉𝑛−1ℎ , we can define the numerical approximation of the weak conservative formulation (2.4) via the
finite element method∫

Ωℎ
𝑢𝑛ℎ𝑣

𝑛
ℎ𝑑𝑥 =

∫
Ω̃𝑛−1
ℎ

𝑢𝑛−1ℎ (X)𝑣𝑛−1ℎ (X)𝑑𝑋, ∀𝑣𝑛ℎ ∈ 𝑉ℎ (and its associated function 𝑣𝑛−1ℎ ∈ 𝑉𝑛−1ℎ ), (2.8)

where the initial value 𝑢0ℎ is taken as the 𝐿
2 projection of the initial condition 𝑢0 (x), i.e.,

∫
Ωℎ
𝑢0ℎ𝑣

0
ℎ𝑑𝑥 =

∫
Ωℎ
𝑢0𝑣0ℎ𝑑𝑥, ∀𝑣0ℎ ∈ 𝑉ℎ . (2.9)

The computation of the left-hand side of (2.8) lead us to the standard mass matrix associated to the triangulation
Tℎ and it is straightforward to compute it, however the right-hand side in (2.8) involves the product of 𝑢𝑛−1ℎ , which
is defined piecewise in Tℎ , and 𝑣𝑛−1ℎ , which is defined piecewise in T̃𝑛−1ℎ (see Fig. 2). Since these two meshes are
usually different, to compute this right-hand side we can follow the following strategies:
1) Integrate over the elements in T̃ℎ with high-order quadrature rules [4] as is done in Colera et al. [3].
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2) Develop a mesh intersection technique to accurately compute this term [5, 7, 8], which leads to better
accuracy in mass conservation. In the present work we adopt this approach and derive a technique to develop mesh
intersection of straight triangles in 2D and straight tetrahedra in 3D of high efficiency using very conventional
operations within the finite element methodology.

Trajectories of the fluid particles

Domain Ωh with mesh Th

Domain Ω̃
n−1

h
with mesh T̃

n−1

h

Fig. 2 Scheme that illustrates the domains and meshes that appear in the formulation. The nodes of the elements in Tℎ are
convected backwards in time with the flow velocity field to form T̃𝑛−1

ℎ
. The variables 𝑢𝑛

ℎ
, 𝑣𝑛
ℎ
and 𝑢𝑛−1

ℎ
are defined piecewise

in Tℎ , whereas 𝑣𝑛−1ℎ
is defined piecewise in T̃𝑛−1

ℎ
.

Note that, if in problem (2.1) the velocity field satisfies a · n = 0 on the boundary 𝜕Ωℎ , with n the outward
normal vector on the boundary, then the backward convected domain will be the same as the current volume (fluid
particles on the boundary 𝜕Ωℎ do not cross the boundary), i.e., Ωℎ = Ω̃𝑛−1ℎ (but Tℎ ≠ T̃𝑛−1ℎ if a ≠ 0). That means
that the conservation principle is satisfied in the domain Ωℎ for all instants of time∫

Ωℎ
𝑢𝑛ℎ (x)𝑑𝑥 =

∫
Ωℎ
𝑢0ℎ (x)𝑑𝑥, ∀𝑡𝑛 ∈ [0, 𝑇] . (2.10)

3. Algorithm for the intersection of meshes with straight elements
To compute (2.8) numerically, we replace the test function 𝑣𝑛ℎ by each of the 𝑁𝑣 basis functions 𝜑𝐼 (x) ∈ 𝑉ℎ and
𝑢𝑛ℎ =

∑𝑁𝑣
𝐽=1𝑈

𝑛
𝐽𝜑𝐽 (x). Then, the left hand side reads∫

Ωℎ
𝑢𝑛ℎ (x)𝜑𝐼 (x)𝑑𝑥 =

∑︁
𝐾 ∈Tℎ

(
𝑁𝑣∑︁
𝐽=1

𝑈𝑛𝐽

∫
𝐾
𝜑𝐼 (x)𝜑𝐽 (x)𝑑𝑥

)
,

which can be computed exactly with a quadrature rule since both 𝜑𝐼 (x) and 𝜑𝐽 (x) are basic function in 𝑉ℎ .
However, for the right hand side we have

∫
Ω̃𝑛−1
ℎ

𝑢𝑛−1ℎ (X𝑛−1 (x))𝜑𝑛−1𝐼 (X𝑛−1 (x))𝑑𝑋 =
∑︁

𝐾𝑛−1
ℎ
∈T̃𝑛−1
ℎ

(
𝑁𝑣∑︁
𝐽=1

𝑈𝑛−1𝐽

∫
𝐾𝑛−1
ℎ

𝜑𝑛−1𝐼 (X𝑛−1 (x))𝜑𝐽 (X𝑛−1 (x))𝑑𝑋
)
, (3.1)

and inside the integral there are two kinds of basis functions: 𝜑𝐽 ∈ 𝑉ℎ associated with the elements 𝐾 ∈ Tℎ
and 𝜑𝑛−1𝐼 ∈ 𝑉𝑛−1ℎ associated with the elements 𝐾𝑛−1ℎ ∈ T̃𝑛−1ℎ . Therefore, as the basis functions are piecewise
polynomials over each element of their respective meshes, the use of intersection techniques is required to compute
this right hand side exactly with quadrature rules, as can be seen in Fig. 2.
In this work we propose a mesh intersection algorithm based in [5]. We are going to simplify the notation

in accordance with those introduced in that paper. We define Tℎ as the donor mesh, and denote donor elements
𝐾𝐷 ≡ 𝐾 ∈ Tℎ , whereas we define as T̃𝑛−1ℎ the target mesh, so that the target elements are 𝐾𝑇 ≡ 𝐾𝑛−1ℎ ∈ T̃𝑛−1ℎ .
Moreover, as we have considered in Fig. 1 and Fig. 2, we are going to illustrate the main stages of the algorithm
with figures of meshes composed of triangles in two-dimensions. For tetrahedra in three-dimensions the situation
is analogous, but spatial figures are more difficult to understand. Then, the algorithm to compute integral (3.1) has
the following stages:

1. For each 𝐾 ∈ Tℎ , find the set of elements 𝐾𝑇𝐷 :=
{
𝐾𝐷1 , 𝐾𝐷2 , ...

} ⊂ Tℎ such that 𝐾𝐷𝑖 ⋂𝐾𝑇 ≠ ∅ with
𝐾𝑇 ∈ T̃𝑛−1ℎ . Those elements are shown in Fig. 3.

2. Compute the supermesh associated with the intersection 𝐾𝐷𝑖
⋂
𝐾𝑇 for each 𝐾𝐷𝑖 ∈ 𝐾𝑇𝐷 . The supermesh is

the set 𝐾𝑇 𝐷𝑖 =
{
𝐾𝑇 𝐷𝑖 ,1, 𝐾𝑇 𝐷𝑖 ,2, ...

}
where 𝐾𝑇 𝐷𝑖 is included in both 𝐾𝑇 and 𝐾𝐷𝑖 . Fig. 4 shows a scheme

of this stage of the algorithm. To create a triangulation of the intersection zone there are several procedures,
and one of the simplest (useful for convex polytopes in two and three dimension) is the Sutherland-Hodgman
clipping algorithm [9].
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K ∈ Th

K̃
n−1

h
≡ KT ∈ T̃

n−1

h
KD1

KD2

KD3

Fig. 3The element𝐾𝑇 ∈ T̃𝑛−1ℎ
(convected from𝐾 ∈ Tℎ) intersects with the triangles of the set𝐾𝑇𝐷 =

{
𝐾𝐷1 , 𝐾𝐷2 , 𝐾𝐷3

} ∈
Tℎ .

KT ∈ T̃
n−1

h

KDi
∈ Th

KTDi,3

KTDi,1

KTDi,2

Fig. 4 The intersection of 𝐾𝑇 and 𝐾𝐷𝑖 is remeshed to obtain the supermesh. In this example that supermesh has three
elements: 𝐾𝑇𝐷𝑖 ,1, 𝐾𝑇𝐷𝑖 ,2 and 𝐾𝑇𝐷𝑖 ,3

3. Define the linear transformations x̂𝐷𝑖 = g𝐷𝑖𝑇 , 𝑗 (x̂) and x̂𝑇 = g𝑇 𝐷𝑖 , 𝑗 (x̂) between a common reference element
and a reference element associated to 𝐾𝐷𝑖 and 𝐾𝑇 , respectively. This is shown in Fig. 5

KT

KDiKTD ,j

x̂2

x̂1

x̂1Di

x̂2Di

x̂2T

x̂1T

x̂Di
= gDiT,j(x̂)

x̂T = gTDi,j(x̂)

x = FKDi
(x̂Di

)

Xn−1

h = ˜Fn−1

KT
(x̂T )

Fig. 5 Linear transformations from the standard reference element �̂� to those reference elements �̂�𝐷𝑖 and �̂�𝑇 associated
with the proper elements 𝐾𝐷𝑖 and 𝐾𝑇 , respectively.

4. Finally, the integral 𝑚𝐼 𝐽 |𝐾𝑇 :=
∫
𝐾𝑛−1
ℎ

𝜑𝑛−1𝐼

(
X𝑛−1 (x)) 𝜑𝐽 (

X𝑛−1 (x)) 𝑑𝑋 can be computed as:
𝑚𝐼 𝐽 |𝐾𝑇 =

∑︁
𝐾𝐷𝑖 ∈𝐾𝑇𝐷


∑︁

𝐾𝑇𝐷𝑖 , 𝑗 ∈𝐾𝑇𝐷𝑖

∫
𝐾𝑇𝐷𝑖 , 𝑗

𝜑𝑛−1𝐼

(
X𝑛−1 (x)

)
𝜑𝐽

(
X𝑛−1 (x)

)
𝑑𝑋


with∫
𝐾𝑇𝐷𝑖 , 𝑗

𝜑𝑛−1𝐼

(
X𝑛−1 (x)

)
𝜑𝐽

(
X𝑛−1 (x)

)
𝑑𝑋 =

𝑛𝑞∑︁
𝑠=1

𝜔𝑠 �̂�𝐼

(
g𝑇 𝐷𝑖 , 𝑗 (�̂�𝑠)

)
�̂�𝐽

(
g𝐷𝑖𝑇 , 𝑗 (�̂�𝑠)

)
det

(
𝜕F̃𝐾𝑇 (x̂𝑇 )
𝜕x̂𝑇

)
det

(
𝜕g𝑇 𝐷𝑖 , 𝑗 (x̂)

𝜕x̂

)
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where �̂�𝑠 , 𝑠 = 1, ..., 𝑛𝑞 are the quadrature points in the reference element and the product det

(
𝜕F̃𝐾𝑇 (x̂𝑇 )
𝜕x̂𝑇

)
det

(
𝜕g𝑇 𝐷𝑖 , 𝑗 (x̂)

𝜕x̂

)

equals the size of the supermesh element,
��𝐾𝑇 𝐷𝑖 , 𝑗 ��

4. Numerical test
Next, we present a numerical test to illustrate the performance of the numerical algorithm. Note that the trajectories
of the fluid particles can be computed with high accuracy or analytically for these problem, which allows us to obtain

the exact solution of pure-convection problems (2.1) through the formula𝑢(x, 𝑇) = 𝑢0 (X(x, 𝑇 ; 0)) det
(
𝜕X(x, 𝑇 ; 0)

𝜕x

)
[10], which means

𝑢(x, 𝑇) = 𝑢0 (X(x, 𝑇 ; 0)) exp
(
−

∫ 𝑇

0
[(∇ · a)]X(x,𝑇 ;𝑡) 𝑑𝑡

)
.

We are going to show numerical results for the projection technique presented in this paper via intersection of
meshes. This technique is called “supermesh projection” as opposed to the “standard projection” where we use
high-order quadrature rules to compute the integrals with high accuracy. For the supermesh projection we need
quadrature rules of order only two (both in 2-dimension (𝑛𝑞 = 3) and 3-dimension (𝑛𝑞 = 4)), the minimum order
needed to integrate exactly the corresponding product of basis functions. For the standard projection we show in
figures the number of quadrature points used in each numerical simulation.
The test consists of a pure convection problem (2.1) with the following velocity field and initial condition:

a(x, 𝑡) = [0.45 + sin (𝑡 − 𝑥1) , 0.45 + sin (𝑡 − 𝑥2)]T , and 𝑢0 (x) = exp (−200 (2 − cos(𝑥1) − cos(𝑥2))) .

in a domain Ωℎ = [−1, 1] × [−1, 1] and final instant of time T=0.5. In this problem a · n ≠ 0, but the solution on
the boundary for all instant of time 𝑡 ≤ 𝑇 is negligible 𝑢 |𝜕Ω ' 0 and then the mass of the solution in the domain Ωℎ
is almost maintained (2.10).
The evolution of the solution with time can be seen in Fig.6. At time 𝑡 = 0 we have a gaussian hill in the middle

of the domain. When the time goes on, the solution moves along the line 𝑦 = 𝑥 and its width is reduced and the
value of its vertex is increased, to satisfy the conservation of mass at all instant of times following (2.10).

Fig. 6 Numerical solution of test at different instants of time in a uniform triangulation Tℎ with ℎ = 0.085.

Now, we are going to measure the error in the L2-norm between the numerical solution and the exact solution
and also the mass error, both at the last instant of time. We consider a time step size Δ𝑡 = 0.005 and different
meshes composed of regular elements of size ℎ. The results can be seen in Fig.7. The 𝐿2 error for supermesh
projection and standard projection is similar in both cases, and also its convergence with ℎ is close to the theoretical
one shown in the black dashed line (O(ℎ2) for linear finite elements). However, the difference between supermesh
projection and standard projection is remarkable in terms of mass conservation. We can observe in Fig. 7 that
supermesh projection is up to twelve orders of magnitude more accurate when computing the mass error.
Finally, in Fig.8 we show an interesting phenomenon when we analyze the 𝐿2-error at the last instant of time, as

a function of time step size Δ𝑡. Now, we are going to consider a uniformmesh with with ℎ = 0.085 and make several
numerical simulations with different time step sizes Δ𝑡. It is known that standard projection may get unstable when
using small time steps if the number of quadrature points used for integration is not high enough. However, for the
supermesh projection, this instability does not appear, since the integrals are computed exactly with low number of
quadrature points (the minimum needed to integrate exactly the corresponding product between basis functions).
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Fig. 7 𝐿2-error (on the left), mass error (in the middle), and computational requirement in terms of CPU time (on the right)
for different uniform meshes with size ℎ and Δ𝑡 = 0.005 maintained constant in all the simulations.
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Fig. 8 𝐿2-error for different time steps and the same mesh with ℎ = 0.085.

5. Conclusion
In this work we described in detail an algorithm to compute exactly the integrals that appear in the conservative
Lagrange-Galerkin formulation of a pure-convection problem in a linear finite element framework. This technique
is called “supermesh projection” as opposed to the “standard projection” where we use high-order quadrature rules
to compute the integrals with high accuracy. Both techniques have almost identical 𝐿2-error with moderately
large time step sizes Δ𝑡 and high quadrature rules for the standard projection (for supermesh projection we need
quadrature rules of order two, both in 2- and 3-dimensions). However, the main advantage of supermesh projection
is that it avoids instabilities when the integrals are computed with enough accuracy in standard projection and
when numerical error are accumulated in time (small time step sizes Δ𝑡). The main disadvantage of the supermesh
projection is that the computational requirement of the right hand side of the weak formulation is larger than
standard projection (nearly a factor two when the number of element which conformed the mesh is large). However,
in practice this issue is not a significant problem, since the Lagrange-Galerkin formulation usually is used in other
more complicated problems as convection-diffusion-reaction equations or Navier-Stokes equations. In these cases,
computing the convection terms is usually the less resource consuming step, so this time increase would not be that
relevant for the overall process. Moreover, the intersection mesh procedure can be carried out with straightforward
parallel programming. As future work, we want to extent the present algorithm of mesh intersection to finite
elements of high order (𝑚 > 1 order). In this case, convected elements 𝐾𝑛−1ℎ have sides given by a polynomial
function of degree 𝑚, and the intersection of elements is much more complicated.
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Abstract

In this work we focus on solving quadratic matrix equations. We start by transforming the quadratic matrix
equation into a fixed point equation. From this transformation, we propose an iterative scheme of stable successive
approximations. We study the global convergence of this iterative scheme. In addition, we obtain a result of
restricted global convergence to the well-known Picard method using a technique of auxiliary points. From
the results obtained, we analyze the location and separation of the solutions of the quadratic matrix equation
considered. Finally, we build a hybrid iterative scheme, predictor-corrector, which allow us to approximate a
solution of the quadratic matrix equation more efficiently.

1. Introduction
The study of quadratic matrix equation is motivated by the great variety of problems where appears. Quadratic
matrix equation arises in many areas of scientific computing and engineering applications. For instance, algebraic
Riccati equations arising in control theory [8]. Another important class of quadratic matrix equations is motivated
by noisy Wiener-Hopf problems for Markov chains [9].
Although some algebraic Riccati equations are quadratic matrix equation, and vice versa, the two classes of

equations require different techniques for analysis and solution in general.
In this study we are interested in the simplest quadratic matrix equation:

Q(𝑋) = 𝑋2 − 𝐵𝑋 − 𝐶 = 0, 𝐵, 𝐶 ∈ R𝑚×𝑚, (1.1)

which occurs in a variety of applications, for example, it may arise in the well known quadratic eigenvalue problem:

𝑄(𝜆)𝑥 = 𝜆2𝐴𝑥 + 𝜆𝐵𝑥 + 𝐶𝑥 = 0, with 𝐴, 𝐵, 𝐶 ∈ C𝑚×𝑚,

that arises in the analysis of structural systems and vibration problems [10].
The application of iterative schemes is commonly used to approximate a solution of equation (1.1). We obtain

qualitative results about the equation at issue from the study of the convergence. For instance, a solution existence
result is obtained for equation (1.1), with the so-called existence ball of an iterative scheme given in [1], which
allows us to locate a solution. On the other hand, a result of uniqueness of the solution allows us to separate
solutions [2]. Finally, the iterative scheme considered, under the convergence conditions obtained, allows us to
approximate a solution of equation (1.1). This is how the three main aims of our work arise: locate, separate and
approximate a solution of equation (1.1).
The paper is organized as follows. In Section 2, we present different conditions to locate and separate solutions

of equation (1.1) from the study of the convergence of the Successive Approximations and Picard methods. In
Section 3, we define a hybrid iterative scheme to approximate a solution of equation (1.1).

2. The Successive Approximations and Picard Methods
In what follows, we suppose that there exists 𝑋∗ a fixed matrix of 𝑇 with 𝑇 (𝑋) = 𝑋 , 𝑇 : R𝑚×𝑚 → R𝑚×𝑚 in
𝐵(𝑋∗, 𝑅). In this case, we use the following modification of the Banach Fixed Point Theorem.

Theorem 2.1 If Ω ⊂ R𝑚×𝑚 is convex and compact and 𝑇 : Ω→ Ω is a contraction, then 𝑇 admits a unique fixed
matrix in Ω and it can be approximated from 𝑋𝑛+1 = 𝑇 (𝑋𝑛), 𝑛 ≥ 0, for any 𝑋0 given in Ω.

So, we look for conditions on 𝑅 so that the Successive Approximations Method is convergent for any starting matrix
𝑋0 in 𝐵(𝑋∗, 𝑅). Thus, we obtain a local convergence result.
Now, we provide a basic technical result whose proof is easily followed taking into account

𝑇 ′(𝑋)𝑌 = −(𝑋 − 𝐵)−1𝑌 (𝑋 − 𝐵)−1𝐶.
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Lemma 2.2 Let 𝑋∗ be a fixed matrix of 𝑇 in 𝐵(𝑋∗, 𝑅) and we suppose that there exists (𝑋∗ − 𝐵)−1 with ‖(𝑋∗ −
𝐵)−1‖ ≤ 𝛽. For each 𝑋 ∈ 𝐵(𝑋∗, 𝑅), with 𝑅 < 1/𝛽, are satisfied:

(i) there exists (𝑋∗+𝑡 (𝑋−𝑋∗)−𝐵)−1 for 𝑡 ∈ [0, 1], and ‖(𝑋∗+𝑡 (𝑋−𝑋∗)−𝐵)−1‖ ≤ 𝑓𝑅 (𝑡), where 𝑓𝑅 (𝑡) = 𝛽

1 − 𝑡𝛽𝑅 ,

(ii) ‖𝑇 ′(𝑋∗ + 𝑡 (𝑋 − 𝑋∗))‖ ≤ 𝑓𝑅 (𝑡)2‖𝐶‖,
(iii) ‖𝑇 ′(𝑋∗ + 𝑡 (𝑋 − 𝑋∗) − 𝑇 ′(𝑋∗)) (𝑋 − 𝑋∗)‖ ≤ ( 𝑓𝑅 (𝑡)2 + 𝑓𝑅 (0)2)‖𝑋 − 𝑋∗‖‖𝐶‖.
Now, to apply the modification of the Banach Fixed Point Theorem to operator 𝑇 , restricted to Ω = 𝐵(𝑋∗, 𝑅)

with 𝑅 > 0, 𝑇 must be a contraction map of Ω into itself. That happens if 𝑅 <
1
𝛽
− √𝑐, where we denote ‖𝐶‖ = 𝑐.

Notice that, in this case, this implies that 𝑅 <
1
𝛽
and we can prove the following local result.

Theorem 2.3 Let 𝑋∗ be a fixed point of 𝑇 and we suppose that there exists (𝑋∗ − 𝐵)−1 with ‖(𝑋∗ − 𝐵)−1‖ ≤ 𝛽. If
𝛽2𝑐 < 1, with 𝑐 = ‖𝐶‖, then, the Successive Approximations Method

𝑋0 given in R𝑚×𝑚, 𝑋𝑛+1 = 𝑇 (𝑋𝑛), 𝑛 ≥ 0, (2.1)

is convergent to 𝑋∗, from any starting matrix 𝑋0 ∈ 𝐵(𝑋∗, 𝑅), with 𝑅 ∈
(
0,
1
𝛽
− √𝑐

)
. Moreover, 𝑋∗ is the unique

fixed matrix of the operator 𝑇 in 𝐵(𝑋∗, 𝑅).
We observe that if 𝑋∗ is a fixed matrix of the operator 𝑇 , such that there exists (𝑋∗ − 𝐵)−1 with ‖(𝑋∗ − 𝐵)−1‖ ≤ 𝛽,it
follows

‖𝑋∗‖ = ‖𝑇 (𝑋∗)‖ ≤ ‖(𝑋∗ − 𝐵)−1‖‖𝐶‖ ≤ 𝛽𝑐.
Therefore, we have 𝑋∗ ∈ 𝐵(0, 𝛽𝑐), where we denote by 0 the null matrix in R𝑚×𝑚. So, the domain 𝐵(0, 𝑅), with
𝑅 ≥ 𝛽𝑐, can be a convenient domain where to ensure the convergence of the Successive Approximations Method.

Theorem 2.4 Let 𝑋∗ ∈ 𝐵(0, 𝑅) be a fixed matrix of 𝑇 and we suppose that there exists (𝑋∗ − 𝐵)−1 with ‖(𝑋∗ −
𝐵)−1‖ ≤ 𝛽. If 𝛽2𝑐 < 1

8
, and

𝑅 ∈




[
1 −

√︁
1 − 8𝛽2𝑐
4𝛽

,
1
2

(
1
𝛽
− √𝑐

))
if 𝛽2𝑐 ∈

(
0,
1
9

)
,

[
1 −

√︁
1 − 8𝛽2𝑐
4𝛽

,
1 +

√︁
1 − 8𝛽2𝑐
4𝛽

]
if 𝛽2𝑐 ∈

[
1
9
,
1
8

]
.

,

Then, from any startingmatrix 𝑋0 ∈ 𝐵(0, 𝑅), the Successive ApproximationsMethod is convergent to 𝑋∗. Moreover,
𝑋∗ is the unique fixed matrix of 𝑇 in 𝐵(0, 𝑅).
Notice that if there exists 𝐵−1, then for 𝑋 ∈ 𝐵(0, 𝑅), it follows

‖𝐼 − (−𝐵−1) (𝑋 − 𝐵)‖ ≤ ‖𝐵−1‖‖𝑋 ‖ ≤ 𝛼𝑅,

with ‖𝐵−1‖ ≤ 𝛼 and 𝑋 ∈ 𝐵(0, 𝑅). Therefore, if 𝑅 < 1/𝛼, then there exists (𝑋 − 𝐵)−1 and ‖(𝑋 − 𝐵)−1‖ ≤ 𝛼

1 − 𝛼𝑅
by the perturbation lemma in matrix analysis. From this, we obtain the following restricted global convergence
result.

Theorem 2.5 Suppose that there exists 𝐵−1, with ‖𝐵−1‖ ≤ 𝛼, and 𝛼2𝑐 ≤ 1/4. Then, from any starting matrix

𝑋0 ∈ 𝐵(0, 𝑅), with 𝑅 ∈
[
1 −
√
1 − 4𝛼2𝑐
2𝛼

,
1
𝛼
− √𝑐

)
, the Successive Approximations Method is convergent to the

fixed matrix 𝑋∗ of the operator 𝑇 . Moreover, 𝑋∗ is the unique fixed matrix of 𝑇 in 𝐵(0, 𝑅).
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Next, we illustrate the theoretical results obtained above with some examples. Firstly, we examine a simple
academic case, where the technique developed can be applied. We consider the particular (QME) with:

𝐵 =

(
2 0
0 −1

)
, 𝐶 =

(
2𝜖 (𝜖 − 1) 𝜖 (2 − 3𝜖)
−𝜖 (1 + 3𝜖) 𝜖 (2 + 5𝜖)

)
, (2.2)

where the parameter 𝜖 is not zero. We find that it has the solution

𝑋∗ =
(
𝜖 −𝜖
−𝜖 2𝜖

)
.

For the value 𝜖 = 0.04, we have 𝛽2𝑐 = 0.16299 < 1 and, then result of Theorem 2.3 follows immediately.
The Successive Approximations Method is convergent to 𝑋∗, from any starting matrix 𝑋0 ∈ 𝐵(𝑋∗, 𝑅), with
𝑅 ∈ (0, 0.564271). Moreover, 𝑋∗ is the unique fixed matrix of the operator 𝑇 in 𝐵(𝑋∗, 𝑅).
On the other hand, the results of Theorem 2.4 and 2.5 follows for smaller values of the parameter 𝜖 . For instance,

if 𝜖 = 0.025, then it follows that 𝛽2𝑐 = 0.105551 < 1/8. Thus, the local result given in Theorem 2.4 states that
from any starting matrix 𝑋0 ∈ 𝐵(0, 𝑅), with 𝑅 ∈ [0.140379, 0.313011], the Successive Approximations Method is
convergent to 𝑋∗ and is the unique fixed matrix of 𝑇 in 𝐵(0, 𝑅). While, in this case, if 𝛼2𝑐 = 0.113448 < 1/4, the
semilocal result given in Theorem 2.4 states from any startingmatrix 𝑋0 ∈ 𝐵(0, 𝑅),with 𝑅 ∈ [0.116697, 0.296583),
the Successive Approximations Method is convergent to the fixed matrix 𝑋∗ of the operator 𝑇 . Moreover, 𝑋∗ is the
unique fixed matrix of 𝑇 in 𝐵(0, 𝑅).
It is clear that, from Theorem 2.3 we separate the solution 𝑋∗ successfully from other possible solutions, despite

its poor location. However, the local result obtained in Theorem 2.4 shows a better separation of the solution. On
the other hand, the semilocal convergence result obtained in Theorem 2.5 is more applicable than the local result,
since it does not need to know 𝑋∗. And moreover, the semilocal result is the one that best locates the aforesaid
solution.
It is clear that, from Theorem 2.3 we separate the solution 𝑋∗ successfully from other possible solutions, despite

its poor location. However, the local result obtained in Theorem 2.4 shows a better separation of the solution. On
the other hand, the semilocal convergence result obtained in Theorem 2.5 is more applicable than the local result,
since it does not need to know 𝑋∗. And moreover, the semilocal result is the one that best locates the aforesaid
solution.
Next, we try to smooth the results obtained. For this, we consider the Picard method:

𝑋0 given in R𝑚×𝑚, 𝑋𝑛+1 = 𝑃(𝑋𝑛) = 𝑋𝑛 − 𝐹 (𝑋𝑛), 𝑛 ≥ 0, (2.3)

where 𝐹 (𝑋) = (𝐼 −𝑇) (𝑋), 𝐹 : R𝑚×𝑚 → R𝑚×𝑚, with 𝐹 (𝑋) = 𝑋 − (𝑋 − 𝐵)−1𝐶. Notice that, the iterations obtained
by the Picard method are the same as those obtained by the Successive Approximations Method. Both methods are
equivalent.
To obtain a global convergence result to the Picard method, we use auxiliary matrices. Moreover, we can

establish both semilocal and local convergence results for the Picard method.

Theorem 2.6 Let �̃� ∈ R𝑚×𝑚 such that there exists ( �̃� − 𝐵)−1 with ‖( �̃� − 𝐵)−1‖ ≤ 𝛽. We suppose that ‖𝐹 ( �̃�)‖ ≤
1 + 𝛽2𝑐 − 2𝛽√𝑐

𝛽
, with 𝑐 = ‖𝐶‖, and 𝛽2𝑐 < 1. Then, from any starting matrix 𝑋0 ∈ 𝐵( �̃�, 𝑅), the Picard method

(2.3) converges to a solution 𝑋∗ of equation (1.1). The solution 𝑋∗ and the iterates 𝑋𝑛 belong to 𝐵( �̃�, 𝑅), for
𝑛 > 0, where

𝑅 ∈
[
1 − 𝛽2𝑐 + 𝛽‖𝐹 ( �̃�)‖ −

√
Δ

2𝛽
,min

{
1
𝛽
− √𝑐, 1 − 𝛽

2𝑐 + 𝛽‖𝐹 ( �̃�)‖ +
√
Δ

2𝛽

})
, (2.4)

withΔ = (1−𝛽2𝑐+𝛽‖𝐹 ( �̃�)‖)2−4𝛽‖𝐹 ( �̃�)‖.Moreover, 𝑋∗ is the unique solution of equation (1.1) in 𝐵( �̃�, 1
𝛽
−√𝑐).

Corollary 2.7 Let 𝑋∗ be a solution of equation (1.1) such that exists (𝑋∗−𝐵)−1 with ‖(𝑋∗−𝐵)−1‖ ≤ 𝛽 and 𝛽2𝑐 < 1.
Then, the Picard method (2.3), from any starting at 𝑋0 ∈ 𝐵(𝑋∗, 𝑅) converges to 𝑋∗, where 𝑅 ∈

(
0,
1
𝛽
− √𝑐

)
.

Moreover, 𝑋∗ is unique in 𝐵
(
𝑋∗,
1
𝛽
− √𝑐

)
.

Next, to obtain a semilocal convergence result for the Picard method, we consider �̃� = 𝑋0 from Theorem 2.6.
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Corollary 2.8 Let 𝑋0 ∈ R𝑚×𝑚 be such that exists (𝑋0 − 𝐵)−1 with ‖(𝑋0 − 𝐵)−1‖ ≤ 𝛽0. Suppose that ‖𝐹 (𝑋0)‖ ≤
1 + 𝛽20𝑐 − 2𝛽0

√
𝑐

𝛽0
, with 𝑐 = ‖𝐶‖, and 𝛽20𝑐 < 1. Then, the Picard method (2.3) converges to a solution 𝑋∗ of

equation equation (1.1) . The solution 𝑋∗ and the iterates 𝑋𝑛 belong to 𝐵( �̃�, 𝑅), for 𝑛 > 0, where

𝑅 ∈
[
1 − 𝛽2𝑐 + 𝛽‖𝐹 (𝑋0)‖ −

√
Δ

2𝛽0
,min

{
1
𝛽0
− √𝑐, 1 − 𝛽

2
0𝑐 + 𝛽0‖𝐹 (𝑋0)‖ +

√
Δ

2𝛽0

})
, (2.5)

with Δ = (1 − 𝛽20𝑐 + 𝛽0‖𝐹 (𝑋0)‖)2 − 4𝛽0‖𝐹 (𝑋0)‖. Moreover, the solution 𝑋∗ is the unique solution of the equation

𝐹 (𝑋) = 0 in 𝐵
(
𝑋0,
1
𝛽0
− √𝑐

)
.

Next, we provide another semilocal convergence result for the Picard method.

Theorem 2.9 Let 𝑋0 ∈ R𝑚×𝑚 such that there exists (𝑋0 − 𝐵)−1 with ‖(𝑋0 − 𝐵)−1‖ ≤ 𝛽0 and ‖𝐹 (𝑋0)‖ ≤ 𝜂0. We
suppose that the scalar equation (

1 + 𝛽20𝑐(1 − 𝛽0𝑡)
1 − 𝛽20𝑐 − 2𝛽0𝑡 + 𝛽20𝑡2

)
𝜂0 = 𝑡 (2.6)

has at least one positive solution and we denote by 𝑅 the smallest positive root. If 𝑅 < 1
𝛽0
−√𝑐 and 𝛽20𝑐 < 1, then,

starting at 𝑋0, the Picard method (2.3) converges to 𝑋∗ a solution of equation (1.1). Moreover, 𝑋𝑛, 𝑋∗ ∈ 𝐵(𝑋0, 𝑅),
for all 𝑛 ≥ 0, and 𝑋∗ is unique in 𝐵

(
𝑋0,
1
𝛽0
− √𝑐

)
.

Next, we illustrate the theoretical results obtained for the Picard method, considering the simple numerical
example given in (2.2).
Taking the value 𝜖 = 0.025, and

�̃� =

(
𝜖 0
0 𝜖

)
,

then there exists ( �̃�−𝐵)−1 with ‖( �̃�−𝐵)−1‖ ≤ 1.09917 and conditions of Theorem 2.6, ‖𝐹 ( �̃�)‖ ≤ 1 + 𝛽
2𝑐 − 2𝛽√𝑐
𝛽

and 𝛽2𝑐 < 1, are satisfied. Thus, from any starting matrix 𝑋0 ∈ 𝐵( �̃�, 𝑅) with 𝑅 ∈ [0.0699064, 0.608512], the
Picard method (2.3) converges to a solution 𝑋∗ of equation (2.2). The solution 𝑋∗ and 𝑋𝑛 belong to 𝐵( �̃�, 𝑅), for
𝑛 > 0. Moreover, 𝑋∗ is the unique solution of (QME) in 𝐵( �̃�, 0.608512).
In general, both Theorem 2.6 and Theorem 2.9 provide a more precise location of the solution 𝑋∗ than that

obtained by the Successive Approximations Method for which we always obtain balls centered in the null matrix.
However, in these results, locating a starting matrix 𝑋0 satisfying the indicated conditions, we locate the solution
in a ball centered in the aforesaid 𝑋0.
Now, we choose the starting matrix

𝑋0 =

(
0 0
0 0

)
,

to compare the results obtained by means of the Successive Approximations and the Picard methods, in Corollary
2.8 and in Theorem 2.9,

So, the hypotheses of Corollary 2.8 with ‖(𝑋0−𝐵)−1‖ ≤ 1.11803, ‖𝐹 (𝑋0)‖ = 0.0895976 ≤
1 + 𝛽20𝑐 − 2𝛽0

√
𝑐

𝛽0
=

0.393375, and 𝛽20𝑐 = 0.113448 < 1 are satisfied. Thus, the Picard method converges to a solution 𝑋
∗ of equation

(2.2). The solution 𝑋∗ and the iterates 𝑋𝑛 belong to 𝐵(𝑋0, 𝑅), for 𝑛 > 0, with 𝑅 ∈ [0.104128, 0.593166) and 𝑋∗
is unique in 𝐵( �̃�, 0.593166).
On the other hand, equation (2.6) has at least one positive solution and the smallest positive root is 𝑅 = 0.103032,

such that, 𝑅 <
1
𝛽0
−√𝑐 = 0.593166. Thus, starting at 𝑋0, the Picard method converges to 𝑋∗ a solution of equation

(2.2). Moreover, 𝑋𝑛, 𝑋∗ ∈ 𝐵(𝑋0, 0.10303), for all 𝑛 ≥ 0.
As we can observe, we have considered the null matrix as the starting point, the same matrix when applying the

Successive Approximations Method. Notice that, the location and the separation of solutions given by the existence
and uniqueness ball, respectively, is improved when we apply the Picard method. Namely, both Corollary 2.8 and
Theorem 2.9 improve the results obtained to the Successive Approximations Method in Theorems 2.4 and 2.5.
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3. Predictor-corrector scheme
Our next goal is the approximation of a solution of equation (1.1). Although both the Successive Approximations
and the Picard methods have a linear convergence speed, their applications are useful. This is due to the fact that
they have a low operational cost and good accessibility domain associated with them. Now, we propose to build a
hybrid iterative scheme through a predictor-corrector method. That is, a hybrid method consisting of two stages.
The idea is, firstly to apply a method which has a good accessibility and low operational cost and later, in a second
stage, to apply a method that accelerates the convergence as follows:




{
𝑋0 ∈ R𝑚×𝑚,
𝑋𝑛+1 = Φ(𝑋𝑛), 𝑛 = 1, 2, . . . , 𝑁0,{
𝑌0 = 𝑋𝑁0+1,

𝑌𝑛+1 = Ψ(𝑌𝑛), 𝑛 > 0,

(3.1)

from any two one-point iterative schemes:{
𝑋0 ∈ R𝑚×𝑚,
𝑋𝑛+1 = Φ(𝑋𝑛), 𝑛 > 0,

and

{
𝑌0 ∈ R𝑚×𝑚,
𝑌𝑛+1 = Ψ(𝑌𝑛), 𝑛 > 0.

The first iterative scheme to be applied Φ, is called the predictor iterative scheme and the second Ψ, the corrector
iterative scheme. It is known that high-order iterative schemes have a reduced accessibility domain and, therefore,
locating starting points for them is a difficult problem to solve. Therefore, we propose that the hybrid scheme (3.1)
be convergent under the conditions that the iterative predictor scheme is. In our case we consider the hybrid iterative
scheme formed by the Picard method, as a predictor, and the Newton method as a corrector iterative scheme that
accelerates the convergence speed of the Picard method. Note that Newton’s method is also an iterative scheme
with low operational cost and quadratic convergence. Thus, we propose the following iterative scheme:




{
𝑋0 ∈ R𝑚×𝑚,
𝑋𝑛+1 = 𝑋𝑛 − 𝐹 (𝑋𝑛), 𝑛 = 0, 1, 2, . . . , 𝑁0 − 1,{
𝑌0 = 𝑋𝑁0 ,

𝑌𝑛+1 = 𝑌𝑛 − [𝐹 ′(𝑌𝑛)]−1𝐹 (𝑌𝑛), 𝑛 > 0,

(3.2)

to approximate a solution of equation (1.1), where 𝐹 : R𝑚×𝑚 → R𝑚×𝑚, with 𝐹 (𝑋) = 𝑋 − (𝑋 − 𝐵)−1𝐶. From now
on, we use the notation {𝑍𝑛} to refer to the hybrid method (3.2), such that

𝑍𝑛 =

{
𝑋𝑛 for 𝑛 = 0, 1, ..., 𝑁0 − 1,
𝑌𝑛 for 𝑛 > 𝑁0,

Secondly, our main is to ensure the convergence of the iterative scheme (3.2) under the same convergence
conditions given for the Picard method in Theorem 2.9, locating the value of 𝑁0. This maintains the accessibility
of the Picard method for the hybrid iterative scheme (3.2).

Theorem 3.1 Under conditions of Theorem 2.9. We suppose that the scalar equation Therefore, if we suppose that
the scalar equation

2((1 − 𝐾)2 − 𝑀 (𝑡)𝜂0)
2(1 − 𝐾)2 − 3𝑀 (𝑡)𝜂0

= 𝑡, (3.3)

has at least one positive solution and we denote by 𝑅 the smallest positive root, starting at 𝑋0 ∈ R𝑚×𝑚 and for

𝑁0 > 1 +

max



ln

(
(1−𝐾 )2
2𝜂0𝑀 (𝑅)

)
ln𝐾

,
ln

( (1−𝐾 ) (1/𝛽0−𝑅)
𝑅𝜂0

)
ln𝐾




, (3.4)

where [𝑥] represents the integer part of the real number 𝑥, the hybrid iterative scheme (3.2) converges to 𝑍∗, a
solution of equation (1.1). Moreover, 𝑍𝑛, 𝑍∗ ∈ 𝐵(𝑋0, 𝑅 + 𝛿𝑅), for all 𝑛 ≥ 0.
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Following the numerical example given in (2.2) we illustrate the result obtained in Theorem 3.1 for the hybrid
iterative scheme (3.2) . Taking 𝜖 = 0.04 and

𝑋0 =

(
0 0
0 0

)
,

we are able to apply Theorem2.9. It’s easy to see that 𝑅 = 0.412888 is the smallest positive root of scalar equation
(3.3). Moreover, 𝑁0 > 1 and then it is enough to iterate once with the Picard method to ensure a fast convergence
with the Newton method to a solution of (QME) given in (2.2). Moreover, 𝑍𝑛, 𝑍∗ ∈ 𝐵(𝑋0, 0.160193), for all 𝑛 ≥ 0.

4. Conclusions
From a fixed point type transformation of (QME), we obtain a stable iterative scheme of successive approximations.
Using this scheme and the Picard method we carried out a qualitative study of (QME). We obtain domains of
existence and uniqueness of solutions that allow us to locate and separate them. Moreover, we construct a hybrid
method taking into account, the low operational cost and the good accessibility domain that these linear methods
have associated. The numerical examples confirm that the hybrid iterative scheme improves the operational cost
that involves the application of Newton’s method as a corrector method, when approximating a solution of (QME).
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Abstract
Solving equations of the form 𝐻 (𝑥) = 0 is usually done by applying iterative methods. The Steffensen-type

methods, defined by means divided differences and derivative free, are usually considered to solve these problems
when𝐻 is a non-differentiable operator due its accuracy and efficiency. But, in general, the accessibility of iterative
methods that use divided differences in their algorithms is reduced. Themain interest of this paper is to improve the
accessibility, domain of starting points, for Setffensen-type methods. So, by using a predictor-corrector iterative
process we can improve this accessibility. For this, we use a predictor iterative process with a good accessibility
and after we consider a Steffensen-type iterative method for a good accuracy, since this type of iterative process has
quadratic convergence. Thus we will obtain a predictor-corrector iterative process with good accessibility, given
by the predictor iterative process, and an accuracy like the Steffensen-type methods. Moreover, we analyze the
semilocal convergence of the predictor-corrector iterative process proposed in two cases: when 𝐻 is differentiable
and 𝐻 is non-differentiable. So, we present a good alternative for the non-applicability of Newton’s method to
non-differentiable operators. The theoretical results are illustrated with numerical experiments. CEDYA/CMA
2020.

1. Introduction
One of the most studied problems in numerical mathematics is the solution of nonlinear systems of equations

𝐻 (𝑥) = 0, (1.1)

where 𝐻 : Ω ⊂ R𝑚 −→ R𝑚 is a nonlinear operator, 𝐻 ≡ (𝐻1, 𝐻2, . . . , 𝐻𝑚) with 𝐻𝑖 : Ω ⊆ R𝑚 → R, 1 ≤ 𝑖 ≤ 𝑚,
and Ω is a non-empty open convex domain. Iterative methods are a powerful tool for solving these equations.
In this paper, we consider iterative processes free of derivatives. But these methods have a serious shortcoming:

they have a region of reduced accessibility. In [4], the accessibility of an iterative process is increased by means of
an analytical procedure, that is, by modifying the convergence conditions. However, in our work, we will increase
accessibility by building an iterative predictor-corrector process. This iterative process has a first prediction phase
and a second accurate approximation phase.
Kung and Traub presented in [10] a class of iterative processes without derivatives. These iterative processes

considered by Kung and Traub contain Steffensen-type methods as a special case. From the biparametric family of
iterative processes given in [2],




𝑥0 ∈ Ω, 𝛼, 𝛽 ≥ 0
𝑦𝑛 = 𝑥𝑛 − 𝛼𝐻 (𝑥𝑛),
𝑧𝑛 = 𝑥𝑛 + 𝛽𝐻 (𝑥𝑛), ,
𝑥𝑛+1 = 𝑥𝑛 − [𝑦𝑛, 𝑧𝑛;𝐻]−1𝐻 (𝑥𝑛), 𝑛 > 0.

(1.2)

The three best-known Steffensen-type methods appear. So, for 𝛼 = 0 and 𝛽 = 1 we have the original Steffensen
method, the Backward-Steffensen method for 𝛼 = 1 and 𝛽 = 0 and the Central-Steffensen method for 𝛼 = 1 and
𝛽 = 1.
Notice that, if we consider the Newton’s method,

𝑥𝑛+1 = 𝑥𝑛 − [𝐻 ′(𝑥𝑛)]−1𝐻 (𝑥𝑛), 𝑛 ≥ 0; 𝑥0 ∈ Ω is given, (1.3)

which is one of the most used iterative methods to approximate a solution 𝑥∗ of 𝐻 (𝑥) = 0, the Steffensen-type
methods are obtained as a special case of this method, where the evaluation of 𝐻 ′(𝑥) in each step of Newton’s
method is approximated by the divided difference of first order [𝑥 − 𝛼𝐻 (𝑥), 𝑥 + 𝛽𝐻 (𝑥);𝐻]. The Stetffensen-type
methods have been widely studied ( [1, 3, 6]).
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XVI CONGRESO DE MATEMÁTICA APLICADA
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(pp. 242–246)
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Symmetric divided differences generally perform better. Moreover, maintain the quadratic convergence of
Newton’s method, by approximating the derivative through symmetric divided differences with respect to the 𝑥𝑛,
and the Center-Steffensen method also has the same computational efficiency as Newton’s method. But, in order to
achieve the second order in practice, we need an iteration close enough to the solution to have a good approximation
of the first derivative of 𝐻 used in Newton’s method. In other case, some extra iterations in comparison with
Newton’s method are required. Basically, when the norm of 𝐻 (𝑥) is big, the approximation of the divided
difference to the first derivative of 𝐻 is bad. So, in general, the set of starting points of the Steffensen-type methods
is poor. This justify that Steffensen-type methods are less used than Newton’s method to approximate solutions of
equations for differentiable operators.
Thus, two are our main objectives in this work. On the one hand, in the case of differentiable operators, to which

Newton’s method can also be applied, to construct a predictor-corrector iterative process that has accessibility
and efficiency like Newton’s method, but using symmetric divided differences. And, secondly, that this predictor-
corrector iterative process considered can have a behavior like Newton’s method has in the differentiable case, but
considering the case of non-differentiable operators where Newton’s method cannot be applied.
Following this idea, in this paper we consider the derivative-free point-to-point iterative process given by{

𝑥0 given in Ω,
𝑥𝑛+1 = 𝑥𝑛 − [𝑥𝑛 − Tol, 𝑥𝑛 + Tol;𝐻]−1𝐻 (𝑥𝑛), 𝑛 ≥ 0, (1.4)

where Tol = (𝑡𝑜𝑙, 𝑡𝑜𝑙, . . . , 𝑡𝑜𝑙) ∈ R𝑚 for a real number 𝑡𝑜𝑙 > 0. Thus, we take a symmetric divided difference to
approximate the derivative in Newton’s method. Furthermore, by varying the parameter 𝑡𝑜𝑙, we can approach the
value 𝐹 ′(𝑥𝑛). Notice that, in the differentiable case, for 𝑡𝑜𝑙 = 0 we obtain the Newton’s method.
However, although reducing the value of 𝑡𝑜𝑙 we can reach a speed of convergence similar to Newton’s method, its

order of convergence is linear. That is why we will consider this method as a predictor, due to its good accessibility,
and we will consider the Center-Steffensen method as a corrector, whose order of convergence is quadratic.
So, we consider the predictor-corrector method given by




{
Given an initial guess u0 ∈ Ω,
𝑢 𝑗+1 = 𝑢 𝑗 − [𝑢 𝑗 − Tol, 𝑢 𝑗 + Tol;𝐻]−1𝐻 (𝑢 𝑗 ), 𝑗 = 0, ..., 𝑁0 − 1,




𝑥0 = 𝑢𝑁0 ,

𝑦𝑛 = 𝑥𝑛 − 𝐻 (𝑥𝑛), 𝑛 > 0,
𝑧𝑛 = 𝑥𝑛 + 𝐻 (𝑥𝑛), 𝑛 > 0,
𝑥𝑛+1 = 𝑥𝑛 − [𝑦𝑛, 𝑧𝑛;𝐻]−1𝐻 (𝑥𝑛), 𝑛 > 0,

(1.5)

where Tol = (𝑡𝑜𝑙, 𝑡𝑜𝑙, . . . , 𝑡𝑜𝑙) ∈ R𝑚 for a real number 𝑡𝑜𝑙 > 0. Thus, this predictor-corrector method will be a
Steffensen-type method with good accessibility and quadratic convergence from an iteration to be determined.
The paper is organized as follows. First, we introduce the motivation of the paper. Next, we establish a semilocal

convergence analysis of the new method when operator 𝐻 is both differentiable and non-differentiable cases.

2. Semilocal convergence
The semilocal study of the convergence is based on demanding conditions to the initial approximation 𝑢0, from
certain conditions on the operator 𝐻 , and provide conditions required to the initial approximation that guarantee the
convergence of sequence (1.5) to the solution 𝑥∗. To analyze the semilocal convergence of iterative processes that
do not use derivatives in their algorithms, the conditions usually are required for the operator divided difference.
Although, in the case that the operator 𝐻 is Fréchet differentiable, the divided difference operator can be defined
from the Fréchet derivative of the operator 𝐻.

2.1. Differentiable operators
Now, we establish the semilocal convergence of iterative process given in (1.5) for differentiable operators. So, we
consider 𝐻 : Ω ⊂ R𝑚 −→ R𝑚 a Fréchet differentiable operator and there exists

[𝑣, 𝑤;𝐻] =
∫ 1

0
𝐻 ′(𝑡𝑣 + (1 − 𝑡)𝑤) 𝑑𝑡, (2.1)

for each pair of distinct points 𝑣, 𝑤 ∈ Ω. Notice that, as 𝐻 is Fréchet differentiable [𝑥, 𝑥;𝐻] = 𝐻 ′(𝑥).
Now, we suppose the following initial conditions:
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(D1) Let 𝑢0 ∈ Ω such that exists Γ0 = [𝐻 ′(𝑢0)]−1 with ‖Γ0‖ ≤ 𝛽 and ‖𝐻 (𝑢0)‖ ≤ 𝛿0.
(D2) ‖𝐻 ′(𝑥) − 𝐻 ′(𝑦)‖ ≤ 𝐾 ‖𝑥 − 𝑦‖, 𝑥, 𝑦 ∈ Ω, 𝐾 ∈ R+.
In first place, we obtain some technical results.

Lemma 2.1 The following items are verified.

(𝑖) Let 𝑅 > 0 with 𝐵(𝑢0, 𝑅 + ‖Tol‖) ⊆ Ω. If 𝛽𝐾 (𝑅 + ‖Tol‖) < 1 then, for each pair of distinct points
𝑦, 𝑧 ∈ 𝐵(𝑢0, 𝑅 + ‖Tol‖), there exists [𝑦, 𝑧;𝐻]−1 such that

‖ [𝑦, 𝑧;𝐻]−1‖ ≤ 𝛽

1 − 𝛽𝐾 (𝑅 + ‖Tol‖) . (2.2)

(𝑖𝑖) If 𝑢 𝑗 , 𝑢 𝑗−1 ∈ Ω, for 𝑗 = 0, 1, . . . , 𝑁0, then

‖𝐻 (𝑢 𝑗 )‖ ≤ 𝐾2 (‖Tol‖ + ‖𝑢 𝑗 − 𝑢 𝑗−1‖)‖𝑢 𝑗 − 𝑢 𝑗−1‖. (2.3)

(𝑖𝑖𝑖) If 𝑥 𝑗 , 𝑥 𝑗−1 ∈ Ω, , for 𝑗 > 1, then

‖𝐻 (𝑥 𝑗 )‖ ≤ 𝐾2 (‖𝐻 (𝑥 𝑗−1‖ + ‖𝑥 𝑗 − 𝑥 𝑗−1‖)‖𝑥 𝑗 − 𝑥 𝑗−1‖. (2.4)

To simplify the notation, from now on, we denote

𝐴 𝑗 = [𝑢 𝑗 − Tol, 𝑢 𝑗 + Tol;𝐻], 𝐵 𝑗 = [𝑥 𝑗 − 𝐻 (𝑥 𝑗 ), 𝑥 𝑗 + 𝐻 (𝑥 𝑗 );𝐻],

and the parameters 𝑎0 = 𝛽2𝐾𝛿0 and 𝑏0 = 𝛽𝐾Tol. Other parameters that we are going to use are the following:

𝑀 =
𝐿

2
(𝑏0 + 𝐿𝑎0), where 𝐿 =

1
1 − 𝑏0 − 𝛽𝐾𝑅 .

Moreover, notice that the polynomial equation 𝑝(𝑡) = 0, with

𝑝(𝑡) = 2𝑎0 (1 − 𝑏0) − (2 + 𝑎0 − 5𝑏0 + 3𝑏20)𝛽𝐾𝑡 + (4 − 5𝑏0)𝛽2𝐾2𝑡2 − 2𝛽3𝐾3𝑡3,

has at least a positive real root since that 𝑝(0) > 0 and 𝑝(𝑡) → −∞ as 𝑡 → ∞. Then, we denote by 𝑅 the smallest
positive real root of the polynomial equation 𝑝(𝑡) = 0.
Finally, we denote by [𝑥] the integer part of the real number 𝑥.

Theorem 2.2 Let 𝐻 : Ω ⊂ R𝑚 −→ R𝑚 a Fréchet differentiable operator defined on a nonempty open convex
domain Ω. Suppose that conditions (𝐷1) and (𝐷2) are satisfied and there exists 𝑡𝑜𝑙 > 0 such that 𝑀 < 1,
𝑅 <

1 − 𝑏0
𝛽𝐾

and 𝐵(𝑢0, 𝑅 + ‖Tol‖) ⊆ Ω. If we consider

𝑁0 >



1 +

[
𝑙𝑜𝑔(‖Tol‖/𝛿0)

𝑙𝑜𝑔(𝑀)

]
if ‖Tol‖ < 𝛿0,

1 if ‖Tol‖ > 𝛿0,
(2.5)

then the iterative process predictor-corrector (1.5), starting at 𝑢0, converges to 𝑥∗ a solution of 𝐻 (𝑥) = 0.Moreover,
𝑢 𝑗 , 𝑥𝑛, 𝑥

∗ ∈ 𝐵(𝑢0, 𝑅) for 𝑗 = 1, . . . , 𝑁0 and 𝑛 > 0.

Next, we get an uniqueness result for the iterative process predictor-corrector (1.5).

Theorem 2.3 Under conditions of the previous Theorem, the solution 𝑥∗ of the equation 𝐻 (𝑥) = 0 is unique in
𝐵(𝑢0, 𝑅).
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2.2. Non-differentiable operators
To obtain a result of semilocal convergence for iterative process (1.5) when 𝐻 is a non-differentiable operator, we
must suppose that for each pair of distinct points 𝑥, 𝑦 ∈ Ω, there exists a first-order divided difference of 𝐻 at
these points. As we consider Ω an open convex domain of R𝑚, this condition is satisfied ( [5], [7]). Moreover,
it is also necessary to impose a condition for the first-order divided difference of the operator 𝐻. As it appears
in [11] and [9], a Lipschitz-continuous condition or a Hölder-continuous can be considered, but in the above cases,
it is known [8], that the Fréchet derivative of 𝐻 exists in Ω. Therefore, these conditions cannot be verified if the
operator 𝐻 is non-differentiable. Then, to establish the semilocal convergence of iterative process given in (1.5)
for non-differentiable operator 𝐻, we suppose the following conditions:

(ND1) Let 𝑢0 ∈ Ω such that 𝐴−10 exists with | |𝐴−10 | | ≤ 𝛽0 and | |𝐻 (𝑢0) | | ≤ 𝛿0.
(ND2) | | [𝑥, 𝑦;𝐻] − [𝑢, 𝑣;𝐻] | | ≤ 𝑃 + 𝐾 ( | |𝑥 − 𝑢 | | + | |𝑦 − 𝑣 | |) , 𝑃, 𝐾 ≥ 0, with 𝑥, 𝑦, 𝑢, 𝑣 ∈ Ω, 𝑥 ≠ 𝑦, 𝑢 ≠ 𝑣.

To simplify the notation, from now on, we denote

𝑀 = 𝛽0 (𝑃 + 𝐾 (𝛽0𝛿0 + 2‖Tol‖)) and 𝑆 =
𝑀

1 − 𝛽0 (𝑃 + 2𝐾 (𝑅 + ‖Tol‖))
In this conditions, we start our study obtaining a technical result, the proof of which is evident from algorithm

given in (1.5).

Lemma 2.4 The following items can be easily verified.

(𝑖) If 𝑢 𝑗 , 𝑢 𝑗−1 ∈ Ω, for 𝑗 = 0, 1, . . . , 𝑁0, then

𝐻 (𝑢 𝑗 ) =
([𝑢 𝑗 , 𝑢 𝑗−1;𝐻] − 𝐴 𝑗−1) (𝑢 𝑗 − 𝑢 𝑗−1) . (2.6)

(𝑖𝑖) If 𝑥 𝑗 , 𝑥 𝑗−1 ∈ Ω, for 𝑗 > 1, then

𝐻 (𝑥 𝑗 ) =
([𝑥 𝑗 , 𝑥 𝑗−1;𝐻] − 𝐵 𝑗−1) (𝑥 𝑗 − 𝑥 𝑗−1). (2.7)

Theorem 2.5 Under the conditions (ND1)-(ND2), if the real equation

𝑡 =
𝛽0𝛿0 (1 − 𝛽0 (𝑃 + 2𝐾 (𝑡 − ‖Tol‖)))
1 − 𝛽0 (𝑃 + 2𝐾 (𝑡 + ‖Tol‖)) − 𝑀

, (2.8)

has at least one positive real root, the smallest positive root is denoted by 𝑅, and there exists 𝑡𝑜𝑙 > 0 such that satisfies

𝑀 + 𝛽0 (𝑃 + 2𝐾 (𝑅 + ‖Tol‖)) < 1, (2.9)

and 𝐵(𝑢0, 𝑅 + ‖Tol‖) ⊂ Ω. If we consider

𝑁0 >



2 +

[
𝑙𝑜𝑔(‖Tol‖/𝑀𝛿0)

𝑙𝑜𝑔(𝑀)

]
if ‖Tol‖ < 𝛽0𝛿0 (𝑃 + 𝛽0𝛿0𝐾)

1 − 2𝛽0𝛿0 ,

1 if ‖Tol‖ > 𝛽0𝛿0 (𝑃 + 𝛽0𝛿0𝐾)
1 − 2𝛽0𝛿0 ,

(2.10)

then the iterative process predictor-corrector (1.5), starting at 𝑢0, converges to 𝑥∗ a solution of 𝐻 (𝑥) = 0.Moreover,
𝑢 𝑗 , 𝑥𝑛, 𝑥

∗ ∈ 𝐵(𝑢0, 𝑅) for 𝑗 = 1, . . . , 𝑁0 and 𝑛 > 0.
Moreover, 𝑥∗ is unique in 𝐵(𝑢0, 𝑅) ⊂ Ω.

Theorem 2.6 Under conditions of the previous Theorem, the solution 𝑥∗ of the equation 𝐻 (𝑥) = 0 is unique in
𝐵(𝑢0, 𝑅).
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Recent developments in modeling free-surface flows with
vertically-resolved velocity profiles using moments
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Abstract

Shallow water moment models are non-linear PDEs in balance law form for free-surface flows that allow for
vertical variations in the horizontal velocity. The models are extensions of the standard shallow water equations.
However, the models in their original form lack global hyperbolicity. The loss of hyperbolicity already occurs
for small vertical variations of the velocity and this leads to instabilities in numerical test cases. We review two
recently developed hyperbolic shallow water moment models, which are based on two different linearizations
during the derivation. Recently, the models have been extended to consider sediment transport and bottom
topographies, for which new well-balanced numerical schemes based on analytical derivation of steady states can
be constructed. We summarize the recent developments focusing on analytical properties of the models and their
derivation.

1. Introduction
The well-known Shallow Water Equations (SWE), sometimes also called Saint-Venant equations, are a simplified
model for free-surface flows and are commonly used to model different physical phenomena. However, the main
deficiency of these models is that they assume a constant velocity profile of the horizontal velocity. In fact, the
model only takes into account the mean velocity averaged along the vertical axis. This limits the applicability of
the SWE model for complex flows and situations in which bottom friction plays an important role such as sediment
transport.
One option to include vertical variations of the velocity is the use of multiple layers with piecewise constant

velocities [2] leading to a system of equations that is coupled via the interfaces. However, the analysis of the model
is difficult and no analytical eigenvalues can be obtained. Additionally, many layers are necessary to accurately
describe varying profiles.
A polynomial velocity ansatz was used in [9] and the system of equations for the coefficients can be obtained

by projection onto orthogonal test functions. This can be seen as an extension of the standard SWE model using an
extended set of variables, so-called moments. These new Shallow Water Moment Equations (SWME) have been
applied to several test cases which showed the accuracy and flexibility of the approach.
The main drawback of the SWME model in its original version is that the model looses hyperbolicity even

for small variations of the velocity profile, as shown in [7]. This can lead to oscillations and a breakdown of the
solution during simulations, which was exemplified using a dam-break test case.
Hyperbolicity was restored using two different linearization of the model in [7] and [6]. We will summarize the

derivations of both models in this paper and outline the different analytical properties.
While hyperbolicity is a main ingredient for a stable numerical simulation, different physical phenomena need

to be modeled by means of special friction terms or additional equations. We show a recently developed example
of sediment transport [3].

2. Shallow Water Moment Models
The standard shallow water equations (SWE) for a Newtonian fluid in one horizontal direction 𝑥 for water height ℎ
and mean velocity 𝑢𝑚 using a flat bottom topography are given by

𝜕𝑡

(
ℎ
ℎ𝑢𝑚

)
+ 𝜕𝑥

(
ℎ𝑢𝑚

ℎ𝑢2𝑚 + 12𝑔ℎ2
)
= − 𝜈

𝜆

(
0
𝑢𝑚

)
, (2.1)

where 𝜆 and 𝜈 denote the slip length and the kinematic viscosity, respectively.
While the SWE model is efficient to compute approximate solutions of simple flows in very shallow conditions,

the model is inaccurate in case of horizontal variations of the vertical velocity. This is due to the fact that only
the average velocity 𝑢𝑚 is a variable of the model. In [9], the Shallow Water Moment Equations (SWME) were
developed to overcome this problem. The derivation is based on two main ideas:
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• The first idea is to scale vertical position variable 𝜁 (𝑡, 𝑥) as

𝜁 (𝑡, 𝑥) := 𝑧 − ℎ𝑏 (𝑡, 𝑥)
ℎ𝑠 (𝑡, 𝑥) − ℎ𝑏 (𝑡, 𝑥) =

𝑧 − ℎ𝑏 (𝑡, 𝑥)
ℎ(𝑡, 𝑥) ,

with ℎ(𝑡, 𝑥) = ℎ𝑠 (𝑡, 𝑥) − ℎ𝑏 (𝑡, 𝑥) the water height from the bottom ℎ𝑏 to the surface ℎ𝑠 . This transforms the
vertical 𝑧-direction from a physical space to a projected space 𝜁 : [0, 𝑇] × R→ [0, 1], see [9].

• The second idea assumes a polynomial expansion of the velocity variable, in the transformed vertical direction.
We thus expand 𝑢 : [0, 𝑇] × R × [0, 1] → R as

𝑢(𝑡, 𝑥, 𝜁) = 𝑢𝑚 (𝑡, 𝑥) +
𝑁∑︁
𝑗=1
𝛼 𝑗 (𝑡, 𝑥)𝜙 𝑗 (𝜁), (2.2)

where 𝑢𝑚 : [0, 𝑇] × R → R is the mean velocity and 𝜙 𝑗 : [0, 1] → R are the scaled Legendre polynomials
of degree 𝑗 defined by

𝜙 𝑗 (𝜁) = 1
𝑗!
𝑑 𝑗

𝑑𝜁 𝑗
(𝜁 − 𝜁2) 𝑗 . (2.3)

Note that the basis polynomials fulfill 𝜙 𝑗 (0) = 1 and they are orthogonal basis functions as∫ 1

0
𝜙𝑚𝜙𝑛𝑑𝜁 =

1
2𝑛 + 1𝛿𝑚𝑛, (2.4)

with Kronecker delta 𝛿𝑚𝑛 [9].
With 𝛼 𝑗 : [0, 𝑇] × R → R for 𝑗 ∈ [1, 2, . . . , 𝑁] we denote the corresponding basis coefficients at time 𝑡

and position 𝑥. These coefficients are also called moments. Different values of the coefficients describe different
horizontal velocity profiles, which allows for more complex flows and extends the standard SWE (2.1), where the
horizontal velocity is constant. In the expansion, 𝑁 ∈ N is the order of the velocity expansion and at the same
time the maximum degree of the Legendre polynomials. A larger 𝑁 typically enables the representation of more
complex flows, whereas 𝑁 = 0 corresponds to the constant velocity profile of the standard SWE (2.1).
To derive evolution equations for the basis coefficients, the expansion is inserted into theNavier-Stokes equations,

which have been properly transformed to the new 𝜁 (𝑡, 𝑥) variable, see [9] for details. Then, the equations are
projected onto the Legendre polynomials of degree 𝑖 = 1, . . . , 𝑁 , by multiplication with 𝜙 𝑗 and integration over
𝜁 , which gives one additional equation for each coefficient in the expansion. The arising integrals of the basis
polynomials 𝐴𝑖 𝑗𝑘 , 𝐵𝑖 𝑗𝑘 , 𝐶𝑖 𝑗 are denoted as follows

𝐴𝑖 𝑗𝑘 = (2𝑖 + 1)
∫ 1

0
𝜙𝑖𝜙 𝑗𝜙𝑘 𝑑𝜁, (2.5)

𝐵𝑖 𝑗𝑘 = (2𝑖 + 1)
∫ 1

0
𝜕𝜁 𝜙𝑖

(∫ 𝜁

0
𝜙 𝑗 𝑑𝜁

)
𝜙𝑘 𝑑𝜁, (2.6)

𝐶𝑖 𝑗 =
∫ 1

0
𝜕𝜁 𝜙𝑖 𝜕𝜁 𝜙 𝑗 𝑑𝜁 . (2.7)

More details can be found in [6, 9].
The model with variables𝑈 = (ℎ, ℎ𝑢, ℎ𝛼1, . . . , ℎ𝛼𝑁 )𝑇 ∈ R𝑁+2 can be written in compact form as

𝜕𝑡𝑈 + 𝜕𝐹
𝜕𝑈

𝜕𝑥𝑈 = 𝑄𝜕𝑥𝑈 + 𝑆, (2.8)

where the conservative flux Jacobian 𝜕𝐹𝜕𝑈 is given by

𝜕𝐹

𝜕𝑈
=

©«

0 1 0 . . . 0

𝑔ℎ − 𝑢2 −
𝑁∑︁
𝑖=1

𝛼𝑖
2𝑖 + 1 2𝑢 2𝛼1

2·1+1 . . . 2𝛼𝑁
2𝑁+1

−2𝑢𝛼1 −
𝑁∑︁
𝑗 ,𝑘=1

𝐴1 𝑗𝑘𝛼 𝑗𝛼𝑘 2𝛼1 2𝑢𝛿11 + 2
𝑁∑︁
𝑘=1

𝐴11𝑘𝛼𝑘 . . . 2𝑢𝛿1𝑁 + 2
𝑁∑︁
𝑘=1

𝐴1𝑁 𝑘𝛼𝑘

...
...

...
. . .

...

−2𝑢𝛼𝑁 −
𝑁∑︁
𝑗 ,𝑘=1

𝐴𝑁 𝑗𝑘𝛼 𝑗𝛼𝑘 2𝛼𝑁 2𝑢𝛿𝑁 1 + 2
𝑁∑︁
𝑘=1

𝐴𝑁 1𝑘𝛼𝑘 . . . 2𝑢𝛿𝑁𝑁 + 2
𝑁∑︁
𝑘=1

𝐴𝑁𝑁 𝑘𝛼𝑘

ª®®®®®®®®®®®®®®®®¬

,
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and the non-conservative matrix 𝑄 reads

𝑄 =

©«

0 0 0 . . . 0
0 0 0 . . . 0

0 0 𝑢𝛿11 +
𝑁∑︁
𝑘=1

𝐵11𝑘𝛼𝑘 . . . 𝑢𝛿1𝑁 +
𝑁∑︁
𝑘=1

𝐵1𝑁 𝑘𝛼𝑘

...
...

...
. . .

...

0 0 𝑢𝛿𝑁 1 +
𝑁∑︁
𝑘=1

𝐵𝑁 1𝑘𝛼𝑘 . . . 𝑢𝛿𝑁𝑁 +
𝑁∑︁
𝑘=1

𝐵𝑁𝑁 𝑘𝛼𝑘

ª®®®®®®®®®®®®¬

.

The friction term on the right-hand side 𝑆 = (0, 𝑆0, 𝑆1, . . . , 𝑆𝑁 )𝑇 ∈ R𝑁+2 is defined in [9] as 𝑆0 = 0 and

𝑆𝑖 = − (2𝑖 + 1) 𝜈
𝜆

©«
𝑢 +

𝑁∑︁
𝑗=1

(
1 + 𝜆

ℎ
𝐶𝑖 𝑗

)
𝛼 𝑗

ª®¬
, 𝑖 = 0, . . . , 𝑁. (2.9)

The model (2.8) can also be written in the form of

𝜕𝑡𝑈 + 𝐴(𝑈)𝜕𝑥𝑈 = 𝑆(𝑈), (2.10)

where the combined transport matrix 𝐴 = 𝜕𝐹
𝜕𝑈 − 𝑄 can easily be obtained from conservative flux Jacobian and the

non-conservative terms.
The new SWME model was used for simulation of smooth waves and dam-break scenarios in [9]. The model

was more accurate than the standard SWE model and converged towards a reference solution with increasing
number of moments/coefficients 𝑁 .

3. Hyperbolic Regularization
As already noted in [9], the SWME model is not hyperbolic for values 𝑁 > 1. Loosing hyperbolicity may or may
not lead to instabilities and non-physical values during numerical simulations. In [7], the hyperbolicity was studied
in more detail and a breakdown of hyperbolicity inducing instable oscillations in time could be found for standard
simulations.
Two hyperbolic models have recently been developed. The first one called the Hyperbolic Shallow Water

Moment Equations (HSWME) from [7] is based on insights from moment models for rarefied gases [1, 5, 8]. The
second one called the ShallowWater Linearized Moment Equations (SWLME) from [6] is based on the assumption
of small deviations from equilibrium and neglecting small terms in the derivation. Both models are hyperbolic. We
will outline the main ideas and state the model equations following both approaches in the next two subsections.

3.1. Hyperbolic Shallow Water Moment Equations
The Hyperbolic Shallow Water Moment Equations (HSWME) [7] overcome the loss of hyperbolicity using a
linearization of the SWME model around linear velocity deviations, denoted by the case 𝑁 = 1. This leads to
setting all other coefficients 𝛼𝑖 = 0 for 𝑖 = 2, . . . , 𝑁 in the SWME model matrices. Note that the model is still
non-linear and includes the dependencies on all other variables ℎ, 𝑢𝑚, 𝛼1 on the dynamics of the other coefficients.
The HSWME system from [7] is written in the same non-conservative form as (2.10) as

𝜕𝑡𝑈 + 𝐴𝐻 (𝑈)𝜕𝑥𝑈 = 𝑆(𝑈), (3.1)

with regularized hyperbolic system matrix 𝐴𝐻 (𝑈) ∈ R(𝑁+2)×(𝑁+2) given by

𝐴𝐻 (𝑈) =

©«

0 1
𝑔ℎ − 𝑢2𝑚 − 13𝛼21 2𝑢𝑚 2

3𝛼1
−2𝑢𝑚𝛼1 2𝛼1 𝑢𝑚

3
5𝛼1

− 23𝛼21 0 1
3𝛼1 𝑢𝑚

. . .

. . .
. . . 𝑁+1

2𝑁+1𝛼1
𝑁−1
2𝑁−1𝛼1 𝑢𝑚

ª®®®®®®®®®¬

. (3.2)

In [7], it was shown up to a certain 𝑁 , that the model has real eigenvalues and is therefore hyperbolic, for all
variable states. The proof was recently extended to arbitrary order in [4] which yields the following theorem
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Theorem 3.1 The HSWME model (3.1) of arbitrary order 𝑁 is globally hyperbolic and the eigenvalues are

𝜆1,2 = 𝑢𝑚 ±
√︃
𝑔ℎ + 𝛼21,

𝜆𝑖+2 = 𝑢𝑚 + 𝑟𝑖,𝑁𝛼1, 𝑖 = 1, 2, . . . , 𝑁,

where 𝑟𝑖,𝑁 ∈ R is the 𝑖-th root of the real polynomial 𝑝𝑁 (𝑧) of degree 𝑁 , defined by the recursion 𝑝𝑘 (𝑧) =
𝑧𝑝𝑘−1 (𝑧) − 𝑏𝑘 𝑝𝑘−2 (𝑧), for 2 ≤ 𝑘 ≤ 𝑁 , 𝑝1 (𝑧) = 1, 𝑏𝑘 = (𝑘−1) (𝑘+1)

(2𝑘−1) (2𝑘+1) .

3.2. Shallow Water Linearized Moment Equations
The second hyperbolic model called Shallow Water Linearized Moment Equations (SWLME) derived in [6] is
based on a careful investigation of non-linear terms in the underlying model equations. One example is the term∫ 1

0
𝜙𝑖𝑢

2 𝑑𝜁 .

Using the polynomial velocity expansion (2.2), this terms can be computed according to [6] as

∫ 1

0
𝜙𝑖𝑢

2 𝑑𝜁 =
∫ 1

0
𝜙𝑖

©«
𝑢𝑚 +

𝑁∑︁
𝑗=1
𝛼 𝑗𝜙 𝑗

ª®¬
2

𝑑𝜁 (3.3)

= 𝑢2𝑚

∫ 1

0
𝜙𝑖 𝑑𝜁 +

𝑁∑︁
𝑗=1
2𝑢𝑚𝛼 𝑗

∫ 1

0
𝜙𝑖𝜙 𝑗 𝑑𝜁 +

𝑁∑︁
𝑗 ,𝑘=1

2𝛼 𝑗𝛼𝑘
∫ 1

0
𝜙𝑖𝜙 𝑗𝜙𝑘 𝑑𝜁 (3.4)

= 0 + 2
2𝑖 + 1𝑢𝑚𝛼𝑖 +

1
2𝑖 + 1

𝑁∑︁
𝑗 ,𝑘

𝐴𝑖 𝑗𝑘𝛼 𝑗𝛼𝑘 . (3.5)

Now the model assumes small deviations from a constant profile, i.e., 𝛼𝑖 = O (𝜖), such that the last term containing
the coefficient coupling 𝛼 𝑗𝛼𝑘 = O (

𝜖2
)
can be neglected in comparison to the first term. The result is the simpler

expression ∫ 1

0
𝜙𝑖𝑢

2 𝑑𝜁 ≈ 2
2𝑖 + 1𝑢𝑚𝛼𝑖 .

Based on this strategy, the SWLME model includes fewer terms than the original (2.10) and reads

𝜕𝑡

©«

ℎ
ℎ𝑢𝑚
ℎ𝛼1
...

ℎ𝛼𝑁

ª®®®®®®¬
+ 𝜕𝑥

©«

ℎ𝑢𝑚
ℎ𝑢2𝑚 + 𝑔 ℎ

2

2 + 13 ℎ𝛼21 + . . . + 1
2𝑁+1 ℎ𝛼

2
𝑁

2ℎ𝑢𝑚𝛼1
...

2ℎ𝑢𝑚𝛼𝑁

ª®®®®®®¬
= 𝑄𝜕𝑥

©«

ℎ
ℎ𝑢𝑚
ℎ𝛼1
...

ℎ𝛼𝑁

ª®®®®®®¬
+ 𝑃, (3.6)

where the non-conservative term simplifies to

𝑄 = (0, 0, um, . . . , um),
and the combined transport system matrix of the new SWLME can be written as

𝐴𝑁 =

©«

0 1 0
... 0

𝑔ℎ − 𝑢2𝑚 −
𝛼21
3 − . . . −

𝛼2𝑁
2𝑁+1 2𝑢𝑚 2𝛼1

3 . . . 2𝛼𝑁
2𝑁+1

−2𝑢𝑚𝛼1 2𝛼1 𝑢𝑚
...

...
. . .

−2𝑢𝑚𝛼𝑁 2𝛼𝑁 𝑢𝑚

ª®®®®®®®®¬
∈ R(𝑁+2)×(𝑁+2) . (3.7)

It was shown in the following theorem from [6] that the eigenvalues of the SWLME model are indeed real such
that the model is hyperbolic

Theorem 3.2 The SWLME system matrix 𝐴𝑁 ∈ R(𝑁+2)×(𝑁+2) (3.7) has the following characteristic polynomial

𝜒𝐴𝑁 (𝜆) = (𝑢𝑚 − 𝜆)
[
(𝜆 − 𝑢𝑚)2 − 𝑔ℎ −

𝑁∑︁
𝑖=1

3𝛼2𝑖
2𝑖 + 1

]
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and the eigenvalues are given by

𝜆1,2 = 𝑢𝑚 ±
√√√
𝑔ℎ +

𝑁∑︁
𝑖=1

3𝛼2𝑖
2𝑖 + 1 and 𝜆𝑖+2 = 𝑢, for 𝑖 = 1, . . . , 𝑁. (3.8)

The system is thus hyperbolic.

3.3. Steady states of SWLME
Another main benefit of the SWLME model is the possibility of obtaining analytical steady states that generalize
the standard SWE Rankine-Hugoniot conditions. According to [6] the steady states can be derived as follows for
flat bottom 𝜕𝑥𝑏 = 0 and zero friction:

𝜕𝑥 (ℎ𝑢𝑚) = 0 (3.9)

𝜕𝑥

(
ℎ𝑢2𝑚 +

1
2
𝑔ℎ2 + 1

3
ℎ𝛼21 + . . . +

1
2𝑁 + 1 ℎ𝛼

2
𝑁

)
= 0 (3.10)

𝜕𝑥 (2ℎ𝑢𝑚𝛼1) = 𝑢𝑚𝜕𝑥 (ℎ𝛼1) (3.11)
... (3.12)

𝜕𝑥 (2ℎ𝑢𝑚𝛼𝑁 ) = 𝑢𝑚𝜕𝑥 (ℎ𝛼𝑁 ) , (3.13)

which first leads to

ℎ𝑢𝑚 = 𝑐𝑜𝑛𝑠𝑡, (3.14)

𝑢𝑚 = 0 or
𝛼𝑖
ℎ

= 𝑐𝑜𝑛𝑠𝑡, for 𝑖 = 1, . . . , 𝑁. (3.15)

The Rankine-Hugoniot conditions for a shock from a given state
(
ℎ0, ℎ0𝑢𝑚,0, ℎ0𝛼1,0, . . . , ℎ0𝛼𝑁 ,0

)
to a state

(ℎ, ℎ𝑢𝑚, ℎ𝛼1, . . . , ℎ𝛼𝑁 ) then read

(ℎ − ℎ0)
[
−
𝑢2𝑚,0
𝑔ℎ0
+ 1
2

((
ℎ

ℎ0

)2
+

(
ℎ

ℎ0

))
+

𝑁∑︁
𝑖=1

1
2𝑖 + 1

𝛼2𝑖,0
𝑔ℎ0

((
ℎ

ℎ0

)3
+

(
ℎ

ℎ0

)2
+

(
ℎ

ℎ0

))]
= 0. (3.16)

Introducing the dimensionless flow numbers

𝐹𝑟 =
𝑢𝑚,0√︁
𝑔ℎ0

, (3.17)

(𝑀𝛼)𝑖 =
𝛼𝑖,0
𝑢𝑚,0

, for 𝑖 = 1, . . . , 𝑁 (3.18)

and writing 𝑦 = ℎ
ℎ0
, leads to the non-dimensional solutions

ℎ = ℎ0 ∨ −𝐹𝑟2 + 12
(
𝑦2 + 𝑦

)
+

𝑁∑︁
𝑖=1

1
2𝑖 + 1 (𝑀𝛼)

2
𝑖 𝐹𝑟

2
(
𝑦3 + 𝑦2 + 𝑦

)
= 0. (3.19)

This gives rise to a new dimensionless number 𝑀𝛼2 :=
∑𝑁
𝑖=1

1
2𝑖+1 (𝑀𝛼)2𝑖 . According to [6], 𝑀𝛼 measures the

total deviation from equilibrium. Note, that there is at least one non-trivial solution for non-zero 𝐹𝑟 and 𝑀𝛼.
It is also possible to derive steady states for smooth and frictionless flows including bottom topographies that

can later be used to derive well-balanced schemes. In the momentum equation, this requires

𝜕𝑥

(
1
2
𝑢2𝑚 + 𝑔(ℎ + 𝑏) +

3
2

𝑁∑︁
𝑖=1

1
2𝑖 + 1𝛼

2
𝑖

)
= 0, (3.20)

where 𝑏(𝑥) is the bottom topography term.
The full non-trivial steady state solution is then computed by solving

ℎ𝑢𝑚 = 𝑐𝑜𝑛𝑠𝑡, (3.21)

1
2
𝑢2𝑚 + 𝑔(ℎ + 𝑏) +

3
2

𝑁∑︁
𝑖=1

1
2𝑖 + 1𝛼

2
𝑖 = 𝑐𝑜𝑛𝑠𝑡, (3.22)

𝛼𝑖
ℎ

= 𝑐𝑜𝑛𝑠𝑡, for 𝑖 = 1, . . . , 𝑁. (3.23)

The analytically computed equations to determine steady-states are used within a well-balanced numerical
scheme to conserve certain steady-states numerically. We refer to [6] for detailed examples.
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4. Sediment transport and friction models
In [3], the HSWMEmodel was coupled to an Exner equation [11], modeling sediment transport at the bottom. This
means that the bottom topography 𝑏(𝑡, 𝑥) is also a function of time and evolves according to

𝜕𝑡𝑏 + 𝜕𝑥𝑄𝑏 = 0, (4.1)

where 𝑄𝑏 is the solid transport discharge that can be modeled by the Meyer-Peter & Müller formula [10].
It was shown in [3] that the eigenvalues of the coupled model are a generalization of the eigenvalues of the

standard SWE model coupled to the Exner equation. The additional eigenvalues are real such that the model is
again hyperbolic. The model leads to a much more realistic sediment transport. Unlike as for the SWE model, the
velocity at the bottom is not the same as the average velocity 𝑢𝑚, which means that the coupled sediment equation
(4.1) is correctly transported with the bottom velocity according to the polynomial expansion (2.2).

5. Summary and future work
In this paper, recent developments in modeling free-surface flows with vertically resolved velocity profiles were
summarized and compared. Based on a polynomial expansion of the velocity profile, the derivation of the Shallow
Water Moment Equations was outlined. Two hyperbolic regularizations based on different linearizations of the
model are described and the results for the eigenvalues and steady states are given. As one application, a sediment
transport model that builds up on the previously discussed models is described.
The recently developed models are a major step forward for the simulation of complex free-surface flows.

The models open up a lot of possibilities for future work. Firstly, the inclusion of a coriolis force term and the
analytical investigation of wave properties is necessary for applications and to understand the structure of the
models. Additional efforts should focus on the numerical simulation of the model equation, e.g., regarding the
implementation of wet-dry fronts or asymptotic-preserving schemes for the limits of large friction terms. Lastly, the
inclusion of more realistic friction terms of Savage-Hutter type [11] to model granular flows, e.g., for avalanches,
land slides, or mud flows would be beneficial for real-world applications.
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Abstract

We consider the stability of the equilibrium position of a periodic Hamiltonian system with one degree of
freedom. It is supposed that the series expansion of the Hamiltonian function, in a small neighborhood of the
equilibrium position, does not include terms of second and third degree. Moreover, we focus on a degenerate case,
when fourth-degree terms in the Hamiltonian function are not enough to obtain rigorous conclusions on stability
or instability. A complete study of the equilibrium stability in the above degenerate case is performed, giving
sufficient conditions for instability and stability in the sense of Lyapunov. The above conditions are expressed in
the form of inequalities with respect to the coefficients of the Hamiltonian function, normalized up to sixth-degree
terms inclusive.

1. Introduction
Let us consider a one degree of freedom Hamiltonian system, periodically dependent on time, defined by the
canonical differential equations

𝑑𝑥

𝑑𝑡
=
𝜕𝐻

𝜕𝑦
,

𝑑𝑦

𝑑𝑡
= −𝜕𝐻

𝜕𝑥
. (1.1)

We assume that the origin, 𝑥 = 𝑦 = 0, is an equilibrium position and that the Hamiltonian function 𝐻 = 𝐻 (𝑥, 𝑦, 𝑡)
can be expanded in a convergent power series in a sufficiently small neighborhood of the origin. That is,

𝐻 (𝑥, 𝑦, 𝑡) =
∞∑︁
𝑘=2

𝐻𝑘 (𝑥, 𝑦, 𝑡), 𝐻𝑘 (𝑥, 𝑦, 𝑡) =
∑︁
𝜈+𝜇=𝑘

ℎ𝜈𝜇𝑥
𝜈𝑦𝜇, (1.2)

where 𝜈 and 𝜇 are nonnegative integers and the coefficients ℎ𝜈𝜇 are continuous 2𝜋 periodic functions of time, 𝑡. We
also assume that a resonance of first or second order takes place in system (1.1). That is, the corresponding linear
system has multiple characteristic multipliers. In particular, 𝜌1,2 = 1, for a first order resonance, and 𝜌1,2 = −1,
for a second order resonance. In addition, the monodromy matrix is supposed to be diagonal. In the case it is
nondiagonal, the problem of stability, in the sense of Lyapunov, has been completely solved [3, 8].
Under these assumptions, the origin is linearly stable, but nonlinear analysis is necessary to obtain a rigorous

result about stability in the Lyapunov sense. Thus, terms of order three or higher in the Hamiltonian function
𝐻 (𝑥, 𝑦, 𝑡) must be taken into account. It can be seen that, after a series of canonical change variables, the
Hamiltonian function 𝐻 (𝑥, 𝑦, 𝑡) can be brought to the following form [10,12]

𝐻 (𝑞, 𝑝, 𝑡) =
𝑁∑︁
𝑘=3

𝐻𝑘 (𝑞, 𝑝) +
∞∑︁

𝑘=𝑁+1
𝐻𝑘 (𝑞, 𝑝, 𝑡), 𝐻𝑘 =

∑︁
𝜈+𝜇=𝑘

ℎ𝜈𝜇𝑞
𝜈 𝑝𝜇, (1.3)

where, for 3 ≤ 𝑘 ≤ 𝑁 (𝑁 can be set arbitrarily large), the coefficients ℎ𝜈𝜇 in 𝐻𝑘 are real numbers, whereas, for
𝑘 > 𝑁 , they are 𝑇-periodic functions of time 𝑡.
The stability of the origin for the system (1.1) with the Hamiltonian (1.3), in the case 𝐻3 ≠ 0, has been studied

in [10, 11] and we consider here the case 𝐻3 ≡ 0, which appears in the presence of second order resonance. Now,
the terms of fourth order in (1.3) play the most important role in the stability analysis of the equilibrium.
After a linear canonical change of variables [10], 𝐻4 can be brought to one of the following nine simple forms:

1) 𝑞4 + 𝑎𝑞2𝑝2 + 𝑝4, 𝑎 > −2, 5) 𝑞2 (𝑞2 + 𝑝2), 9) 𝑞4.
2) 𝑞4 + 𝑎𝑞2𝑝2 + 𝑝4, 𝑎 < −2 6) 𝑞2𝑝2,
3) 𝑞4 + 𝑎𝑞2𝑝2 − 𝑝4, 𝑎 ∈ R, 7) 𝑞3𝑝,
4) 𝑞2 (𝑞2 − 𝑝2), 8) − 𝑞3𝑝,

(1.4)
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In [10], it is also proved that in the case 1) the equilibrium is stable in the sense of Lyapunov, whereas it is unstable
in the cases 2), 3), 4), 7). Cases 5) and 6) are considered in [12] and [9], respectively. In particular, considering
terms up to six order, sufficient conditions for stability and instability in the Lyapunov sense are derived.
We concentrate our attention on the case 9), already considered in [7], where partial stability results are given.

Our goal is to apply the results developed in [2] to derive complete and rigorous solution of the stability problem
in this particular case.

2. Method of study and main result
To study the stability of the origin, it is convenient to introduce polar canonical variables by means of the canonical
transformation

𝑞 =
√
2𝑟 sin 𝜑, 𝑝 =

√
2𝑟 cos 𝜑. (2.1)

Now, the Hamiltonian function (1.3) is written as

𝐻 = 𝑟2Ψ(𝜑, 𝑟) +𝑂 (𝑟 (𝑁+1)/2), (2.2)

where

Ψ(𝜑, 𝑟) =
𝑁∑︁
𝑘=4

𝑟
𝑘−4
2 Ψ𝑘 (𝜑), (2.3)

and Ψ𝑘 (𝜑) is a homogeneus function of order 𝑘 with respect to sin 𝜑 and cos 𝜑.
It is shown in [5,10,14] that, if the functionΨ4 (𝜑) does not have real roots, then the origin is a stable equilibrium

point. This is what happens in the case 1), listed in (1.4). On the other hand, if Ψ4 (𝜑) has a simple real root 𝜑0,
such that 𝑑Ψ4𝑑𝜑 (𝜑0) < 0, there is instability. This situation takes place in cases 2), 3), 4) and 7).
In the cases 5), 6) and 9) the function Ψ4 (𝜑) has only multiple real roots and we say that a degeneracy takes

place. To solve now the stability problem, it is necessary to consider the terms of order higher than 𝑟2. To this end,
we will use a technique for degenerate cases developed in [2]. The key idea is that simple roots of the function
(2.3), coming from a multiple root of Ψ4 (𝜑), play an important role for the stability problem. Thus, it is necessary
to determine whether multiple roots of Ψ4 (𝜑) give rise to simple distinct roots, when terms of order higher than
𝑟2 in the Hamiltonian function (2.2) are considered. Even more, we have to ensure that additional terms of higher
order cannot destroy the simple real roots of function (2.3). In this way, we introduce the concepts of main part and
simple main part of a root (see [2]).
Let 𝜑0 be a root of multiplicity 𝑀 > 1 of the function Ψ4 (𝜑). Thus, according to the implicit function

theorem [6], Ψ(𝜑, 𝑟) = 0 has exactly 𝑀 roots approaching 𝜑0 with 𝑟 → 0. Lut us denote by 𝜑∗ (𝑟) one of these
roots, which can be represented as a series expansion in fractional powers of 𝑟

𝜑∗ (𝑟) = 𝜑0 +
∞∑︁
𝑗=1
𝑎 𝑗𝑟

𝑗
𝑚 , (2.4)

where 𝑚 is an even integer (2 ≤ 𝑚 ≤ 2𝑀) and 𝑎 𝑗 are obtained by equating to zero the coefficients of powers of 𝑟 ,
after substituting (2.4) into (2.3).

Definition 2.1 Let us consider the finite series

𝜑𝑞 (𝑟) = 𝜑0 +
𝑞∑︁
𝑗=1
𝑎 𝑗𝑟

𝑗
𝑚 , (2.5)

which is obtained by omitting terms of order higher than 𝑞/𝑚 in (2.4); 𝑞 is the maximal integer number such
that the equation for 𝑎𝑞 is obtained by substituting (2.5) in (2.3) and equating to zero the coefficient of 𝑟

𝜈
𝑚 , where

𝜈
𝑚 < 𝑁−3

2 . We call finite series (2.3) main part of root (2.4).

Definition 2.2 We say that root (2.4) has a simple main part if among roots of the equation Ψ(𝜑, 𝑟) = 0 there is
not another root with the same main part.

Taking these two definitions in mind, general conditions for instability in the case of a degeneracy are given by
the following theorem [2].

Theorem 2.3 Let us consider the canonical system defined by Hamiltonian (2.2). Suppose that all real roots of the
function Ψ4 (𝜑) are multiple and the function Ψ(𝜑, 𝑟) has a real root 𝜑∗ of form (2.4). If the root 𝜑∗ has a simple
main part 𝜑𝑞 and, for sufficiently small 𝑟 , the inequality 𝜕Ψ

𝜕𝜑 (𝜑∗, 𝑟) < 0 is satisfied, then the equilibrium 𝑟 = 0 is
unstable.

STABILITY OF A ONE DEGREE OF FREEDOM HAMILTONIAN SYSTEM

254



As it was said previously, in the case 9), all real roots of the functionΨ4 (𝜑) = 4 sin4 𝜑 have multiplicity four and
the use of Theorem 2.3 will be our main tool to obtain sufficient conditions for instability. To begin our analysis,
we perform a series of near identity canonical transformations, in order to simplify the Hamiltonian function. This
procedure has been previously introduced by Markeev to study other degenarete cases [9, 11, 12] and applied by
Gutiérrez and Vidal [7] in the case we are dealing with.
Let us take 𝑁 = 6 in (1.3). Thus, the Hamiltonian function reads as

𝐻 = 𝑞4 + 𝐻5 (𝑞, 𝑝) + 𝐻6 (𝑞, 𝑝) + 𝐻 (7) (𝑞, 𝑝, 𝑡), (2.6)

where 𝐻 (7) (𝑞, 𝑝, 𝑡) is a convergent series in powers of 𝑞 and 𝑝, starting from terms of degree seven or higher,
whose coefficients are 𝑇-periodic functions of 𝑡.
Let us introduce new canonical variables 𝑄, 𝑃 by using a generating function 𝑆(𝑞, 𝑃) of the form

𝑆(𝑞, 𝑃) = 𝑞𝑃 + 𝑆3 (𝑞, 𝑃) + 𝑆4 (𝑞, 𝑃), 𝑆𝑘 (𝑞, 𝑃) =
∑︁
𝜈+𝜇=𝑘

𝑠𝜈𝜇𝑞
𝜈𝑃𝜇, (2.7)

being 𝑠𝜈𝜇 constant coefficients properly chosen in order to simplify the expression of the new Hamiltonian function.
Taking into account the relations

𝑝 =
𝜕𝑆

𝜕𝑞
, 𝑄 =

𝜕𝑆

𝜕𝑃
, (2.8)

we can express the old variables in a power series expansion of the new ones in such a way that the new Hamiltonian
function, 𝐾 , becomes [7]

𝐾 = 𝑄4 + 𝐾5 (𝑄, 𝑃) + 𝐾6 (𝑄, 𝑃) + 𝐾 (7) (𝑄, 𝑃, 𝑡),
𝐾5 (𝑄, 𝑃) = 𝛾23𝑄2𝑃3 + 𝛾14𝑄𝑃4 + 𝛾05𝑃5,
𝐾6 (𝑄, 𝑃) = 𝛾24𝑄2𝑃4 + 𝛾15𝑄𝑃5 + 𝛾06𝑃6.

(2.9)

The coefficients 𝛾𝑖 𝑗 in (2.9) are related to the coefficients of Hamiltonian (1.3) through the following identities [7]

𝛾23 = ℎ23, 𝛾14 = ℎ14, 𝛾05 = ℎ05,

𝛾24 = ℎ24 − 37 ℎ232 + 74 ℎ50ℎ14 − 18 ℎ23ℎ41,
𝛾15 = ℎ15 − 12 ℎ32ℎ23 + 14 ℎ41ℎ14 + 52 ℎ50ℎ05,
𝛾06 = ℎ06 − 14 ℎ32ℎ14 + 58 ℎ41ℎ05.

(2.10)

The main result of our stability study can be formulated in terms of the coefficients of the Hamiltonian (2.9)
and it is collected in the following Theorem [4].

Theorem 2.4 Let us consider the Hamiltonian system defined by (2.9), then

1. If at least one of the inequalities 𝛾05 ≠ 0, 𝛾14 ≠ 0 or 𝛾223 − 4𝛾06 > 0 is fulfilled, then the origin is an unstable
equilibrium.

2. If 𝛾05 = 𝛾14 = 0 and 𝛾223 − 4𝛾06 < 0 , then the origin is stable in the sense of Lyapunov.
3. In the case 𝛾05 = 𝛾14 = 0 and 𝛾223 − 4𝛾06 = 0 and 𝛾15 ≠ 0 the origin is unstable.

3. Sketch of the proof
A complete proof of Theorem 2.4 is given in [4]. Here we outline the main ideas. To begin with, we introduce a
scaling of the variables that will help us to see which are the relevant terms contributing to the proper splitting of
the multiple roots. In this way, we introduce the following canonical transformation

𝑄 = 𝜀�̄�, 𝑃 = 𝜀𝜅 �̄�, (3.1)

and the Hamiltonian (2.9) reads as

𝐾 = 𝑄4 + 𝐾5 (𝑄, 𝑃) + 𝐾6 (𝑄, 𝑃) + 𝐾 (7) (𝑄, 𝑃, 𝑡),
𝐾5 (𝑄, 𝑃) = 𝜀3𝜅−2𝛾23𝑄2𝑃3 + 𝜀4𝜅−3𝛾14𝑄𝑃4 + 𝜀5𝜅−4𝛾05𝑃5,
𝐾6 (𝑄, 𝑃) = 𝜀4𝜅−2𝛾24𝑄2𝑃4 + 𝜀5𝜅−3𝛾15𝑄𝑃5 + 𝜀6𝜅−4𝛾06𝑃6,

(3.2)

where bars have been suppressed. The scaling introduces an ordering which depends on the exponent 𝜅. Indeed, a
different exponent 𝜅 gives rise to a different ordering and, to solve the degeneracy, we look for a proper choice of
𝜅. To this end, we introduce the concept of leading exponent of a monomial.
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Definition 3.1 We say that the leading exponent of a monomial 𝑃𝛼𝑄𝛽 is 𝜆(𝛼, 𝛽) if the scaling (3.1), with
𝜅 = 𝜆(𝛼, 𝛽), places this monomial at the same order than 𝑄4. That is 𝜆(𝛼, 𝛽) = 4−𝛼

𝛽 .

monomial 𝑃5 𝑄𝑃4 𝑄2𝑃3 𝑃6 𝑄𝑃5 𝑄2𝑃4 𝑃7 𝑄𝑃6 𝑄2𝑃5 𝑃8

𝜅(𝛼, 𝛽) 4/5 3/4 2/3 2/3 3/5 1/2 4/7 1/2 2/5 1/2

Tab. 1 Leading exponent 𝜆(𝛼, 𝛽) for different monomials.

It can be seen that the first term that can solve the degeneracy is the one with the largest leading exponent [4].
Table 1 shows the leading exponent for those monomials appearing in the Hamiltonian function up to six order and
also monomials of order seven and eight. We can see that the monomial 𝑃5 has the maximum leading exponent
and it is the first term to be taken into account to proper split the multiple root. If this term fails, then the next term
to be considered is 𝑄𝑃4 and so on.
Now, we move to polar coordinates (2.1) in order to apply Theorem 2.3. The Hamiltonian function in the form

(2.2) is given by
𝐾 = 4𝑟2 (sin4 𝜑 + 𝑟1/2Ψ5 (𝜑) + 𝑟Ψ6 (𝜑)) + �̃� (𝜑, 𝑟, 𝑡),
Ψ5 (𝜑) =

√
2(𝛾23 sin2 𝜑 cos3 𝜑 + 𝛾14 sin 𝜑 cos4 𝜑 + 𝛾05 cos5 𝜑),

Ψ6 (𝜑) = 2(𝛾24 sin2 𝜑 cos4 𝜑 + 𝛾15 sin 𝜑 cos5 𝜑 + 𝛾06 cos6 𝜑).
(3.3)

Our goal is to analyze the real roots of the equation

Ψ(𝜑, 𝑟) ≡ sin4 𝜑 + 𝑟1/2Ψ5 (𝜑) + 𝑟Ψ6 (𝜑) = 0, (3.4)

emanating from multiple roots 𝜑 = 0 and 𝜑 = 𝜋 of the function sin4 𝜑.
To determine the main part of the roots, we introduce a fractional power series of the form (2.4), where the

fractional exponents are chosen according to the leading exponent. In this way, if 𝜆(𝛼, 𝛽) is the maximum leading
exponent, the first fractional exponent with nonzero coefficient in (2.4) is given by

𝑗

𝑚
=
1 − 𝜆(𝛼, 𝛽)
2𝜆(𝛼, 𝛽) . (3.5)

For instance, if 𝛾05 ≠ 0 we consider the series

𝜑1 = 𝑎1𝑟
1/8 + 𝑎2𝑟2/8 + · · · , 𝜑2 = 𝜋 + 𝑏1𝑟1/8 + 𝑏2𝑟2/8 + · · · .

It is almost straightforward to check that, in all the cases of instability of Theorem 2.4, the conditions of Theorem
2.3 are satisfied and we are done.

To prove item 2. of Theorem 2.4, we introduce proper action-angle variables. In this sense, we rewrite the
Hamiltonian function as

𝐻 = 𝐻0 (𝑄, 𝑃) + �̂� (𝑄, 𝑃, 𝑡) , (3.6)

where
𝐻0 (𝑄, 𝑃) = (𝑄2 + 𝛼𝑃3)2 + 𝛽𝑃6, �̂� (𝑄, 𝑃, 𝑡) = 𝛾15𝑄𝑃5 + 𝛾24𝑄2𝑃4 + 𝐻 (7) (𝑄, 𝑃, 𝑡) . (3.7)

The coefficients 𝛼 and 𝛽 read
𝛼 =

1
2
𝛾23, 𝛽 = 𝛾06 − 14𝛾

2
23 .

We note that𝐻0 is a positive definite function, provided that, under the conditions of item 2., 𝛽 > 0. Thus, the origin
of the truncted system with Hamiltonian 𝐻0 is stable and it is encircled by a family of closed curves, describing
periodic motion in a sufficient small neighborhood. Let be the action variable

𝐼 =
1
2𝜋

∮
𝑃(𝑄, ℎ) 𝑑𝑄, (3.8)

where the integral is calculated along a closed phase trajectory. Every trajectory is completely defined by ℎ, where
ℎ is a constant such that 𝐻0 = ℎ. A direct calculation shows that

𝐼 = ℎ
5
12 𝐽0 , (3.9)
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being 𝐽0 a constant. Then, it follows that 𝐻0 reduces to

ℎ(𝐼) =
(
𝐼

𝐽0

) 12
5

. (3.10)

Moreover, it can be proved that, in action-angle variables, the Hamiltonian takes the form

Γ = ℎ(𝐼) + ℎ1 (𝐼, 𝑤, 𝑡), (3.11)

where ℎ1 (𝐼, 𝑤, 𝑡) = 𝑜(ℎ(𝐼)). However, the nondegeneracy condition

𝑑2ℎ

𝑑𝐼2
=
84𝐼 25

25𝐽
12
5
0

≠ 0 (3.12)

is fulfilled for 0 < 𝐼 � 1. Thus, the Arnold-Moser theorem [1, 13] guarantees the stability of the equilibrium
position of the original canonical system.
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Abstract
This contribution analyzes the existence of 𝑛𝑇-periodic coexistence states, for 𝑛 ≥ 1, in two classes of

non-autonomous predator-prey Volterra systems with periodic coefficients. In the first place, when the model
is non-degenerate it is shown that the Poincaré–Birkhoff twist theorem can be applied to get the existence of
subharmonics of arbitrary order. In the second place, it will be analyzed a degenerate predator-prey model
introduced in [9] and [5] and, then, deeply studied in [7]. By analyzing the iterates of the Poincaré map of the
system, it is shown that it admits nontrivial 𝑛𝑇-periodic coexistence states for every 𝑛 ≥ 2.

1. Introduction
In this contribution, we study the existence of positive subharmonics of arbitrary order (𝑛𝑇-periodic coexistence
states) of the periodic Volterra predator-prey model{

𝑢′ = 𝜆𝛼(𝑡)𝑢(1 − 𝑣),
𝑣′ = 𝜆𝛽(𝑡)𝑣(−1 + 𝑢), (1.1)

where 𝜆 > 0 is regarded as a parameter, and, for some𝑇 > 0, 𝛼(𝑡) and 𝛽(𝑡) are𝑇-periodic real continuous functions.
Throughout this note, we set

𝐴 :=
∫ 𝑇

0
𝛼(𝑠)𝑑𝑠 and 𝐵 :=

∫ 𝑇

0
𝛽(𝑠)𝑑𝑠.

Two different cases can arise according to whether, or not, the following condition holds

supp 𝛼 ∩ supp 𝛽 ≠ ∅. (1.2)

In this non-degenerate situation, which has been sketched in Figure 1, the existence of subharmonics of arbitrary
order, for sufficiently large 𝜆, can be obtained through an updated version of the celebrated Poincaré–Birkhoff twist
theorem.

Fig. 1 𝛼 (continuous line) and 𝛽 (dashed line) satisfying (1.2).

However, in the degenerate case when, instead of (1.2), the next condition holds

supp 𝛼 ∩ supp 𝛽 = ∅, (1.3)

then the Poincaré–Birkhoff theorem is unable to provide, in general, with subharmonics of arbitrary order, unless
𝛼(𝑡) and 𝛽(𝑡) have some special nodal structure. An admissible distribution of 𝛼 and 𝛽 is sketched in Figure 2.
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Fig. 2 𝛼 (continuous line) and 𝛽 (dashed line) satisfying (1.3).

2. The non-degenerate case
The non-degenerate case when (1.2) holds has been recently analyzed in [8] by adapting, in a sophisticated way,
some original ideas going back to [3] (later revised and applied in [2] and [10]), where a Poincaré–Birkhoff version
for Hamiltonian systems was delivered. Note that the change of variables

𝑥 = log 𝑢, 𝑦 = log 𝑣,

transforms (1.1) into the planar Hamiltonian system{
𝑥 ′ = −𝜆𝛼(𝑡) (𝑒𝑦 − 1),
𝑦′ = 𝜆𝛽(𝑡) (𝑒𝑥 − 1). (2.1)

The updated version of the Poincaré–Birkhoff twist theorem that will be used reads as follows:

Theorem 2.1 (Poincaré–Birkhoff) Assume that there exist 0 < 𝜚0 < 𝜚1 and a positive integer 𝜔 such that

rot𝜚0 [(𝑥0, 𝑦0); [0, 𝑛𝑇]] > 𝜔 and rot𝜚1 [(𝑥0, 𝑦0); [0, 𝑛𝑇]] < 𝜔,
where

rot𝜌 [(𝑥0, 𝑦0); [0, 𝑛𝑇]] = 𝜃 (𝑛𝑇) − 𝜃 (0)
2𝜋

with | | (𝑥0, 𝑦0) | | = 𝜌; 𝜃 (𝑡) being the angular polar coordinate of the solution starting at (𝑥0, 𝑦0), say (𝑥(𝑡), 𝑦(𝑡)).
Then, (2.1) admits, at least, two 𝑛𝑇-periodic solutions lying in different periodicity classes with rotation number 𝜔.

As a consequence of Theorem 2.1, the following result holds.

Theorem 2.2 Assume (1.2). Then, for every positive integers𝜔 and 𝑛, there exists 𝜆𝜔𝑛 > 0 such that (2.1) possesses,
at least, two 𝑛𝑇-periodic solutions with rotation number 𝜔 for every 𝜆 > 𝜆𝜔𝑛 .

Proof Firstly, attention will be focused into the small solutions of (2.1). Obviously, there exists 𝜀 > 0 such that

(𝑒 𝜉 − 1)𝜉 ≥ 𝜉
2

2
if |𝜉 | < 𝜀. (2.2)

Choose (𝑥0, 𝑦0) sufficiently close to (0, 0), say | (𝑥0, 𝑦0) | ≤ 𝜚0, so that the solution of (2.1) with (𝑥(0), 𝑦(0)) =
(𝑥0, 𝑦0), say (𝑥(𝑡), 𝑦(𝑡)), satisfy | (𝑥(𝑡), 𝑦(𝑡)) | < 𝜀 for all 𝑡 ∈ [0, 𝑛𝑇]. This is possible by continuous dependence
on the initial conditions.
According to (1.2), there are 𝜏 ∈ (0, 𝑇) and 𝛿 > 0 such that 𝛼(𝑡)𝛽(𝑡) > 0 for every 𝑡 ∈ [𝜏 − 𝛿, 𝜏 + 𝛿] ( [0, 𝑇].

Thus,
𝜁 := min

𝑡 ∈[𝜏−𝛿,𝜏+𝛿 ]
{𝛼(𝑡), 𝛽(𝑡)} > 0.

Consequently, due to (2.1) and (2.2), we obtain that, for every 𝑡 ∈ [0, 𝑛𝑇],

𝜃 ′(𝑡) = 𝑦′(𝑡)𝑥(𝑡) − 𝑥 ′(𝑡)𝑦(𝑡)
𝑥2 (𝑡) + 𝑦2 (𝑡) =

𝜆𝛽(𝑡) (𝑒𝑥 (𝑡) − 1)𝑥(𝑡) + 𝜆𝛼(𝑡) (𝑒𝑦 (𝑡) − 1)𝑦(𝑡)
𝑥2 (𝑡) + 𝑦2 (𝑡) ≥ 𝜆

2
𝛽(𝑡)𝑥2 (𝑡) + 𝛼(𝑡)𝑦2 (𝑡)

𝑥2 (𝑡) + 𝑦2 (𝑡) ≥ 𝜆𝜁
2
.

(2.3)
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Hence, owing to (2.3),

rot𝜚0 [(𝑥0, 𝑦0); [0, 𝑛𝑇]] =
𝜃 (𝑛𝑇) − 𝜃 (0)

2𝜋
=
1
2𝜋

∫ 𝑛𝑇

0
𝜃 ′(𝑠)𝑑𝑠 ≥ 𝑛

2𝜋

∫ 𝜏+𝛿

𝜏−𝛿
𝜃 ′(𝑠)𝑑𝑠 ≥ 𝑛𝜆𝜁2𝛿

2𝜋
.

Therefore,
rot𝜚0 [(𝑥0, 𝑦0); [0, 𝑛𝑇]] > 𝜔 if 𝜆 >

𝜋𝜔

𝑛𝜁𝛿
=: 𝜆𝜔𝑛 .

On the other hand, sufficiently large solutions do not rotate. Indeed, arguing by contradiction, assume that,
for some solution (𝑥(𝑡), 𝑦(𝑡)), we have that rot𝜚 [(𝑥0, 𝑦0); [0, 𝑛𝑇]] ≥ 1. Then, e.g., it must cross entirely the third
quadrant. So, there exists [𝜏1, 𝜏2] ⊂ [0, 𝑛𝑇] such that 𝑦(𝜏1) = 0, 𝑥(𝜏1) < 0, 𝑦(𝜏2) < 0, 𝑥(𝜏2) = 0, and 𝑥(𝑡) < 0 and
𝑦(𝑡) < 0 for all 𝑡 ∈ (𝜏1, 𝜏2). Hence, for every 𝑡 ∈ [𝜏1, 𝜏2], we find that

|𝑥(𝑡) | = |𝜆
∫ 𝜏2

𝑡
𝛼(𝑠) (𝑒𝑦 (𝑠) − 1)𝑑𝑠 | ≤ 𝜆

∫ 𝑛𝑇

0
𝛼(𝑠)𝑑𝑠 = 𝜆𝑛𝐴,

|𝑦(𝑡) | = |𝜆
∫ 𝑡

𝜏1

𝛽(𝑠) (𝑒𝑥 (𝑠) − 1)𝑑𝑠 | ≤ 𝜆
∫ 𝑛𝑇

0
𝛽(𝑠)𝑑𝑠 = 𝜆𝑛𝐵.

Therefore, if there exists 𝜏0 ∈ [0, 𝑛𝑇] such that (𝑥(𝜏0), 𝑦(𝜏0)) lies in the third quadrant and 𝑥2 (𝜏0) + 𝑦2 (𝜏0) >
𝑅21 := 𝜆

2𝑛2 (𝐴2 + 𝐵2), then (𝑥(𝑡), 𝑦(𝑡)) cannot cross the entire third quadrant. Similarly, since |𝑒𝑥 (𝑡) − 1| (resp.
|𝑒𝑦 (𝑡) − 1|) are bounded in the second (resp. fourth) quadrant, there exists 𝑅2 > 0 (resp. 𝑅3 > 0) such that
𝑥2 (𝑡) + 𝑦2 (𝑡) < 𝑅22 (resp. 𝑥2 (𝑡) + 𝑦2 (𝑡) < 𝑅23) if the solution crosses the second (resp. fourth) quadrant. Therefore,
taking 𝑅 := max{𝑅1, 𝑅2, 𝑅3}, if (𝑥(𝑡), 𝑦(𝑡)) lies in the second, third or fourth quadrants and 𝑥(𝑡)2 + 𝑦(𝑡)2 > 𝑅 for
some 𝑡 ∈ [0, 𝑛𝑇], then, the solution (𝑥(𝑡), 𝑦(𝑡)) cannot cross the corresponding quadrant.
Finally, let 𝑠0 ∈ [0, 𝑛𝑇] be such that 𝑥(𝑠0) = 0 and 0 < 𝑦(𝑠0) ≤ 𝑅, and consider the maximal interval

[𝑠1, 𝑠0] ⊂ [0, 𝑠0] such that 𝑥(𝑡), 𝑦(𝑡) ≥ 0 for all 𝑡 ∈ [𝑠1, 𝑠0]. By (2.1), 𝑦(𝑡) is non-decreasing in [𝑠1, 𝑠0] and, hence,
0 ≤ 𝑦(𝑡) ≤ 𝑅 for all 𝑡 ∈ [𝑠1, 𝑠0]. Since 𝑦(𝑡) is bounded, 𝑥(𝑡) must be bounded too. Thus, there exists a constant
𝑅∗ ≥ 𝑅 > 0 such that if 𝑥2 (𝑡) + 𝑦2 (𝑡) > 𝑅2∗ for some 𝑡 ∈ [0, 𝑛𝑇] with (𝑥(𝑡), 𝑦(𝑡)) lying in the first quadrant,
then the solution (𝑥(𝑡), 𝑦(𝑡)) cannot cross neither the second, nor the third and fourth quadrants. Therefore,
𝑥(0)2 + 𝑦(0)2 = 𝜚21 > 𝑅2∗ implies that rot𝜚1 [(𝑥(0), 𝑦(0)); [0, 𝑛𝑇]] < 1 and hence, the hypothesis of Theorem 2.1
holds for every 𝜆 > 𝜆𝜔𝑛 , which ends the proof. �

Remark 2.3 Although Theorem 2.2 has a counterpart for a more general class of Hamiltonian systems of the type{
𝑥 ′ = −𝜆𝛼(𝑡) 𝑓 (𝑦),
𝑦′ = 𝜆𝛽(𝑡)𝑔(𝑥),

where 𝑓 and 𝑔 satisfy certain boundedness and sign conditions (see [8, Sec. 2]), in this note we are focusing our
attention into the predator-prey model (1.1). Thus, we restrict ourselves to consider 𝑓 and 𝑔 as they appear in (2.1).

3. The degenerate case
To analyze the problem (1.1) under the condition (1.3), we suppose that either

supp𝛼 ⊂ [𝑡10 , 𝑡11] and supp 𝛽 ⊂ [𝑡20 , 𝑡21], (3.1)

or else
supp 𝛽 ⊂ [𝑡10 , 𝑡11] and supp𝛼 ⊂ [𝑡20 , 𝑡21], (3.2)

for some partition
0 ≤ 𝑡10 < 𝑡11 ≤ 𝑡20 < 𝑡21 ≤ 𝑇.

By (1.3), the system (1.1) can be integrated. Thus, in case (3.1) we have that, for every 𝑡 ∈ [0, 𝑇],

𝑢(𝑡) = 𝑢0𝑒 (1−𝑣0)𝜆
∫ 𝑡
0 𝛼(𝑠)𝑑𝑠 , 𝑣(𝑡) = 𝑣0𝑒 (𝑢 (𝑇 )−1)𝜆

∫ 𝑡
0 𝛽 (𝑠)𝑑𝑠 ,

whereas, in case (3.2),
𝑢(𝑡) = 𝑢0𝑒 (1−𝑣 (𝑇 ))𝜆

∫ 𝑡
0 𝛼(𝑠)𝑑𝑠 , 𝑣(𝑡) = 𝑣0𝑒 (𝑢0−1)𝜆

∫ 𝑡
0 𝛽 (𝑠)𝑑𝑠,

for all 𝑡 ∈ [0, 𝑇]. Hence, in case (3.1), the 𝑇-time Poincaré map is

(𝑢1, 𝑣1) := P1 (𝑢0, 𝑣0) := (𝑢(𝑇), 𝑣(𝑇)) = (𝑢0𝑒 (1−𝑣0)𝜆𝐴, 𝑣0𝑒 (𝑢1−1)𝜆𝐵).
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while, in case (3.2), is given through

(𝑢1, 𝑣1) := P1 (𝑢0, 𝑣0) := (𝑢(𝑇), 𝑣(𝑇)) = (𝑢0𝑒 (1−𝑣1)𝜆𝐴, 𝑣0𝑒 (𝑢0−1)𝜆𝐵).

Consequently, iterating 𝑛 times these maps, it becomes apparent that either

(𝑢𝑛, 𝑣𝑛) := P𝑛 (𝑢0, 𝑣0) = P𝑛1 (𝑢0, 𝑣0) := (𝑢(𝑛𝑇), 𝑣(𝑛𝑇)) = (𝑢𝑛−1𝑒 (1−𝑣𝑛−1)𝜆𝐴, 𝑣𝑛−1𝑒 (𝑢𝑛−1)𝜆𝐵)
= (𝑢0𝑒 (𝑛−𝑣0−𝑣1−···−𝑣𝑛−1)𝜆𝐴, 𝑣0𝑒 (𝑢1+𝑢2+···+𝑢𝑛−𝑛)𝜆𝐵)

(3.3)

under condition (3.1), or

(𝑢𝑛, 𝑣𝑛) := P𝑛 (𝑢0, 𝑣0) = P𝑛1 (𝑢0, 𝑣0) := (𝑢(𝑛𝑇), 𝑣(𝑛𝑇)) = (𝑢𝑛−1𝑒 (1−𝑣𝑛)𝜆𝐴, 𝑣𝑛−1𝑒 (𝑢𝑛−1−1)𝜆𝐵)
= (𝑢0𝑒 (𝑛−𝑣1−𝑣2−···−𝑣𝑛)𝜆𝐴, 𝑣0𝑒 (𝑢0+𝑢1+···+𝑢𝑛−1−𝑛)𝜆𝐵)

(3.4)

under condition (3.2). By the uniqueness for the underlying Cauchy problem, the 𝑛𝑇-periodic coexistence states of
(1.1) are given by the positive fixed points of P𝑛. Thus, by (3.3) and (3.4), we are driven to solve the system{

𝑛 = 𝑢0 + 𝑢1 + · · · + 𝑢𝑛−1,
𝑛 = 𝑣0 + 𝑣1 + · · · + 𝑣𝑛−1.

(3.5)

Naturally, the 𝑢′𝑖𝑠 and the 𝑣
′
𝑖𝑠 are different depending on (3.1) or (3.2). Our next result deals with the 𝑇-periodic

and 2𝑇-periodic cases.

Theorem 3.1 Assume (3.1) or (3.2). Then, (1.1) does not admit any non-trivial 𝑇-periodic coexistence state.
Moreover, (1.1) possesses exactly two non-trivial 2𝑇-periodic coexistence states if, and only if,

𝜆 >
2√
𝐴𝐵

. (3.6)

Proof First, suppose (3.1). Then, by (3.3), (𝑢1, 𝑣1) = P1 (𝑢0, 𝑣0) = (𝑢0, 𝑣0) if, and only if, 𝑣0 = 1 and 𝑢0 = 𝑢1 = 1.
Thus, (𝑢(𝑡), 𝑣(𝑡)) is a 𝑇-periodic coexistence state if, and only if, (𝑢(𝑡), 𝑣(𝑡)) = (1, 1), which is the equilibrium of
the system (1.1). Similarly,

(𝑢2, 𝑣2) = P2 (𝑢0, 𝑣0) = (𝑢0𝑒 (2−𝑣0−𝑣1)𝜆𝐴, 𝑣0𝑒 (𝑢1+𝑢2−2)𝜆𝐵) = (𝑢0, 𝑣0)

if, and only if,
2 = 𝑣0 + 𝑣1 and 2 = 𝑢1 + 𝑢2 = 𝑢0 + 𝑢1,

or, equivalently,
2 = 𝑣0 + 𝑣0𝑒 (𝑢1−1)𝜆𝐵 = 𝑣0 + 𝑣0𝑒 (1−𝑢0)𝜆𝐵 and 2 = 𝑢0 + 𝑢0𝑒 (1−𝑣0)𝜆𝐴. (3.7)

Hence,
𝑢0 =

2
1 + 𝑒 (1−𝑣0)𝜆𝐴 .

Setting 𝑥 := 𝑣0 and substituting 𝑢0 in the first equation of (3.7) it is apparent that the 2𝑇-periodic coexistence states
are given by the zeros of the map

𝜑(𝑥) = 𝑥 [𝑒 𝑒
(1−𝑥)𝜆𝐴−1
𝑒 (1−𝑥)𝜆𝐴+1 𝜆𝐵 + 1] − 2.

It is easily seen that

𝜑(𝑥) < 0 if 𝑥 ≤ 0, 𝜑(1) = 0, 𝜑(𝑥) > 0 if 𝑥 ≥ 2, and 𝜑′(1) = 2 − 𝜆2 𝐴𝐵
2
.

By (3.6), we find that 𝜑′(1) < 0. Thus, there are 0 < 𝑥1 < 1 < 𝑥2 < 2 such that 𝜑(𝑥1) = 𝜑(𝑥2) = 0, i.e., (1.1) has
two non-trivial 2𝑇-periodic coexistence states. The uniqueness follows by analyzing 𝜑′′, much like in the proof
of [7, Th. 2.1]. Similarly, one can derive the necessity of (3.6). This ends the proof when (3.1) is satisfied.
Now, assume (3.2). Then, by (3.4) and arguing as above, we find that

(𝑢1, 𝑣1) = P1 (𝑢0, 𝑣0) = (𝑢0, 𝑣0)

if, and only if, (𝑢(𝑡), 𝑣(𝑡)) = (1, 1). Moreover,

(𝑢2, 𝑣2) = P2 (𝑢0, 𝑣0) = (𝑢0𝑒 (2−𝑣1−𝑣2)𝜆𝐴, 𝑣0𝑒 (𝑢0+𝑢1−2)𝜆𝐵).
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Fig. 3 Global bifurcation diagram to 2𝑇 -periodic coexistence states.

Thus, in this occasion, the 2𝑇-periodic coexistence states of (1.1) are given by the zeros of the map

𝜓(𝑥) = 𝑥 [𝑒 1−𝑒
(𝑥−1)𝜆𝐴

1+𝑒 (𝑥−1)𝜆𝐴 𝜆𝐵 + 1] − 2.

Those with 𝑥 ≠ 1 provide us with the non-trivial 2𝑇-periodic coexistence states of (1.1). Adapting the previous
argument, it readily follows the same result as before. This concludes the proof. �

Figure 3 shows the global bifurcation diagram of 2𝑇-periodic coexistence states of (1.1) in each of the cases
(3.1), or (3.2). In both cases, they bifurcate supercritically from the equilibrium (1, 1) at 𝜆 = 2√

𝐴𝐵
.

Subsequently, we will make explicit the dependence of the functions 𝜑 and 𝜓 defined in the proof of Theorem
3.1 on the variables 𝑥 and 𝜆. Since

𝜑(𝑥, 𝜆) = 𝜓(𝑥,−𝜆),
dealing with the case when 𝜆 > 0 under condition (3.1) is the same as dealing with the case when 𝜆 < 0 under
(3.2), in the sense that the 2𝑇-periodic coexistence states of (1.1) in each of these cases must coincide. From a
biological point of view, this is rather natural. Actually, it is equivalent to inter-exchanging the role of the prey and
the predator in the model.
Our last result provides us with the 𝑛𝑇-periodic coexistence states of (1.1) when 𝑛 ≥ 2 in case (3.1). To get it,

we must impose the following condition

𝐴 = 𝐵 and 𝑢0 = 𝑣0 = 𝑥. (3.8)

Theorem 3.2 Assume (3.8). Then, for every 𝜆 > 2
𝐴 , (1.1) admits, at least, 𝑛 coexistence states with period 𝑛𝑇 if 𝑛

is even, and 𝑛 − 1 coexistence states with period 𝑛𝑇 if 𝑛 is odd.

Proof First, we set 𝐸0 (𝑥) = 1, and

𝐸𝑛 (𝑥) :=
{
𝑒 [

𝑛+1
2 −𝑥 (𝐸0 (𝑥)+𝐸2 (𝑥)+···+𝐸𝑛−1 (𝑥)) ]𝜆𝐴 if 𝑛 ∈ 2N + 1,

𝑒 [𝑥 (𝐸1 (𝑥)+𝐸3 (𝑥)+···+𝐸𝑛−1 (𝑥))−
𝑛
2 ]𝜆𝐴 if 𝑛 ∈ 2N.

(3.9)

By (3.8), it turns out that
𝜑𝑛 (𝑥) = 𝜑𝑛−1 (𝑥) − 1 + 𝐸𝑛−1 (𝑥),

where 𝜑1 (𝑥) = 𝑥 − 1, is the map whose zeros provide us with the 𝑛𝑇-periodic coexistence states of (1.1). As the
analysis of these maps is fraught with a number of serious technical difficulties, in order to obtain some information
concerning the 𝑛𝑇-periodic coexistence states of (1.1), we are driven to analyze the variational equations of these
maps at the trivial curve (𝜆, 1),

𝑝𝑛 (𝜆) := 𝜕𝜑𝑛
𝜕𝑥
(𝜆, 1).
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It is easy to prove that 𝑝𝑛 (𝜆) is a sequence of polynomials in the indeterminate 𝜆 that satisfy the recursive formula
𝑝𝑛 (𝜆) = [2 − (−1)𝑛𝐴𝜆]𝑝𝑛−1 (𝜆) − 𝑝𝑛−2 (𝜆),

where 𝑝1 (𝜆) = 1 and 𝑝2 (𝜆) = 2 − 𝐴𝜆. From this recursive formula, it can be shown that any root of 𝑝𝑛 is real and
algebraically simple. Thanks to these features, for any given 𝑟 ∈ 𝑝−1𝑛 (0), the transversality condition

𝑑𝑝𝑛 (𝑟)
𝑑𝜆

(𝑁 [𝑝𝑛 (𝑟)]) ⊕ 𝑅[𝑝𝑛 (𝑟)] = R

holds, where 𝑁 and 𝑅 stand for the null space and the rank, respectively, of the underlying one-dimensional
operators. Thus, for any given 𝑟 ∈ 𝑝−1𝑛 (0), the algebraic multiplicity of Esquinas and López-Gómez [4] equals one
at every point (𝑟, 1). So, according to Crandall and Rabinowitz [1, Th. 1.7], a local bifurcation occurs at every
point (𝑟, 1). Moreover, by the unilateral theorem of López-Gómez [6, Th. 6.4.3], the underlying subcomponents of
𝑛𝑇-periodic coexistence states are unbounded in 𝜆, in agrement with Rabinowitz [11]. As the number of positive
roots of 𝑝𝑛 (𝜆) equals 𝑛2 if 𝑛 is even and 𝑛−12 if 𝑛 is odd, the result holds. This ends the proof. �

Figure 4 shows the global bifurcation diagram provided by Theorem 3.2. It is an ideal global bifurcation
diagram as the local bifurcation directions and the eventual secondary bifurcations have not been analyzed yet.
According to [7, Th. 6.1], the local bifurcations of the 3𝑇-periodic component is transcritical, while the 4𝑇-periodic
component bifurcates subcritically from the trivial curve (𝜆, 1).

Fig. 4 Bifurcation diagram of (1.1) under condition (3.8).
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Abstract

In this work we present the analysis of a non-linear system of PDEs in relation with a solution of an inverse
problem in conductivity with application in tumor detection. This non-linear system of PDEs corresponds with
the Euler-Lagrange optimality systems associated to a non-convex vector variational problem. We study the
(quasi-)convexification of the vector variational problem and present an strategy to solve the inverse problem
numerically.

1. Introduction
We consider a bounded, regular domain Ω ⊂ R2. We are interested in the following non-linear system of PDEs

div
( |∇𝑢2 (x) |
|∇𝑢1 (x) | ∇𝑢1 (x)

)
= 0 in Ω, 𝑢1 = 𝑢1,0 on 𝜕Ω, (1.1)

div
( |∇𝑢1 (x) |
|∇𝑢2 (x) | ∇𝑢2 (x)

)
= 0 in Ω, 𝑢2 = 𝑢2,0 on 𝜕Ω, (1.2)

for a given boundary data (𝑢1,0, 𝑢2,0) ∈ 𝐻1 (Ω;R2). The above system can be interpreted, at least formally, as a
Euler-Lagrange system associated with the functional

𝐼 (u) =
∫
Ω
|∇𝑢1 (x) | |∇𝑢2 (x) | 𝑑x, u = (𝑢1, 𝑢2). (1.3)

Then, the optimal solutions of the optimization problem

Minimize in u ∈ A : 𝐼 (u) (1.4)

for a appropriated class of functions A with satisfying Dirichlet boundary condition,

u = u0 on 𝜕Ω, u0 = (𝑢1,0, 𝑢2,0),

must to be solutions of the non-linear system (1.1)-(1.2).
In both cases, the system of PDEs and the optimization problems, correspond with vector problems. There are

few references in bibliography of problems like these. Our aim is to prove the the existence of solutions of the
non-linear system (1.1)-(1.2) proving the existence of global minimizers for the problem (1.4).
The minimization problem (1.4) has not good properties in order to apply the direct method of the Calculus of

variations. The cost functional (1.3) is neither coercive, nor quasiconvex (see [7]).
We would like to remark that the solutions of previous minimization problem (1.4) (and in particular the

solutions of the non-linear system (1.1)-(1.2) ) are linked with an inverse problem in conductivity at the plane. In
this sense, for a given boundary data

𝑓 ∈ 𝐻1/2 (𝜕Ω), 𝑔 ∈ 𝐻−1/2 (𝜕Ω)

the inverse problem consists in determining the function 𝛾 : R→ R such that the unique solution of{ −div (𝛾∇𝑢) = 0 in Ω,
𝑢 = 𝑓 on 𝜕Ω, (1.5)

holds the additional Neumann boundary condition

𝛾
𝜕𝑢

𝜕𝜈
= 𝑔 on 𝜕Ω, (1.6)
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where 𝑔, represents the normal component of the outgoing electric current density on the surface, which is
prescribed.
If we consider the state equation in (1.5), assuming Ω simply connected, then there exists a function 𝑣 ∈ 𝐻1 (Ω)

such that the equation in (1.5) is equivalent to the following pointwise equality

𝛾(𝑥)∇𝑢(𝑥) = 𝑅∇𝑣(𝑥), a. e. 𝑥 ∈ Ω, (1.7)

where R is the counterclockwise 𝜋/2-rotation in the plane. From the vector equation (1.7) we can deduce three
important aspects:

• a conductivity equation for 𝑣

div
[
1

𝛾(x) ∇𝑣(x)
]
= 0 in Ω; (1.8)

• a formula for 𝛾 in terms of 𝑢 and 𝑣, namely

𝛾 =
|∇𝑣 |
|∇𝑢 | ; (1.9)

• Dirichlet boundary values around 𝜕Ω based on the Neumann condition for 𝑢

∇𝑣 · t = 𝛾∇𝑢 · n on 𝜕Ω, (1.10)

where n is the outer normal to Ω, and t = Rn is the counterclockwise tangential vector to 𝜕Ω.

Then, having in mind that 𝛾 is defined in (1.9), the state equation in (1.5) and (1.8) correspond with equations to
the non-linear system (1.1)-(1.2), and in particular 𝛾 is solution to the inverse problem associated to the additional
Neumann boundary condition given by (1.10).
This kind of inverse problem can be considered in the framework to the Calderon’s problem, consisting of

determining the conductivity inside of a medium by electrical measurements on its surface. In order to consider a
more realist problem we assume that we know the result for M measurements, i.e., we seek a function 𝛾 : R→ R
such that the unique solution of { −div (𝛾∇𝑢𝑚) = 0 in Ω,

𝑢𝑚 = 𝑢0,𝑚 on 𝜕Ω, 𝑚 = 1, . . . , 𝑀 (1.11)

holds the additional Neumann boundary condition

𝛾
𝜕𝑢𝑚
𝜕𝜈

= 𝑣0,𝑚 on 𝜕Ω, 𝑚 = 1, . . . , 𝑀 (1.12)

with 𝑣0,𝑚, 𝑚 = 1, . . . , 𝑀 .
In this case of multi-measurement, we consider the non-linear system of PDEs

u(x) : Ω ⊂ R2 → R2𝑀

becomes

div
( |∇u2 |
|∇u1 | ∇𝑢

( 𝑗)
1

)
= 0 in Ω, 𝑢

( 𝑗)
1 = 𝑢 ( 𝑗)1,0 on 𝜕Ω, (1.13)

div
( |∇u1 |
|∇u2 | ∇𝑢

( 𝑗)
2

)
= 0 in Ω, 𝑢

( 𝑗)
2 = 𝑢 ( 𝑗)2,0 on 𝜕Ω, (1.14)

for 𝑗 = 1, 2, . . . , 𝑀 , where we are using the notation

u = (u( 𝑗) ) 𝑗=1,2,...,𝑁 = (𝑢 ( 𝑗)1 , 𝑢
( 𝑗)
2 ) 𝑗=1,2,...,𝑁 ,

u( 𝑗) = (𝑢 ( 𝑗)1 , 𝑢
( 𝑗)
2 ), u𝑖 = (𝑢 ( 𝑗)𝑖 ) 𝑗=1,2,...,𝑁 , 𝑖 = 1, 2.

Note how this system is fully coupled because this time the quotient for the conductivity coefficient

𝛾 =
|∇u2 |
|∇u1 |

involves all of the components of u.
Where now, the new cost functional for the variational problem is the following
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𝐼 (u) =
∫
Ω
|∇u1 (x) | |∇u2 (x) | 𝑑x. (1.15)

In medical imaging, Calderón’s problem is known as Electrical Impedance Tomography. This is a non-invasive
technic in order to identify internal anomalies. It is known that, health or ill tissues have different electrical
properties, in this way the determination of the internal electrical conductivity of the medium from boundary
measurements have important applications in the detection of blood clots or tumor identifications (see [8] for a
review of medical applications).
The literature concerning inverse problems of these kind of problems is large (see for instance [1,6]). The main

questions concerning these inverse problems are uniqueness ( [4, 11]) , stability ( [2, 5]) and reconstruction ( [3]).
In this work we show a technic of reconstruction of the internal electrical conductivity of the medium from the
solutions of a vector variational problem.

2. On the vector variational problem
We present some important results for the vector variational problem (1.4), the case of one-single measurement. In
this case the density of the cost functional is

𝜙(F) = |F(1) | |F(2) |, F =

(
F(1)
F(2)

)
∈ M2×2. (2.1)

Having in mind (1.7) and (1.9), the state equation can written in matrix notation as

|F2 |
|F1 |F1 + RF2 = 0, F =

(
F1
F2

)
. (2.2)

We put
𝜓(F) = 𝜙(F) − detF, (2.3)

then 𝜓(F) ≥ 0 always, but 𝜓(F) = 0 precisely when (2.2) holds. In this way, we consider the modified functional

𝐼 (u) =
∫
Ω
𝜓(∇u(x)) 𝑑x. (2.4)

There are two main advantages of this functional over the old one.

1. Since we have added a null-lagrangian, − detF, to the old 𝜙, the new underlying Euler-Lagrange system
remains the same, i.e. our original system of PDEs (1.1)-(1.2).

2. If 𝑚 is the infimum of 𝐼 in (2.4), over a class of mappings respecting boundary data, then 𝑚 ≥ 0, and 𝑚 = 0
is attained, i.e. 𝑚 = 0 is a minimum, precisely when (2.2) holds for a minimizer (𝑢1, 𝑢2).

We present the following result where the explicit quasiconvexification for (1.4) is presented.

Theorem 2.1 The quasiconvexification 𝑄𝜙 of 𝜙 in (2.1) is given by the jacobian

𝑄𝜙(F) = | detF|.

From the above Theorem and by means that − detF is a null-lagrangian, it is immediate to argue that

𝑄𝜓(F) = | detF| − detF = 2 det −F. (2.5)

In particular, we can deduce the following result to identify a sufficient condition for the Dirichlet boundary
condition, in order to get that the infimum value vanishes.

Theorem 2.2 Let 𝑢𝑖,0 ∈ 𝐻1/2 (𝜕Ω), 𝑖 = 1, 2. If there is an extension of (𝑢1,0, 𝑢2,0) to some u0 ∈ 𝐻1 (Ω;R2) with
det∇u0 > 0 a.e. in Ω then 𝑚 = 0.

In order to see the prove of the above results, see [9].
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3. An inverse problem: synthetic data
We are interested in finding solutions for the non-linear system of PDEs (1.13)-(1.14), or global minimizer for
minimization problem with cost functional (1.15), in order to get solutions to the inverse problem (1.11) - (1.12).
We present a way to generate good boundary conditions on 𝜕Ω, in the sense that there extremal problem has
solution, and the minimum vanishes. The strategy is as follows

• Take any density 𝛾 ∈ 𝐿∞ (Ω), and a function 𝑢0,1 ∈ 𝐻1/2 (𝜕Ω).
• Let R𝛿 : R2 → R2 be the counterclockwise rotation in the plane of angle 𝛿. Take:

𝑢
( 𝑗)
0,1 (𝑥, 𝑦) = 𝑢0,1 (R𝛿 𝑗 (𝑥, 𝑦)) 𝛿 𝑗 = 2𝜋

𝑗 − 1
𝑀
∈ [0, 2𝜋) 𝑗 = 1, . . . , 𝑀.

where 𝛿 𝑗 represents different angles of rotation.

• Solve the problem
div(𝛾∇𝑢 ( 𝑗)1 ) = 0 in Ω, 𝑢

( 𝑗)
1 = 𝑢 ( 𝑗)0,1 on 𝜕Ω, 𝑗 = 1, · · · , 𝑀.

We consider
𝑢
( 𝑗)
0,1 = 𝑢

( 𝑗)
1 , 𝑗 = 1, · · · , 𝑀,

with u0,1 ∈ 𝐻1/2 (𝜕Ω)𝑀 . To determine u0,2 ∈ 𝐻1/2 (𝜕Ω)𝑀 , we solve problems


−div

(
1
𝛾∇𝑢

( 𝑗)
2

)
= 0 in Ω,

1
𝛾

𝜕𝑢
( 𝑗)
2
𝜕𝜈 = ∇𝑢 ( 𝑗)1 · t on 𝜕Ω,

𝑗 = 1, . . . , 𝑀, (3.1)

under the normalization condition
∫
Ω
𝑢(𝑥) 𝑑𝑥 = 0, and take

u0,2 = u2 |𝜕Ω ∈ 𝐻1/2 (𝜕Ω)𝑀

where t is the counterclockwise tangential vector to 𝜕Ω.
In this way, having in mind Theorem 2.2, we ensure that 𝛾 solves inverse problem (1.11) - (1.12) associated

with the boundary data
u0 = (u0,1, u0,2) ∈ 𝐻1/2 (𝜕Ω;R2)𝑀 , (3.2)

4. Numerical experiments
We would like to present some numerical evidences to the resolution of inverse problems. In this way we have
considered different strategies, theNewton-Raphson scheme for the non-linear system, we have also examined a fixed
point algorithm, and a gradient descent algorithms (conjugated gradient or optimal step) in order to approximate
optimal solutions for the variational problem. We decided to use the Newton-Raphson scheme becasue it is quickier.
The algorithm is the following

1. We choose an admissible initialization u0 ∈ 𝐻1 (Ω;R2)𝑀 .

2. Iterate until convergence
(
𝐼 (u𝑘 ) < 𝑡𝑜𝑙 or | |w𝑘 | |∞| |u𝑘 | |∞ < 𝑡𝑜𝑙

)
:

• take w𝑘 ∈ 𝐻10 (Ω;R2)𝑀 such that

𝐷L(u𝑘 , v) w𝑘 = L(u𝑘 , v),

for every v ∈ 𝐻10 (Ω;R2)𝑀 , where L(u𝑘 , v) and 𝐷L(u, v) w corresponds with variational formulation
of the system of PDEs (1.13)-(1.14) and its derivative, respectively.

• update
u𝑘+1 = u𝑘 − w𝑘 .
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Fig. 1 Example 1 – The target 𝛾 (top left) and the computed 𝛾 for different numbers of measurements: N=1 (top right), N=3
(bottom left) using initialization 1 and , M=3 using initialization 2 (bottom right).

In our simulations the domain of reference is

Ω = {(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 < 1},
and, we consider

𝛾 = 𝛽𝜒𝐷 + 𝛼(1 − 𝜒𝐷), with 𝐷 = {(𝑥, 𝑦) ∈ R2 : (𝑥 − 0.15)2 + (𝑦 − 0.1)2 ≤ 0.1}. (4.1)

with 𝛼 = 5 and 𝛽 = 10. In order to generate synthetic data we choose

𝑢0,1 (𝑥, 𝑦) = 10𝑥 + 5 sin 𝑦, (4.2)

We have implemented the numerical simulation using the free software FreeFemm++ v 3.56.
The non-linear character of the problem, and the local character for convergence of Newton-Raphson algorithm

suggest an importan aspect to choose the initialization. We consider two different ways to built it. In all our
experiments we have considered the value of tolerance for convergence tol=10−6.
In Figure 1 we can observer at top right the value of 𝛾 used to build data, this is the numerical target to

reconstruction. The pictures at to right and bottom left represent the computed 𝛾 in the case of one single
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experiment or 3 experiments for an kind of initialization. The picture at bottom right corresponds with the
computed 𝛾 for the case of three experiments and using another initialization. We have a numerical evidence of the
lack of uniqueness of solution of the inverse problem for a finite number of measurements.
In order to see more numerical experiments, and a more extensive analysis for the numerical problem you can

see [9].
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Abstract

In this talk, we consider fractional differential equations (in the sense of Caputo) on the sequence Lebesgue
spaces ℓ𝑝 (Z) with 𝑝 ≥ 1. The associated operator to the Cauchy problem is defined by convolutionwith a sequence
of compact support. We use techniques from Functional Analysis to calculate the solution of the problem. In
the case of fractional powers of operators, we give explicitly the solution of the problem. As a consequence, we
obtain new integral formulae for certain special functions.

1. Introduction
Of concern in this paper is the following semi discrete Cauchy problem{

𝜕𝑡𝑢(𝑛, 𝑡) = 𝐵𝑢(𝑛, 𝑡) + 𝑔(𝑛, 𝑡), 𝑛 ∈ Z, 𝑡 > 0,
𝑢(𝑛, 0) = 𝜑(𝑛), 𝑛 ∈ Z, (1.1)

where 𝐵 has the form of a convolution operator in the discrete variable, i.e.

𝐵𝑢(𝑛, 𝑡) =
∑︁
𝑗∈Z

𝑏(𝑛 − 𝑗)𝑢( 𝑗 , 𝑡), (1.2)

and 𝑏 belong to the Banach algebra ℓ1 (Z). A typical example is one dimensional discrete Laplacian, Δ𝑑 , which
can be obtained taking 𝑏 = 𝛿−1 − 2𝛿0 + 𝛿1, where 𝛿𝑖 ( 𝑗) denotes the Kronecker delta (or discrete Dirac measure).
In such case, equation (1.1) corresponds to the non-homogeneous semi discrete diffusion equation (also known as
the semi discrete heat equation or the lattice diffusion equation). The analytical study of such kind of equations
have received an increasing interest in the last decade, mainly due to their many applications in diverse areas of
knowledge. For instance, in probability theory, the value 𝑢(𝑛, 𝑡) of (1.1) with 𝐵 = Δ𝑑 , describes the probability
that a continuous-time symmetric random walk on Z visits a point 𝑛 at time 𝑡; cf. [6, Section 4]. In chemistry, (1.1)
describes the flow of a chemical in an infinite system of tanks arranged in a row, where each two neighbors are
connected by pipes [10, Section 3] and in transport theory, (1.1) describes the dynamics of an infinite chain of cars,
each of them being coupled to its two neighbours. The value 𝑢(𝑛; 𝑡) is the displacement of car 𝑛 at time 𝑡 from its
equilibrium position; cf. [5, Example 1]. From an analytical point of view, quite recently Slavik [11] studied the
asymptotic behavior of solutions of (1.1) when 𝐵 = Δ𝑑 , showing that a bounded solution approaches the average
of the initial values if the average exists. Note that choosing 𝑏 = 𝛿−1 − 𝛿0 in (1.2) we obtain the forward difference
operator 𝐵 = Δ and hence (1.2) corresponds to the semi discrete transport equation, studied recently by Abadias
et.al. [1].
Interestingly, the references [4] and [9] studied fundamental solutions of (1.1) and the second order semi discrete

equation {
𝜕𝑡𝑡𝑢(𝑛, 𝑡) = 𝐵𝑢(𝑛, 𝑡) + 𝑔(𝑛, 𝑡), 𝑛 ∈ Z, 𝑡 > 0,
𝑢(𝑛, 0) = 𝜑(𝑛), 𝑢𝑡 (𝑛, 0) = 𝜙(𝑛), 𝑛 ∈ Z, (1.3)

when 𝐵 = −(−Δ𝑑)𝛼 is the discrete fractional Laplacian. Particularly, in [9], the authors combine operator theory
techniques with the properties of the Bessel functions to develop a theory of analytic semigroups and cosine
operators generated by Δ𝑑 and −(−Δ𝑑)𝛼 . Also note that the fractional forward difference operator 𝐵 = −(−Δ)𝛼
has been studied in [1] where maximum and comparison principles in the context of harmonic analysis are proved.
However, to the best of our knowledge, to date there is no attempt to investigate in an unified way fundamental

solutions of the general equation (1.1).
Our key observation in this paper concerning this issue is that the discrete fractional Laplacian can be obtained

from (1.2) by allowing fractional powers of 𝑏 as element of the Banach algebra ℓ1 (Z). This original approach, that
we provide in this paper, allow us to obtain new insights by introducing a completely new method to analyze both
qualitative behavior and fundamental solutions of (1.1) in an unified way.
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More generally, and in order to provide simultaneously in our analysis the sub diffusive and super difussive
cases associated to the equations (1.1) and (1.3), in this paper we include the representation of the fundamental
solutions for the following semi discrete equations:{

D
𝛽
𝑡 𝑢(𝑛, 𝑡) = 𝐵𝑢(𝑛, 𝑡) + 𝑔(𝑛, 𝑡), 𝑛 ∈ Z, 𝑡 > 0,

𝑢(𝑛, 0) = 𝜑(𝑛), 𝑛 ∈ Z, (1.4)

in case 0 < 𝛽 ≤ 1 and {
D
𝛽
𝑡 𝑢(𝑛, 𝑡) = 𝐵𝑢(𝑛, 𝑡) + 𝑔(𝑛, 𝑡), 𝑛 ∈ Z, 𝑡 > 0,

𝑢(𝑛, 0) = 𝜑(𝑛), 𝑢𝑡 (𝑛, 0) = 𝜙(𝑛), 𝑛 ∈ Z, (1.5)

in case 1 < 𝛽 ≤ 2. In both cases, 𝐵 is the convolution operator 𝐵 𝑓 (𝑛) := (𝑏 ∗ 𝑓 ) (𝑛) defined on ℓ𝑝 (Z), 𝑝 ∈ [1,∞],
𝑏 ∈ ℓ1 (Z) and 𝛽 ∈ (0, 2] is a real number. The symbol D𝛽𝑡 denotes the Caputo fractional derivative of order 𝛽 > 0.
These results have been jointly obtained with Jorge González-Camus and Carlos Lizama from the Universidad de
Santiago de Chile to appear in Advances in Difference Equations (2021).

2. A Banach algebra framework
Given 1 ≤ 𝑝 ≤ ∞, we recall that the Banach spaces (ℓ𝑝 (Z), ‖ ‖ 𝑝) are formed by bi-infinite sequences 𝑓 =
( 𝑓 (𝑛))𝑛∈Z ⊂ C such that

‖ 𝑓 ‖ 𝑝 : =

( ∞∑︁
𝑛=−∞

| 𝑓 (𝑛) |𝑝
) 1
𝑝

< ∞, 1 ≤ 𝑝 < ∞;

‖ 𝑓 ‖∞ : = sup
𝑛∈Z
| 𝑓 (𝑛) | < ∞.

We remind the natural embeddings ℓ1 (Z) ↩→ ℓ𝑝 (Z) ↩→ ℓ∞ (Z), for 1 ≤ 𝑝 ≤ ∞ and that the dual of ℓ𝑝 (Z) is
identified with ℓ𝑝′ (Z) where 1𝑝 + 1𝑝′ = 1 for 1 < 𝑝 < ∞ and 𝑝 = 1 if 𝑝′ = ∞.
In the case that 𝑓 ∈ ℓ1 (Z) and 𝑔 ∈ ℓ𝑝 (Z), we define

( 𝑓 ∗ 𝑔) (𝑛) :=
∞∑︁
𝑗=−∞

𝑓 (𝑛 − 𝑗)𝑔( 𝑗), 𝑛 ∈ Z.

From Young’s Inequality, it follows that 𝑓 ∗ 𝑔 ∈ ℓ𝑝 (Z). Note that (ℓ1 (Z), ∗) is a commutative Banach algebra with
identity, that we denote 𝛿0 := 𝜒{0}. We observe that 𝛿1 ∗ 𝛿1 = 𝛿2 and, in general, 𝛿𝑛 ∗ 𝛿𝑚 = 𝛿𝑛+𝑚 for 𝑛, 𝑚 ∈ Z.
The Gelfand transform associated to (ℓ1 (Z), ∗), is the discrete Fourier transform F : ℓ1 (Z) → 𝐶 (T) (or Fourier

series) where

𝑓 (𝜃) := F ( 𝑓 ) (𝑒𝑖 𝜃 ) :=
∑︁
𝑛∈Z

𝑓 (𝑛)𝑒𝑖𝑛𝜃 , 𝜃 ∈ T.

We recall that the spectrum of 𝑓 , denoted as 𝜎ℓ1 (Z) ( 𝑓 ), is defined by

𝜎ℓ1 (Z) ( 𝑓 ) := {𝜆 ∈ C : (𝜆𝛿0 − 𝑓 )−1 ∈ ℓ1 (Z)}.

In what follows, we consider the general theory of commutative Banach algebra as framework. We collect the
results that will be of our interest in the following theorem.

Theorem 2.1 The following properties hold:

(i) The spectrum Spec(ℓ1 (Z)) is compact and, consequently, homeomorphic to the unit complex circle, T :=
{𝑧 ∈ C : |𝑧 | = 1}.

(ii) 𝜎ℓ1 (Z) ( 𝑓 ) ⊂ {𝑧 ∈ C ; |𝑧 | < ‖ 𝑓 ‖1} and

(𝜆𝛿0 − 𝑓 )−1 =
∑︁
𝑛≥0

𝜆−𝑛−1 𝑓 𝑛, ‖ 𝑓 ‖1 < |𝜆 |. (2.1)

(iii) The algebra ℓ1 (Z) is a semi simple regular Banach algebra and the discrete Fourier transform F is injective.
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(iv) F ( 𝑓 ∗ 𝑔) = F ( 𝑓 )F (𝑔) and
𝜎ℓ1 (Z) ( 𝑓 ) = F ( 𝑓 ) (T), 𝑓 ∈ ℓ1 (Z). (2.2)

We observe that the range of the Gelfand transform is the Wiener algebra A(T), the pointwise algebra of
absolutely convergent Fourier series, i.e., 𝐹 (𝑒𝑖 𝜃 ) =

∑︁
𝑛∈Z

𝑓 (𝑛)𝑒𝑖 𝜃𝑛, (𝜃 ∈ T) with 𝑓 ∈ ℓ1 (Z). For 𝐹 ∈ A(T), we also

write 𝐹 (𝑧) =
∑︁
𝑛∈Z

𝑓 (𝑛)𝑧𝑛, for |𝑧 | ≤ 1.
The inverse discrete Fourier transform is given by the following expressions

F −1 (𝐹) (𝑛) = 1
2𝜋

∫ 𝜋

−𝜋
𝐹 (𝑒𝑖 𝜃 )𝑒−𝑖𝑛𝜃 𝑑𝜃 = 1

2𝜋𝑖

∫
|𝑧 |=1

𝐹 (𝑧) 𝑑𝑧
𝑧𝑛+1

, 𝑛 ∈ Z,

for 𝐹 ∈ A(T) (and for other functions in larger sets).
The classical formulation of Wiener’s lemma characterizes functions 𝐹 ∈ A(T) which are invertible in A(T)

as follows:
Given 𝐹 ∈ A(T) where 𝐹 (𝑒𝑖 𝜃 ) =

∑︁
𝑛∈Z

𝑓 (𝑛)𝑒𝑖 𝜃𝑛 for 𝜃 ∈ T. Then 𝐹 (𝑒𝑖 𝜃 ) ≠ 0 for all 𝜃 ∈ T if and only if

1/𝐹 ∈ A(T), i.e., (1/𝐹) (𝑒𝑖 𝜃 ) =
∑︁
𝑛∈Z

𝑔(𝑛)𝑒𝑖 𝜃𝑛 with (𝑔(𝑛))𝑛∈Z ∈ ℓ1 (Z); in this case 𝑓 ∗ 𝑔 = 𝛿0. ( [7, Theorem 5.5]).

Definition 2.2 Given 𝛼, 𝛽 > 0, we define the vector-valued Mittag-Leffler function, 𝐸𝛼,𝛽 : ℓ1 (Z) → ℓ1 (Z), by

𝐸𝛼,𝛽 (𝑎) :=
∞∑︁
𝑗=0

𝑎 𝑗

Γ(𝛼 𝑗 + 𝛽) , 𝑎 ∈ ℓ1 (Z).

Note that

𝐸1,1 (𝑎) =
∞∑︁
𝑗=0

𝑎 𝑗

𝑗!
= 𝑒𝑎; 𝐸2,1 (𝑎) =

∞∑︁
𝑗=0

𝑎 𝑗

(2 𝑗)! .

The set exp(ℓ1 (Z)) := {𝑒𝑎 ; 𝑎 ∈ ℓ1 (Z)} is the connected component of 𝛿0 in the set of regular elements in ℓ1 (Z)
( [8, Theorem 6.4.1]).
We follow the usual terminology in semigroup theory: the element 𝑎 is called the generator of the entire group

(𝑒𝑧𝑎)𝑧∈C; a cosine function, Cos(𝑧, 𝑎) := 𝐸2,1 (𝑧2𝑎), and a sine function, Sin(𝑧, 𝑎) := 𝑧𝐸2,2 (𝑧2𝑎).We have

Sin(𝑧, 𝑎) =
∫
[0,𝑧 ]
Cos(𝑠, 𝑎)𝑑𝑠, 𝑧 ∈ C,

for 𝑎 ∈ ℓ1 (Z), see [2, Sections 3.1 and 3.14]. Moreover, the Laplace transform of a entire group or a cosine function
is connected with the resolvent of its generator as follows:

(𝜆 − 𝑎)−1 =
∫ ∞

0
𝑒−𝜆𝑠𝑒𝑎𝑠𝑑𝑠, 𝜆 > ‖𝑎‖1,

𝜆(𝜆2 − 𝑎)−1 =
∫ ∞

0
𝑒−𝜆𝑠Cos(𝑠, 𝑎)𝑑𝑠, 𝜆 >

√︁
‖𝑎‖1, (2.3)

see, for example, [2, p. 213].

Example 2.3 For 𝛼, 𝛽 > 0, we have that

𝐸𝛼,𝛽 (𝑧𝛿0) = 𝐸𝛼,𝛽 (𝑧)𝛿0; 𝐸𝛼,𝛽 (𝑧𝛿1) =
∞∑︁
𝑗=0

𝑧 𝑗𝛿 𝑗

Γ(𝛼 𝑗 + 𝛽) .

In particular, 𝑒𝑧 𝛿1 =
∞∑︁
𝑗=0

𝑧 𝑗𝛿 𝑗

𝑗!
and Cos(𝑧, 𝛿1) =

∞∑︁
𝑗=0

𝑧2 𝑗𝛿 𝑗

(2 𝑗)! are generated by 𝛿1.

In the next proposition, we collect some basic properties of these vector-valued Mittag-Leffler functions. As
usual, we consider Bochner vector-valued integration in the Banach space ℓ1 (Z), see for example [12, Section 1.2].
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Proposition 2.4 For 𝛼, 𝛽 > 0 and 𝑎 ∈ ℓ1 (Z), we have that
(i) ‖𝐸𝛼,𝛽 (𝑎)‖1 ≤ 𝐸𝛼,𝛽 (‖𝑎‖1).
(ii) F (𝐸𝛼,𝛽 (𝑎)) = 𝐸𝛼,𝛽 (F (𝑎)); in particular F (𝑒𝑎𝑧) = 𝑒𝑧F(𝑎) and F (Cos(𝑧, 𝑎)) = Cos(F (𝑧), 𝑎) for 𝑧 ∈ C.
(iii) 𝜎ℓ1 (Z) (𝐸𝛼,𝛽 (𝑎)) = 𝐸𝛼,𝛽 (𝜎ℓ1 (Z) (𝑎)).
(iv) The following Laplace transform formula holds∫ ∞

0
𝑒−𝜆𝑡 𝑡𝛼𝑘+𝛽−1𝐸 (𝑘)𝛼,𝛽 (𝑡𝛼𝑎)𝑑𝑡 = 𝑘!𝜆𝛼−𝛽

(
(𝜆𝛼 − 𝑎)−1

) (𝑘+1)
, <(𝜆) > ‖𝑎‖1/𝛼1 , (2.4)

for 𝑘 ∈ N ∪ {0}.

(v) For 0 < 𝛾 < 1, 𝐸𝛾,1 (𝑎) =
∫ ∞

0
Φ𝛾 (𝑡)𝑒𝑡𝑎𝑑𝑡.

A nice application of the classical Wiener’s lemma is the invariance of spectrum for convolution operators
defined on ℓ𝑝 (Z) for 1 ≤ 𝑝 ≤ ∞. This issue is contained in the following theorem that is the key abstract result in
this paper.

Theorem 2.5 Given 𝑎 ∈ ℓ1 (Z), we define

𝐴(𝑏) (𝑛) := (𝑎 ∗ 𝑏) (𝑛), 𝑛 ∈ Z, 𝑏 ∈ ℓ𝑝 (Z), (2.5)

then 𝐴 ∈ B(ℓ𝑝 (Z)) for all 1 ≤ 𝑝 ≤ ∞. Moreover, ‖𝐴‖ = ‖𝑎‖1 and, for all 1 ≤ 𝑝 ≤ ∞, the following identities
hold:

𝜎B(ℓ𝑝 (Z)) (𝐴) = 𝜎ℓ1 (Z) (𝑎) = F (𝑎) (T). (2.6)

For all 𝑎 ∈ ℓ1 (Z), we have that 𝑒𝑧𝑎 is an entire group in ℓ𝑝 (Z) with generator 𝑎 and for all 1 ≤ 𝑝 ≤ ∞, the
following identities hold:

𝜎B(ℓ𝑝 (Z)) (𝑒𝑧𝑎) = 𝜎ℓ1 (Z) (𝑒𝑧𝑎) = 𝑒𝑧F(𝑎) (T) , 𝑧 ∈ C. (2.7)

The element 𝑎 in the above theorem is also called the symbol of the operator 𝐴.

3. Some finite difference operators in ℓ1 (Z)
An important case of finite difference operators are given by sequences in the set

𝑐𝑐 (Z) := {𝑎 ∈ ℓ1 (Z) : ∃ 𝑚 ∈ Z+ : 𝑎(𝑛) = 0,∀ |𝑛| > 𝑚)}.

In such case, the discrete Fourier Transform of 𝑎 ∈ 𝑐𝑐 (Z) is a trigonometric polynomial

F (𝑎) (𝑒𝑖 𝜃 ) =
𝑚∑︁
𝑗=−𝑚

𝑎( 𝑗)𝑒𝑖 𝑗 𝜃 . (3.1)

It is interesting to observe that if
∑𝑚
𝑗=−𝑚 𝑎( 𝑗) = 0 then 0 ∈ 𝜎ℓ1 (Z) (𝑎). This follows immediately from (2.6).

Definition 3.1 For 𝑓 ∈ ℓ𝑝 (Z), with 1 ≤ 𝑝 ≤ ∞, we define the following operators
1. −Δ 𝑓 (𝑛) := 𝑓 (𝑛) − 𝑓 (𝑛 + 1) = ((𝛿0 − 𝛿−1) ∗ 𝑓 ) (𝑛);
2. ∇ 𝑓 (𝑛) := 𝑓 (𝑛) − 𝑓 (𝑛 − 1) = ((𝛿0 − 𝛿1) ∗ 𝑓 ) (𝑛);
3. Δ𝑑 𝑓 (𝑛) := 𝑓 (𝑛 + 1) − 2 𝑓 (𝑛) + 𝑓 (𝑛 − 1) = ((𝛿−1 − 2𝛿0 + 𝛿1) ∗ 𝑓 ) (𝑛);
4. Δ𝑑𝑑 𝑓 (𝑛) := 𝑓 (𝑛 + 2) − 2 𝑓 (𝑛) + 𝑓 (𝑛 − 2) = ((𝛿−2 − 2𝛿0 + 𝛿2) ∗ 𝑓 ) (𝑛);

for 𝑛 ∈ Z.
We remark that when considering the above defined operators in the context of numerical analysis, the operators

−Δ and∇ are related to Euler scheme of approximation, and the operatorΔ𝑑 corresponds to the second-order central
difference approximation for the second order derivative. The operator Δ𝑑𝑑 appears in Bateman’s paper [3, Page
506] in connection with the equations of Born and Karman on crystal lattices in vibration.
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3.1. The operator −Δ
The forward difference operator Δ 𝑓 (𝑛) := 𝑓 (𝑛 + 1) − 𝑓 (𝑛) is a classical operator used in approximation theory
and in the theory of difference equations. Considered as an operator from ℓ𝑝 (Z) to ℓ𝑝 (Z), our main result read as
follows.

Theorem 3.2 The operator −Δ 𝑓 = 𝑎 ∗ 𝑓 where 𝑎 := 𝛿0 − 𝛿−1 enjoys the following properties

1. The norm is given by ‖Δ‖ = 2;
2. The Fourier transform is F (𝑎) (𝑧) = 1 − 𝑧, |𝑧 | = 1;
3. For all 1 ≤ 𝑝 ≤ ∞ the spectrum is given by 𝜎B(ℓ𝑝 (Z)) (−Δ) = {𝑧 ∈ T : |𝑧 − 1| = 1};
4. For |𝜆 + 1| > 1,

(𝜆𝛿0 + 𝑎)−1 =
∑︁
𝑗≥0

𝛿− 𝑗
(1 + 𝜆) 𝑗+1 .

5. The associated group is 𝑒−𝑧𝑎 (𝑛) = 𝑒−𝑧 𝑧−𝑛

(−𝑛)! 𝜒−N0 (𝑛), 𝑧 ∈ C, 𝑛 ∈ Z and its generator is −𝑎.

6. The norm of the group is given by ‖𝑒−𝑡𝑎‖1 = 1, 𝑡 > 0;

7. The associated cosine function is Cos(𝑧,−𝑎) (𝑛) =
√
𝜋

(−𝑛)!
( 𝑧
2
)−𝑛+ 12 𝐽−𝑛− 12 (𝑧)𝜒−N0 (𝑛) where 𝑧 ∈ C, 𝑛 ∈ Z.

Similar results are proved for operator ∇ , Δ𝑑 and Δ𝑑𝑑 .

4. Fundamental solution for semidiscrete evolution equations
Given 0 < 𝛽 ≤ 1, we first consider the equation{

D
𝛽
𝑡 𝑢(𝑛, 𝑡) = 𝐵𝑢(𝑛, 𝑡) + 𝑔(𝑛, 𝑡), 𝑛 ∈ Z, 𝑡 > 0,

𝑢(𝑛, 0) = 𝜑(𝑛), 𝑛 ∈ Z. (4.1)

We recall that function 𝐸𝛼,𝛽 (𝑏) (with 𝑏 ∈ ℓ1 (Z)) is the vector-valued Mittag-Leffler function given in Definition
2.2. The main result is the following Theorem.

Theorem 4.1 Let 𝜑, 𝜙 ∈ ℓ𝑝 (Z), and 𝑔 : Z × R+ → C be such that, for each 𝑡 ∈ R+, 𝑔(·, 𝑡) ∈ ℓ𝑝 (Z) and
sup
𝑠∈[0,𝑡 ]

| |𝑔(·, 𝑠) | |𝑝 < ∞ with 1 ≤ 𝑝 ≤ ∞.

(i) For 0 < 𝛽 < 1, the function

𝑢(𝑛, 𝑡) =(𝐸𝛽,1 (𝑡𝛽𝑏) ∗ 𝜑) (𝑛)

+
∫ 𝑡

0
(𝑡 − 𝑠)𝛽−1

(
𝐸𝛽,𝛽 ((𝑡 − 𝑠)𝛽𝑏) ∗ 𝑔(·, 𝑠)

)
(𝑛)𝑑𝑠, 𝑛 ∈ Z,

is the unique solution of the initial value problem (4.1). Moreover, 𝑢(·, 𝑡) belong to ℓ𝑝 (Z) for 𝑡 > 0.
(ii) For 1 < 𝛽 < 2, the function

𝑢(𝑛, 𝑡) =(𝐸𝛽,1 (𝑡𝛽𝑏) ∗ 𝜑) (𝑛) + 𝑡 (𝐸𝛽,2 (𝑡𝛽𝑏) ∗ 𝜙) (𝑛)

+
∫ 𝑡

0
(𝑡 − 𝑠)𝛽−1

(
𝐸𝛽,𝛽 ((𝑡 − 𝑠)𝛽𝑏) ∗ 𝑔(·, 𝑠)

)
(𝑛)𝑑𝑠, 𝑛 ∈ Z,

is the unique solution of the initial value problem (1.5). Moreover, 𝑢(·, 𝑡) belong to ℓ𝑝 (Z) for 𝑡 > 0.
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5. Applications to special functions

Take 𝑎 = 𝛿−1 − 𝛿0 or 𝑎 = 𝛿1 − 𝛿0.
(i) For 0 < 𝛽 < 1, 𝑡 ∈ C and 𝑛 ∈ N0, we have

𝐸 (𝑛)𝛽,1 (𝑡) =
∞∑︁
𝑗=0

( 𝑗 + 𝑛)!
𝑗!

𝑡 𝑗

Γ(𝛽( 𝑗 + 𝑛) + 1) =
∫ ∞

0
Φ𝛽 (𝜏)𝑒𝜏𝑡𝜏𝑛𝑑𝜏.

(ii) For 1 < 𝛽 < 2, 𝑡 ∈ C and 𝑛 ∈ N0, we have

(2𝑡)𝑛− 12
∞∑︁
𝑗=0

(−1) 𝑗 ( 𝑗 + 𝑛)!
𝑗!

𝑡2 𝑗

Γ(𝛽( 𝑗 + 𝑛) + 1) =
√
𝜋

2

∫ ∞

0
Φ 𝛽
2
(𝜏)𝜏𝑛+ 12 𝐽𝑛− 12 (𝜏𝑡) 𝑑𝜏. (5.1)

Now take 𝑎 = 𝛿−1 − 2𝛿0 + 𝛿1 or 𝑎 = 𝛿−2 − 2𝛿0 + 𝛿2.
(i) For 0 < 𝛽 < 1, 𝑡 ∈ C and 𝑛 ∈ N0, we have

∞∑︁
𝑗=0
(−1) 𝑗

(
2( 𝑗 + 𝑛)

𝑗

)
𝑡 𝑗+𝑛

Γ(𝛽( 𝑗 + 𝑛) + 1) =
∫ ∞

0
Φ𝛽 (𝜏)𝑒−2𝜏𝑡 𝐼𝑛 (2𝜏𝑡)𝑑𝜏. (5.2)

In particular, when 𝛽 = 1
3 , we get the integral formula for Airy function,

∞∑︁
𝑗=0
(−1) 𝑗

(
2( 𝑗 + 𝑛)

𝑗

)
𝑡 𝑗+𝑛

Γ( 𝑗+𝑛3 + 1)
=

∫ ∞

0
3
2
3 𝐴𝑖

(
𝜏

3 13

)
𝑒−2𝜏𝑡 𝐼𝑛 (2𝜏𝑡)𝑑𝜏,

for 𝑡 ∈ C and 𝑛 ∈ N0.
(ii) For 1 < 𝛽 < 2, 𝑡 ∈ C and 𝑛 ∈ N0, we have

∞∑︁
𝑗=0
(−1) 𝑗

(
2( 𝑗 + 𝑛)

𝑗

)
𝑡2( 𝑗+𝑛)

Γ(𝛽( 𝑗 + 𝑛) + 1) =
∫ ∞

0
Φ 𝛽
2
(𝜏)𝐽2𝑛 (2𝜏𝑡)𝑑𝜏. (5.3)
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KPZ equation approximated by a nonlocal equation
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Abstract
Our main concern is the study of several aspects related with solutions of nonlocal problems whose prototype

is 


𝑢𝑡 =
∫
R𝑁

𝐽 (𝑥 − 𝑦) (𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡))G (
𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡))𝑑𝑦 in Ω × (0, 𝑇) ,

𝑢(𝑥, 0) = 𝑢0 (𝑥) in Ω ,

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡) in (R𝑁 \Ω) × (0, 𝑇) .
where we take, as the most important instance, G(𝑠) ∼ 1 + 𝜇2 𝑠

1+𝜇2𝑠2 with 𝜇 ∈ R as well as 𝑢0 ∈ 𝐿1 (Ω), 𝐽 is
a smooth symmetric function with compact support and Ω is a bounded smooth subset of R𝑁 , with nonlocal
Dirichlet boundary condition ℎ(𝑥, 𝑡).
The results deal with existence, uniqueness and comparison principle. The main motivation for dealing with

these types of equations is that, under a kernel G rescaled in a suitable way, the unique solution of the above
problem converges to a solution of the deterministic Kardar-Parisi-Zhang equation.

1. Introduction
We present some partial results from [15] concerning to the Dirichlet problem. Concretely, existence, uniqueness,
comparison principle and rescaling kernel for the following nonlinear parabolic equation with nonlocal diffusion,




𝑢𝑡 (𝑥, 𝑡) =
∫
R𝑁

𝐽 (𝑥 − 𝑦) (𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡))G (
𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡))𝑑𝑦 in Ω × (0, 𝑇) ,

𝑢(𝑥, 0) = 𝑢0 (𝑥) in Ω ,

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡) in (R𝑁 \Ω) × (0, 𝑇) ,

(1.1)

for an appropriate functions 𝐽 and G (see below (𝐽) and (G)), and its relationship with the deterministic KPZ
equation 



𝑢𝑡 − Δ𝑢 = 𝜇 |∇𝑢 |2 in Ω × (0, 𝑇) ,

𝑢(𝑥, 0) = 𝑢0 (𝑥) in Ω ,

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡) on 𝜕Ω × (0, 𝑇) ,

(1.2)

where

1. Ω is a bounded smooth subset of R𝑁 adding the boundary condition 𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡) in (R𝑁 \ Ω) × (0, 𝑇)
for ℎ sufficiently smooth;

2. 𝑇 > 0 (possibly infinite) and 𝜇 ∈ R;
3. 𝑢0 is a smooth enough datum.

1.1. Local problem
The equation 𝑢𝑡 − Δ𝑢 = 𝜇 |∇𝑢 |2 , at least for 𝜇 > 0, is known in the literature as the deterministic Kardar-Parisi-
Zhang (KPZ) equation. The KPZ equation was proposed in [13] in the physical theory of growth and roughening
of surfaces. Further developments on physical applications of the KPZ equation can be found in [5] (for a survey
on more recent aspects we refer to [19]). The deterministic case corresponds to the smoothing from an initially
rough surface to a flat one.
The Kardar–Parisi–Zhang equation has given rise to a rich mathematical theory which has had a spectacular

recent progress (see [10,11]). From the point of view of Partial Differential Equations, equations having a gradient
term with the so-called natural growth have been largely studied in the last decades by many mathematicians: in
addition to the classical reference [14] let us just mention the pioneer paper by Aronson and Serrin [3] and also the
result due to Boccardo, Murat and Puel [6].
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1.2. Nonlocal problem
Nonlocal evolution equations have been extensively studied to model diffusion processes. The prototype example
in this framework is the following one

𝑢𝑡 (𝑥, 𝑡) =
∫
R𝑁
𝐾 (𝑥, 𝑦) (𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡))𝑑𝑦, (1.3)

where the kernel 𝐾 : R𝑁 × R𝑁 → R is a nonnegative smooth function (not necessarily symmetric) satisfying∫
R𝑁
𝐾 (𝑥, 𝑦)𝑑𝑥 = 1 for any 𝑦 ∈ R𝑁 (or variations of it, see for instance [2]). If 𝑢(𝑦, 𝑡) is thought of as a density at

location 𝑦 at time 𝑡 and 𝐾 (𝑥, 𝑦) as the probability distribution of jumping from place 𝑦 to place 𝑥, then the rate at
which individuals from any other location go to the place 𝑥 is given by

∫
R𝑁
𝐾 (𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦. On the other hand,

the rate at which individuals leave the location 𝑥 to travel to all other places is −
∫
R𝑁
𝐾 (𝑦, 𝑥)𝑢(𝑥, 𝑡)𝑑𝑦 = −𝑢(𝑥, 𝑡).

In the absence of external sources this implies that the density must satisfy equation (1.3).
We are especially interested in symmetric kernels that have compact support; it means that the individuals can

jump from a place to other, but they cannot go “too far away”. On the contrary, for instance, nonlocal operators
that allow “long jumps”correspond to a different choice of kernels. It is the case of the fractional Laplacian that
involves a kernel that is singular and that does not have compact support (see, for instance [18] for a survey on this
latter class of processes and [1] for the KPZ equation in fractional framework).
In particular, we consider 𝐽 : R𝑁 → R as a nonnegative radial symmetric function such that

𝐽 ∈ C𝑐 (R𝑛), with
∫
R𝑁

𝐽 (𝑧) 𝑑𝑧 = 1.

Choosing the kernel as 𝐾 (𝑥, 𝑦) = 𝐽 (𝑥 − 𝑦), equation (1.3) changes into a diffusion equation of convolution type,
namely

𝑢𝑡 (𝑥, 𝑡) = (𝐽 ∗ 𝑢 − 𝑢) (𝑥, 𝑡) =
∫
R𝑁
𝐽 (𝑥 − 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 − 𝑢(𝑥, 𝑡), in Ω × (0, 𝑇) (1.4)

(see for instance [4, 7, 9]).

1.3. Background
One of the most important features of nonlocal equations is that they can be rescaled to approximate local ones.
In [8] (see also [16] and [17] for the same type of result in a more general case) it has been proved that, under

an appropriate rescaling kernel, solutions of (1.4) converge uniformly to solutions of heat equation. To be more
specific, solutions of

𝑢𝜀𝑡 (𝑥, 𝑡) =
𝐶

𝜀2

[∫
R𝑁
𝐽𝜀 (𝑥 − 𝑦)𝑢𝜀 (𝑦, 𝑡)𝑑𝑦 − 𝑢𝜀 (𝑥, 𝑡)

]
in Ω × (0, 𝑇) (1.5)

converge uniformly (when 𝜖 → 0 ) to solutions of
𝑣𝑡 = Δ𝑣 in Ω × (0, 𝑇) ,

where 𝐶−1 =
1
2

∫
R𝑁

𝐽 (𝑧)𝑧2𝑁 𝑑𝑧 and 𝐽𝜀 (𝑠) =
1
𝜀𝑁

𝐽
( 𝑠
𝜀

)
.

Let us mention that results in this direction, with the presence of a gradient term of convection type can be
found, for instance, in [12]: in such a case the equation is the sum of two terms, one corresponding to the diffusion
one, the other to the convection term.
In general, we consider nonlocal problems of the type

𝑢𝑡 (𝑥, 𝑡) =
∫
R𝑁
𝐽 (𝑥 − 𝑦) (𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡)) G (

𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡)) 𝑑𝑦, (1.6)

where G : R → R is a suitable continuous function. For instance, if G ≡ 1, then we recover problem (1.4). Let
us mention that the case G(𝑠) = |𝑠 |𝑝−2, with 𝑝 ≥ 2 has been treated in [2] where it is proved that solutions to the
rescaled nonlocal problem converge to solutions of the Dirichlet problem for the 𝑝–Laplacian evolution equation.
On the contrary, the kind of kernels G we consider does not have the same structure of the previous ones, since

they are bounded and do not satisfy any symmetry assumptions (neither odd nor even).
With this background, it is not surprising that problem (1.2) can be approximated by nonlocal equations. The

question is to identify what kind of nonlocal equation approximates, under rescaling, problem (1.2).
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1.4. Main results
To conclude this introduction we want to state the most relevant results of this work. In order to not enter in
technicalities, let us fix a family of kernels G𝜇 that are the easiest (not trivial) example we can consider: for 𝜇 ∈ R
let

G𝜇 (𝑠) = 1 + 𝜇𝑠

2(1 + 𝜇2𝑠2) , 𝑠 ∈ R , 𝜇 ∈ R,

and the corresponding family of nonlocal Dirichlet problems




𝑢𝑡 (𝑥, 𝑡) =
∫
R𝑁

𝐽 (𝑥 − 𝑦) (𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡)) G𝜇 (𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡)) 𝑑𝑦 in Ω × (0, 𝑇) ,
𝑢(𝑥, 0) = 𝑢0 (𝑥) in Ω ,

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡) in (R𝑁 \Ω) × (0, 𝑇) .

(1.7)

with Ω a bounded domain and 𝑢0 and ℎ smooth enough (see Definition 2.1 and Definition 2.4 for more precise
hypotheses).

After have proved the existence, uniqueness (see Theorem 2.3) and a Comparison Principle (see Theorem 2.5)
for solutions of (1.7), we face the problem of rescaled kernels.

The result we prove, in this model case, reads like this.

Let 𝑢 be the unique smooth solution to (1.2), with suitable initial data 𝑢0 and smooth enough boundary
condition 𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡) on 𝜕Ω × (0, 𝑇). Then there exists a family of functions {𝑢𝜀}, 𝜀 > 0, such that 𝑢𝜀 solves
the approximating nonlocal problem




𝑢𝜀𝑡 (𝑥, 𝑡) =
𝐶

𝜀2

∫
Ω𝐽𝜀

𝐽𝜀 (𝑥 − 𝑦)
[ (
𝑢𝜀 (𝑦, 𝑡) − 𝑢𝜀 (𝑥, 𝑡)) + 𝜇

2

(
𝑢𝜀 (𝑦, 𝑡) − 𝑢𝜀 (𝑥, 𝑡))2

1 + 𝜇2 (𝑢𝜀 (𝑦, 𝑡) − 𝑢𝜀 (𝑥, 𝑡))2
]
𝑑𝑦 in Ω × (0, 𝑇),

𝑢𝜀 (𝑥, 0) = 𝑢0 (𝑥) in Ω,

𝑢𝜀 (𝑥, 𝑡) = ℎ(𝑥, 𝑡) in (Ω𝐽𝜀\Ω) × (0, 𝑇),

with 𝐶 a suitable constant, Ω𝐽𝜀 = Ω + supp 𝐽𝜀 and the family {𝑢𝜀} satisfies

lim
𝜀→0

sup
𝑡 ∈[0,𝑇 ]

𝑢𝜀 (𝑥, 𝑡) − 𝑢(𝑥, 𝑡)
𝐿∞ (Ω)

= 0 .

2. Statement of the results
Let us consider the following equation:

𝑢𝑡 (𝑥, 𝑡) =
∫
R𝑁
𝐽 (𝑥 − 𝑦)𝑢(𝑦; 𝑥, 𝑡) G(𝑥, 𝑢(𝑦; 𝑥, 𝑡)) 𝑑𝑦, (2.1)

where 𝐽 : R𝑁 → R is a nonnegative radial symmetric function such that

𝐽 ∈ C𝑐 (R𝑛), with
∫
R𝑁

𝐽 (𝑧) 𝑑𝑧 = 1, (𝐽)

and where, here and throughout, we denote by 𝑢(𝑦; 𝑥, 𝑡) := 𝑢(𝑦, 𝑡) − 𝑢(𝑥, 𝑡) and by

𝐶 (𝐽) :=
∫
R𝑁
𝐽 (𝑧)𝑧2𝑁 𝑑𝑧 < ∞, 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑁 ).

As far as the function G is concerned, we assume that G : R𝑁 ×R→ R is a nonnegative Carathéodory function
(namely, G(·, 𝑠) is measurable for every 𝑠 ∈ R and G(𝑥, ·) is continuous for almost every 𝑥 ∈ R𝑁 ) satisfying

∃ 𝛼2 ≥ 𝛼1 > 0 : 𝛼1 ≤ G(𝑥, 𝑠)𝑠 − G(𝑥, 𝜎)𝜎
𝑠 − 𝜎 ≤ 𝛼2, ∀𝑠, 𝜎 ∈ R 𝑠 ≠ 𝜎 , and for a.e. 𝑥 ∈ R𝑁 . (G)

Let us first point out that the above condition implies that G is a positive bounded function, since taking 𝜎 = 0
in (G), we get

0 < 𝛼1 ≤ G(𝑥, 𝑠) ≤ 𝛼2, for any 𝑠 ∈ R and for a.e. 𝑥 ∈ R𝑁 .
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Moreover observe that the above condition relies to be a sort of uniform ellipticity for the operator, while (G)
corresponds to a strong monotonicity.
Anyway, let us stress again that, in contrast with all the known results about nonlocal equations of the above

type, in our case we do not require any symmetry (neither odd nor even) assumption on G.

The prototype of G we have in mind (we will come back on this example later) is the following one:

G𝜇 (𝑥, 𝑠) = 1 + 𝜇(𝑥) 𝑠
2(1 + 𝜇(𝑥)2𝑠2) , 𝑥 ∈ Ω, 𝑠 ∈ R ,

where 𝜇 : Ω → R stands for a measurable function. Notice that this function satisfies G𝜇 (𝑥, 0) = 0 and
𝑑
𝑑𝑠G𝜇 (𝑥, 0) = 𝜇(𝑥).
The first kind of results we want to stablish deals with the existence and uniqueness of solutions. More precisely,

consider the following problem in a bounded domain Ω ⊂ R𝑁 , 𝑁 ≥ 1.



𝑢𝑡 (𝑥, 𝑡) =
∫
R𝑁
𝐽 (𝑥 − 𝑦)𝑢(𝑦; 𝑥, 𝑡) G(𝑥, 𝑢(𝑦; 𝑥, 𝑡)) 𝑑𝑦, in Ω × (0, 𝑇)

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡), in (R𝑁 \Ω) × (0, 𝑇),
𝑢(𝑥, 0) = 𝑢0 (𝑥), in Ω,

with ℎ ∈ 𝐿1 ((R𝑁 \Ω) × (0,∞)) and 𝑢0 ∈ 𝐿1 (Ω).
Let us first observe that the integral expression vanishes outside of Ω𝐽 = Ω + supp(𝐽). In this way, ℎ has only

to be prescribed, in fact, in Ω𝐽 \Ω and we can rewrite the above problem as



𝑢𝑡 (𝑥, 𝑡) =
∫
Ω𝐽
𝐽 (𝑥 − 𝑦)𝑢(𝑦; 𝑥, 𝑡) G(𝑥, 𝑢(𝑦; 𝑥, 𝑡)) 𝑑𝑦, in Ω × (0, 𝑇),

𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡), in (Ω𝐽 \Ω) × (0, 𝑇),
𝑢(𝑥, 0) = 𝑢0 (𝑥), in Ω,

(𝑃)

where 𝑇 > 0 may be finite or +∞.
We give now two definitions of solution.

Definition 2.1 Assume that 𝐽 and G satisfy (𝐽) and (G), respectively.
For ℎ(𝑥, 𝑡) ∈ 𝐿1 ((Ω𝐽 \ Ω) × (0, 𝑇)) and 𝑢0 (𝑥) ∈ 𝐿1 (Ω), we define a weak solution of problem (𝑃) as a function
𝑢 ∈ C([0, 𝑇); 𝐿1 (Ω)) such that:

𝑢(𝑥, 𝑡) =
∫ 𝑡

0

∫
Ω𝐽
𝐽 (𝑥 − 𝑦)𝑢(𝑦; 𝑥, 𝜏)G(𝑥, 𝑢(𝑦; 𝑥, 𝜏)) 𝑑𝑦 𝑑𝜏 + 𝑢0 (𝑥), for a.e. x ∈ Ω, 𝑡 ∈ (0, 𝑇), (2.2)

𝑢(𝑦, 𝑡) = ℎ(𝑦, 𝑡) for a.e. 𝑦 ∈ Ω𝐽 \Ω and 𝑡 ∈ (0, 𝑇)
lim
𝑡→0+
‖𝑢(𝑥, 𝑡) − 𝑢0 (𝑥)‖𝐿1 (Ω) = 0 .

Moreover, if ℎ(𝑥, 𝑡) ∈ C((Ω𝐽 \Ω) × (0, 𝑇)) and 𝑢0 (𝑥) ∈ C(Ω), we define a regular solution of problem (𝑃) as
a function 𝑢 ∈ C([0,∞);C(Ω)) such that:

𝑢(𝑥, 𝑡) =
∫ 𝑡

0

∫
Ω𝐽
𝐽 (𝑥 − 𝑦)𝑢(𝑦; 𝑥, 𝜏)G(𝑥, 𝑢(𝑦; 𝑥, 𝜏)) 𝑑𝑦 𝑑𝜏 + 𝑢0 (𝑥), for any x ∈ Ω, 𝑡 ∈ (0, 𝑇),

𝑢(𝑦, 𝑡) = ℎ(𝑦, 𝑡) for any 𝑦 ∈ Ω𝐽 \Ω and 𝑡 ∈ (0, 𝑇)
lim
𝑡→0+
‖𝑢(𝑥, 𝑡) − 𝑢0 (𝑥)‖C(Ω) = 0 .

Some more remarks about the meaning of weak and regular solutions are now in order.

Remark 2.2

i) Observe that, in addition to the different smoothness of the boundary condition and/or the initial datum,
the main difference lies on the prescription of data on 𝜕Ω. Indeed, for weak solutions, ℎ is prescribed in
(Ω𝐽 \Ω) × (0, 𝑇) and 𝑢0 in Ω, while for regular solutions, ℎ is prescribed in (Ω𝐽 \Ω) × (0, 𝑇) and 𝑢0 in Ω.
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ii) As already noticed in [7] (in a different context) the boundary conditions are not understood in a classical
way, i.e. it is not true that the solutions of problem (𝑃) pointwise coincide with the prescribed boundary data
ℎ(𝑥, 𝑡). This is due to the fact that the value at any point (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) depends both on the values of
𝑢 inside Ω × [0, 𝑇] and on the boundary datum ℎ(𝑥, 𝑡), since

𝑢(𝑥, 𝑡) =
∫ 𝑡

0

∫
Ω∩supp𝐽

𝐽 (𝑥 − 𝑦)𝑢(𝑦; 𝑥, 𝜏) G (
𝑥, 𝑢(𝑦, 𝜏) − 𝑢(𝑥, 𝜏)) 𝑑𝑦 𝑑𝜏

+
∫ 𝑡

0

∫
Ω𝑐∩supp𝐽

𝐽 (𝑥 − 𝑦) (ℎ(𝑦, 𝜏) − 𝑢(𝑥, 𝜏)) G (
𝑥, ℎ(𝑦, 𝜏) − 𝑢(𝑥, 𝜏)) 𝑑𝑦 𝑑𝜏 + 𝑢0 (𝑥) .

Consequently, in contrast with the local case, the equation is solved up to the boundary, depending, near 𝜕Ω,
also of the prescribed boundary condition.

iii) Let us stress that the regularity required in the definition of weak solutions is the less restrictive in order to
give sense to the formulation, and to the boundary and initial conditions. Anyway from (2.2) we deduce that
the time derivative 𝑢𝑡 (𝑥, 𝑡) of 𝑢 also belongs to C((0,∞); 𝐿1 (Ω)).
Let us also point out that the weak solution framework is the more natural one in order to prove the existence
of a solution. Indeed we only require an 𝐿1 regularity to prove the existence of a solution.
Finallywewant to underline that the nonlocal operator involved in such equation does not have the regularizing
effect that is typical of the Laplacian, but leaves unchanged the regularity of the initial and boundary data.

In this framework, the existence result is the following:

Theorem 2.3 [Existence] Consider problem (𝑃) and suppose that (𝐽) and (G) are in force. Then:
i) For any 𝑢0 ∈ 𝐿1 (Ω) and ℎ ∈ 𝐿1 ((Ω𝐽 \Ω) × (0, 𝑇)) there exists a unique weak solution;
ii) For any 𝑢0 ∈ C(Ω) and ℎ ∈ C((Ω𝐽 \ Ω) × [0, 𝑇)) there exists a unique regular solution and moreover its

time derivative belongs to C(Ω × (0, 𝑇)).
Once we have deduced the existence of a solution, one important tool is to compare two solutions, or, more

generally a sub and a supersolution. Here we recall what we mean by those concepts in our setting.

Definition 2.4 A function 𝑢 ∈ C(Ω×[0, 𝑇]) is a regular subsolution to problem (𝑃) if it satisfies 𝑢𝑡 ∈ C(Ω×(0, 𝑇))
and 



𝑢𝑡 (𝑥, 𝑡) ≤
∫
Ω𝐽
𝐽 (𝑥 − 𝑦)𝑢(𝑦; 𝑥, 𝑡) G(𝑥, 𝑢(𝑦; 𝑥, 𝑡)) 𝑑𝑦, in Ω × (0, 𝑇),

𝑢(𝑥, 𝑡) ≤ ℎ(𝑥, 𝑡), in (Ω𝐽 \Ω) × (0, 𝑇),
𝑢(𝑥, 0) ≤ 𝑢0 (𝑥), in Ω,

(2.3)

with 𝑢0 (𝑥) ∈ C(Ω) and ℎ(𝑥, 𝑡) ∈ C((Ω𝐽 \Ω) × (0, 𝑇)).
As usual, a regular supersolution is defined analogously by replacing “≤" with “≥". Clearly, a regular solution is
both a regular subsolution and a regular supersolution.

Next, we state the comparison principle:

Theorem 2.5 [Comparison Principle] Let 𝑢 and 𝑣 be a regular subsolution and a regular supersolution of
problem (𝑃), respectively, with boundary data ℎ1 (𝑥, 𝑡) and ℎ2 (𝑥, 𝑡) and initial data 𝑢0 (𝑥) and 𝑣0 (𝑥), respectively.
If ℎ1 (𝑥, 𝑡) ≤ ℎ2 (𝑥, 𝑡) in Ω𝐽 \Ω and 𝑢0 (𝑥) ≤ 𝑣0 (𝑥) in Ω, then 𝑢 ≤ 𝑣 in Ω × [0, 𝑇].

Remark 2.6 The existence, uniqueness and comparison principle are also true relaxing the hypotheses on the
kernel 𝐽 (𝑥 − 𝑦) by considering a more general one of the form 𝐾 : R𝑁 × R𝑁 → R+ with compact support in
Ω × 𝐵(0, 𝜌), with 𝜌 > 0 such that

0 < sup
𝑦∈𝐵 (0,𝜌)

𝐾 (𝑥, 𝑦) = 𝑅(𝑥) ∈ 𝐿∞ (Ω).
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The next result we want to state relates solutions of local and nonlocal equations. In order to do it, let us fix a
Hölder continuous function 𝜇 : Ω→ R with exponent 𝛼 ∈ (0, 1), and consider

G𝜇 (𝑥, 𝑠) = 1 + 𝜇(𝑥) 𝑠
2(1 + 𝜇(𝑥)2𝑠2) , (𝑥, 𝑠) ∈ Ω × R. (2.4)

The local problem we are interested in is the following




𝑣𝑡 (𝑥, 𝑡) = Δ𝑣(𝑥, 𝑡) + 𝜇(𝑥) |∇𝑣(𝑥, 𝑡) |2 in Ω × (0, 𝑇),
𝑣(𝑥, 𝑡) = ℎ0 (𝑥, 𝑡) on 𝜕Ω × (0, 𝑇),
𝑣(𝑥, 0) = 𝑣0 (𝑥) in Ω .

(2.5)

Observe that if, for the same 0 < 𝛼 < 1, we have 𝜕Ω ∈ C2+𝛼, 𝑣0 ∈ C1+𝛼 (Ω), ℎ ∈ C1+𝛼,1+𝛼/2 (𝜕Ω × [0, 𝑇])
with 𝑣0 and ℎ compatible (namely, they are globally 𝐶1+𝛼,1+𝛼/2 functions of the parabolic boundary of the
cylinder) and the equation holds up to the boundary, then Theorem 6.1 of Chapter V in [14] provides a solution
𝑣 ∈ C2+𝛼,1+𝛼/2 (Ω × (0, 𝑇]).
Such a result becomes trivial if we assume 𝜇(𝑥) = 𝜇 ∈ R, after the Hopf–Cole transformation, since solutions

of the heat equation satisfy the required regularity.

We set here the definition of classical solution and then we state our convergence result.

Definition 2.7 We say that 𝑣 ∈ C(Ω × [0, 𝑇]) ∩ C2+𝛼,1+𝛼/2 (Ω × (0, 𝑇)) is a classical solution to the Dirichlet
problem (2.5) if it satisfies both the equations and the boundary and initial conditions in a pointwise sense.

Finally, themain result of this work establishes that solutions of the deterministic equation KPZ can be uniformly
approximated by solutions of nonlocal problems by means of a suitable kernel rescaled.

Theorem 2.8 Let Ω be a C2+𝛼, with 𝛼 ∈ (0, 1), bounded domain of R𝑁 , 𝑁 ≥ 1, and let 𝑣 be a classical solution of
the quasilinear problem (2.5) with ℎ ∈ C1+𝛼 (

Ω𝐽𝜀\Ω × (0, 𝑇]
)
such that ℎ

��
𝜕Ω×(0,𝑇 ) = ℎ0 (𝑥, 𝑡) and 𝑣0 ∈ C1+𝛼 (Ω).

Assume that 𝐽 satisfies (𝐽) and that for a.e. 𝑥 in Ω, G(𝑥, 𝑠) is a C1+𝛼 function with respect to the 𝑠 variable such
that that (G) holds true. For any 𝜀 > 0, let 𝑢𝜀 denote the unique solution to




𝑢𝜀𝑡 (𝑥, 𝑡) =
𝐶 (𝑥)
𝜀2

∫
Ω𝐽𝜀

𝐽𝜀 (𝑥 − 𝑦)𝑢𝜀 (𝑦; 𝑥, 𝑡)G(𝑥, 𝑢𝜀 (𝑦; 𝑥, 𝑡))𝑑𝑦 in Ω × (0, 𝑇),
𝑢𝜀 (𝑥, 𝑡) = ℎ(𝑥, 𝑡) in (Ω𝐽𝜀 \Ω) × (0, 𝑇),
𝑢𝜀 (𝑥, 0) = 𝑣0 (𝑥) in Ω,

(2.6)

with 𝐶 (𝑥)−1 = 1
2𝐶 (𝐽)G(𝑥, 0) and 𝜇(𝑥) =

2G′𝑠 (𝑥, 0)
G(𝑥, 0) for any a.e. 𝑥 ∈ Ω.

Then we have:
lim
𝜀→0

sup
𝑡 ∈[0,𝑇 ]

𝑢𝜀 (𝑥, 𝑡) − 𝑣(𝑥, 𝑡)
𝐿∞ (Ω)

= 0 .
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Symmetry analysis and conservation laws of a family of non-linear
viscoelastic wave equations
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Abstract
This work considers a non-linear viscoelastic wave equation with non-linear damping and source terms. We

analyze the partial differential equation from the point of view of Lie symmetries. Firstly, we apply Lie’s method
to obtain new symmetries. Hence, we transform the partial differential equation into an ordinary differential
equation, by using the symmetries. Moreover, new solutions are derived from the ordinary differential equation.
Finally, by using the direct method of multipliers, we construct low-order conservation laws depending on the
form of the damping and source terms.

1. Introduction
Recently, several viscoelastic wave equations have been studied. The single viscoelastic wave equation of the form

𝑢𝑡𝑡 − Δ 𝑢 +
∫ 1

0
ℎ(𝑡 − 𝑠)Δ 𝑢(𝑥, 𝑠)𝑑𝑠 + 𝑓 (𝑢𝑡 ) = 𝑔(𝑢)

in Ω × (0,∞), where Ω is a bounded domain of R𝑁 (𝑁 ≥ 1), with initial and boundary conditions, has been
extensively studied. Many results concerning non-existence and blow-up in finite time have been proved [3–7,10].
Furthermore, the non-linear viscoelastic wave equation with damping and source terms

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑓 (𝑢𝑡 ) = 𝑔(𝑢), 𝑥 ∈ Ω, 𝑡 > 0, (1.1)

has also been very studied obtaining similar results. As in the single viscoelastic wave equation, in the absence
of the source term (𝑔 = 0), it is well-known that the damping term 𝑓 (𝑢𝑡 ) assures global existence and decay of
the solution energy for arbitrary initial data. In the same way, in the absence of the damping term, the source
term causes finite time blow-up of solutions with a large initial data (negative initial energy). Here, the interaction
between the damping term and the source term makes the problem more interesting.
The aim of this work is to obtain the Lie point symmetries of equation (1.1). Afterwards, we present the

reductions obtained from the symmetries, transforming the PDE into an ODE. Moreover, we obtain traveling wave
solutions by the comparison between equation (1.1) and similar equations studied previously [1, 2, 8]. Finally, we
give a complete classification of the conservation laws admitted by equation (1.1).

2. Lie point symmetries and reductions
It is considered a one-parameter Lie group of infinitesimal transformations in (𝑥, 𝑡, 𝑢) given by

𝑥∗ = 𝑥 + 𝜖𝜉 (𝑥, 𝑡, 𝑢) + O(𝜖2),
𝑡∗ = 𝑡 + 𝜖𝜏(𝑥, 𝑡, 𝑢) + O(𝜖2), (2.1)
𝑢∗ = 𝑢 + 𝜖𝜂(𝑥, 𝑡, 𝑢) + O(𝜖2),

where 𝜖 is the group parameter. These transformations leave invariant the set of solutions of equation (1.1). The
associated Lie algebra of infinitesimal symmetries is given by the infinitesimal generator

𝑋 = 𝜉 (𝑥, 𝑡, 𝑢)𝜕𝑥 + 𝜏(𝑥, 𝑡, 𝑢)𝜕𝑡 + 𝜂(𝑥, 𝑡, 𝑢)𝜕𝑢 . (2.2)

Each infinitesimal generator (2.2) generates a transformation obtained by solving the system of ODEs

𝜕𝑥

𝜕𝜖
= 𝜉 (𝑥, 𝑡, �̂�), 𝜕𝑡

𝜕𝜖
= 𝜏(𝑥, 𝑡, �̂�), 𝜕�̂�

𝜕𝜖
= 𝜂(𝑥, 𝑡, �̂�),

satisfying the initial conditions

𝑥 | 𝜖=0 = 𝑥, 𝑡 | 𝜖=0 = 𝑡, �̂� | 𝜖=0 = 𝑢,
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with 𝜖 the group parameter.
The symmetry variables are found by solving the invariant surface condition

Φ ≡ 𝜉 (𝑥, 𝑡, 𝑢)𝑢𝑥 + 𝜏(𝑥, 𝑡, 𝑢)𝑢𝑡 − 𝜂(𝑥, 𝑡, 𝑢) = 0.

For equation (1.1), a PDE with two independent variables, a single group reduction transforms the PDE into
ODEs, easier to solve than the original equation.
We require that the transformation (2.1) leaves invariant the set of solutions of equation (1.1). This leads to

an overdetermined linear system of equations for the infinitesimals 𝜉 (𝑥, 𝑡, 𝑢), 𝜏(𝑥, 𝑡, 𝑢) and 𝜂(𝑥, 𝑡, 𝑢), generated by
requiring that

pr(2)𝑋 (𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑓 (𝑢𝑡 ) − 𝑔(𝑢)) = 0,
where pr(2)𝑋 is the 2-th order prolongation of the vector field 𝑋 defined by

pr(2)𝑋 = 𝑋 + 𝜂𝑥 𝜕

𝜕𝑢𝑥
+ 𝜂𝑡 𝜕

𝜕𝑢𝑡
+ 𝜂𝑥𝑥 𝜕

𝜕𝑢𝑥𝑥
+ 𝜂𝑥𝑡 𝜕

𝜕𝑢𝑥𝑡
+ 𝜂𝑡𝑡 𝜕

𝜕𝑢𝑡𝑡
,

with the coefficients

𝜂𝑥 = 𝐷𝑥𝜂 − 𝑢𝑡𝐷𝑥𝜏 − 𝑢𝑥𝐷𝑥𝜉,
𝜂𝑡 = 𝐷𝑡𝜂 − 𝑢𝑡𝐷𝑡𝜏 − 𝑢𝑥𝐷𝑡𝜉,
𝜂𝑥𝑥 = 𝐷𝑥 (𝜂𝑥) − 𝑢𝑥𝑡𝐷𝑥𝜏 − 𝑢𝑥𝑥𝐷𝑥𝜉,
𝜂𝑥𝑡 = 𝐷𝑡 (𝜂𝑥) − 𝑢𝑥𝑡𝐷𝑥𝜏 − 𝑢𝑥𝑥𝐷𝑡𝜉,
𝜂𝑡𝑡 = 𝐷𝑡 (𝜂𝑡 ) − 𝑢𝑡𝑡𝐷𝑡𝜏 − 𝑢𝑥𝑡𝐷𝑡𝜉,

where 𝐷𝑥 and 𝐷𝑡 are the total derivatives of 𝑥 and 𝑡, respectively.
Applying the previous condition to equation (1.1), we get a system of equations for the infinitesimals. Then, by

solving the system, we can make a Lie symmetries classification.

Theorem 2.1 The Lie point symmetries of the non-linear viscoelastic wave equation (1.1), with 𝑓 (𝑢𝑡 ) and 𝑔(𝑢)
arbitrary functions, are generated by the operators

𝑋1 = 𝜕𝑥 , 𝑋2 = 𝜕𝑡 .

The symmetries of Theorem 2.1 yield to the one-parameter symmetry transformation groups

(𝑥, 𝑡, �̂�)1 = (𝑥 + 𝜖, 𝑡, 𝑢), space translation,
(𝑥, 𝑡, �̂�)2 = (𝑥, 𝑡 + 𝜖, 𝑢), time translation.

From the generator 𝜆𝑋1 + 𝑋2, we obtain the traveling wave reductions

𝑧 = 𝑥 − 𝜆𝑡, 𝑢(𝑥, 𝑡) = ℎ(𝑧), (2.3)

where ℎ(𝑧) satisfies
(𝜆2 − 1)ℎ′′ + 𝑓 (−𝜆 ℎ′) − 𝑔(ℎ) = 0. (2.4)

3. Traveling wave solutions
Let us consider the second-order equation (2.4)

ℎ′′ =
1

1 − 𝜆2 𝑓 (−𝜆ℎ
′) + 1
1 − 𝜆2 𝑔(ℎ). (3.1)

We can find equation (2.4) studying other mathematical models. For instance, the general solution of a
second-order ODE of the form

ℎ′′ =
1
𝜆

(
𝜇ℎ′ + 1

2
ℎ2 − 𝜔ℎ − 𝑐0

)
, (3.2)

with 𝑐0 an arbitrary constant and 𝜆, 𝜇, 𝜔 satisfying 𝜔 = 6𝜇2
25𝜆 , was obtained by Kudryashov [8]. The general solution

is given in terms of the Weierstrass elliptic function, with invariants 𝑔2 = 0 and 𝑔3 = 𝑐1,

ℎ(𝑧) = 𝜔𝑘 + 6𝛼
2

25𝛽
− exp

{
2𝑧𝛼
5𝛽

}
P

(
𝑐2 − 5𝛽

𝛼
√︁
12𝛽

exp
{
𝑧𝛼

5𝛽

}
, 0, 𝑐1

)
,
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where 𝑐1 and 𝑐2 are arbitrary constants.
The comparison between equation (3.1) and equation (3.2) shows that these equations are the same if

𝑓 (−𝜆ℎ′) = 1−𝜆2
𝜆 𝜇ℎ′,

𝑔(ℎ) = 1
𝜆

(
1
2 ℎ
2 − 𝜔ℎ − 𝑐0

)
.

Hence, the solutions of equation (3.1) and equation (3.2) are equal with the previous condition. Finally, by
undoing the change of variables (2.3), a exact solution of the non-linear viscoelastic wave equation (1.1) is

𝑢(𝑥, 𝑡) = 𝜔 + 6𝛼
2

25𝛽
− exp

{
2(𝑥 − 𝜆 𝑡)𝛼
5𝛽

}
P

(
𝑐2 − 5𝛽

𝛼
√︁
12𝛽

exp
{ (𝑥 − 𝜆 𝑡)𝛼

5𝛽

}
, 0, 𝑐1

)
. (3.3)

Fig. 1 Solution (3.3) for 𝜆 = 𝛼 = 𝛽 = 𝑐1 = 𝑐2 = 1.

Solution (3.3) is a soliton (see Fig. 1).

4. Conservation laws
A conservation law admitted by equation (1.1) satisfies the divergence identity

𝐷𝑡𝑇 + 𝐷𝑥𝑋 = (𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑓 (𝑢𝑡 ) − 𝑔(𝑢))𝑄,

called the characteristic equation for the conserved density 𝑇 and the conserved flux 𝑋 .
However, the general form for low-order multipliers 𝑄 in terms of 𝑢 and derivatives of 𝑢 is given by those

variables that can be derived to obtain a leading derivative of the equation. Clearly, 𝑢𝑡𝑡 can be obtained by the
derivative of 𝑢𝑡 with respect to 𝑡, and 𝑢𝑥𝑥 can be obtained by the derivative of 𝑢𝑥 with respect to 𝑥.
This determines

𝑄(𝑡, 𝑥, 𝑢, 𝑢𝑡 , 𝑢𝑥)
as the general form for a low-order multiplier for equation (1.1).
All low-order multipliers can be found by solving the determining equation

𝐸𝑢 ((𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑓 (𝑢𝑡 ) − 𝑔(𝑢))𝑄) = 0, (4.1)
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where 𝐸𝑢 represents the Euler operator with respect to 𝑢 [9], that is

𝐸𝑢 = 𝜕𝑢 − 𝐷𝑥𝜕𝑢𝑥 − 𝐷𝑡𝜕𝑢𝑡 + 𝐷𝑥𝐷𝑡𝜕𝑢𝑥𝑡 + 𝐷2𝑥𝜕𝑢𝑥𝑥 + · · · .
Hence, wewrite and split the determining equation (4.1) with respect to 𝑢𝑥𝑥 , 𝑢𝑡𝑡 , 𝑢𝑡 𝑥 , yielding an overdetermined

system in 𝑄, 𝑓 (𝑢𝑡 ), 𝑔(𝑢). The multipliers are found by solving the system with the same algorithmic method used
for the determining equation for infinitesimal symmetries. Thus, we obtain a complete classification of multipliers
and conservation laws.

Tab. 1Multipliers admitted by equation (1.1), with 𝑓 (𝑢𝑡 ) ≠ 0.

𝑓 (𝑢𝑡 ) 𝑔(𝑢) 𝑄

𝑓0𝑢𝑡 + 𝑓1 arbitrary 𝑢𝑥 𝑒
𝑓0𝑡

𝑓0 arbitrary 𝑢𝑥 , 𝑢𝑡
𝑓0 𝑔1 𝑒

𝑔0𝑢 − 𝑓0 𝑢𝑡 , 𝑢𝑥 , 𝑡𝑢𝑡 + 𝑥𝑢𝑥 + 2𝑔0
−𝑔0 − 1

𝑓0𝑢𝑡+ 𝑓1 𝑔0 𝑓0𝑢𝑡𝑢𝑥 + 𝑓1𝑢𝑥
− 4 𝑓0
𝑢𝑡+ 𝑓1 + 𝑓2

4 𝑓0
𝑓1
− 𝑓2 𝑢𝑡 + 𝑓1

The multipliers with 𝑓 (𝑢𝑡 ) ≠ 0 are shown in Tab. 1.

Theorem 4.1 All non-trivial low-order conservation laws admitted by the non-linear viscoelastic wave equation
(1.1), with 𝑓 (𝑢𝑡 ) ≠ 0, are given below.

1. For 𝑓 (𝑢𝑡 ) = 𝑓0, 𝑔(𝑢) arbitrary function and 𝑄 = 𝑢𝑡 , we obtain the conservation law

𝑇 =
1
2
𝑢𝑥
2 + 1
2
𝑢𝑡
2 +

∫
𝑔 (𝑢) + 𝑓0 d𝑢,

𝑋 = −𝑢𝑡𝑢𝑥 .

2. For 𝑓 (𝑢𝑡 ) = 𝑓0, 𝑔(𝑢) arbitrary function and 𝑄 = 𝑢𝑥 , we obtain the conservation law

𝑇 = 𝑢𝑡𝑢𝑥 ,

𝑋 = −1
2
𝑢𝑥
2 − 1
2
𝑢𝑡
2 +

∫
𝑔 (𝑢) + 𝑓0 d𝑢.

3. For 𝑓 (𝑢𝑡 ) = 𝑓0, 𝑔(𝑢) = 𝑔1 𝑒𝑔0𝑢 − 𝑓0 and 𝑄 = 𝑡𝑢𝑡 + 𝑥𝑢𝑥 + 2𝑔0 , we obtain the conservation law

𝑇 =
1
2𝑔0
2 𝑡e𝑢𝑔0𝑔1 +

(
𝑡𝑢𝑡
2 + 𝑡𝑢𝑥2 + 2 𝑢𝑥𝑥𝑢𝑡

)
𝑔0 + 4 𝑢𝑡 ,

𝑋 =
1
2𝑔0
2 𝑥e𝑢𝑔0𝑔1 +

(
−2 𝑡𝑢𝑡𝑢𝑥 − 𝑥𝑢𝑡 2 − 𝑢𝑥2𝑥

)
𝑔0 − 4 𝑢𝑥 .

4. For 𝑓 (𝑢𝑡 ) = 𝑓0𝑢𝑡 + 𝑓1, 𝑔(𝑢) an arbitrary function and 𝑄 = 𝑢𝑥 𝑒 𝑓0𝑡 , we obtain the conservation law

𝑇 = 𝑢𝑥e 𝑓0 𝑡𝑢𝑡 ,

𝑋 =
∫
e 𝑓0 𝑡 (𝑔 (𝑢) + 𝑓1) d𝑢 + 12

(
−𝑢𝑡 2 − 𝑢𝑥2

)
e 𝑓0 𝑡 .

5. For 𝑓 (𝑢𝑡 ) = −𝑔0 − 1
𝑢𝑡 𝑓0+ 𝑓1 , 𝑔(𝑢) = 𝑔0 and 𝑄 = 𝑓0𝑢𝑡𝑢𝑥 + 𝑓1𝑢𝑥 , we obtain the conservation law

𝑇 =
1
6
𝑓0 𝑢𝑥

3 + 1
2
𝑓0 𝑢𝑡

2𝑢𝑥 + 𝑓1 𝑢𝑥𝑢𝑡 ,

𝑋 = −1
2
𝑓0 𝑢𝑡𝑢𝑥

2 − 1
2
𝑢𝑥
2 𝑓1 − 16 𝑓0 𝑢𝑡

3 − 𝑢 − 1
2
𝑢𝑡
2 𝑓1.

6. For 𝑓 (𝑢𝑡 ) = − 4 𝑓0
𝑢𝑡+ 𝑓1 + 𝑓2, 𝑔(𝑢) =

4 𝑓0
𝑓1
− 𝑓2 and 𝑄 = 𝑢𝑡 + 𝑓1, we obtain the conservation law

𝑇 =
1
2
𝑢𝑥
2 + 1
2
𝑢𝑡
2 + 𝑓1 𝑢𝑡 + 4 𝑓0 𝑢

𝑓1
,

𝑋 = (−𝑢𝑡 − 𝑓1) 𝑢𝑥 .
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5. Conclusions
In this work, we have obtained some Lie point symmetries for the viscoelastic wave equation (1.1). However, for
a future paper we will study the Lie point symmetries complete classification of equation (1.1), in the presence
of damping and source terms, for different expressions of the functions 𝑓 and 𝑔. Then, we have constructed the
corresponding reduced equation. This reduction makes easier the resolution of the viscoelastic wave equation (1.1),
in order to obtain solutions of physical interest such as solitons. Moreover, we have obtained a traveling wave
solution from the reduced equation by the comparison between equation (1.1) and comparable equations studied
before by other authors. Furthermore, classical Lie symmetries are not the only ones that can be studied. Another
symmetries, such as non-classical or potential symmetries, can also be studied in the future. Finally, we have
derived the non-trivial low-order conservation laws by using the direct multiplier method developed by Anco and
Bluman.
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Flux-corrected methods for chemotaxis equations
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Abstract

The aim of this work is to review flux correction methods for chemotaxis equations with special emphasis
in two directions. Firstly, to study a possible extension to the Keller–Segel equations of some recent research
available on literature about well-posedness and error order of flux correction schemes. And secondly, to test the
validity of the low order scheme in some practical numerical examples.

1. Introduction
The importance of mathematics to understand biological processes and the number of mathematicians studying
biological and medical phenomena has been continuously increasing in recent years. In particular, for chemotaxis
phenomena, which model the property of living organisms to migrate in response to chemical gradients. The
celebrated classical chemotaxis model was introduced in [8, 9] and, together with all its numerous variants, has
attracted significant interest from the theoretical point of view (see e.g. the compilations [4, 7]).
On the other hand, whereas there are very few numerical results in the literature, mathematical modeling of

chemotaxis is a challenging task and it has developed into a relatively large and diverse discipline. In fact, the
solutions exhibit interesting mathematical properties which are not easily adapted to a classical discrete methods for
solving partial differential equations (EDP) like finite elements or other Galerkin methods. For instance, solutions
to the Keller–Segel equations satisfy lower bounds (positivity) and enjoy an energy law, which is obtained by
testing the equations against non linear functions. Generally speaking, cross-diffusion mechanisms governing the
chemotactic phenomena makes them difficult to analyze not only theoretically but also numerically.

2. Setting of the Problem
In this work we focus on the numerical analysis and simulation of some discrete schemes for the classical Keller-
Segel system on chemotaxis, which is given by the following equations:




𝑢𝑡 = 𝛼0Δ𝑢 − 𝛼1∇ · (𝑢∇𝑣), 𝑥 ∈ Ω, 𝑡 > 0,
𝑣𝑡 = 𝛼2Δ𝑣 − 𝛼3𝑣 + 𝛼4𝑢, 𝑥 ∈ Ω, 𝑡 > 0,
∇𝑢 · n = ∇𝑣 · n = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,
𝑢(𝑥, 0) = 𝑢0 (𝑥), 𝑣(𝑥, 0) = 𝑣0 (𝑥), 𝑥 ∈ Ω.

(2.1)

Here 𝑢 and 𝑣 are non-negative functions in Ω × [0, 𝑇] representing the density of cells and chemical-signal,
respectively, 𝑇 > 0 is a fixed time, and Ω is a bounded domain in R𝑑 , 𝑑 = 2 or 𝑑 = 3, where the boundary 𝜕Ω is
Lipschitz and n is the unit outward normal vector.
A lot of research on this topic has been recently made from an analytical point of view (see e.g. [4, 7] and

references therein). Global in time existence and boundedness of the solution has been show if the initial data is
small enough, while blow-up in some solutions of (2.1) occurs in many other interesting cases.
The following well-known properties can be higlighted: positivity,

𝑢(𝑥, 𝑡) > 0, (𝑥, 𝑡) ∈ Ω × [0, 𝑇], (2.2)

and conservtion of the total mass, ∫
Ω
𝑢(𝑥, 𝑡) 𝑑𝑥 =

∫
Ω
𝑢0 (𝑥) 𝑑𝑥. (2.3)

Developing numerical schemes which satisfy the discrete versions of these properties has been the object of many
authors, most of whom have focused on finite volume schemes, that in principle fit well with the chemotactic cross
difusion term present in (2.1). Among them we can stand out the works of Saad and coworkers [1, 12] and also of
Kurganov [5] and coworkers. Some works also use Galerkin discrete schemes, for instance discontinuous Galerkin
methods (Kurganov and Epshtyn [6]) and standard finite elements (Saito [13]). In all cases, the strategy is to
introduce some linearization of the chemotaxis term in (2.1) and then to use some upwind technique to preserve
property (2.2).
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In this work we focus in the flux correction technique for the following time-stepping numerical scheme that
uncouple cells equation from chemical-signal equation: guive a partition of the time interval [0, 𝑇] into subintervals
of size 𝑘 > 0, at each time step 𝑡𝑚+1, we approximate 𝑢(𝑡𝑚+1) and 𝑣(𝑡𝑚+1) as follows:{

(1/𝑘)𝑣𝑚+1 − Δ𝑣𝑚+1 + 𝑣𝑚+1 = (1/𝑘)𝑣𝑚 + 𝑢𝑚
(1/𝑘)𝑢𝑚+1 − Δ𝑢𝑚+1 + ∇ · (𝑢𝑚+1∇𝑣𝑚+1) = (1/𝑘)𝑢𝑚.

(2.4)

Note that, for the sake of simplicty, we have taken 𝛼0 = 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 1 and also a semi-implicit Euler
scheme is introduced, altough some results will generalized to Crank-Nicolson.
Flux correction (see e.g. [11] and references therein) has been investigated for decades for transport equations

with the name of FCT (flux-corrected transport). These schemes have applied in many other context like the
discretization of time-dependent convection–diffusion or turbulent flows. Also they have been applied specifically
to chemotaxis equations [14–16]. But, the difficulty for practical implementation on standard finitite elements
libraries and and specifically the lack of solid analytical results for existence of solution and a priori error estimates
have made this methods little used excepting a small circle of computer scientists. This situation may have changed
because a theory has started to be developed in recent years in a serie of papers of Barrenechea et al [2,3]. Although
this theory covers only the steady time-independent case for divergence-free convection-diffusion equations, the
purpose of this work has been its exploration and testing the low order solutions in the framework of chemotaxis
equations.

3. Algebraic Flux Correction in Chemotaxis
At each time iteration, the system of algebraic equations (2.4) consists of two decoupled subproblems for the
unknowns 𝑣𝑚+1 and 𝑢𝑚+1: [

𝑴 + 𝑘𝑳 + 𝑘𝑴]
𝑣𝑚+1 = 𝑴𝑣𝑚 + 𝑘𝑴𝑢𝑚, (3.1)[

𝑴 + 𝑘𝑳 + 𝑘𝑲 (𝜷𝑚+1)]𝑢𝑚+1 = 𝑴𝑢𝑚, (3.2)

where 𝑴, 𝑳 and 𝑲 (𝜷𝑚+1) are respectively the mass, diffusion and convection matrices with elements defined as

𝑚𝑖 𝑗 =
∫
Ω
𝜑𝑖𝜑 𝑗 𝑑𝑥, 𝑙𝑖 𝑗 =

∫
Ω
∇𝜑𝑖∇𝜑 𝑗 𝑑𝑥, 𝑘𝑖 𝑗 (𝜷𝑚+1) = −

∫
Ω
𝜑 𝑗𝜷

𝑚+1∇𝜑𝑖 𝑑𝑥.

We denote 𝜷𝑚+1 = ∇𝑣𝑚+1 and 𝜑𝑖 is a 𝑃1 piecewise-polynomial basis. The algebraic flux correction technique
consists of a conservative manipulation of the matrices 𝑴 and 𝑲 (𝜷𝑚+1) in order to enforce at the discrete level the
positivity of the system (3.1)–(3.2). Specifically, the consistent mass matrix 𝑴 is approximated by the diagonal
matrix 𝑴𝐿 using the well-know mass lumping technique:

𝑴𝐿 = diag(𝑚𝑖), 𝑚𝑖 :=
∑︁
𝑗

𝑚𝑖 𝑗 .

On the other hand, negative off-diagonal elements of 𝑲 (𝜷𝑚+1) are eliminated by adding an artificial diffusion
operator 𝑫, defined as the symmetric matrix with elements

𝑑𝑖 𝑗 = max{−𝑘𝑖 𝑗 , 0,−𝑘 𝑗𝑖}, 𝑗 ≠ 𝑖, 𝑑𝑖𝑖 = −
∑︁
𝑗≠𝑖

𝑘𝑖 𝑗 .

The result is a low order positivity-preserving discretization which, in the 1D case, transforms the linear finite
element convection system (3.2) into a first-order upwind difference [10]. The 2D case is much more complicated
although error estimates have been recently derived for the steady case [2]. If we denote 𝑨𝑣 = 𝑴 + 𝑘𝑳 + 𝑘𝑴 and
𝑨𝑢 = 𝑴 + 𝑘𝑳 + 𝑘𝑲 (𝜷𝑚+1), this low-order system corresponds to

[𝑨𝑣 + 𝑫𝑣 ] 𝑣𝑚+1 = 𝑴𝑣𝑚 + 𝑘𝑴𝑢𝑚 (3.3)
[𝑨𝑢 + 𝑫𝑢] 𝑢𝑚+1 = 𝑴𝑢𝑚 (3.4)

with 𝑫𝑣 = 𝑴𝐿 − 𝑴, 𝑫𝑢 = 𝑴𝐿 − 𝑴 + 𝑘𝑫. And, since the row sums of the matrix 𝑫 vanish, the error with respect
to the original consistent system (3.1)–(3.2) can be written in terms of two vectors

𝑓 𝑣𝑖 =
∑︁
𝑗≠𝑖

𝑓 𝑣𝑖 𝑗 𝑓 𝑢𝑖 =
∑︁
𝑗≠𝑖

𝑓 𝑢𝑖 𝑗

where the anti-diffusive fluxes 𝑓 𝑣𝑖 𝑗 and 𝑓
𝑢
𝑖 𝑗 are computed from the mass lumping and the artificial diffusion received

by each node 𝑖: ((𝑴 − 𝑴𝐿)𝑢𝑚+1
)
𝑖 =

∑︁
𝑗≠𝑖

𝑚𝑖 𝑗 (𝑢 𝑗 − 𝑢𝑖),
(
𝑫𝑢𝑚+1

)
𝑖 =

∑︁
𝑗≠𝑖

𝑑𝑖 𝑗 (𝑢 𝑗 − 𝑢𝑖). (3.5)
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Fig. 1 Chemotatic migration towards fixed chemical concentration. Low order scheme.

Now, instead of adding this fluxes to the right hand side of (3.3), (3.4) and thus obtain the original consistent
system, the idea of algebraic flux correction schemes is to limit those anti-diffusive fluxes 𝑓𝑖 𝑗 that would otherwise
get back to the original high order solution and cause spurious oscillations. Each flux is multiplied by a solution-
dependent correction factor 𝛼𝑖 𝑗 ∈ [0, 1]. The original Galerkin discretization correspond to selecting 𝛼𝑖 𝑗 = 1 and
may be applied where the solution is smooth, while 𝛼𝑖 𝑗 = 0 may be set in the neighborhood of steep fronts, where
adding diffusion is appropriate. We impose 𝛼𝑖 𝑗 = 𝛼 𝑗𝑖 to guarantee that the scheme is conservative.
Thus the final form of the algebraic flux correction scheme corresponds to the following system of nonlinear

equations:

𝑨𝑣𝑣
𝑚+1
𝑖 +

𝑁∑︁
𝑗=1
(1 − 𝛼𝑣𝑖 𝑗 )𝑑𝑣𝑖 𝑗 (𝑣𝑚+1𝑗 − 𝑣𝑚+1𝑖 ) = 𝑴𝑣𝑚𝑖 + 𝑘𝑴𝑢𝑚𝑖 , 𝑖 = 1, . . . , 𝑁, (3.6)

𝑨𝑢𝑢
𝑚+1
𝑖 +

𝑁∑︁
𝑗=1
(1 − 𝛼𝑢𝑖 𝑗 )𝑑𝑢𝑖 𝑗 (𝑢𝑚+1𝑗 − 𝑢𝑚+1𝑖 ) = 𝑴𝑢𝑚𝑖 , 𝑖 = 1, . . . , 𝑁, (3.7)

where 𝑑𝑣𝑖 𝑗 and 𝑑
𝑢
𝑖 𝑗 are respectively the entries of 𝑫

𝑢 and 𝑫𝑣 while 𝛼𝑣𝑖 𝑗 = 𝛼𝑣𝑖 𝑗 (𝑣𝑚+1) and 𝛼𝑢𝑖 𝑗 = 𝛼𝑢𝑖 𝑗 (𝑢𝑚+1) are in
[0, 1], being 𝛼𝑣𝑖 𝑗 = 𝛼𝑣𝑗𝑖 and 𝛼𝑢𝑖 𝑗 = 𝛼𝑢𝑗𝑖 .
For the choice of the flux limiters 𝛼𝑢𝑖 𝑗 and 𝛼

𝑣
𝑖 𝑗 , we are going to us consider the widely used Zalesak limiters (see

e.g. [2,10,11,17]). Other appropriate limiters can be set, see e.g. [3]. At the present time, the authors of this work
claim that, under some restrictions in the time and space discretization, the following result can be shown:

Theorem 3.1 Assuming 𝑢0 ≥ 0 and 𝑣0 ≥ 0:
1. The low order discrete solution (𝑢𝑚+1, 𝑣𝑚+1) (obtained from 𝛼𝑢𝑖 𝑗 = 𝛼

𝑣
𝑖 𝑗 = 0) is positive for all 𝑚 ≥ 0.

2. If 𝛼𝑢𝑖 𝑗 , 𝛼
𝑣
𝑖 𝑗 are the Zalesak limiters

(a) There exists a solution of the nonlinear problem (3.6)–(3.7).
(b) The high order solution (𝑢𝑚+1, 𝑣𝑚+1) is positive for all 𝑚 ≥ 0.

3. The approximate solutions (𝑢𝑚+1, 𝑣𝑚+1) converge to the exact solution (𝑢, 𝑣) with at least suboptimal error
order.

4. Numerical Tests
4.1. Chemotactic transport
In our first numerical test we take a static (non time-dependent) chemical source 𝑣 and study the migration of
the biological organisms 𝑢 toward high gradients of 𝑣. Specifically, the domain Ω is taken as the rectangle
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Fig. 2 Chemotatic migration towards fixed chemical concentration. High order scheme.

[0, 5] × [−1, 1]. we introduce an unstructured mesh with size ℎ ' 0.01. The time interval [0, 50] is discretized so
that the CFL condition 𝑘/ℎ < 1 is verified. On the other hand, 𝑣 is set as the gaussian function

𝑣(𝑥, 𝑡) = 𝑣(𝑥) = 𝑒−𝐶 ( (𝑥−4)2+𝑦2) ,
with 𝐶 = 50, which approximately verifies ∇𝑣 · n = 0 on 𝜕Ω, and 𝑢 is the solution of (2.1)𝑎 with the less favorable
no diffusion condition 𝛼0 = 0, 𝛼1 = 1. On the other hand, ∇𝑢 ·n = 0 on 𝜕Ω and the following initial state is chosen:

𝑢0 (𝑥) = 𝑒−𝐶 ( (𝑥−1)2+𝑦2) .
Figure 1 shows the result obtained at times 𝑡 = 0, 𝑡 = 11.20, 𝑡 = 27.80 and 𝑡 = 50 with the low order scheme
(𝛼𝑢𝑖 𝑗 = 𝛼𝑣𝑖 𝑗 = 0). This initial state is transported toward maximum concentration of 𝑣. Positivity of solution is
maintained strictly and no spurious ripples appear. Figure 2 shows the same test but the high-order scheme (Zalesak
limiters) is introduced. In this case, fixed point iterations are introduced to avoid nonlinearity of the scheme. The
results are similar although lesser diffusion can be appreciated at intermediate time steps.

4.2. Neuroblast Migration in the Brain
Secondly, we show a numerical test dealing with the migration of neuroblasts (precursor cells of neurons) in the
adult brain. This test is part of a project we are working in, together with researchers of Universidad de Sevilla and
Universidad de Cádiz. In recent decades, it has been known that neuroblasts are born in a specific part of the adult
brain (the Subventricular Zone, SVZ) migrate to other zones: to the Olfactory Bulb (OB) and eventually to lesions
in the brain). Some specific parts of the brain (the Corpus Callosum) influences the migration, obstructing it. This
process can be modeled by a chemotaxis-like process.
A low order flux correction scheme has been applied in this context (together with other numerical schemes, all

of which will be published in a forthcoming work). The results for different time steps are presented in Figure 3,
where a source of neuroblasts starts from the SVZ and, bording the Corpus Callosum (represented as a light spot)
goes to the OB, located at the left side of the brain.

4.3. Blow up for Keller–Segel System
One of themore challenging characteristics of Keller–Segel equations (2.1) is the fact that finite-time blow-up occurs
in many interesting cases, for 2D and 3D, if initial data is not small enough [4]. It has been deeply investigated
and many authors have worked in obtaining numerical schemes that maintain positivity and are free of spurious
oscillations in blow-up regime. In particular, flux correction and chemotaxis have been studied in [14–16].
Here we just show a validation focused on the low order scheme, which can be programmed in standard finite

element libraries without too much additional difficulty. In particular, the low order scheme avoids the necessity of
solving nonlinear scheme and its much less computing demanding, Making feasible the use of finer meshes.
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Fig. 3 Chemotatic migration towards fixed chemical concentration. Different time steps (from top left to bottom right). Low
order scheme.

Specifically, we consider the numerical test studied in [5], where the domain Ω = (−1/2, 1/2)2 is meshed with
ℎ ≈ 1/100, ℎ ≈ 1/200 and ℎ ≈ 1/400. System (2.1) is solved with 𝛼0 = 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 1 and

𝑣0 = 0, 𝑢0 = 1000𝑒−100(𝑥
2+𝑦2) .

The blow up which, according to the theoretical results, is expected for this initial data, is conjectured to occur at
some 𝑡∗ ∈ (4.4 × 10−5, 10−4), where maximum values of 𝑢 are around 104 or 105.
Our numerical test with the low-order scheme, maintain the positivity of 𝑢 and 𝑣 and reaches the following

values:

• At 𝑡 = 4.4 × 10−5: max(𝑢) = 2.58586𝑒 + 04, min(𝑢) = 1.41495𝑒 − 18, max(𝑣) = 4.95975𝑒 + 02, min(𝑣) =
1.41495𝑒 − 18.

• At 𝑡 = 10 × 10−4: max(𝑢) = 1.27965𝑒 + 05, min(𝑢) = 6.35863𝑒 − 18, max(𝑣) = 4.92729𝑒 + 02, min(𝑣) =
6.35863𝑒 − 18.

It is interesting no observe that mass is conserved, with a constant value of 3.14159𝑒 + 01 for 𝑢 in Ω.
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Abstract
We study the mechanism that explains the birth of ejection-collision orbits (ECO) in a general Hamiltonian

problem of two degrees of freedom with some specific properties. The model is a generalization of some 𝑁 body
problems, in which ejection-collision orbits (ECO) are solutions that start at (eject from) the total collision of
the particles involved and go back to a total collision after some time. We describe the main tools to prove the
existence of such ECO and discuss some results.

1. Introduction
The generalized model considered in this talk has a singularity that represents the total collision in the models
coming from the Celestial Mechanics, and two more singularities that can be regarded as two kind of partial
collisions when not all the bodies are involved. In suitable variables that regularize the singularities, the total
collision is a manifold C topologically equivalent to a sphere minus four points, and the knowledge of the dynamics
on C is crucial to prove the existence of ejection-collision orbits.
Some models of the Celestial Mechanics fit in this setting, for example the Symmetric Collinear Four Body

Problem (SC4BP, see [1, 5, 9]), the Collinear Three Body Problem (C3BP, see [7]), the Rectangular Four Body
Problem (R4BP, see [9]) or the Rhomboidal Four Body Problem (Rh4BP, see [6]).
In order to tackle the problem of the behavior near the total collision, the work of McGehee in 1974, [7], on

the triple-collision behavior in the collinear three-body problem was essential. Later, Devaney in 1980 ( [3]), used
McGehee’s work to describe the dynamics on the collision manifold in the planar isosceles three-body problem.
We review the ideas introduced in the cited woirks that allow to prove the existence of the ejection-collision orbits
in the generalized model, and we show that the same mechanisms apply provided that the potential satisfies certain
conditions.
More concretely, we will describe the main characteristics of the dynamics of the general model, and we will

prove the existence and give a classification of the ECO that can be obtained.

2. Description of the model
We consider the general system of ODE with two degrees of freedom:{ ¤q = 𝐴−1p,

¤p = ∇𝑈 (q), (2.1)

where q ∈ R2 \Δ, p ∈ R2, 𝐴 is a diagonal constant matrix, 𝐴 = diag(𝑎1, 𝑎2), 𝑎1, 𝑎2 > 0, and𝑈 is an homogeneous
function of degree -1 on R2 \ Δ, singular in Δ that corresponds to all the possible collisions between the bodies in
the context of an 𝑁-body problem. In particular q = 0 ∈ Δ corresponds to the total collision of all the bodies.
We introduce McGehee’s coordinates (see [7]) (𝑟, 𝑣, 𝜃, 𝑢) together with a scaling in time (being 𝑡 the old time

and 𝜏 the new one) to obtain the system




𝑑𝑟

𝑑𝜏
= 𝑟𝑣,

𝑑𝑣

𝑑𝜏
=

𝑣2

2
+ 𝑢2 −𝑉 (𝜃),

𝑑𝜃

𝑑𝜏
= 𝑢,

𝑑𝑢

𝑑𝜏
=
−𝑣𝑢
2
+𝑉 ′(𝜃),

(2.2)

where 𝑉 (𝜃) = 𝑟𝑈 (q) and 𝑉 ′ = 𝑑𝑉/𝑑𝜃. Clearly, the system is well defined for 𝑟 = 0.
As previously mentioned, we aim at proving the existence of ECO under certain conditions for the potential

𝑉 (𝜃). Next result states the key hypothesis on the potential.
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Proposition 2.1 Assume that 𝑉 (𝜃) is such that

𝑉 (𝜃) = 𝑐𝑏
sin(𝜃𝑏 − 𝜃) +

𝑐𝑎
sin(𝜃 − 𝜃𝑎) +𝑉 (𝜃),

where 𝜃 ∈ (𝜃𝑎, 𝜃𝑏) for fixed values 𝜃𝑎, 𝜃𝑏 such that 0 < 𝜃𝑏 − 𝜃𝑎 ≤ 𝜋, and
• 𝑐𝑎 > 0, 𝑐𝑏 ≥ 0 are constants, and 𝑐𝑏 = 0 if and only if 𝜃𝑏 − 𝜃𝑎 = 𝜋;

• 𝑉 (𝜃) > 0 is a smooth bounded function in [𝜃𝑎, 𝜃𝑏];
• 𝑉 (𝜃) has only one non-degenerate critical value at 𝜃 = 𝜃𝑐 ∈ (𝜃𝑎, 𝜃𝑏), which is a minimum.

Then, the system of equations (2.2) has two equilibrium points, denoted by 𝐸±, given by 𝑟 = 0, 𝑣 = ±𝑣𝑐 , 𝜃 = 𝜃𝑐 ,
𝑢 = 0, where 𝑣2𝑐 = 2𝑉 (𝜃𝑐). Both equilibrium points 𝐸± are saddle points, and there exist invariant unstable and
stable manifolds 𝑊𝑢/𝑠 (𝐸±). Restricted to a fixed energy level 𝐻 = ℎ, dim(𝑊𝑢 (𝐸−)) = 1, dim(𝑊 𝑠 (𝐸−)) = 2 and
dim(𝑊𝑢 (𝐸+)) = 2, dim(𝑊 𝑠 (𝐸+)) = 1.
As we have mentioned, the removed singularity 𝑟 = 0 (when all particles of the system collide simultaneously)

corresponds to the manifold defined as

C := {(𝑟, 𝜃, 𝑣, 𝑢) | 𝑟 = 0, 𝜃𝑎 < 𝜃 < 𝜃𝑏 , 𝑢2 + 𝑣2 = 2𝑉 (𝜃)}, (2.3)

called the total collision manifold which is invariant under the flow given by equations (2.2), and contains the
equilibrium points 𝐸± ∈ C.
From Proposition 2.1 we can define ECO as follows:

Definition 2.2 We say that an orbit is a collision orbit if it is contained in 𝑊 𝑠 (𝐸−) and an ejection orbit if it is
contained in𝑊𝑢 (𝐸+). An orbit is an ejection–collision orbit (ECO) if it is contained in𝑊 𝑠 (𝐸−) ∩𝑊𝑢 (𝐸+).
Notice that we have removed the singularity 𝑟 = 0 from system (2.2) but still it has two additional singularities

at 𝜃 = 𝜃𝑎 and 𝜃 = 𝜃𝑏 that can be regarded as two binary collisions between two pairs of bodies. They can be
removed simultaneously through a Sundman type regularization: consider the functions

𝑊 (𝜃) = 𝑓 (𝜃)𝑉 (𝜃) and 𝐹 (𝜃) = 𝑓 (𝜃)√︁
𝑊 (𝜃)

,

where 𝑓 (𝜃) = sin(𝜃 − 𝜃𝑎) sin(𝜃𝑏 − 𝜃) if 𝜃𝑏 − 𝜃𝑎 ≠ 𝜋, and 𝑓 (𝜃) = sin(𝜃𝑏 − 𝜃) otherwise. Then, introducing a new
variable and the change of time

𝑤 = 𝐹 (𝜃)𝑢, 𝑑𝜏 = 𝐹 (𝜃)𝑑𝑠,
the system of equations (2.2) transforms into




𝑑𝑟

𝑑𝑠
= 𝑟𝑣𝐹 (𝜃),

𝑑𝑣

𝑑𝑠
= 𝐹 (𝜃)

(
2ℎ𝑟 − 𝑣

2

2

)
+

√︁
𝑊 (𝜃),

𝑑𝜃

𝑑𝑠
= 𝑤,

𝑑𝑤

𝑑𝑠
= −𝐹 (𝜃) 𝑣𝑤

2
+ 𝑊

′(𝜃)
𝑊 (𝜃)

(
𝑓 (𝜃) − 𝑤

2

2

)
+ 𝑓 ′(𝜃)

(
1 + 𝑓 (𝜃)

𝑊 (𝜃) (2ℎ𝑟 − 𝑣
2)

)
,

(2.4)

where𝑊 ′ = 𝑑𝑊/𝑑𝜃.

3. Key ingredients
Now we shortly mention the main ingredients necessary to prove the existence of different types of ECO.

Symmetry
On the one hand, notice that system (2.4) exhibits the symmetry

(𝑟, 𝑣, 𝜃, 𝑤, 𝑠) → (𝑟,−𝑣, 𝜃,−𝑤,−𝑠). (3.1)

This can be phrased in terms of solutions as follows: if 𝛾(𝑠) = (𝑟 (𝑠), 𝑣(𝑠), 𝜃 (𝑠), 𝑤(𝑠)) is a solution then Γ defined
as:

𝛾(𝑠) = (𝑟 (−𝑠),−𝑣(−𝑠), 𝜃 (−𝑠),−𝑤(−𝑠)) (3.2)
is also a solution.
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Homothetic ECO
On the other hand, a first important result is the existence of an orbit (with 𝑟 (𝑠) > 0) that connects both equilibrium
points 𝐸± (see [8]). It is called the homothetic solution because the configuration maintains the same shape along
its evolution for all the time, only changing its size.

Proposition 3.1 For every fixed level of energy 𝐻 = ℎ < 0, there exists a solution of the system of equations (2.4)
of the form

𝛾ℎ (𝑠) = (𝑟 (𝑠), 𝜃 = 𝜃𝑐 , 𝑣(𝑠), 𝑤 = 0),
such that 𝑟 (𝑠) −→

𝑠→±∞ 0.

Notice that this is an ejection-collision orbit since it starts and ends at 𝑟 = 0.

Poincaré section and map
A convenient Poincaré section Σ, which will be a keystone to show the existence of ECO, is the set where partial
collisions occur, that is, where 𝜃 = 𝜃𝑎,𝑏 . We denote by Σ the union of two half planes Σ𝑎,𝑏:

Σ = Σ𝑎 ∪ Σ𝑏 = {(𝑟, 𝑣, 𝜃, 𝑤) | 𝑟 ≥ 0, 𝑤 = 0, 𝜃 = 𝜃𝑎} ∪ {(𝑟, 𝑣, 𝜃, 𝑤) | 𝑟 ≥ 0, 𝑤 = 0, 𝜃 = 𝜃𝑏} .

We consider the Poincaré map (in forward time) defined on Σ

P : Σ −→ Σ, (3.3)

as P(Z) = Φ𝑠 (Z), where Φ𝑠 is the flow associated to the system (2.4), and 𝑠 is the first positive time needed to
reach the section Σ starting at Z. In a similar way we define P−1, the Poincaré map in backward time.

Collision manifold
The already defined total collision (𝑟 = 0) manifold C in (2.3), is a 2-dimensional manifold, topologically equivalent
to a sphere minus four points, independent of the total energy ℎ, see Figure 1. It is invariant under the flow (2.4),
and we remark that is gradient-like with respect the variable 𝑣, that is, 𝑑𝑣/𝑑𝑠 ≥ 0.

E
+

E
-

Fig. 1 Qualitative scheme of the total collision manifold C. The two equilibrium points 𝐸± are also shown.

Dynamics on the invariant manifolds
As stated in Proposition 2.1, the equilibrium points are hyperbolic and, for a fixed value of the energy ℎ, each
one has associated two invariant manifolds: one of dimension one, the other of dimension two. The behavior of
𝑊𝑢/𝑠 (𝐸±) determines the existence and type of ECO.
In Figure 2 we show the behavior of the one dimensional manifolds𝑊𝑢 (𝐸−) (by symmetry, we obtain𝑊 𝑠 (𝐸+)).

Any given branch is an orbit that revolves around C and then it can only exhibit two different behaviors: either it
tends to 𝐸+ (becoming an heteroclinic connection, degenerate case) or the trajectory “escapes” towards 𝑣 → +∞
along one of the upper legs of the total collision manifold. In the latter, there are four different types of behavior:
types I, II, III and IV (shown in Figure 2).
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Fig. 2 Branches of the invariant manifolds 𝑊 𝑢+ (𝐸−) (in red) and 𝑊 𝑢− (𝐸−) (in blue) on the collision manifold. The plots
show the four different scenarios in the non-degenerate cases: types I, II, III, IV.

We can provide a classification for the 1-dimensional manifolds𝑊𝑢± (𝐸−) and𝑊 𝑠± (𝐸+) as follows. Let S be the
set of all possible sequences, just taking into account the elements 𝑎 and 𝑏. We define

I+ : 𝑊𝑢 (𝐸−) −→ S
Γ −→ 𝜎 = (𝜎1, 𝜎2, . . . , 𝜎𝑛, . . . )

where
𝜎𝑗 =

{
𝑎 if the 𝑗-th intersection of Γ with Σ is at Σ𝑎,
𝑏 if the 𝑗-th intersection of Γ with Σ is at Σ𝑏 ,

for 𝑗 ≥ 1.

The sequence I+ (Γ) codes the partial collisions (intersections with Σ) forwards in time for the unstable manifold.
Similarly, we can define I− on 𝑊 𝑠 (𝐸+), obtaining a sequence of partial collisions backwards in time. Using the
symmetry of the problem we have that

I+ (𝑊𝑢
+ (𝐸−)) = I− (𝑊 𝑠

− (𝐸+)) and I+ (𝑊𝑢
− (𝐸−)) = I− (𝑊 𝑠

+ (𝐸+)).
We classify the behavior of the 1-dimensional manifolds 𝑊𝑢± (𝐸−) and 𝑊 𝑠± (𝐸+) using the number of full turns

of each branch, their intersections with the section Σ and the map I+. In what follows, the sequence ★, •, 𝑛). . ., ★, •
denotes that the sequence★, • is repeated 𝑛 times. For example, the sequence (𝑏, 𝑎, 𝑛). . ., 𝑏, 𝑎, 𝑏, 𝑏, 𝑏, . . .) represents
an orbit with a sequence of 𝑛 pairs of collisions 𝑏, 𝑎 (a collision of type 𝑏 followed by a collision of type 𝑎) and then
the orbit only has collisions of type 𝑏 forwards in time. Analogous interpretations are given for other sequences.
With respect to the two dimensional invariant manifolds, they are glued to the total collision manifold C and

their intersections are
𝑊𝑢 (𝐸+) ∩ C = Γ𝑢± and 𝑊 𝑠 (𝐸−) ∩ C = Γ𝑠±, (3.4)

where each Γ𝑢± (resp. Γ𝑠±) is an orbit that escapes forwards (respectively backwards) in the 𝑣-direction, 𝑣 → +∞
(resp. 𝑣 → −∞) through one of the legs of C. See Figure 3 where the homothetic orbit is also shown.

4. Existence of ECO
We can prove the existence of the different types of ECO depending on the behavior of the 1-dimensional invariant
manifolds. Actually, we characterize the ECO by its finite number of successive binary collisions with Σ. Let 𝜎 be
a finite sequence of collisions of type 𝑎 and 𝑏. Following the notation given above, we will say that an ECO is of
type 𝜎 if its orbit describes forwards in time the finite sequence of binary collisions encoded by 𝜎.
Using the behavior of the invariant manifolds, we are able to prove the following results.

Theorem 4.1 For any natural number 𝑚 ≥ 1, the system (2.4) has an ejection-collision orbit of type

(𝑎, 𝑚). . ., 𝑎), and (𝑏, 𝑚). . ., 𝑏).
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Fig. 3 Left: Qualitative behavior of the 2D-invariant manifolds 𝑊 𝑢 (𝐸+) and 𝑊 𝑠 (𝐸−) . Right: Behavior of Γ𝑢/𝑠± and the
homothetic solution 𝛾ℎ (𝑡) .

In the case that the 1-d invariant manifolds associated with the equilibrium points are non-degenerate, we can
prove the following result for type I. Similar results for types II, III and IV can be found in [2].

Theorem 4.2 Suppose that 𝑊𝑢± (𝐸−) are of type I, and let 𝑛 ≥ 1 be the number of full turns performed by the
branches of the 1D-invariant manifolds before escaping through different arms of C. Then:
(a) There exist ejection-collision orbits exhibiting 2𝑛 + 1 collisions of types

(𝑏, 𝑎, 𝑛). . ., 𝑏, 𝑎, 𝑏) and (𝑎, 𝑏, 𝑛). . ., 𝑎, 𝑏, 𝑎).

(b) There exist ejection-collision orbits exhibiting any sequence that can be obtained by the following graph:

(𝑏, 𝑎, 𝑛). . ., 𝑏, 𝑎, 𝑏)

(𝑎, 𝑏, 𝑛). . ., 𝑎, 𝑏, 𝑎)(𝑎)

(𝑏)
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course of the Tecnológico de Costa Rica
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Abstract

In 2018, the Differential Equations course for Engineering students is incorporated into the CEDA-TECDigital
Teaching Vice-Rector’s Project. The main objective of this work is to disclose my teaching experience in the hard
labor of planning, implementation, creation of materials and evaluation of the aspects that are carried out and
implemented in this course under the semi-virtual modality.

Finally, it shows some relevant results obtained in an assessment questionnaire about the course applied to the
students.

1. Introduction
In 2018 the idea was born from CEDA (Academic Development Center)-Tecdigital to virtualize the course of differ-
ential equations in the engineering area therefore, this article shares teaching experience on its planning, creation-
development of teaching materials and support, implementation in the classroom, evaluative aspects and also some
results obtained in evaluation questionnaire applied to students of the course under which this modality was applied.

2. Semi-virtual mode course planning (bimodal)
It is important to know that in our case a semi-virtual course is understood as the one in which we work every week
under two types of classes:

In Person, It consists of a two-hour classroom class, where the teacher is simply a guide or mediator of the
process and the student is the main participant and builder of knowledge. During these face-to-face sessions,
the teacher makes a theoretical presentation with illustrative examples of the topics covered, clarifies doubts in
semi-virtual class and plans the learning activities in the classroom in such a way that they allow the student to
achieve collaborative work and through a type of flipped learning.

Virtual, in this type of class, the student works at home (or another place of study that he/she deems appropriate)
on the course contents that were previously assigned by the teacher through guidance from said class, this can be
based on carrying out a didactic guide, assigned work exercises, view videos and some support material such as
books or applications made in software.

The Tecdigital platform will be used as a means of communication on the planification, visualization and
interaction to realize the distinct activities inside or outside of the classroom each week.

As a first stage in the first semester of 2018, a course on planning and instructional design is carried out
to teachers from various areas of the CEDA (Center for Teaching Development) department of training of the
Technological of Costa Rica. The initial objective of the course is to know about basic principles of instructional
design for virtual learning environments, learning experiences and educational resources for virtuality, evaluation
of learning in virtuality and all the above with the great purpose of planning and developing the design or planning
of the own specific course in our case of differential equations under this modality. In it, the following aspects are
considered:

• Population
Students of the course are typical of engineering careers, said student population requires as requirements to
have passed courses in differential calculus and linear algebra, students attend between the IV and V semester
of their study plans, maximum per group is 32 students.
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• Duration
The course lasts 16 weeks with a weight of 4 credits for 12 hours per week, distributed as follows: 2 face-to-
face hours, 2 face-to-face consultation and 8 work independently at home or another appropriate place.

• Curriculum design and organization
In this segment, aspects of instructional planning or design are organized and stipulated in a matrix form in
the most explicit and detailed way.

Week # Objectives Contents Learning Experiences Means, materials and resources Assessment

3. Creation of teaching materials and support
Once the instructional design has been prepared and reviewed by experts in the area, the preparation of the didactic
and supportmaterials embodied in such planning proceeds in a second stage. Each of them is briefly described below.

3.1. Teaching guides
A few weeks back, didactic guides were developed with the purpose of educating under guidance given by the
teacher to put into practice knowledge acquired on topics under study. These guides are resolved individually prior
to the face-to-face class in their homes or another place that each student considers appropriate.

3.2. Theoretical summaries
As an introductory activity to each face-to-face class, the teacher provides students with a brief theoretical sum-
mary in order to quickly return to the concepts covered during the week. It is understood that the students prior to
the face-to-face class must have studied the theoretical concepts of the week at home or in another appropriate place.

3.3. Written support material
• At the Tecnológico de Costa Rica (TEC), various mathematics teachers have developed theoretical support
materials for the different courses, for ours on differential equations there are five brochures by Sharay Meneses
Rodríguez, MSc namely:

• First-order ordinary differential equations

• Application problems using differential equations

• Higher-order differential equations

• Vibratory motion problems

• Laplace transformed

The previous brochures have served as the basis for the student of the Differential Equations Department for years;
however, in addition to them, they have been supplemented with other materials from other of our school’s teachers.

• First Order Ordinary Differential Equations with interactive support and illustrative videos. (MSc. Norberto
Oviedo Ugalde MSc, 2019)

• Differential Equations (Luis Alejandro Acuña Prado, Ana Marcela Rojas Loaiza, María Nazarelle Rojas
Machado, 2019)

In the weekly orientations and in accordance with the provisions of the instructional design, the teacher assigns
the students the sessions that are to be studies based on the materials previously mentioned.
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3.4. Classroom exercise Videos
As a way of providing support on the various topics studied in the course, 46 videos on solved exercises are
produced, in which detailed explanations of them are provided. In order to understand the videos, the learner is
instructed to have previously studied the concepts discussed there, since some of the videos include exercises that
are not so traditional or with a medium degree of difficulty.

During the process of the creation of the videos, as we had no experience in it, at the beginning, options such as
recorders were tested through tablets with a pencil, which apart from having a high cost, was not appropriate in our
case because I did not feel comfortable and handwriting was difficult, that is why in a first stage it is then chosen to
carry out the exercises in Power Point presentations in which the resolution of the exercises can be presented in a
more attractive and dynamic way. For the elaboration of the slide template, we had the support of a graphic designer
from TEC, Ing. Luis Carlos Guzmán Arias, likewise the fingering and animation of the resolution processes of
the exercises embodied in the presentations was overseen by the assistant from the School of Mathematics, Dayana
Calderón Prado.

In the second stage, one proceeds to the review and pertinent adjustments to leave the suitable presentation of
every exercise and without errors and then to proceed to the recording of the explanation of the presentation by
means of a screen and audio capturer.

In a third stage, we proceed to look for appropriate screen recorders that feel comfortable and are appropriate
to our needs. In our case, it began with recorders, such as Screen Record, Apowersoft, Screencasr-o-Matic, Debut,
of which, the paid version of Debut is chosen because of its ease in adjustment and comfort.

In the fourth stage, once the first versions of the videos have been recorded, they were reviewed in terms of
audio, editing errors and text, which is why, the video was edited and an assistant producer was used, Jonnathan
Ramirez of TecDigital. In some cases, it goes to a second or third revision and editing to obtain the final
product. In the final stage, REA forms are filled out in order to obtain a final review of the form and thus be
published in the TEC repository through videos on YouTube to be shared by students in general. Some examples
of video cover are shown in figure 1 and visualized through the links: https://youtu.be/M-Kz91akjko,
https://youtu.be/kGrPaa2esqM.

Fig. 1 Covers of videos developed in the semi-virtual course

3.5. Interactive notebooks using Mathematics software in CDF player form
For six years, I have worked with the non-free Mathematica software, through a license given to teachers from
the University of Costa Rica, where I have worked in parallel with Tecnológico de Costa Rica during that time.
As product of my graduate work in my Educative Mathematics Masters from the University of Costa Rica, I have
created some interactive pages on my field of study in differential equations of the first order, where the student can
interact and visualize, step by step, the involved processes of different ordinary equations of the first order (ED01).

Given, that the Tecnológico de Costa Rica does not possess the license for said Mathematic software, I begin by
investigating how to use or readjust the pages that have been already worked on, in the free software. This is how,
the free format of the Mathematica CDF software (Documents in computable format, freely downloadable from
https//www.wolfram.com/cdf-player/index.es.html?footerlang), player, which offers the interactive
and dynamic option of computable documents worked in Mathematica software in a free format. The respective
adjustments and adjustments are made to the programming codes elaborated by means of the Mathematica software
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and saved in CDF format until the pages or interactive notebooks of free access are made. For the differential
equations semivirtual course, three interactive notebooks were divided in the following manner:

I. Interactive notebook on first-order ordinary differential equations (published in the TEC School of Math-
ematic magazine and can be viewed on https://tecdigital.tec.ac.cr/revistamatematica/material_
didactico/revisado/

II. Interactive notebook on superior order linear, differential equations. (https://tecdigital.tec.ac.cr/
revistamatematica/material_didactico/revisado/).

III. Interactive notebook on differential equations by Laplace transform. (https://tecdigital.tec.ac.
cr/revistamatematica/material_didactico/revisado/).

Each interactive notebook comprises interactive pages on the different topics of interest, in which a brief theo-
retical summary (definitions, theorems and resolution processes) of the different topics to be studied is presented,
along with predetermined and resolved examples in which the reader will be able to visualize his resolution process
step by step in a dynamic and interactive way and serves as a support tool for the study of the topics presented there.

3.6. Evaluations online (quizzes) using GAAP
One form of online evaluation developed consists of the creation of virtual quizzes every two weeks on the different
topics studied in them. To do this, a series of single-selection and false-true questions are drawn up and devel-
oped in Latex code (mathematical text editor), which later serve as the basis for the creation, programming and
revision of virtual quizzes by means of the TEC’s own platform through the learning activities manager of the same.

In general, the virtual quizzes consist of 5 single-choice questions that are worth 1 point each, where theoretical
concepts are directly evaluated and two or three true or false questions where more concepts must be developed in
order to give the correct answer. These quizzes are enabled online to students on weekends for a maximum of 12
hours, where once entered, there is no option to return and leave incomplete, meaning that each student must have
previously studied the theoretical concepts. Once the virtual quiz has been completed, the student automatically
receives the grade.

4. Course implementation
Once the materials and support resources described in the previous section have been developed and reviewed, we
proceed to the implementation of what is embodied in the instructional design, that is, to put it into practice as
planned. Since 2017 to the present, I have been teaching the differential equations course, in which as the various
materials were developed, they were being implemented. I clarify that it was until the second half of 2019 that has
been fully applied to a group under the semi virtual modality.

The Tecnológico de Costa Rica uses its own platform, TecDigital, where the course was developed and orga-
nized and presented in an orderly way, with week-by-week sections of course presentation, weekly orientations,
information from the department chair, teaching materials, evaluations of GAAP tests and other documents that are
used for the course. This serves as a means of information and teacher/student interaction. In figure 2, you can see
a screenshot of the components of the TecDigital platform.

Fig. 2 Semi-virtual course portal group 04 of the I semester 2020

5. Aspectos evaluativos
The semi-virtual modality course carries out the same three partial exams of the other groups of the chair, which
are theoretical and developmental in person in a classroom on non-teaching days. The three partials with a total
value of 81% and a percentage weight of each of 27%. Furthermore, there will be a percentage of 19%, destined for
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perhaps short, virtual evaluations every two weeks through the learning activities manager (GAAP) of TecDigital
and tasks during the weeks that there is no virtual quiz.

Of a formative nature, in some weeks the student, prior to the face-to-face classes, will make didactic guides,
and sometimes in the class, a contributory work in pairs on the weekly subject.

6. Results of the course evaluation tools
In order to learn about student information and also the appreciation and assessment of experience on the imple-
mentation of this semivirtual course, two questionnaires were applied:

I. Teacher questionnaire

It consists of a teacher’s own questionnaire based on 15 closed questions in which it is first intended to know
information about the group’s students, such as whether they have repeated the course, weighted average enroll-
ment, how many hours they dedicate to the course, etc., and others such as those shown in Figure 3 that allows
direct appreciation of aspects of planning, organization and implementation of the course under this semi-virtual
modality, which are important forms of feedback in order to improve.

Fig. 3 Semi virtual student appreciation questionnaire questions

With regard to results obtained by applying group instrument 09 of the second semester of 2019 where 30
students participated, in general they indicated, that average group age ranges from 20 to 23 years, only 1 work,
two repeat courses, on average dedicate 4 to 6 hours to the course weekly, weighted average of average enrollment
of 80 to 90. Questions 13, 14 and 15 in Figure 3 also have the following:

Question #13 Question #14 Question #15
Frecuency Frecuency Frecuency

Very bad 0 Very bad 0 Very bad 0
Bad 0 Bad 0 Bad 0
Good 7 Good 9 Good 10
Very good 23 Very good 21 Very good 20

The results obtained in these questions show a very good acceptance and assessment on the part of the students
of the semi virtual modality course, that is, they consider there was a very good planning, organization of the course
in the TecDigital portal, the materials provided (theoretical material, CDF player software applications and videos
supported them and helped them learn the different topics studied in the course.

II. Course planning and portal questionnaire – generic

This questionnaire consists of an instrument with 9 closed questions on general student information, 32 closed
questions on a Likert scale from 1 to 10, 1 being the lowest score and 10 the highest and 1 open question. The
same is applied during week 14 by the person in charge of the project through the TecDigital in charge of Julia
Espinoza, which has the objective of assessing these aspects: general student information, objectives, contents,
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learning activities, educational and evaluation materials, everything related to the planification, organization and
evaluation of the course portal. Below, there is a sample of the main results obtained from the 29 students who
filled out the questionnaire are shown by means of tables uch as those shown in Figure 4.

Fig. 4Main results obtained from the 29 students who filled out the questionnaire

Student comments (verbatim copy, no spell check):

• All very well, the only thing I don’t like is the idea of only coming one day a week.

• As a suggestion more practice could be added.

• They should use a different evolution to the face-to-face courses, as in some of the CDI that the exams are
worth 60.

• Complementing the semi-virtual modality with the teacher who taught the course makes the course simple
thanks to the large amount of content available digitally and face-to-face classes.

• The CDF-player material is very good. Excellent service.

7. Conclusions-recommendations
1. Some resistance persists to this type of course modality.

2. Instructions in weekly guidance and platform should be timely.

3. Requires discipline on the part of the student to carry out step by step what is indicated in each week.

4. Strengthen evaluations in line with GAAP or other related evaluations.

5. To promote diverse, classroom activities for major interaction on behalf of the student.

6. Have a pdf in which you can share more quickly and directly what is captured on the TECdigital platform.
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306
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Abstract
In this article we obtain a uniqueness result for the maximal hypersurface equation in a spatially open

Generalized Robertson-Walker spacetime by means of Bochner’s technique and a generalized maximum principle.

1. Introduction
Maximal hypersurfaces have played a key role in the study of General Relativity since they describe the physical
space that can be measured in the transition from an expanding to a contracting phase of the universe. Maximal
hypersurfaces constitute a useful initial set for theCauchy problem inGeneral Relativity [20]. Namely, Lichnerowicz
proved that a Cauchy problem with initial conditions on a maximal hypersurface is reduced to a second order
nonlinear elliptic differential equation and a first order linear differential system [10]. Moreover, the existence
of constant mean curvature spacelike hypersurfaces (and in particular maximal) is necessary for the study of the
structure of singularities in the space of solutions of Einstein’s equations [2].

From a mathematical standpoint, maximal hypersurfaces enable us to understand the structure of the spacetime.
Indeed, for some asymptotically flat spacetimes the existence of a foliation by maximal hypersurfaces was proved
in [4]. As amatter of fact, maximal hypersurfaces appear as critical points of the area functional (see for instance [3]).

The study of maximal hypersurfaces from a mathematical perspective was boosted by the discovery of new
nonlinear elliptic problems associated to these geometric objects. Indeed, the function defining a maximal graph
in the (𝑛 + 1)-dimensional Lorentz-Minkowski spacetime satisfies a second order PDE known as the maximal
hypersurface equation in L𝑛+1. Furthermore, the well-known Calabi-Bernstein theorem states that the only entire
solutions to the maximal hypersurface equation in L𝑛+1 are the affine functions. This result was proved by Calabi [5]
for 𝑛 ≤ 4 and later extended to arbitrary dimension by Cheng and Yau [6].

These Calabi-Bernstein type results for the maximal hypersurface equation have been a subject of study in recent
years, being extended to several ambient spacetimes such as standard static spacetimes [18, 19], pp-waves [16],
doubly warped product spacetimes [8], among others. In this article we will focus on the models known as
Generalized Robertson-Walker (GRW) spacetimes. These spacetimes were introduced in [1] to extend the classical
notion of Robertson-Walker spacetime to the case where the fiber does not necessarily have constant sectional
curvature. In particular, we will deal with the spatially open case, i.e., the case where the fiber is a complete
non-compact Riemannian manifold. This is due to the fact that some experimental observations and theoretical
arguments suggest that spatially open models provide a more accurate description of our current universe [7].
Furthermore, spatially closed universes lead to a violation of the holographic principle, making spatially open
spacetimes compatible with a possible theory that unifies gravity and quantum mechanics [13].

Consequently, our aim in this article will be to particularize some of the results obtained in [14] to the maximal
case, which will enable us to obtain uniqueness results for the maximal hypersurface equation in spatially open
GRW spacetimes. The technique that will be used is based on combining Bochner formula with a generalized
maximum principle (see [9, 15] for different ways of using these ideas to obtain parametric uniqueness results).

2. Preliminaries
Let (𝐹, 𝑔𝐹 ) be an 𝑛(≥ 2)-dimensional (connected) Riemannian manifold, 𝐼 an open interval in R and 𝑓 a positive
smooth function defined on 𝐼. Consider now the product manifold 𝑀 = 𝐼 × 𝐹 endowed with the Lorentzian metric

𝑔 = −𝜋∗𝐼 (𝑑𝑡2) + 𝑓 (𝜋𝐼 )2 𝜋∗𝐹 (𝑔𝐹 ), (2.1)

where 𝜋𝐼 and 𝜋𝐹 denote the projections onto 𝐼 and 𝐹, respectively. The Lorentzian manifold (𝑀, 𝑔) is a warped
product (in the sense of [12, Chap. 7]) with base (𝐼,−𝑑𝑡2), fiber (𝐹, 𝑔𝐹 ) and warping function 𝑓 . Endowing
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Gijón, 14-18 junio 2021
(pp. 307–312)

CEDYA/CMA 307 ISBN 978-84-18482-21-2



(𝑀, 𝑔) with the time orientation induced by 𝜕𝑡 := 𝜕/𝜕𝑡 we can call it, following the terminology introduced in [1],
an (𝑛 + 1)-dimensional Generalized Robertson-Walker (GRW) spacetime.

In any GRW spacetime there is a distinguished timelike and future pointing vector field, 𝐾 := 𝑓 (𝜋𝐼 )𝜕𝑡 that
satisfies

∇𝑋𝐾 = 𝑓 ′(𝜋𝐼 ) 𝑋 (2.2)

for any 𝑋 ∈ 𝔛(𝑀), where ∇ is the Levi-Civita connection of the Lorentzian metric (2.1). Thus, 𝐾 is conformal
and its metrically equivalent 1-form is closed.

Given an 𝑛-dimensional manifold 𝑀 , an immersion 𝜓 : 𝑀 → 𝑀 is called spacelike if the Lorentzian metric
(2.1) induces a Riemannian metric 𝑔 on 𝑀 through 𝜓. In this codimension one case, 𝑀 is called a spacelike
hypersurface. Along this article, we will denote the restriction of 𝜋𝐼 along 𝜓 by 𝜏. It can be easily seen that its
gradient is given by ∇𝜏 = −𝜕>𝑡 , where 𝜕>𝑡 is the tnagential component of 𝜕𝑡 along 𝜓. In addition, we also have
sinh2 𝜑 = |∇𝜏 |2.

Furthermore, the time-orientation of 𝑀 allows to globally define on each spacelike hypersurface 𝑀 in 𝑀 a
unique unitary timelike vector field 𝑁 ∈ 𝔛⊥ (𝑀) with the same time-orientation as 𝜕𝑡 .

Denoting by 𝐴 the shape operator associated to 𝑁 , the mean curvature function associated to 𝑁 is 𝐻 :=
−(1/𝑛)trace(𝐴). A spacelike hypersurface with identically zero constant mean curvature is called maximal
hypersurface.

Among the family of spacelike hypersurfaces in aGRWspacetimewe should highlight the subfamily of spacelike
graphs. Given an 𝑛(≥ 2)-dimensional Riemannian manifold (𝐹, 𝑔𝐹 ) and a smooth function 𝑓 : 𝐼 −→ R+ we can
consider in the GRW spacetime 𝑀 = 𝐼 × 𝑓 𝐹 the graph

Σ𝑢 = {(𝑢(𝑝), 𝑝) : 𝑝 ∈ Ω},
whereΩ ⊆ 𝐹, 𝑢 ∈ 𝐶∞ (Ω) and 𝑢(Ω) ⊆ 𝐼. The induced metric onΩ from the Lorentzian metric on 𝑀 , via the graph
Σ𝑢 is given by

𝑔𝑢 = −𝑑𝑢2 + 𝑓 (𝑢)2𝑔𝐹 .
Note that 𝑔𝑢 is positive definite (i.e., Σ𝑢 is spacelike) if and only if 𝑢 satisfies

|𝐷𝑢 | < 𝑓 (𝑢).
In this case,

𝑁 =
1

𝑓 (𝑢)
√︁
𝑓 (𝑢)2 − |𝐷𝑢 |2

(
𝑓 (𝑢)2𝜕𝑡 + 𝐷𝑢

)

is a future pointing unit normal vector field on Σ𝑢 and when Ω = 𝐹 the spacelike graph is said to be entire.
From [12, Prop. 7.35] we obtain that the mean curvature function of a spacelike graph associated to 𝑁 is

𝐻 = div

(
𝐷𝑢

𝑛 𝑓 (𝑢)
√︁
𝑓 (𝑢)2 − |𝐷𝑢 |2

)
+ 𝑓 ′(𝑢)
𝑛
√︁
𝑓 (𝑢)2 − |𝐷𝑢 |2

(
𝑛 + |𝐷𝑢 |

2

𝑓 (𝑢)2
)
, (2.3)

where div represents the divergence operator in (𝐹, 𝑔𝐹 ).

Our aim in this article will be to obtain a uniqueness result for the solutions of the maximal hypersurface
equation in a spatially open GRW spacetime. Namely, we are interested in the solutions on (𝐹, 𝑔𝐹 ) of the following
second order nonlinear elliptic PDE:

div

(
𝐷𝑢

𝑛 𝑓 (𝑢)
√︁
𝑓 (𝑢)2 − |𝐷𝑢 |2

)
+ 𝑓 ′(𝑢)
𝑛
√︁
𝑓 (𝑢)2 − |𝐷𝑢 |2

(
𝑛 + |𝐷𝑢 |

2

𝑓 (𝑢)2
)
= 0, (E.1)

|𝐷𝑢 | < 𝜆 𝑓 (𝑢), 0 < 𝜆 < 1, (E.2)
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3. Main results
In order to obtain our uniqueness result for equation (E) we will first deal with the parametric version of the problem,
considering maximal hypersurfaces in a spatially open GRW spacetime which are not necessarily graphs. To prove
our main uniqueness results we will need the following lemma, which bounds the Laplacian of the hyperbolic angle
of these hypersurfaces.

Lemma 3.1 Let 𝜓 : 𝑀 → 𝑀 be a complete maximal hypersurface in a GRW spacetime 𝑀 = 𝐼 × 𝑓 𝐹. Then, the
hyperbolic angle of 𝑀 satisfies

1
2
Δ sinh2 𝜑 = cosh2 𝜑

(
Ric𝐹 (𝑁𝐹 , 𝑁𝐹 ) − 𝑛(log 𝑓 ) ′′(𝜏) sinh2 𝜑

)
+ |Hess(𝜏) |2 (3.1)

+ 𝑓
′(𝜏)2
𝑓 (𝜏)2 sinh

2 𝜑(𝑛 + sinh2 𝜑) + |∇ cosh 𝜑 |2.

where Ric𝐹 denotes the Ricci tensor of the fiber 𝐹 and 𝑁𝐹 is the projection of 𝑁 on 𝐹.

Proof The crucial idea of this proof is to compute the Laplacian of the function cosh 𝜑, which is defined by

cosh 𝜑 = −𝑔(𝑁, 𝜕𝑡 ).
Using (2.2) we can compute this function’s gradient, obtaining

∇ cosh 𝜑 = 𝐴𝜕>𝑡 +
𝑓 ′(𝜏)
𝑓 (𝜏) cosh 𝜑 𝜕

>
𝑡 . (3.2)

Choosing a local orthonormal reference frame {𝐸1, . . . , 𝐸𝑛} on 𝑇𝑀 we can obtain the Laplacian of cosh 𝜑 using
(3.2) as follows

Δ cosh 𝜑 =
𝑛∑︁
𝑖=1

𝑔(∇𝐸𝑖 (𝐴𝜕>𝑡 ), 𝐸𝑖) +
𝑛∑︁
𝑖=1

𝑔

(
∇𝐸𝑖

(
𝑓 ′(𝜏)
𝑓 (𝜏) cosh 𝜑 𝜕

>
𝑡

)
, 𝐸𝑖

)
. (3.3)

In fact, we can rewrite (3.3) as

Δ cosh 𝜑 =
𝑛∑︁
𝑖=1

𝑔((∇𝐸𝑖 𝐴)𝜕>𝑡 , 𝐸𝑖) +
𝑛∑︁
𝑖=1

𝑔(∇𝐸𝑖𝜕>𝑡 , 𝐴𝐸𝑖) −
𝑓 ′′(𝜏)
𝑓 (𝜏) cosh 𝜑 sinh

2 𝜑 (3.4)

+2 𝑓
′(𝜏)2
𝑓 (𝜏)2 cosh 𝜑 sinh

2 𝜑 + 𝑓
′(𝜏)
𝑓 (𝜏) 𝑔(𝐴𝜕

>
𝑡 , 𝜕

>
𝑡 )

+ 𝑓
′(𝜏)
𝑓 (𝜏) cosh 𝜑

𝑛∑︁
𝑖=1

𝑔(∇𝐸𝑖𝜕>𝑡 , 𝐸𝑖).

where we have used that (∇𝑋 𝐴)𝑌 = ∇𝑋 (𝐴𝑌 ) − 𝐴(∇𝑋𝑌 ) for all 𝑋,𝑌 ∈ 𝔛(𝑀). On the other hand, using Codazzi
equation 𝑔(R(𝑋,𝑌 )𝑁, 𝑍) = 𝑔((∇𝑌 𝐴)𝑋, 𝑍) − 𝑔((∇𝑋 𝐴)𝑌, 𝑍) (where R denotes the curvature tensor of 𝑀) and
choosing our local frame in 𝑇𝑝𝑀 satisfying

(
∇𝐸 𝑗𝐸𝑖

)
𝑝
= 0 we deduce from (3.4)

Δ cosh 𝜑 = −Ric(𝜕>𝑡 , 𝑁) + 2
𝑓 ′(𝜏)
𝑓 (𝜏) 𝑔(𝐴𝜕

>
𝑡 , 𝜕

>
𝑡 ) + cosh 𝜑 trace(𝐴2) (3.5)

− 𝑓
′′(𝜏)
𝑓 (𝜏) cosh 𝜑 sinh

2 𝜑 + 3 𝑓
′(𝜏)2
𝑓 (𝜏)2 cosh 𝜑 sinh

2 𝜑 + 𝑛 𝑓
′(𝜏)2
𝑓 (𝜏)2 cosh 𝜑,

where Ric is the Ricci tensor of 𝑀 . Decomposing 𝑁 as 𝑁 = 𝑁𝐹 − 𝑔(𝑁, 𝜕𝑡 )𝜕𝑡 , being 𝑁𝐹 the projection of 𝑁 on the
fiber 𝐹, we can use [12, Cor. 7.43] to write

Ric(𝜕>𝑡 , 𝑁) = − cosh 𝜑
(
Ric𝐹 (𝑁𝐹 , 𝑁𝐹 ) + (𝑛 − 1) (log 𝑓 ) ′′(𝜏) sinh2 𝜑

)
. (3.6)

Now, (3.6) can be used in (3.5) to obtain
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Δ cosh 𝜑 = cosh 𝜑
(
Ric𝐹 (𝑁𝐹 , 𝑁𝐹 ) − (𝑛 − 1) (log 𝑓 ) ′′(𝜏) sinh2 𝜑

)
(3.7)

+2 𝑓
′(𝜏)
𝑓 (𝜏) 𝑔(𝐴𝜕

>
𝑡 , 𝜕

>
𝑡 ) + cosh 𝜑 trace(𝐴2) −

𝑓 ′′(𝜏)
𝑓 (𝜏) cosh 𝜑 sinh

2 𝜑

+3 𝑓
′(𝜏)2
𝑓 (𝜏)2 cosh 𝜑 sinh

2 𝜑 + 𝑛 𝑓 ′(𝜏)2
𝑓 (𝜏)2 cosh 𝜑.

If we now compute |Hess(𝜏) |2 we have

|Hess(𝜏) |2 =
𝑛∑︁
𝑖=1

𝑔(∇𝐸𝑖𝜕>𝑡 ,∇𝐸𝑖𝜕>𝑡 ) =
𝑓 ′(𝜏)2
𝑓 (𝜏)2

(
𝑛 − 1 + cosh4 𝜑

)
(3.8)

+ cosh2 𝜑 trace(𝐴2) + 2 𝑓
′(𝜏)
𝑓 (𝜏) cosh 𝜑 𝑔(𝐴𝜕

>
𝑡 , 𝜕

>
𝑡 ).

Combining (3.7) and (3.8) leads to

cosh 𝜑 Δ cosh 𝜑 = cosh2 𝜑
(
Ric𝐹 (𝑁𝐹 , 𝑁𝐹 ) − 𝑛(log 𝑓 ) ′′(𝜏) sinh2 𝜑

)
(3.9)

+|Hess(𝜏) |2 + 𝑓
′(𝜏)2
𝑓 (𝜏)2 sinh

2 𝜑(𝑛 + sinh2 𝜑).

We conclude the proof noticing that

1
2
Δ sinh2 𝜑 = cosh 𝜑 Δ cosh 𝜑 + |∇ cosh 𝜑 |2,

and using (3.9) to obtain (3.1). �

To prove our main results we also need the following lemma that extends [17, Lemma 3] and gives a bound for
the Ricci curvature of constant mean curvature spacelike hypersurfaces in GRW spacetimes.

Lemma 3.2 Let 𝜓 : 𝑀 → 𝑀 be a maximal hypersurface in a GRW spacetime 𝑀 = 𝐼× 𝑓 𝐹 whose warping function
satisfies (log 𝑓 ) ′′(𝜏) ≤ 0. If either the fiber 𝐹 has non-negative sectional curvature, 𝑀 has bounded hyperbolic
angle and the sectional curvature of the fiber 𝐹 is bounded from below, then the Ricci curvature of 𝑀 is bounded
from below.

Proof Given a point 𝑝 ∈ 𝑀 , let us choose a local orthonormal reference frame {𝐸1, . . . , 𝐸𝑛} around 𝑝. From the
Gauss equation we have that the Ricci curvature of 𝑀 , Ric, satisfies

Ric(𝑋, 𝑋) ≥
𝑛∑︁
𝑖=1

𝑔(R(𝑋, 𝐸𝑖)𝐸𝑖 , 𝑋)

for all 𝑋 ∈ 𝔛(𝑀). Using [12, Prop. 7.42] we obtain

𝑛∑︁
𝑖=1

𝑔(R(𝑋, 𝐸𝑖)𝐸𝑖 , 𝑋) =
𝑛∑︁
𝑖=1

𝑔𝐹 (RF (𝑋𝐹 , 𝐸𝐹𝑖 )𝐸𝐹𝑖 , 𝑋𝐹 ) + (𝑛 − 1)
𝑓 ′(𝜏)2
𝑓 (𝜏)2 |𝑋 |

2

−(𝑛 − 2) (log 𝑓 ) ′′(𝜏) 𝑔(𝑋,∇𝜏)2 − (log 𝑓 ) ′′(𝜏) |∇𝜏 |2 |𝑋 |2,

being RF the curvature tensor of 𝐹 and 𝑋𝐹 and 𝐸𝐹𝑖 the projections of 𝑋 and 𝐸𝑖 on the fiber. If (log 𝑓 ) ′′(𝜏) ≤ 0
and 𝐹 has non-negative sectional curvature, we see that the Ricci curvature of 𝑀 is bounded from below. On the
other hand, if 𝜑 is bounded and the sectional curvature of 𝐹 is bounded from below we can consider 𝑋 ∈ 𝔛(𝑀)
such that |𝑋 |2 = 1 and decompose it as

𝑋 = −𝑔(𝑋, 𝜕𝑡 )𝜕𝑡 + 𝑋𝐹 .
Moreover, we can also see that
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|𝑋𝐹 |2 |𝐸𝐹𝑖 |2 =
(
1 + 𝑔(𝑋,∇𝜏)2

) (
1 + 𝑔(𝐸𝑖 ,∇𝜏)2

)
,

as well as

𝑔(𝑋𝐹 , 𝐸𝐹𝑖 )2 = 𝑔(𝑋, 𝐸𝑖)2 + 𝑔(𝑋,∇𝜏)2𝑔(𝐸𝑖 ,∇𝜏)2 + 2𝑔(𝑋, 𝐸𝑖)𝑔(𝑋,∇𝜏)𝑔(𝐸𝑖 ,∇𝜏).
Thus, if the sectional curvature of 𝐹 is bounded from below by a constant 𝐶 the above expressions yield

𝑛∑︁
𝑖=1

𝑔𝐹 (RF (𝑋𝐹 , 𝐸𝐹𝑖 )𝐸𝐹𝑖 , 𝑋𝐹 ) ≥ 𝐶
(
𝑛 − 1 + sinh2 𝜑 + (𝑛 − 2)𝑔(𝑋,∇𝜏)2

)
. (3.10)

Thus, if the hyperbolic angle of 𝑀 is bounded the classical Schwarz inequality guarantees that the left hand side of
(3.10) is bounded from below by a constant. Therefore, we conclude again that if (log 𝑓 ) ′′(𝜏) ≤ 0, then the Ricci
curvature of 𝑀 is bounded from below. �

In addition, we will make use of the following consequence of the Omori-Yau maximum principle obtained by
Cheng and Yau in [6].

Lemma 3.3 [6, 11] Let 𝑀 be a complete Riemannian manifold whose Ricci curvature is bounded from below. If
𝑢 ∈ 𝐶2 (𝑀) is a non-negative function that satisfies Δ𝑢 ≥ 𝐶𝑢2 for a positive constant 𝐶, then 𝑢 vanishes identically
on 𝑀 .

Taking these three lemmas into account, we are now in a position to prove our main parametric uniqueness
result.

Theorem 3.4 Let 𝜓 : 𝑀 → 𝑀 be a complete maximal hypersurface in a GRW spacetime 𝑀 = 𝐼 × 𝑓 𝐹 whose fiber
𝐹 has non-negative sectional curvature. If the warping function satisfies

sup
𝑀
(log 𝑓 ) ′′(𝜏) < 0, (A)

then 𝑀 is a totally geodesic spacelike slice.

Proof Under these assumptions, we deduce from Lemma 3.1 that 𝜑 satisfies

1
2
Δ sinh2 𝜑 ≥ −𝑛 (log 𝑓 ) ′′(𝜏) (1 + sinh2 𝜑) sinh2 𝜑.

Moreover, (A) allows us to use Lemma 3.2 to guarantee that the Ricci curvature of 𝑀 is bounded from below as
well as ensures the existence of a positive constant 𝐶 such that

Δ sinh2 𝜑 ≥ 𝐶 sinh4 𝜑.
Finally, we can use Lemma 3.3 to conclude that 𝑀 is a totally geodesic spacelike slice. �

Remark 3.5 Note that assumption (A) cannot be omitted in order to obtain these results in spatially open GRW
spacetimes. For instance, in the Lorentz-Minkowski spacetime of arbitrary dimension L𝑛+1 this assumption does
not hold and there is no analogous uniqueness result for complete maximal spacelike hypersurfaces.

As a consequence of Theorem 3.4 we can obtain our main non parametric result for the maximal hypersurface
equation in a GRW spacetime whose fiber has non-negative sectional curvature.

Corollary 3.6 Let 𝑓 : 𝐼 −→ R+ be a smooth function such that inf 𝑓 > 0 and sup (log 𝑓 ) ′′ < 0. Then, the only
entire solutions to the equation

div

(
𝐷𝑢

𝑛 𝑓 (𝑢)
√︁
𝑓 (𝑢)2 − |𝐷𝑢 |2

)
+ 𝑓 ′(𝑢)
𝑛
√︁
𝑓 (𝑢)2 − |𝐷𝑢 |2

(
𝑛 + |𝐷𝑢 |

2

𝑓 (𝑢)2
)
= 0, (E.1)

|𝐷𝑢 | < 𝜆 𝑓 (𝑢), 0 < 𝜆 < 1, (E.2)

on a complete Riemannian manifold 𝐹 with non-negative sectional curvature are the constant functions 𝑢 = 𝑡0,
with 𝑡0 ∈ 𝐼 such that 𝑓 ′(𝑡0) = 0.
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Proof Note that constraint (E.2) implies that the hyperbolic angle of the graph Σ𝑢 satisfies

cosh 𝜑 <
1√
1 − 𝜆2

. (3.11)

Furthermore, using the classical Schwarz inequality we deduce

𝑔𝑢 (𝑣, 𝑣) ≥ |𝐷𝑢 |2𝑔𝑢 (𝑣, 𝑣) + 𝑓 (𝑢)2𝑔𝐹 (𝑑𝜋𝐹 (𝑣), 𝑑𝜋𝐹 (𝑣)), for all 𝑣 ∈ 𝑇Σ𝑢 . (3.12)
Hence, from (3.12) we obtain

𝑔𝑢 (𝑣, 𝑣) ≥ 𝑓 (𝑢)2
cosh2 𝜑

𝑔𝐹 (𝑑𝜋𝐹 (𝑣), 𝑑𝜋𝐹 (𝑣)). (3.13)

Denoting by 𝐿𝐹 (𝛾) and 𝐿𝑢 (𝛾) the length of a smooth curve 𝛾 on 𝐹 with respect to the metrics 𝑔𝐹 and 𝑔𝑢 ,
respectively, from (3.13) and (3.11) we have

𝐿𝑢 (𝛾) ≥ (1 − 𝜆2) (inf 𝑓 (𝑢)2)𝐿𝐹 (𝛾). (3.14)
Thus, since (𝐹, 𝑔𝐹 ) is complete and inf 𝑓 > 0 we obtain that the metric 𝑔𝑢 is also complete. This fact and the

rest of our assumptions enable us to apply Theorem 3.4 to end the proof. �
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Abstract
A class of well-balanced finite volume methods with first and higher order of accuracy is designed for two

spherical symmetric fluid models on a Schwarzschild curved background: the Burgers-Schwarzschild model and
the Euler-Schwarzschild model. We take advantage of the explicit or implicit forms available for the stationary
solutions of these models to design numerical methods that preserve them. These methods are then used to
investigate the late time behaviour of the flows.

1. Introduction
We are interested in the numerical approximation and the long time behaviour of relativistic compressible fluid
flows on a Schwarzschild black hole background. The flow is assumed to enjoy spherical symmetry and therefore we
deal with nonlinear hyperbolic systems of partial differential equations (PDEs) in one space variable. The objective
is two-fold: on the one hand, designing and testing numerically finite volume algorithms that are well-balanced; on
the other hand, to perform a thorough investigation of the behavior of the solutions and numerically infer definite
conclusions about the long-time behavior of such flows. Our study should provide first and useful insights for, on
the one hand, further development concerning the mathematical analysis of the models and, on the other hand,
further investigations to the same problem in higher dimensions without symmetry restriction.
We consider first the relativistic Burgers-Schwarzschild model (see [12, 13]):

𝑣𝑡 + 𝐹 (𝑣, 𝑟)𝑟 = 𝑆(𝑣, 𝑟), 𝑡 ≥ 0, 𝑟 > 2𝑀, (1.1a)

where 𝑣 = 𝑣(𝑡, 𝑟) ∈ [−1, 1] is the unknown function and the flux and source terms read

𝐹 (𝑣, 𝑟) =
(
1 − 2𝑀

𝑟

) 𝑣2 − 1
2

, 𝑆(𝑣, 𝑟) = 2𝑀
𝑟2
(𝑣2 − 1), (1.1b)

while the constant 𝑀 > 0 represents the mass of the black hole. The speed of propagation for this scalar balance
law reads

𝜕𝑣𝐹 (𝑣, 𝑟) =
(
1 − 2𝑀

𝑟

)
𝑣, (1.2)

which vanishes at the boundary 𝑟 = 2𝑀 , so that no boundary condition is required in order to pose the Cauchy
problem.
Next, we consider the relativistic Euler-Schwarzschild model (as it is called in [12, 13]):

𝑉𝑡 + 𝐹 (𝑉, 𝑟)𝑟 = 𝑆(𝑉, 𝑟), 𝑡 ≥ 0, 𝑟 > 2𝑀, (1.3a)

whose unknowns are the fluid density 𝜌 = 𝜌(𝑡, 𝑟) ≥ 0 and the normalized velocity 𝑣 = 𝑣(𝑡, 𝑟) ∈ (−1, 1). These
functions are defined for all 𝑟 > 2𝑀 and the limiting values 𝑣 = ±1 can be reached at the boundary 𝑟 = 2𝑀 only,
and

𝑉 =

(
𝑉0

𝑉1

)
=

©«

1 + 𝑘2𝑣2
1 − 𝑣2 𝜌

1 + 𝑘2
1 − 𝑣2 𝜌𝑣

ª®®®¬
, 𝐹 (𝑉, 𝑟) =

©«

(
1 − 2𝑀

𝑟

) 1 + 𝑘2
1 − 𝑣2 𝜌𝑣(

1 − 2𝑀
𝑟

) 𝑣2 + 𝑘2
1 − 𝑣2 𝜌

ª®®®¬
, (1.3b)

𝑆(𝑉, 𝑟) =
©«

−2
𝑟

(
1 − 2𝑀

𝑟

) 1 + 𝑘2
1 − 𝑣2 𝜌𝑣

−2𝑟 + 5𝑀
𝑟2

𝑣2 + 𝑘2
1 − 𝑣2 𝜌 −

𝑀

𝑟2
1 + 𝑘2𝑣2
1 − 𝑣2 𝜌 + 2𝑟 − 2𝑀

𝑟2
𝑘2𝜌

ª®®®¬
, (1.3c)

with

𝑣 =
1 + 𝑘2 −

√︂
(1 + 𝑘2)2 − 4𝑘2

(
𝑉 1

𝑉 0

)2
2𝑘2 𝑉 1

𝑉 0

, 𝜌 =
𝑉1 (1 − 𝑣2)
𝑣(1 + 𝑘2) . (1.3d)
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Here, 𝑘 ∈ (−1, 1) denotes the (constant) speed of sound. The eigenvalues of the Jacobian of the flux function are

𝜇± =
(
1 − 2𝑀

𝑟

) 𝑣 ± 𝑘
1 ± 𝑘2𝑣 , (1.4)

so that the system is strictly hyperbolic. As usual, a state (𝜌, 𝑣), by definition, is said to be sonic if one of the
eigenvalues vanishes, i.e. if |𝑣 | = |𝑘 |, supersonic if both eigenvalues have the same sign, i.e. if |𝑣 | > |𝑘 |, or subsonic
if the eigenvalues have different signs, i.e. if |𝑣 | < |𝑘 |. Both eigenvalues 𝜇± vanish at the boundary 𝑟 = 2𝑀 , so that
no boundary condition is required in order to pose the Cauchy problem.
In order to be able of running reliable and accurate numerical simulations for these two models, we design

shock-capturing, high-order, and well-balanced finite volume methods of first- and second-order of accuracy (and
even third-order accurate for (1.1)). Specifically, we extend to the present problem the well-balanced methodology
proposed recently by Castro and Parés [7] for nonlinear hyperbolic systems of balance laws. For earlier work on
well-balanced schemes we also refer to [5,16,17] and, concerning the design of geometry-preserving schemes, we
refer for instance to [1–3,6, 8–10,15, 19] and the references therein.
The properties of the stationary solutions play a fundamental role in the design of well-balanced schemes, as well

as in the study of the long time behavior of solutions. We thus also built here upon earlier investigations by LeFloch
and collaborators [11–13] on the theory and approximation of the relativistic Burgers- and Euler-Schwarzschild
model (1.1) and (1.3). Remarkably, the stationary solutions to both models are available in explicit or implicit form.

2. Well-balanced methodology
Both problems of interest are of the form

𝑉𝑡 + 𝐹 (𝑉, 𝑟)𝑟 = 𝑆(𝑉, 𝑟), 𝑟 > 2𝑀, (2.1)

with unknown 𝑉 = 𝑉 (𝑡, 𝑟) ∈ R𝑁 and 𝑁 = 1 or 2. Systems of this form have non-trivial stationary solutions, which
satisfy the ODE

𝐹 (𝑉, 𝑟)𝑟 = 𝑆(𝑉, 𝑟). (2.2)

Our goal is to introduce a family of numerical methods that are well-balanced, i.e. that preserve the stationary
solutions in a sense to be specified. We follow the strategy in [7] to which we refer for further details and arguments
of proof.
We consider semi-discrete finite volume numerical methods of the form

𝑑𝑉𝑖
𝑑𝑡

= − 1
Δ𝑟

(
𝐹𝑖+ 12 − 𝐹𝑖− 12 −

∫ 𝑟
𝑖+ 12

𝑟
𝑖− 12

𝑆(P𝑡𝑖 (𝑟), 𝑟) 𝑑𝑟
)
, (2.3)

where the following notation is used.

• 𝐼𝑖 = [𝑟𝑖− 12 , 𝑟𝑖+ 12 ] denote the computational cells, whose length Δ𝑟 is assumed to be constant for simplicity.

• 𝑉𝑖 (𝑡) denotes the approximate average of the exact solution in the 𝑖th cell at the time 𝑡, that is,

𝑉𝑖 (𝑡) � 1Δ𝑟
∫ 𝑟

𝑖+ 12

𝑟
𝑖− 12

𝑉 (𝑟, 𝑡) 𝑑𝑟. (2.4)

• P𝑡𝑖 (𝑟) denotes the approximation of the solution in the 𝑖th cell given by a high-order reconstruction operator
based on the cell averages {𝑉𝑖 (𝑡)}, that is, P𝑡𝑖 (𝑟) = P𝑡𝑖 (𝑟; {𝑉 𝑗 (𝑡)} 𝑗∈S𝑖 ). Here, S𝑖 denotes the set of cell indices
associated with the stencil of the 𝑖th cell.

• The flux terms are denoted by 𝐹𝑖+ 12 = F

(
𝑉 𝑡 ,−
𝑖+ 12
, 𝑉 𝑡 ,+
𝑖+ 12
, 𝑟𝑖+ 12

)
, where 𝑉 𝑡 ,±

𝑖+ 12
are the reconstructed states at the

interfaces, i.e.
𝑉 𝑡 ,−
𝑖+ 12

= P𝑡𝑖 (𝑟𝑖+ 12 ), 𝑉 𝑡 ,+
𝑖+ 12

= P𝑡𝑖+1 (𝑟𝑖+ 12 ). (2.5)

Here, F is a consistent numerical flux, i.e. a continuous function F : R𝑁 ×R𝑁 × (2𝑀, +∞) → R𝑁 satisfying
F(𝑉,𝑉, 𝑟) = 𝐹 (𝑉, 𝑟) for all 𝑉, 𝑟.

Furthermore, given a stationary solution 𝑉∗ of (2.2), we use the following terminology.

• The numerical method (2.3) is said to be well-balanced for 𝑉∗ if the vector of cell averages of 𝑉∗ is an
equilibrium of the ODE system (2.3).
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• The reconstruction operator is said to be well-balanced for𝑉∗ if we have P𝑖 (𝑟) = 𝑉∗ (𝑟) for all 𝑟 ∈ [𝑟𝑖− 12 , 𝑟𝑖+ 12 ],
where P𝑖 is the approximation of 𝑉∗ obtained by applying the reconstruction operator to the vector of cell
averages of 𝑉∗.

It is easily checked that, if the reconstruction operator is well-balanced for a continuous stationary solution 𝑉∗ of
(2.2) then the numerical method is also well-balanced for 𝑉∗. The following strategy to design a well-balanced
reconstruction operator P𝑖 on the basis of a standard operator Q𝑖 was introduced in [5]:
Given a family of cell values {𝑉𝑖}, in every cell 𝐼𝑖 = [𝑟𝑖− 12 , 𝑟𝑖+ 12 ] we proceed as follows.

1. Seek, (whenever possible), a stationary solution 𝑉∗𝑖 (𝑥) defined in the stencil of cell 𝐼𝑖 (∪ 𝑗∈S𝑖 𝐼 𝑗 ) such that
1
Δ𝑟

∫ 𝑟
𝑖+ 12

𝑟
𝑖− 12

𝑉∗𝑖 (𝑟) 𝑑𝑟 = 𝑉𝑖 . (2.6)

If such a solution does not exist, take 𝑉∗𝑖 ≡ 0.
2. Apply the reconstruction operator to the cell values {𝑊 𝑗 } 𝑗∈S𝑖 given by

𝑊 𝑗 = 𝑉 𝑗 − 1Δ𝑟
∫ 𝑟

𝑗+ 12

𝑟
𝑗− 12

𝑉∗𝑖 (𝑟) 𝑑𝑟, 𝑗 ∈ S𝑖 , (2.7)

in order to obtain Q𝑖 (𝑟) = Q𝑖 (𝑟; {𝑊 𝑗 } 𝑗∈S𝑖 ). We consider the MUSCL reconstruction operator (see [18]) in
the second-order case and the CWENO3 (see [14]) in the third-order case.

3. Define finally
P𝑖 (𝑟) = 𝑉∗𝑖 (𝑟) + Q𝑖 (𝑟). (2.8)

It can be then easily shown that the reconstruction operator P𝑖 in (2.8) is well-balanced for every stationary
solution provided that the reconstruction operator Q𝑖 is exact for the zero function. Moreover, if Q𝑖 is conservative
then P𝑖 is conservative, in the sense that

1
Δ𝑟

∫ 𝑟
𝑖+ 12

𝑟
𝑖− 12

P𝑖 (𝑟) 𝑑𝑟 = 𝑉𝑖 , (2.9)

and P𝑖 has the same accuracy as Q𝑖 if the stationary solutions are sufficiently regular.
If a quadrature formula (whose order of accuracy must be greater or equal to the one of the reconstruction

operator) ∫ 𝑟
𝑖+ 12

𝑟
𝑖− 12

𝑓 (𝑥) 𝑑𝑥 ≈ Δ𝑟
𝑞∑︁
𝑙=0

𝛼𝑙 𝑓 (𝑟𝑖,𝑙)

where 𝛼0, . . . , 𝛼𝑞 , 𝑟𝑖,0, . . . , 𝑟𝑖,𝑞 represent the weights and the nodes of the formula, is used to compute the averages
of the initial condition, namely 𝑉𝑖,0 =

∑𝑞
𝑙=0 𝛼𝑙𝑉0 (𝑟𝑖,𝑙), the reconstruction procedure has to be modified to preserve

the well-balanced property: Steps 1 and 2 have to be replaced by the following ones

1. Seek, if possible, the stationary solution 𝑉∗𝑖 (𝑥) defined in the stencil of cell 𝐼𝑖 (∪ 𝑗∈S𝑖 𝐼 𝑗 ) such that
𝑞∑︁
𝑙=0

𝛼𝑙𝑉
∗
𝑖 (𝑟𝑖,𝑙) = 𝑉𝑖 . (2.10)

If this solution does not exist, take 𝑉∗𝑖 ≡ 0.
2. Apply the reconstruction operator to the cell values {𝑊 𝑗 } 𝑗∈S𝑖 given by

𝑊 𝑗 = 𝑉 𝑗 −
𝑞∑︁
𝑙=0

𝛼𝑙𝑉
∗
𝑖 (𝑟 𝑗 ,𝑙), 𝑗 ∈ S𝑖 .

For first- or second-order methods, if the midpoint rule is selected to compute the initial averages, i.e. 𝑉𝑖,0 = 𝑉0 (𝑟𝑖),
then at the first step of the reconstruction procedure, the problem (2.10) reduces to finding the stationary solution
satisfying

𝑉∗𝑖 (𝑟𝑖) = 𝑉𝑖 . (2.11)
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The well-balanced property of the method can be lost if the quadrature formula is used to compute the integral
appearing at the right-hand side of (2.3). In order to circumvent this difficulty, in [7] it is proposed to rewrite the
methods as follows:

𝑑𝑉𝑖
𝑑𝑡

= − 1
Δ𝑟

(
𝐹𝑖+ 12 − 𝐹

(
𝑉 𝑡 ,∗𝑖 (𝑟𝑖+ 12 ), 𝑟𝑖+ 12

)
− 𝐹𝑖− 12 + 𝐹

(
𝑉 𝑡 ,∗𝑖 (𝑟𝑖− 12 ), 𝑟𝑖− 12

))
+ 1
Δ𝑟

∫ 𝑟
𝑖+ 12

𝑟
𝑖− 12

(
𝑆(P𝑡𝑖 (𝑟), 𝑟) − 𝑆(𝑉 𝑡 ,∗𝑖 (𝑟), 𝑟)

)
𝑑𝑟,

(2.12)

where 𝑉 𝑡 ,∗𝑖 is the function selected in Step 1 for the 𝑖th cell at time 𝑡. In this equivalent form, a quadrature formula
can be applied to the integral without losing the well-balanced property, and this leads to a numerical method of
the form:

𝑑𝑉𝑖
𝑑𝑡

= − 1
Δ𝑟

(
𝐹𝑖+ 12 − 𝐹

(
𝑉 𝑡 ,∗𝑖 (𝑟𝑖+ 12 ), 𝑟𝑖+ 12

)
− 𝐹𝑖− 12 + 𝐹

(
𝑉 𝑡 ,∗𝑖 (𝑟𝑖− 12 ), 𝑟𝑖− 12

))

+
𝑞∑︁
𝑙=0

𝛼𝑙
(
𝑆(P𝑡𝑖 (𝑟𝑖,𝑙), 𝑟𝑖,𝑙) − 𝑆(𝑉 𝑡 ,∗𝑖 (𝑟𝑖,𝑙), 𝑟𝑖,𝑙)

)
.

(2.13)

First-order well-balanced methods are obtained by selecting the trivial constant piecewise reconstruction operator
as the standard one, i.e.

Q𝑖 (𝑟,𝑉𝑖) = 𝑉𝑖 , 𝑟 ∈ [𝑟𝑖− 12 , 𝑟𝑖+ 12 ] . (2.14)

It can be easily checked that the numerical method then reduces to
𝑑𝑉𝑖
𝑑𝑡

= − 1
Δ𝑟

(
𝐹𝑖+ 12 − 𝐹

(
𝑉 𝑡 ,∗𝑖 (𝑟𝑖+ 12 ), 𝑟𝑖+ 12

)
− 𝐹𝑖− 12 + 𝐹

(
𝑉 𝑡 ,∗𝑖 (𝑟𝑖− 12 ), 𝑟𝑖− 12

))
, (2.15)

where 𝐹𝑖+ 12 = F
(
𝑉∗𝑖 (𝑟𝑖+ 12 ), 𝑉

∗
𝑖+1 (𝑟𝑖+ 12 ), 𝑟𝑖+ 12

)
.

Notice that the implementation of these methods requires to find a stationary solution with prescribed average
at Step 1 of the reconstruction procedure. In the case of the Burgers-Schwarzschild model, the explicit expression
of the stationary solutions is available

𝑣∗ (𝑟) = ±
√︂
1 − 𝐾2

(
1 − 2𝑀

𝑟

)
, 𝐾 > 0. (2.16)

and it can be easily checked that (2.10) and (2.11) have always a unique solution. In the case of the Euler-
Schwarzschild model, the following implicit form of the stationary solutions is available

sgn(𝑣) (1 − 𝑣2) |𝑣 | 2𝑘
2

1−𝑘2 𝑟
4𝑘2
1−𝑘2(

1 − 2𝑀𝑟
) = 𝐶1, 𝑟 (𝑟 − 2𝑀)𝜌 𝑣

1 − 𝑣2 = 𝐶2, (2.17)

where 𝐶1, 𝐶2 are constants. Once the constants are fixed by imposing (2.11), a nonlinear system has to be solved
to evaluate the stationary solution at a point of the stencil. This system can have 0, 1, or 2 solutions. If there is no
solution the standard reconstruction is used. When there are two solutions, one of them is supersonic and the other
is subsonic: the one whose regime is equal to that of 𝑉𝑖 is selected.

3. Numerical tests
First-, second- and third-order methods for the Burgers-Schwarzschild and first- and second-order methods for
Euler-Schwarzschild have been implemented. Several numerical test are presented here to show the relevance of
the well-balanced property for the investigation of the asymptotic behaviour of the flows.

3.1. Burgers-Schwarzschild
We consider the spatial interval [2𝑀, 𝐿] with 𝑀 = 1 and 𝐿 = 4, a 256-point uniform mesh, and the CFL number
equal to 0.5. At 𝑟 = 2𝑀 , 𝐹− 12 = 0 is imposed. At 𝑟 = 𝐿, a transmissive boundary condition based on the use
ghost-cells is used. The following numerical flux is considered:

𝐹𝑖+ 12 = F(𝑣𝑖 , 𝑣𝑖+1, 𝑟𝑖+ 12 ) =
(
1 − 2𝑀

𝑟𝑖+ 12

)
𝑞2 (0; 𝑣𝑖 , 𝑣𝑖+1) − 1

2
,

where 𝑞(·; 𝑣𝐿 , 𝑣𝑅) is the self-similar solution of the Riemann problem for the standard Burgers equation with the
initial condition

𝑣0 (𝑟) =
{
𝑣𝐿 , 𝑟 < 0,
𝑣𝑅, 𝑟 > 0.

In order to check the relevance of the well-balanced property, the well-balanced methods will be compared with
standard ones based on the same numerical fluxes and the standard first-, second-, or third-order reconstructions.
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Positive stationary solution We consider the initial condition

𝑣0 (𝑟) =
√︂
3
4
+ 1
2𝑟

(3.1)

corresponding to a positive stationary solution. Table 1 shows the error in 𝐿1 norm between the initial condition and
the numerical solution at time 𝑡 = 50. Figure 1 compares the numerical solutions obtained with the well-balanced
and the non-well-balanced methods: it can be seen how the latter are unable to capture the stationary solution.
After a time that decreases with the order, the numerical solutions depart from the steady state.

Scheme (256 cells) Error (1st) Error (2nd) Error (3rd)
Well-balanced 1.13E-14 8.72Ee-17 7.22E-14
Non well-balanced 1.89 1.61 8.78E-02

Tab. 1Well-balanced versus non-well-balanced schemes: 𝐿1 errors at 𝑡 = 50 for the Burgers model with the initial condition
(3.1).

Fig. 1 Burgers-Schwarzschild model with the initial condition (3.1): first-, second-, and third-order well-balanced and not-
well-balanced methods at various times.

Perturbation of a steady shock solution In this test case we consider the initial condition:

�̃�0 (𝑟) = 𝑣0 (𝑟) + 𝑝𝐿 (𝑟), (3.2)

where 𝑣0 is the steady shock solution given by

𝑣0 (𝑟) =



√︂
3
4
+ 1
2𝑟
, 2 < 𝑟 < 3,

−
√︂
3
4
+ 1
2𝑟
, otherwise,

(3.3)

and

𝑝𝐿 (𝑟) =


−1
5
𝑒−200(𝑟−2.5)

2
, 2.2 < 𝑟 < 2.8,

0, otherwise.
(3.4)

The first-, second-, and third-order well-balanced methods have been applied to this problem. In Figure 2 it can be
observed that, after the wave generated by the initial perturbation leaves the computational domain, the stationary
solution (3.3) is not recovered: a different stationary solution is obtained whose shock is placed at a different
location. Observe that all the three methods capture the same stationary solution.
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Fig. 2 Burgers-Schwarzschild model with the initial condition (3.2)-(3.3)-(3.4): first-, second-, and third-order well-balanced
methods at selected times.

3.2. Euler-Schwarzschild
We consider the spatial interval [2𝑀, 𝐿] with 𝑀 = 1 and 𝐿 = 10, a 500-point uniform mesh, 𝑘 = 0.3, and the CFL
number equal to 0.5. At 𝑟 = 2𝑀 we impose 𝐹− 12 = 0 as boundary condition since

(
1 − 2𝑀𝑟

)
= 0. The boundary

conditions are the same as in the previous test case. A HLL-like numerical flux in PVM form (see [4]) will be used:

𝐹𝑖+ 12 =
1
2
(𝐹 (𝑉𝑖) + 𝐹 (𝑉𝑖+1)) − 12 (𝛼0 (𝑉𝑖+1 −𝑉𝑖) + 𝛼1 (𝐹 (𝑉𝑖+1) − 𝐹 (𝑉𝑖))) , (3.5)

with

𝛼0 =
𝜆2 |𝜆1 | − 𝜆1 |𝜆2 |

𝜆2 − 𝜆1
, 𝛼1 =

|𝜆2 | − |𝜆1 |
𝜆2 − 𝜆1

, (3.6)

where 𝜆1 and 𝜆2 are the eigenvalues of some intermediate matrix 𝐽𝑖+ 12 of the form

𝐽𝑖+ 12 =

(
1 − 2𝑀

𝑟𝑖+ 12

) 
0 1

𝑘2 − 𝑣2𝑚
1 − 𝑘2𝑣2𝑚

2(1 − 𝑘2)𝑣𝑚
1 − 𝑘2𝑣2𝑚


(3.7)

where 𝑣𝑚 is some intermediate value between 𝑣𝑛𝑖 and 𝑣
𝑛
𝑖+1.

Discontinuous stationary entropy weak solution We consider the initial condition

𝑉0 (𝑟) =
{
𝑉∗− (𝑟), 𝑟 ≤ 6,
𝑉∗+ (𝑟), otherwise,

(3.8)

where 𝑉∗− (𝑟) is the supersonic stationary solution such that

𝜌∗− (6) = 4, 𝑣∗− (6) = 0.6 (3.9)

and 𝑉∗+ (𝑟) is the subsonic one such that

𝜌∗+ (6) =
𝜌∗− (6) (𝑣∗− (6)2 − 𝑘4)
𝑘2 (1 − 𝑣∗− (6)2)

, 𝑣∗+ (6) =
𝑘2

𝑣∗− (6)
. (3.10)

𝑉0 is an entropy weak stationary solution of the system: see [12,13]. Table 2 shows the error in 𝐿1 norm between the
numerical solution at time 𝑡 = 50 and Figure 3 shows the comparison of the numerical results obtained with well-
balanced and non-well-balanced methods at selected times. The numerical results of this section put on evidence,
as for the Burgers-Schwarzschild system, the relevance of using well-balanced methods for the Euler-Schwarzschild
model.

Relation between the perturbation and the displacement of the shock In order to study the relationship
between the amplitude of the perturbation and the distance between the initial and the final shock locations, we
consider the family of initial conditions:

𝑉0 (𝑟) = 𝑉∗ (𝑟) + 𝛿(𝛼, 𝑟), (3.11)
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Scheme (500 cells) Error 𝑣 (1st) Error 𝜌 (1st) Error 𝑣 (2nd) Error 𝜌 (2nd)
Well-balanced 2.20E-13 1.25E-11 1.92E-13 1.03E-11
Non well-balance 0.89 3.94 0.89 3.92

Tab. 2Well-balanced versus non-well-balanced schemes: 𝐿1 errors at time 𝑡 = 50 for the Burgers-Schwarzschild model with
the initial condition (3.8)

Fig. 3Euler-Schwarzschildmodel with the initial condition (3.8): first- and second-order well-balanced and non-well-balanced
methods at selected times for the variable 𝑣 .

where 𝑉∗ is the steady shock solution given by (3.8)-(3.10) and

𝛿(𝛼, 𝑟) = [𝛿𝑣 (𝛼, 𝑟), 𝛿𝜌 (𝛼, 𝑟)]𝑇 =

{
[𝛼𝑒−200(𝑟−4)2 , 0]𝑇 , 3 < 𝑟 < 5,
[0, 0]𝑇 , otherwise,

(3.12)

with 𝛼 > 0. In this case we will also use a 2000-point uniform mesh. Figure 4 shows the numerical solution for
different values of 𝛼 and we observe that depending on the amplitude of the perturbation the numerical solutions
converge in time to different steady shock solutions.

Fig. 4 Euler-Schwarzschild model with the initial condition (3.11): first-order well-balanced method taking different values
of 𝛼 for variable 𝑣 .

4. Conclusions
The procedure introduced in [5] and recalled in [7] is extended to the relativistic fluid flows in the Schwarzschild
background. More precisely, we develop first and higher order well-balanced schemes for the relativistic Burgers
and Euler systems. Several numerical tests are used to validate the schemes and to highlight the relevance of
the well-balanced property when dealing with these relativistic flows. We also use these schemes to perform a
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systematic numerical study of these two PDE systems in order to be able to extract general conclusions about the
long time behavior of the flow. Such a study is expected to be a useful tool to direct the mathematical analysis of
the models and the study of more complex relativistic models.
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Asymptotic analysis of the behavior of a viscous fluid between two very
close mobile surfaces

José M. Rodríguez 1, Raquel Taboada-Vázquez1
Universidade da Coruña, Departamento de Matemáticas, Spain

Abstract
The aim of this work is the study of the behavior of an incompressible viscous fluid moving between two

closely spaced surfaces, also in motion. To carry out this work we use the asymptotic expansion method that
allows us to formally justify two different models starting from the same initial problem: a lubrication model and
a shallow water model. The type of model that yields depends on whether the fluid is“pressure dominated” and
on the boundary conditions imposed. We discuss in detail under what conditions each of the models would be
applicable.

1. Introduction
In this work, we are interested, in a first step, in justifying using the asymptotic development technique, a lubrication
model in a thin domain with curved mean surface.
The asymptotic analysis method is a mathematical tool that has been widely used to obtain and justify reduced

models, both in solid and fluid mechanics, when one or two of the dimensions of the domain are much smaller than
the others. In particular, in fluid mechanics, these technique has been applied to derive lubrication models, shallow
water models, tube flow models, etc. (see, for example, [1]- [9], [11]- [12], and many others). Here, we follow the
steps of [2], but changing the starting point.
We consider a three-dimensional thin domain, Ω𝜀

𝑡 , filled by a fluid, that varies with time 𝑡 ∈ [0, 𝑇], given by
Ω𝜀
𝑡 =

{(𝑥𝜀1 , 𝑥𝜀2 , 𝑥𝜀3 ) ∈ R3 : 𝑥𝑖 (𝜉1, 𝜉2, 𝑡) ≤ 𝑥𝜀𝑖 ≤ 𝑥𝑖 (𝜉1, 𝜉2, 𝑡) + ℎ𝜀 (𝜉1, 𝜉2, 𝑡)𝑁𝑖 (𝜉1, 𝜉2, 𝑡),
(𝑖 = 1, 2, 3), (𝜉1, 𝜉2) ∈ 𝐷 ⊂ R2

}
(1.1)

where ®𝑋𝑡 (𝜉1, 𝜉2) = ®𝑋 (𝜉1, 𝜉2, 𝑡) = (𝑥1 (𝜉1, 𝜉2, 𝑡), 𝑥2 (𝜉1, 𝜉2, 𝑡), 𝑥3 (𝜉1, 𝜉2, 𝑡)) is the lower bound surface parametriza-
tion, ℎ𝜀 (𝜉1, 𝜉2, 𝑡) is the gap between the two surfaces in motion, and ®𝑁 (𝜉1, 𝜉2, 𝑡) is the unit normal vector:

®𝑁 (𝜉1, 𝜉2, 𝑡) =
𝜕 ®𝑋
𝜕𝜉1
× 𝜕
®𝑋

𝜕𝜉2 𝜕
®𝑋

𝜕𝜉1
× 𝜕
®𝑋

𝜕𝜉2


(1.2)

The lower bound surface is assumed to be regular and the gap is assumed to be small with regard to the dimension
of the bound surfaces. We take into account that the fluid film between the surfaces is thin by introducing a small
non-dimensional parameter 𝜀, and setting that

ℎ𝜀 (𝜉1, 𝜉2, 𝑡) = 𝜀ℎ(𝜉1, 𝜉2, 𝑡) (1.3)

where
ℎ(𝜉1, 𝜉2, 𝑡) ≥ ℎ0 > 0, ∀ (𝜉1, 𝜉2) ∈ 𝐷 ⊂ R2, ∀ 𝑡 ∈ [0, 𝑇] . (1.4)

Let us suppose that the fluid motion is governed by Navier-Stokes equations since we consider that it is an
incompressible newtonian fluid,

𝜌0

(
𝜕𝑢𝜀𝑖
𝜕𝑡 𝜀
+ 𝜕𝑢

𝜀
𝑖

𝜕𝑥𝜀𝑗
𝑢𝜀𝑗

)
= −𝜕𝑝

𝜀

𝜕𝑥𝜀𝑖
+ 𝜇

(
𝜕2𝑢𝜀𝑖
𝜕 (𝑥𝜀1 )2

+ 𝜕2𝑢𝜀𝑖
𝜕 (𝑥𝜀2 )2

+ 𝜕2𝑢𝜀𝑖
𝜕 (𝑥𝜀3 )2

)
+ 𝜌0 𝑓 𝜀𝑖 , (𝑖 = 1, 2, 3) (1.5)

𝜕𝑢𝜀𝑗

𝜕𝑥𝜀𝑗
= 0 (1.6)

where repeated indices indicate summation ( 𝑗 takes values from 1 to 3), 𝜌0 is the fluid density, ®𝑢𝜀 is the velocity,
𝑝𝜀 is the pressure and ®𝑓 𝜀 is the density of applied volume forces.
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Now, we consider a reference domain independent of 𝜀 and 𝑡

Ω = 𝐷 × [0, 1] (1.7)

related to Ω𝜀
𝑡 by the following change of variable:

𝑡 𝜀 = 𝑡 (1.8)
𝑥𝜀𝑖 = 𝑥𝑖 (𝜉1, 𝜉2, 𝑡) + 𝜀𝜉3ℎ(𝜉1, 𝜉2, 𝑡)𝑁𝑖 (𝜉1, 𝜉2, 𝑡) (1.9)

where (𝜉1, 𝜉2) ∈ 𝐷 and 𝜉3 ∈ [0, 1], and we make a change of basis to a new basis { ®𝑎1, ®𝑎2, ®𝑎3}, where

®𝑎1 (𝜉1, 𝜉2, 𝑡) =
𝜕 ®𝑋 (𝜉1, 𝜉2, 𝑡)

𝜕𝜉1
(1.10)

®𝑎2 (𝜉1, 𝜉2, 𝑡) =
𝜕 ®𝑋 (𝜉1, 𝜉2, 𝑡)

𝜕𝜉2
(1.11)

®𝑎3 (𝜉1, 𝜉2, 𝑡) = ®𝑁 (𝜉1, 𝜉2, 𝑡) (1.12)

The details about the change of variable and basis can be found in [13].
The velocity and the applied forces (®𝑢𝜀 , ®𝑓 𝜀) are written in the new basis (1.10)-(1.12) as follows:

®𝑢𝜀 = 𝑢𝜀𝑖 ®𝑒𝑖 = 𝑢𝑘 (𝜀) ®𝑎𝑘 (1.13)
®𝑓 𝜀 = 𝑓 𝜀𝑖 ®𝑒𝑖 = 𝑓𝑘 (𝜀) ®𝑎𝑘 (1.14)

so

𝑢𝜀𝑖 = (𝑢𝑘 (𝜀) ®𝑎𝑘 ) · ®𝑒𝑖 = 𝑢𝑘 (𝜀)𝑎𝑘𝑖 (1.15)
𝑓 𝜀𝑖 = ( 𝑓𝑘 (𝜀) ®𝑎𝑘 ) · ®𝑒𝑖 = 𝑓𝑘 (𝜀)𝑎𝑘𝑖 (1.16)

where 𝑎𝑘𝑖 = ®𝑎𝑘 · ®𝑒𝑖 , and we assume that the velocity, the pressure and the applied forces can be developed in powers
of 𝜀 as in [2], [1], [6], [11] and [12]:

𝑢𝑖 (𝜀) = 𝑢0𝑖 + 𝜀𝑢1𝑖 + 𝜀2𝑢2𝑖 + · · · (𝑖 = 1, 2, 3) (1.17)
𝑝(𝜀) = 𝜀−2𝑝−2 + 𝜀−1𝑝−1 + 𝑝0 + 𝜀𝑝1 + 𝜀2𝑝2 + · · · (1.18)
𝑓𝑖 (𝜀) = 𝑓 0𝑖 + 𝜀 𝑓 1𝑖 + 𝜀2 𝑓 2𝑖 + · · · (𝑖 = 1, 2, 3) (1.19)

Taking into account (1.15)-(1.16), equations (1.5)-(1.6) yield (𝑖 = 1, 2, 3):

𝜌0

(
𝜕 (𝑢𝑘 (𝜀)𝑎𝑘𝑖)

𝜕𝑡 𝜀
+ 𝜕 (𝑢𝑘 (𝜀)𝑎𝑘𝑖)

𝜕𝑥𝜀𝑗
(𝑢𝑘 (𝜀)𝑎𝑘 𝑗 )

)
= −𝜕𝑝(𝜀)

𝜕𝑥𝜀𝑖

+ 𝜇
(
𝜕2 (𝑢𝑘 (𝜀)𝑎𝑘𝑖)
𝜕 (𝑥𝜀1 )2

+ 𝜕
2 (𝑢𝑘 (𝜀)𝑎𝑘𝑖)
𝜕 (𝑥𝜀2 )2

+ 𝜕
2 (𝑢𝑘 (𝜀)𝑎𝑘𝑖)
𝜕 (𝑥𝜀3 )2

)
+ 𝜌0 𝑓𝑘 (𝜀)𝑎𝑘𝑖 (1.20)

𝜕 (𝑢𝑘 (𝜀)𝑎𝑘 𝑗 )
𝜕𝑥𝜀𝑗

= 0 (1.21)

Next, we substitute developments (1.17)-(1.19) in Navier-Stokes equations written in the reference domain
((1.20)-(1.21)) and we identify the terms multiplied by the same power of 𝜀. In this way we obtain a series of
equations that will allow us to determine the terms of the previous developments.
In the next two sections we summarize the results obtained in [13].

2. A new generalized lubrication model
If we assume that the fluid slips at the lower surface (𝜉3 = 0), and at the upper surface (𝜉3 = 1), but there is
continuity in the normal direction, so the tangential velocities at the lower and upper surfaces are known, and the
normal velocity of each of them must match the fluid velocity, we derive the following generalized lubrication
equation:

1√
𝐴0
div

(
ℎ3√
𝐴0
𝑀∇𝑝−2

)
= 12𝜇

𝜕ℎ

𝜕𝑡
+ 12𝜇 ℎ𝐴

1

𝐴0

(
𝜕 ®𝑋
𝜕𝑡
· ®𝑁

)

− 6𝜇∇ℎ · ( ®𝑊0 − ®𝑉0) + 6𝜇ℎ√
𝐴0
div(

√︁
𝐴0 ( ®𝑊0 + ®𝑉0)) (2.1)
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where the pressure is approximated by 𝜀−2𝑝−2

𝐴0 = 𝐸𝐺 − 𝐹2 (2.2)
𝐴1 = −𝑒𝐺 − 𝑔𝐸 + 2 𝑓 𝐹 (2.3)

𝑀 =

(
𝐺 −𝐹
−𝐹 𝐸

)
(2.4)

and 𝐸, 𝐹, 𝐺, 𝑒, 𝑓 , 𝑔 are the coefficients of the first and second fundamental forms, respectively, of the surface
parametrized by ®𝑋 . ®𝑉0 = (𝑉01 , 𝑉02 ) and ®𝑊0 = (𝑊01 ,𝑊02 ) are the approximations of order 0 on 𝜀 of the tangential
velocity at the lower and upper surfaces respectively.
Once 𝑝−2 is calculated we have the following approximation of the three components of the velocity:

𝑢01 =
ℎ2 (𝜉23 − 𝜉3)
2𝜇𝐴0

(
𝐺
𝜕𝑝−2

𝜕𝜉1
− 𝐹 𝜕𝑝

−2

𝜕𝜉2

)
+ 𝜉3 (𝑊01 −𝑉01 ) +𝑉01 (2.5)

𝑢02 =
ℎ2 (𝜉23 − 𝜉3)
2𝜇𝐴0

(
𝐸
𝜕𝑝−2

𝜕𝜉2
− 𝐹 𝜕𝑝

−2

𝜕𝜉1

)
+ 𝜉3 (𝑊02 −𝑉02 ) +𝑉02 (2.6)

𝑢03 =
𝜕 ®𝑋
𝜕𝑡
· ®𝑁 (2.7)

If we consider the classic assumptions to derive Reynolds equations (domain independent of time, 𝑥3 = 0 in
(1.1), upper surface fixed, lower surface moving in the 𝑥1-direction with constant velocity), we re-obtain the classic
Reynolds equation (see [10]) from (2.1).

3. A new thin fluid layer model
During this process we have observed that, depending on the boundary conditions, other models can be obtained.
In this section, we change the boundary conditions that we imposed in the first case: instead of assuming that we
know the velocities on the upper and lower boundaries of the domain, we assume that we know the tractions on
these upper and lower boundaries. In particular, we assume that the normal component of the traction on 𝜉3 = 0
and on 𝜉3 = 1 are known pressures (𝜋𝜀0 and 𝜋

𝜀
1 ), and that the tangential component of the traction on these surfaces

are friction forces depending on the value of the velocities on 𝜕𝐷.
Under these assumptions we derive a shallow water model that allow us to determine ℎ, 𝑉01 and 𝑉

0
2 :

𝜕ℎ

𝜕𝑡
+ ℎ√

𝐴0
div

(√︁
𝐴0 ®𝑉0

)
+ ℎ𝐴

1

𝐴0

(
𝜕 ®𝑋
𝜕𝑡
· ®𝑁

)
= 0 (3.1)

𝜕𝑉0𝑖
𝜕𝑡
+
2∑︁
𝑙=1

(
𝑉0𝑙 − 𝐶0𝑙

) 𝜕𝑉0𝑖
𝜕𝜉𝑙
+
2∑︁
𝑘=1

(
𝑅0𝑖𝑘 +

2∑︁
𝑙=1

𝐻0𝑖𝑙𝑘𝑉
0
𝑙

)
𝑉0𝑘 = − 1

𝜌0

(
𝛼0𝑖
𝜕𝜋00
𝜕𝜉1
+ 𝛽0𝑖

𝜕𝜋00
𝜕𝜉2

)

+ 𝜈
{ 2∑︁
𝑚=1

2∑︁
𝑙=1

𝜕2𝑉0𝑖
𝜕𝜉𝑚𝜕𝜉𝑙

𝐽0𝑙𝑚 +
2∑︁
𝑘=1

2∑︁
𝑙=1

𝜕𝑉0𝑘
𝜕𝜉𝑙
(𝐿0𝑘𝑙𝑖 + 𝜓(ℎ)0𝑖𝑘𝑙)

+
2∑︁
𝑘=1

𝑉0𝑘 (𝑆0𝑖𝑘 + 𝜒(ℎ)0𝑖𝑘 ) + 𝜅(ℎ)0𝑖
}
+ 𝐹0𝑖 (ℎ) −𝑄0𝑖3

(
𝜕 ®𝑋
𝜕𝑡
· ®𝑁

)
(𝑖 = 1, 2) (3.2)

where the coefficients 𝛼0𝑖 , 𝛽
0
𝑖 ,𝐶

0
𝑙 , 𝐻

0
𝑖𝑙𝑘 , 𝐽

0
𝑙𝑚, 𝐿

0
𝑘𝑙𝑖 ,𝑄

0
𝑖3, 𝑅

0
𝑖𝑘 , 𝑆

0
𝑖𝑘 depend only on the lower bound surface parametriza-

tion, ®𝑋 while the coefficients 𝐹0𝑖 (ℎ), 𝜓(ℎ)0𝑖𝑘𝑙 , 𝜒(ℎ)0𝑖𝑘 ), 𝜅(ℎ)0𝑖 depend both on the parametrization and on the gap ℎ.
The detailed definition of these coefficients is given in [13].
Let 𝜋00 be the approximation of order 0 on 𝜀 of the pressure 𝜋

𝜀
0 . Then, we obtain the following approximations

of the velocity and the pressure:

𝑢0𝑖 = 𝑊
0
𝑖 = 𝑉0𝑖 𝑖 = 1, 2 (3.3)

𝑢03 =
𝜕 ®𝑋
𝜕𝑡
· ®𝑁 (3.4)

𝑝0 =
2𝜇
ℎ

𝜕ℎ

𝜕𝑡
+ 𝜋00 (3.5)
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4. Conclusions
Thus, two new models that can not be found in the literature, as far as we know, are presented here. Both models
have been derived starting from the same initial problem, an incompressible viscous fluid moving between two
closely spaced surfaces.
The method used to justify them allows us to answer the question of when each of them is applicable. We reach

the conclusion that the magnitude of the pressure differences at the lateral boundary of the domain is key when
deciding which of the two models best describes the fluid behavior.
Boundary conditions tell us which of the two models should be used when simulating the flow of a thin fluid

layer between two surfaces: if the fluid pressure is dominant (that is, it is of order 𝑂 (𝜀−2)), and the fluid velocity
is known on the upper and lower surfaces, we must use the lubrication model; if the fluid pressure is not dominant
(that is, it is of order 𝑂 (1)), and the tractions are known on the upper and lower surfaces, we must use the shallow
water model. In the first case we will say that the fluid is “driven by the pressure” and in the second that it is “driven
by the velocity”.
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Abstract

The motion of incompressible electrical conducting fluids can be modeled by magnetohydrodynamics equa-
tions, which consider the Navier-Stokes equations coupled with Maxwell’s equations. For the classical Navier-
Stokes system, there exists an extensively study of the convergence rate for the Galerkin approximations. Here,
we extend the estimates rates of spectral Galerkin approximations for the magnetohydrodynamic equations. We
prove optimal error estimates in the 𝐿2 (Ω) and 𝐻1 (Ω)-norms, we obtain a result similar to the Rautmann for the
𝐻2 (Ω)-norm, and we reach basically the same level of knowledge as in the case of the classical Navier-Stokes.

1. Introduction
The motion of incompressible electrical conducting fluids can be modeled by the so-called equations of mag-
netohydrodynamics, which can be described as the coupling of the Navier-Stokes equations and the Maxwell’s
equations. To describe these equations, we consider a bounded domain Ω ⊂ R3, 𝑇 > 0, denoted 𝑄𝑇 ≡ Ω × (0, 𝑇)
and 𝑆𝑇 ≡ 𝜕Ω × (0, 𝑇). In the case where there is free motion of heavy ions, not directly due to the electric field
(see [11], [19], [20]), these equations can be reduced to the form:




𝜕u
𝜕𝑡
+ (u · ∇)u − 𝜂

𝜌𝑚
Δu + 1

𝜌𝑚
∇

(
𝑝∗ + 𝜇

2
h2

)
− 𝜇

𝜌𝑚
h · ∇h = f, in 𝑄𝑇 ,

𝜕h
𝜕𝑡
− 1
𝜇𝜎

Δh + (u · ∇)h − (h · ∇)u + ∇𝑞 = 0, in 𝑄𝑇 ,

div u = div h = 0, in 𝑄𝑇 ,

(1.1)

together with the following boundary and initial conditions:{
u = 0, h = 0 on 𝑆𝑇 ,

u(𝑥, 0) = u0 (𝑥), h(𝑥, 0) = h0 (𝑥) in Ω,
(1.2)

Here, u and h are unknown velocity and magnetic field, respectively, 𝑝∗ is an unknown hydrostatic pressure, 𝑞 is
an unknown function related to the heavy ions (in such way that the density of electric current, j0, generated by
this motion satisfies the relation rot j0 = −𝜎∇𝑞), 𝜌𝑚 is the density of mass of the fluid (assumed to be a positive
constant), 𝜇 > 0 is a constant magnetic permeability of the medium, 𝜎 > 0 is a constant electric conductivity,
𝜂 > 0 is a constant viscosity of the fluid and f is a given external force field.

There are an extensive literature on the magnetohydrodynamic system (1.1)–(1.2): Lassner [9], by using the
semigroup results of Kato and Fujita [7], proved the existence and uniqueness of strong solutions, local in time for
any data and global in time for small data. Boldrini and Rojas-Medar [3] studied the existence of weak solutions
and the reproductive property using the Galerkin method. The same authors improved this result to local and
global strong solutions by using the spectral Galerkin method in [4, 5]. Damázio and Rojas-Medar [6] studied
the regularity of weak solutions, and Notte-Cuello and Rojas-Medar [10] used an iterative approach to show the
existence and uniqueness of the strong solutions. The initial value problem in time dependent domains was studied
by Rojas-Medar and Beltrán-Barrios in [17], and by Berselli and Ferreira in [1]. The problem in unbounded
domains with boundary uniformly of 𝐶3-class was studied by Zhao in [22].
On the other hand, for the classical Navier–Stokes system there exists an extensively study of the convergence

rate for the Galerkin approximations. The first work in this way was given by Rautmann in [12], where he proved
the optimal convergence in the 𝐻1 (Ω)-norm, but the optimal convergence in the 𝐿2 (Ω)-norm was left as an open
problem in [12] and was answered by Salvi in [18] (see also [2]). Applying the same method and assuming the
uniform boundedness in time of the 𝐿2 (Ω)-norm of the gradient of the velocity and the exponential stability in
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the 𝐻1 (Ω)-norm of the solution, Heywood [8] was able to derive optimal uniform in time error estimates for the
velocity in the 𝐻1 (Ω)-norm. Also, without explicitly assuming 𝐻1 (Ω)-exponential stability, Boldrini and Rojas–
Medar [2] proved optimal uniform in time error estimates for the spectral Galerkin approximations in the 𝐻1 (Ω)
and 𝐿2 (Ω)-norms, assuming that the external force field has a mild form of decay.
The study of the convergence rate in the H2 (Ω)-norm is difficult, because estimates of higher order derivates

spatial of solution are required, which needs a compatibility condition to be satisfied by the initial value of the
solution. The work of Rautmann [15] give an answer to the question “how smooth a Navier–Stokes solution
can be at time 𝑡 = 0 without any compatibility condition". Making use of this result, Rautmann [13], [14]
proved the convergence rate in the H2 (Ω)-norm of the spectral Galerkin approximation to the solution without any
compatibility condition.
The aim of this work is to extend the estimates rates of spectral Galerkin approximations for the the Navier-

Stokes system to the magnetohydrodynamic equations (1.1)-(1.2). We prove optimal error estimates in the 𝐿2 (Ω)
and 𝐻1 (Ω)-norms and obtain a result similar to the Rautmann in [13], [14] for 𝐻2 (Ω)-norms. In this way, we reach
the same level of knowledge as in the case of the classical Navier-Stokes equations. The complete proofs of all the
results contained in this manuscript can be consulted in [16].

2. Function Spaces and framework
Throughout this paper we will use the following notation: Vector functions will be written in bold letters. The 𝐻𝑚
norm is denoted by ‖ · ‖𝑚. Here 𝐻𝑚 = 𝑊𝑚,2 (Ω) (𝑚 > 0) are the usual Sobolev spaces. 𝐻10 denotes the closure of
𝐶∞0 (Ω) in the 𝐻1–norm. Let

C∞0,𝜎 (Ω) := {v ∈ (𝐶∞0 (Ω))3 : div v = 0 in Ω}, V =
{
closure of C∞0,𝜎 (Ω) in H10 (Ω)

}
,

H =
{
closure of C∞0,𝜎 (Ω) in L2 (Ω)

}
and V∗ = {topological dual of V} .

In order to give an operator interpretation of problem (1.1)-(1.2), we shall introduce the well known Helmholtz and
Weyl decomposition. The Hilbert space L2 (Ω) admits the Helmholtz and Weyl decomposition (cf. [21]):

L2 = H ⊕ H⊥,

where ⊕ denotes direct sum and H⊥ = {∇𝜋 : 𝜋 ∈ 𝐻1, (Ω)}. Let 𝑃 be the orthogonal projection from L2 (Ω) onto
H. Then the operator 𝐴 : H→ H given by 𝐴 = −𝑃Δwith domain 𝐷 (𝐴) = V∩H2 (Ω) is called the Stokes operator.
It is well known that 𝐴 is a positive self-adjoint operator and is characterized by the following relation:

(𝐴w, v) = (∇w,∇v) for all w ∈ 𝐷 (𝐴), v ∈ V.

From now on, we also denote the inner product in H by the L2 (Ω)–inner product (·, ·). The general 𝐿 𝑝 (Ω)-norm
will be denoted by ‖ · ‖𝐿𝑝 (Ω) ; to make easier the notation, in the case 𝑝 = 2 we simply denote the 𝐿2–norm by ‖ · ‖.
We shall denote by w𝑘 (𝑥) and 𝜆𝑘 the eigenfunctions and the eigenvalues of the Stokes operator. It is well known
(see [21]) that w𝑘 (𝑥) are orthogonal in the inner products (·, ·), (∇·,∇·) and (𝐴·, 𝐴·) and complete in the spaces
H, V and V ∩H2 (Ω), respectively. For each 𝑘 ∈ N, we denote by 𝑃𝑘 the orthogonal projection from L2 (Ω) onto
V𝑘 = span[w1 (𝑥), . . . ,w𝑘 (𝑥)].

Throughout this work, we will deal with the following notion of strong solution for (1.1)-(1.2).

Definition 2.1 Let u0, h0 ∈ V and f ∈ 𝐿2 (0, 𝑇 ;L2 (Ω)). By a strong solution of the problem (1.1)–(1.2), we mean
a pair of vector-valued functions (u, h) such that u, h ∈ 𝐿∞ (0, 𝑇 ;V) ∩L2 (0, 𝑇 ;𝐷 (𝐴)) and that satisfies (1.1)–(1.2).
As a first step to set up and prove the main results of this work, and using the properties of the operator 𝑃, we

can reformulate the problem (1.1)–(1.2), as follows: find u, h in suitable spaces, satisfying:




(u𝑡 , v) + (∇u,∇v) + ((u · ∇)u, v) − ((h · ∇)h, v) = (f, v), ∀v ∈ V,
(h𝑡 , z) + (∇h,∇z) + ((u · ∇)h, z) − ((h · ∇)u, z) = 0, ∀z ∈ V,

u(𝑥, 0) = u0 (𝑥), 𝑥 ∈ Ω,
h(𝑥, 0) = h0 (𝑥), 𝑥 ∈ Ω.

(2.1)

Observe that, because we do not focus on the dependence of the error on the 𝜂, 𝜇, 𝜎 or 𝜌𝑚, then we consider them
all equal to 1.
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In order to establish the results concerning estimates for spectral Galerkin approximation, we need to fix
some problems. The spectral Galerkin approximations for (u, h) are defined for each 𝑘 ∈ N as the solution
(u𝑘 , h𝑘 ) ∈ 𝐶2 ( [0, 𝑇];V𝑘 ) × 𝐶2 ( [0, 𝑇];V𝑘 ) of:




(u𝑘𝑡 , v) + (∇u𝑘 ,∇v) + ((u𝑘 · ∇)u𝑘 , v) − ((h𝑘 · ∇)h𝑘 , v) = (f, v), ∀v ∈ V𝑘 ,
(h𝑘𝑡 , z) + (∇h𝑘 ,∇z) + ((u𝑘 · ∇)h𝑘 , z) − ((h𝑘 · ∇)u𝑘 , z) = 0, ∀z ∈ V𝑘 ,

u(𝑥, 0) = 𝑃𝑘u0 (𝑥), 𝑥 ∈ Ω,
h(𝑥, 0) = 𝑃𝑘h0 (𝑥), 𝑥 ∈ Ω.

(2.2)

Recall that the eigenfunctions expansion of u and h can be written, respectively, as:

u(𝑥, 𝑡) =
∞∑︁
𝑖=1

𝑎𝑖 (𝑡)w𝑖 (𝑥) and h(𝑥, 𝑡) =
∞∑︁
𝑖=1

𝑐𝑖 (𝑡)w𝑖 (𝑥), (2.3)

where w𝑖 are the eigenfunctions of the Stokes operator. The partial sums of the series for u and h will also appear
in our study, whose expression are given, respectively, by:

v𝑘 (𝑡) = 𝑃𝑘u(𝑡) =
𝑘∑︁
𝑖=1

𝑎𝑖 (𝑡)w𝑖 (𝑥) and b𝑘 (𝑡) = 𝑃𝑘h(𝑡) =
𝑘∑︁
𝑖=1

𝑐𝑖 (𝑡)w𝑖 (𝑥). (2.4)

3. Known results
By using the spectral Galerkin approximations (2.2), Rojas-Medar and Boldrini ( [4], [5]) proved the following
results:

Theorem 3.1 Assume the following condition for the initial data u0, h0, and the external force f of (1.1)-(1.2):

u0, h0 ∈ V, f ∈ 𝐿2 (0, 𝑇 ;L2 (Ω)) (3.1)

Then, on a (possibly small) time interval [0, 𝑇1], 0 < 𝑇1 ≤ 𝑇 , problem (1.1)-(1.2) has a unique strong solution
(u, h). This solution belongs 𝐶 ( [0, 𝑇1];V) ×𝐶 ( [0, 𝑇1];V). Moreover, there exist 𝐶1-functions 𝐹 (𝑡) and 𝐺 (𝑡) such
that for any 𝑡 ∈ [0, 𝑇1], there hold:

‖∇u(𝑡)‖2 + ‖∇h(𝑡)‖2 +
∫ 𝑡

0
(‖𝐴u(𝑠)‖2 + ‖𝐴h(𝑠)‖2)𝑑𝑠 ≤ 𝐹 (𝑡),∫ 𝑡

0
(‖u𝑡 (𝑠)‖2 + ‖h𝑡 (𝑠)‖2)𝑑𝑠 ≤ 𝐺 (𝑡).

Moreover, the same kind of estimates holds uniformly in 𝑛 ∈ N for the Galerkin approximations (u𝑛, h𝑛).

Theorem 3.2 Assume (3.1) and

u0, h0 ∈ 𝐷 (𝐴), f𝑡 ∈ 𝐿2 (0, 𝑇 ;L2 (Ω)). (3.2)

Then:
‖u𝑡 (𝑡)‖2 + ‖h𝑡 (𝑡)‖2 +

∫ 𝑡

0
(‖∇u𝑡 (𝑠)‖2 + ‖∇h𝑡 (𝑠)‖2)𝑑𝑠 ≤ 𝐻0 (𝑡),

‖𝐴u(𝑡)‖2 + ‖𝐴h(𝑡)‖2 ≤ 𝐻1 (𝑡),∫ 𝑡

0
(‖u𝑡𝑡 (𝑠)‖2𝑉★ + ‖h𝑡𝑡 (𝑠)‖2𝑉★)𝑑𝑠 ≤ 𝐻2 (𝑡),

for any 𝑡 ∈ [0, 𝑇1], where 𝐻𝑖 (𝑡), 𝑖 = 0, 1, 2 are continuous functions 𝑡 ∈ [0, 𝑇1]. Therefore:

u(𝑡), h(𝑡) ∈ 𝐶1 ( [0, 𝑇1];V) ∩ 𝐶 ( [0, 𝑇1];𝐷 (𝐴)).

Moreover, the same kind of estimates holds uniformly in 𝑛 for the Galerkin approximations (u𝑛, h𝑛).

Referring to the Navier–Stokes equations, the following lemma can be found in the Rautmann’s paper [12].
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Lemma 3.3
If u ∈ V, then there holds:

‖u − 𝑃𝑘u‖2 ≤ 1
𝜆𝑘+1
‖∇u‖2.

Also, if u ∈ V ∩H2 (Ω), we have:

‖u − 𝑃𝑘u‖2 ≤ 1
𝜆2𝑘+1
‖𝐴u‖2, ‖∇u − ∇𝑃𝑘u‖2 ≤ 1

𝜆𝑘+1
‖𝐴u‖2.

Some of the classical Sobolev interpolation inequalities, considered in this manuscript, can be found in the
following result:

Lemma 3.4 The following estimates are true:

• ‖v‖L∞ (Ω) ≤ 𝐶‖𝐴v‖, ∀v ∈ V ∩H2 (Ω),
• ‖v‖L6 (Ω) ≤ 𝐶‖∇v‖, ∀v ∈ V,

• ‖v‖L3 (Ω) ≤ 𝐶‖v‖1/2‖∇v‖1/2, ∀v ∈ V

• ‖v‖L4 (Ω) ≤ 𝐶‖v‖1/4‖∇v‖3/4, ∀v ∈ V.

4. Estimates for the solution in H1 (Ω)
Our first result on error estimates read as follows:

Theorem 4.1 Assume hypothesis (3.1) for the data. Then, the approximations (u𝑘 , h𝑘 ) satisfy:

‖u(𝑡) − u𝑘 (𝑡)‖2 + ‖h(𝑡) − h𝑘 (𝑡)‖2 +
∫ 𝑡

0
(‖∇u(𝑠) − ∇u𝑘 (𝑠)‖2 + ‖∇h(𝑠) − ∇h𝑘 (𝑠)‖2) 𝑑𝑠 ≤ 𝐶

𝜆𝑘+1
.

In addition, if we assume that (3.2), then the approximations (u𝑘 , h𝑘 ) satisfy:

‖u(𝑡) − u𝑘 (𝑡)‖2 + ‖h(𝑡) − h𝑘 (𝑡)‖2 ≤ 𝐶

𝜆2𝑘+1
.

Theorem 4.2 If in addition to (3.1) we assume (3.2), then we have that there exists a constant 𝐶 > 0 such that:

‖∇u(𝑡) − ∇u𝑘 (𝑡)‖2 + ‖∇h(𝑡) − ∇h𝑘 (𝑡)‖2 ≤ 𝐶

𝜆𝑘+1
.

Corollary 4.3 Under the hypothesis of Theorem 4.2, there exists a positive constant 𝐶 > 0 such that:∫ 𝑡

0
(‖u𝑡 (𝑠) − u𝑘𝑡 (𝑠)‖2 + ‖h𝑡 (𝑠) − h𝑘𝑡 (𝑠)‖2) 𝑑𝑠 ≤

𝐶

𝜆𝑘+1

and, if f ∈ 𝐿2 (0, 𝑇 ;H1 (Ω) then:∫ 𝑡

0
(‖𝐴u(𝑠) − 𝐴u𝑘 (𝑠)‖2 + ‖𝐴h(𝑠) − 𝐴h𝑘 (𝑠)‖2) 𝑑𝑠 ≤ 𝐶

𝜆𝑘+1
.

Note that these estimates are made in the Sobolev spaces related to the strong regularity of the solution (see
Definition 2.1).

In the search of a proof for these theorems (and corollary), we have to use some preliminary results whose proof
needs to define the following auxiliary variables and problems:
Using (2.3) and (2.4), we define:

e𝑘 (𝑡) = u(𝑡) − v𝑘 (𝑡), ẽ𝑘 (𝑡) = h(𝑡) − b𝑘 (𝑡),
E𝑘 (𝑡) = v𝑘 (𝑡) − u𝑘 (𝑡), Ẽ𝑘 (𝑡) = b𝑘 (𝑡) − h𝑘 (𝑡),

(4.1)
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where u𝑘 and h𝑘 are the 𝑘 𝑡ℎ Galerkin approximations of u and h solutions of (2.2), respectively. One of our aim is
to “mesure” the distance between the solutions of (2.1) and (2.2), that we split as:

u(𝑡) − u𝑘 (𝑡) = e𝑘 (𝑡) + E𝑘 (𝑡), and h(𝑡) − h𝑘 (𝑡) = ẽ𝑘 (𝑡) + Ẽ𝑘 (𝑡). (4.2)

These variables satisfy the following problem:




(E𝑘𝑡 , v) + (∇E𝑘 ,∇v) + ((e𝑘 · ∇)u, v) + ((E𝑘 · ∇)u, v) + ((u𝑘 · ∇)e𝑘 , v) + ((u𝑘 · ∇)E𝑘 , v)
−((ẽ𝑘 · ∇)h, v) − ((Ẽ𝑘 · ∇)h, v) − ((h𝑘 · ∇)ẽ𝑘 , v) − ((h𝑘 · ∇)Ẽ𝑘 , v) = 0, ∀v ∈ V𝑘 ,

(Ẽ𝑘𝑡 , z) + (∇Ẽ𝑘 ,∇z) + ((e𝑘 · ∇)h, z) + ((E𝑘 · ∇)h, z) + ((u𝑘 · ∇)ẽ𝑘 , z) + ((u𝑘 · ∇)Ẽ𝑘 , z)
−((ẽ𝑘 · ∇)u, z) − ((Ẽ𝑘 · ∇)u, z) − ((h𝑘 · ∇)e𝑘 , z) − ((h𝑘 · ∇)E𝑘 , z) = 0, ∀ z ∈ V𝑘 ,

E𝑘 (𝑥, 0) = Ẽ𝑘 (𝑥, 0) = 0, 𝑥 ∈ Ω.

Using adequate estimates (see [16] for more details), the following results can be proved:

Lemma 4.4 Assume hypothesis (3.1) for the data. Then:

‖E𝑘 (𝑡)‖2 + ‖Ẽ𝑘 (𝑡)‖2 ≤ 𝐶

𝜆𝑘+1
.

In addition, if we assume (3.2), then:
‖E𝑘 (𝑡)‖2 + ‖Ẽ𝑘 (𝑡)‖2 ≤ 𝐶

𝜆2𝑘+1
.

Corollary 4.5 Assume hypothesis (3.1) for the data. Then:∫ 𝑡

0
(‖∇E𝑘 (𝑠)‖2 + ‖∇Ẽ𝑘 (𝑠)‖2𝑑𝑠 ≤ 𝐶

𝜆𝑘+1
.

In addition, if we assume (3.2), then:∫ 𝑡

0
(‖∇E𝑘 (𝑠)‖2 + ‖∇Ẽ𝑘 (𝑠)‖2)𝑑𝑠 ≤ 𝐶

𝜆2𝑘+1
.

Lemma 4.6 Assuming (3.1) and (3.2) for the data, we have that there exists a constant 𝐶 > 0 such that:

‖∇E𝑘 (𝑡)‖2 + ‖∇Ẽ𝑘 (𝑡)‖2 ≤ 𝐶

𝜆𝑘+1
.

Corollary 4.7 Under the hypotheses of Lemma 4.6, here exists a positive constant 𝐶 > 0 such that:∫ 𝑡

0
(‖E𝑘𝑡 (𝑠)‖2 + ‖Ẽ𝑘𝑡 (𝑠)‖2)𝑑𝑠 ≤

𝐶

𝜆𝑘+1
.

5. 𝐻2 (Ω)-error estimates for the velocity and the magnetic field
The objective of this section is to state and sketch the estimates in the H2 (Ω)-norm for the solutions of (1.1)-(1.2)
that we have obtained. Concretely, our result reads as follows:

Theorem 5.1 Assume (3.1)-(3.2). If moreover f ∈ 𝐶 ( [0, 𝑇],H1 (Ω)) and u0, h0 ∈ 𝐷 (𝐴1+𝜖 ), with 𝜖 ∈ (0, 14 ), then

‖𝐴u(𝑡) − 𝐴u𝑘 (𝑡)‖ + ‖u𝑡 (𝑡) − u𝑘𝑡 (𝑡)‖ ≤ 𝐶

[
𝐶 (𝛼 + 𝜖)
𝜆𝜖𝑘+1

+ 1
𝜆𝑘+1

]
,

‖𝐴h(𝑡) − 𝐴h𝑘 (𝑡)‖ + ‖h𝑡 (𝑡) − h𝑘𝑡 (𝑡)‖ ≤ 𝐶

[
𝐶 (𝛼 + 𝜖)
𝜆𝜖𝑘+1

+ 1
𝜆𝑘+1

]
.
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For the proof of this theorem we will use the writing of u(𝑡) − u𝑘 (𝑡) and h(𝑡) − h𝑘 (𝑡) in terms of e𝑘 (𝑡) and
E𝑘 (𝑡) and ẽ𝑘 (𝑡) and Ẽ𝑘 (𝑡), respectively, given in (4.2). Therefore, if we want to estimate 𝐴u− 𝐴u𝑘 and 𝐴h− 𝐴h𝑘 ,
then we need to estimate 𝐴u− 𝐴v𝑘 and 𝐴E𝑘 and 𝐴h− 𝐴b𝑘 and 𝐴Ẽ𝑘 . With this objective, we precise, in first time,
to estimate 𝐴𝛼u − 𝐴𝛼v𝑘 and 𝐴𝛼E𝑘 and 𝐴𝛼h − 𝐴𝛼b𝑘 and 𝐴𝛼Ẽ𝑘 for 𝛼 ∈ [0, 1) and then obtain the desired result.

The regularity results for the solution obtained in the Theorems 3.1 and 3.2 will be also necessary in order
to obtain our results. Firstly, observe that we can write the following representation of the solution obtained in
Theorem 3.1:

u(𝑡) = 𝑒−𝐴𝑡u0 +
∫ 𝑡

0
𝑒−(𝑡−𝑠)𝐴𝑃(f − (u(𝑠) · ∇)u(𝑠) + (h(𝑠) · ∇)h(𝑠))𝑑𝑠,

h(𝑡) = 𝑒−𝐴𝑡h0 +
∫ 𝑡

0
𝑒−(𝑡−𝑠)𝐴(−(u(𝑠) · ∇)h(𝑠) + (h(𝑠) · ∇)u(𝑠))𝑑𝑠.

(5.1)

Theorem 5.2 Suppose that f ∈ 𝐶 ( [0, 𝑇],H1 (Ω)) and u0, h0 ∈ 𝐷 (𝐴1+𝜖 ), then the solution (u, h) of (1.1)-(1.2)
satisfies for 0 ≤ 𝜖 < 1/4,

u, h ∈ 𝐶 ( [0, 𝑇];𝐷 (𝐴1+𝜖 )) ∩ 𝐶1 ( [0, 𝑇];𝐷 (𝐴𝜖 )).

The proof of Theorem 5.2 is based the properties of 𝐷 (𝐴𝛼), the Stokes operator properties and the use of (4.1),
(4.2) and (5.1). In particular, the fractional powers 𝐴𝛼 with domain of definition 𝐷 (𝐴𝛼) ⊂ H are defined for any
real 𝛼 by means of the spectral representation of 𝐴. For 𝛼 < 𝛽 the imbedding 𝐷 (𝐴𝛽) ⊂ 𝐷 (𝐴𝛼) is compact and
𝐷 (𝐴𝛽) is dense in 𝐷 (𝐴𝛼), therefore 𝐴 is a sectorial operator and 𝐴 is the infinitesimal generator of an analytic
semigroup {𝑒−𝑡 𝐴}. On 𝐷 (𝐴𝛼), the operator 𝐴𝛼 commute, with 𝑒−𝑡 𝐴, and satisfies several properties (see [7]).
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Asymptotic aspects of the logistic equation under diffusion
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Abstract
This talk is devoted to describe the nontrivial solutions to{

−Δ𝑝𝑢 = 𝜆 |𝑢 |𝑝−2𝑢 − |𝑢 |𝑞−2𝑢 𝑥 ∈ Ω
𝑢 = 0 𝑥 ∈ 𝜕Ω.

Exponents satisfy 1 < 𝑝 < 𝑞 while 𝜆 > 0 is a bifurcation parameter. We are confining ourselves to the case
where Ω is a ball and solutions are radial. More importantly, we are discussing the asymptotic behavior of these
solutions as 𝑝 → 1+. We are further stating not only the existence of such limits but even introducing the limit
problem which such limits solve.

1. Introduction
This talk is firstly devoted to describe the nontrivial solutions to the nonlinear eigenvalue problem:{

−Δ𝑝𝑢 = 𝜆 |𝑢 |𝑝−2𝑢 − |𝑢 |𝑞−2𝑢, 𝑥 ∈ Ω,
𝑢 = 0, 𝑥 ∈ 𝜕Ω, (1.1)

where Ω ⊂ R𝑁 is a bounded smooth domain, 𝜈 is outer unit normal, 𝜆 is a positive (bifurcation) parameter and
Δ𝑝𝑢 = div ( |∇𝑢 |𝑝−2∇𝑢) is the p–Laplacian operator. The exponents 𝑝, 𝑞 are assumed to satisfy,

1 < 𝑝 < 𝑞. (1.2)

The case 𝑝 = 2 is the logistic problem, a well–known model in population dynamics (see [17], [6], also [8] for
related applications). As for the nonlinear diffusion regime 𝑝 ≠ 2, a detailed discussion of its positive solutions has
been performed in [10–12], [15] and [9], the latter specially concerned with the one–dimensional case. Regarding
the problem (1.1) observed in a 𝑁–dimensional domain Ω, see [13] for existence results on a closely related
problem.
A further feature we are going to address is the analysis of the limit perturbation of problem (1.1) as 𝑝 → 1.

Namely, 

−Δ1𝑢 = 𝜆

𝑢

|𝑢 | − |𝑢 |
𝑞−2𝑢, 𝑥 ∈ Ω,

𝑢 = 0, 𝑥 ∈ 𝜕Ω,
(1.3)

where Δ1𝑢 = div
( ∇𝑢
|∇𝑢 |

)
is the one–Laplacian operator. Such operator finds its natural applications in a broader

class of fields ranging from image processing ( [4], [18]) to torsion theory ( [16]).
Due to the fact that the 𝑁–dimensional versions of problems (1.1) and (1.3) are plagued of technical obstacles,

main emphasis here will be put on their radial versions. In such case, Ω = 𝐵(0, 𝑅) ⊂ R𝑁 is a 𝑁–dimensional ball
with 𝑁 ≥ 2. It should be remarked that the one–dimensional versions of (1.1) and (1.3),{

−(|𝑢𝑥 |𝑝−2𝑢𝑥)𝑥 = 𝜆 |𝑢 |𝑝−2𝑢 − |𝑢 |𝑞−2𝑢, 0 < 𝑥 < 𝑅,
𝑢(0) = 𝑢(𝑅) = 0,

(1.4)

and 

−

(
𝑢𝑥
|𝑢𝑥 |

)
𝑥

= 𝜆
𝑢

|𝑢 | − |𝑢 |
𝑞−2𝑢, 0 < 𝑥 < 𝑅,

𝑢(0) = 𝑢(𝑅) = 0,
(1.5)

have been recently studied in [21] (problem (1.4) goes back to [14]).
This note is organized as follows. Basic results, specially those concerning the limit problem (1.3) are reviewed

in Section 2. A global description of the set of nontrivial solutions to (1.1) in a ball is presented in Section 3. The
features on the limit behavior of solutions to (1.1) as 𝑝 → 1+ are described in Section 4.
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2. Background results

By a (weak) solution 𝑢 ∈ 𝑊1, 𝑝
0 (Ω) ∩ 𝐿𝑞 (Ω) to (1.1) it is understood that equality∫

Ω
|∇𝑢 |𝑝−2∇𝑢∇𝑣 = 𝜆

∫
Ω
|𝑢 |𝑝−2𝑢𝑣 −

∫
Ω
|𝑢 |𝑞−2𝑢𝑣,

holds for every test function 𝑣 ∈ 𝐶1
0 (Ω). In fact it can be checked that such test functions can be allowed to belong

to𝑊1, 𝑝
0 (Ω) ( [22]).
Analysis of (1.1) in a ball 𝐵(0, 𝑅) is closely linked to the radial eigenvalues to{

−Δ𝑝𝑢 = 𝜆 |𝑢 |𝑝−2𝑢, 𝑥 ∈ 𝐵(0, 𝑅),
𝑢 = 0, 𝑥 ∈ 𝜕𝐵(0, 𝑅), (2.1)

which will be designated as,
0 < 𝜆1, 𝑝 < 𝜆2, 𝑝 < . . . .

We refer to [7], [23] and [20] for a detalied account (also [2] for an early source). Eigenvalues in the unit ball
𝐵(0, 1) are more conveniently expressed as 𝜆𝑛,𝑝 = 𝜔𝑝𝑛 for certain positive numbers 𝜔𝑛. Thus, eigenvalues in the
ball 𝐵(0, 𝑅) turn out to be 𝜆𝑛,𝑝 = 𝑅−𝑝𝜔𝑝𝑛 .
Following the nowadays well settled down approach in [3] and [4] we introduce the concept of a solution to

(1.3). Framework space is
𝐵𝑉 (Ω) = {𝑢 ∈ 𝐿1 (Ω) : 𝐷𝑢 ∈ 𝐶0 (Ω,R𝑁 ) ′},

that is, the space of functions in 𝐿1 (Ω) whose gradient 𝐷𝑢 is a vectorial zero order distribution, whose components
define finite Radon measures 𝐷𝑖𝑢, 1 ≤ 𝑖 ≤ 𝑁 (see [1] for a comprehensive source on this space).
To introduce the concept of weak solution to (1.3), the problematic term 𝐷𝑢

|𝐷𝑢 | must be conveniently replaced
with a suitable field z ∈ 𝐿∞ (Ω,R𝑁 ). On the other hand, the formulation of a Green identity is required in order to
test with functions 𝑣 ∈ 𝐵𝑉 (Ω). Anzellotti’s theory is instrumental for these purposes. A featured result in [5] is
the identity, ∫

Ω
(z, 𝐷𝑣) +

∫
Ω
𝑣 div z =

∫
𝜕Ω
𝑣 [z, 𝜈] 𝑑𝑠, (2.2)

which holds for every z ∈ 𝐿∞𝑞′ (Ω,R𝑁 ) := {z ∈ 𝐿∞ (Ω,R𝑁 ) : div z ∈ 𝐿𝑞′ (Ω)} and 𝑣 ∈ 𝐵𝑉𝑞 (Ω) := 𝐵𝑉 (Ω) ∩𝐿𝑞 (Ω).
To account for every term in (2.2) it is shown in [5] that the normal component [z, 𝜈] has a well–defined trace on
𝜕Ω which belongs to 𝐿∞ (𝜕Ω). In addition, the scalar product z · 𝐷𝑢 is extended as a bilinear mapping (z, 𝐷𝑢),
from 𝐶1 (Ω,R𝑁 ) ×𝑊1,1 (Ω) to 𝐿∞𝑞′ (Ω,R𝑁 ) × 𝐵𝑉𝑞 (Ω) in the following distributional way:

⟨(z, 𝐷𝑢), 𝜑⟩ = −
∫
Ω
𝑢 div (𝜑z), 𝜑 ∈ 𝐶∞0 (Ω).

It is shown in [5] that (z, 𝐷𝑢) defines a finite Radon measure in Ω such that

| (z, 𝐷𝑢) (𝐵) | ≤ ∥z∥∞ |𝐷𝑢 | (𝐵),

𝐵 ⊂ Ω being a Borelian and |𝐷𝑢 | standing for the total variation of 𝐷𝑢.
We are now ready for the next definition.

Definition 2.1 A function 𝑢 ∈ 𝐵𝑉𝑞 (Ω) defines a (weak) solution to (1.3) provided that there exist z ∈ 𝐿∞𝑞′ (Ω,R𝑁 ),
∥z∥∞ ≤ 1, 𝛽 ∈ 𝐿∞ (Ω), ∥𝛽∥∞ ≤ 1 such that,
i) − div z = 𝜆𝛽 − |𝑢 |𝑞−2𝑢, in D ′(Ω),
ii) 𝛽𝑢 = |𝑢 | and (z, 𝐷𝑢) = |𝐷𝑢 |, in D ′(Ω),
iii) [𝑧, 𝜈]𝑢 = −|𝑢 | on 𝐿1 (𝜕Ω), (boundary condition).

Remark 2.2 Boundary condition in iii) is suggested by two features. First one, the fact that the weak–∗ limit
𝑢 ∈ 𝐵𝑉 (Ω) of a sequence 𝑢𝑛 ∈ 𝑊1,1

0 (Ω) could eventually exhibits a nonzero trace on the boundary. Second one,
that solutions of (1.3) could be approximated as 𝑝 → 1 by corresponding solutions to (1.1).
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3. Radial solutions
A general view on the nontrivial solutions to (1.1) in a ball is contained in the next statement.

Theorem 3.1 Assume 1 < 𝑝 ≤ 2. Then, problem{
−Δ𝑝𝑢 = 𝜆 |𝑢 |𝑝−2𝑢 − |𝑢 |𝑞−2𝑢, 𝑥 ∈ 𝐵(0, 𝑅),
𝑢 = 0, 𝑥 ∈ 𝜕𝐵(0, 𝑅), (3.1)

exhibits the following features.
i) [Range and amplitude] Nontrivial solutions are only possible when 𝜆 > 𝜆1, 𝑝 while the normalized amplitude

𝛼 := 𝜆−
1
𝑞−𝑝 ∥𝑢∥∞,

satisfies 𝛼 < 1.
ii) [Positive solutions] There exists a unique positive (radial) solution 𝑢𝜆,1 for all 𝜆 > 𝜆1, 𝑝 , bifurcating from 𝑢 = 0
at 𝜆 = 𝜆1, 𝑝 while:

𝜆−
1
𝑞−𝑝 ∥𝑢𝜆,1∥∞ → 1 as 𝜆→∞.

iii) [Existence of branches] For all 𝑛 ≥ 2, a symmetric family ±𝑢𝜆,𝑛 (𝑟) of nontrivial radial solutions, exactly defined
for all 𝜆 > 𝜆𝑛,𝑝 , bifurcates from 𝑢 = 0 at 𝜆𝑛,𝑝 and,

𝜆−
1
𝑞−𝑝 ∥𝑢𝜆,𝑛∥∞ → 1 as 𝜆→∞.

iv) [Nodal properties] Every ±𝑢𝜆,𝑛 (𝑟) vanishes exactly at 𝑛 − 1 values 𝑟𝑘 ∈ (0, 𝑅).
v) [Continuity of the branches] Bifurcated branches ±𝑢𝜆,𝑛 define a continuous curve C𝑛 when parameterized by the
normalized amplitude 𝛼 = 𝜆−

1
𝑞−𝑝 ∥𝑢∥∞, 0 < 𝛼 < 1. More precisely, there exist continuous mappings 𝛼 ↦→ 𝜆𝑛 (𝛼),

𝛼 ↦→ 𝑢𝑛 (𝛼) ∈ 𝑊1, 𝑝
0 (𝐵(0, 𝑅)), 0 < 𝛼 < 1, such that,

±𝑢𝜆,𝑛 = ±𝑢𝑛 (𝛼), 𝜆 = 𝜆𝑛 (𝛼).

Proof (Sketch) The scaling 𝑢(𝑟) = 𝜆 1
𝑞−𝑝 𝑣(𝑡), 𝑡 = 𝜆 1

𝑝 𝑟 , transforms (3.1) into,



−(|𝑣𝑡 |𝑝−2𝑣𝑡 )𝑡 − 𝑁 − 1

𝑡
|𝑣𝑡 |𝑝−2𝑣𝑡 = |𝑣 |𝑝−2𝑣 − |𝑣 |𝑞−2𝑣, 0 < 𝑡 < 𝜆

1
𝑝 𝑅,

𝑣(0) = 𝛼, 𝑣𝑡 (0) = 0,
(3.2)

where:
max 𝑣 = 𝛼, 0 < 𝛼 < 1,

and 𝑣 must satisfies the boundary condition:
𝑣(𝜆 1

𝑝 𝑅) = 0.

The initial value problem (3.2) admits a unique 𝐶2 solution 𝑣 = 𝑣(·, 𝛼) which is defined in [0,∞) and satisfies
lim𝑡→∞ (𝑣(𝑡), 𝑣𝑡 (𝑡)) = (0, 0). Moreover, 𝑣 exhibits infinitely many simple zeros,

0 < 𝜃1 (𝛼) < 𝜃2 (𝛼) < · · · < 𝜃𝑛 (𝛼) < · · · , 𝜃𝑛 →∞.

Functions 𝜃𝑛 (𝛼) are shown to be continuous in 𝛼 ∈ (0, 1) and,

lim
𝛼→0+

𝜃𝑛 (𝛼) = 𝜔𝑛, lim
𝛼→1−

𝜃𝑛 (𝛼) = ∞,

where 𝜔𝑛 = 𝜆𝑛,𝑝 (𝐵(0, 1))
1
𝑝 .

To solve (3.1) amounts to:
𝜆

1
𝑝 𝑅 = 𝜃𝑛 (𝛼) ⇔ 𝜆 = 𝑅−𝑝𝜃𝑛 (𝛼) 𝑝 .

By setting this value of 𝜆 in the expression for 𝑢:

𝑢(𝑟) = 𝜆 1
𝑞−𝑝 𝑣(𝜆 1

𝑝 𝑟, 𝛼), 0 ≤ 𝑟 ≤ 𝑅,
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Fig. 1 Family C𝑛 of nontrivial solutions bifurcated from 𝑢 = 0 at 𝜆 = 𝜆𝑛,𝑝 . Only a half of C𝑛 has been depicted. That one
corresponding to 𝑢(0) > 0. It is stressed that its exact range of existence is [𝜆𝑛,𝑝 ,∞) .

the family 𝑢𝑛,𝜆 is obtained. Moreover by defining:

𝜆𝑛 (𝛼) = 𝑅−𝑝𝜃𝑛 (𝛼) 𝑝 , 𝑢𝑛 (𝑟, 𝛼) = 𝜆
1
𝑞−𝑝
𝑛 𝑣(𝜆

1
𝑝
𝑛 𝑟, 𝛼),

{𝑢𝜆,𝑛} is alternatively represented as a continuous curve (𝜆𝑛 (𝛼), 𝑢𝑛 (𝛼)) in R ×𝑊1, 𝑝
0 (𝐵(0, 𝑅)). It should be also

observed that 𝑢𝑛 (·, 𝛼) vanishes at the points,

𝑟𝑘 = 𝑅
𝜃𝑘 (𝛼)
𝜃𝑛 (𝛼) , 𝑘 = 1, . . . , 𝑛.

Assertion concerning the existence of the family 𝑢𝜆,𝑛 exactly at the interval [𝜆𝑛,𝑝 ,∞) is a consequence of the
estimate:

𝜃𝑛 (𝛼) > 𝜔𝑛, 0 < 𝛼 < 1.

The proof of this fact deserves a delicate proof and it is also omitted (see [22]). □

Remark 3.2 The existence of a global continuum C∗𝑛 bifurcating from zero at 𝜆 = 𝜆𝑛,𝑝 was stated in [12] (see
also [19]). Theorem 3.1 improves these results in two regards. Firstly, family of solutions 𝑢𝜆,𝑛 is shown to exists
exactly at the range 𝜆 > 𝜆𝑛,𝑝 . Secondly, ours is not a mere continuum C∗𝑛 but rather a global continuous curve C𝑛.

4. Limit behavior
The sequence,

0 < �̄�1 < �̄�2 < · · ·
of radial eigenvalues to −Δ1, 


−Δ1𝑢 = 𝜆

𝑢

|𝑢 | , 𝑥 ∈ 𝐵(0, 𝑅),
𝑢 = 0, 𝑥 ∈ 𝜕𝐵(0, 𝑅),

(4.1)

has been recently studied in [20]. Among other featured properties it is shown there that,

lim
𝑝→1

𝜆𝑛,𝑝 = �̄�𝑛, for every 𝑛 ∈ N.

Our next result describes a set of distinguished nontrivial radial solutions to (1.3). Those ones obtained as the
limit of solutions to (1.1) as 𝑝 → 1. In addition this precise feature of the solutions is characterized by a suitable
energy condition. In the forthcoming statement, the reference zeros 𝜃𝑛 introduced in the proof of Theorem 3.1
are involved. It should be remarked that they also depends on 𝑝 > 1 and an important fact to be reported is the
existence of their limits 𝜃𝑛 as 𝑝 → 1+ (see ii) below). Figure 2 depicts this dependence through a simulation.

Theorem 4.1 The structure of the set of radial nontrivial solutions to



−div

( ∇𝑢
|∇𝑢 |

)
= 𝜆

𝑢

|𝑢 | − |𝑢 |
𝑞−2𝑢, 𝑥 ∈ 𝐵(0, 𝑅),

𝑢 = 0, 𝑥 ∈ 𝜕𝐵(0, 𝑅),
can be described as follows.
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Fig. 2 Profiles of 𝑣 (𝑡) and corresponding zeros 𝜃𝑛 for varying values of 𝑝 > 1. Simulation has been performed for 𝑁 = 3,
𝑞 = 3, 𝛼 = 0.7. Then, chosen values of 𝑝 are 𝑝 = 2, 𝑝 = 1.5, 𝑝 = 1.1 and 𝑝 = 1.01. Plots become steeper as 𝑝 decays to
unity.

i) [Normalized amplitude estimate] Nontrivial solutions are only possible if 𝜆 > �̄�1. Moreover, the normalized
amplitude 𝛼 := 𝜆−

1
𝑞−1 ∥𝑢∥∞ of such solutions satisfies,

0 < 𝛼 < 1.

ii) [Limits of zeros] There exists a family of smooth functions 𝜃𝑛 (𝛼),

0 < 𝜃1 (𝛼) < 𝜃𝑛 (𝛼) < · · · ,

such that,
lim
𝑝→1

𝜃𝑛 (𝛼) = 𝜃𝑛 (𝛼), 0 < 𝛼 < 1.

iii) [Existence] To every radial eigenvalue �̄�𝑛 there corresponds a symmetric family ±�̄�𝜆,𝑛 of nontrivial solutions
which bifurcates from 𝑢 = 0 at �̄�𝑛. In addition, such family is defined for each 𝜆 > �̄�𝑛 while the normalized
amplitude of its members satisfies,

lim
𝜆→∞

𝜆−
1
𝑞−1 ∥�̄�𝜆,𝑛∥∞ = 1.

iii) [Smoothness] Family ±�̄�𝜆,𝑛 constitutes a smooth curve C𝑛 in R × 𝐵𝑉 (𝐵(0, 𝑅)) when parameterized by the
normalized amplitude 0 < 𝛼 < 1. More precisely, a decreasing family of smooth positive functions 𝛼 ↦→ �̄�𝑛 (𝛼)
exists such that by setting,

�̄�𝑛 (𝛼) = 𝑅−1𝜃𝑛 (𝛼), �̄�𝑛 (·, 𝛼) = �̄�
1
𝑞−1
𝑛

𝑛∑︁
𝑘=1
(−1)𝑘−1�̄�𝑘−1𝜒𝐼𝑘 ,

𝜒𝐼𝑘 being the characteristic function of the interval 𝐼𝑘 =
(
𝑅
𝜃𝑘−1 (𝛼)
𝜃𝑛 (𝛼)

, 𝑅
𝜃𝑘 (𝛼)
𝜃𝑛 (𝛼)

)
, then

±�̄�𝜆,𝑛 = �̄�𝑛 (𝛼) for 𝜆 = �̄�𝑛 (𝛼).

iv) [Convergence of branches] Let C𝑛 be the 𝑛–th curve of nontrivial solutions introduced in Theorem 3.1. Then

C𝑛 → C𝑛 as 𝑝 → 1+,

in the sense that,
lim
𝑝→1
(𝜆𝑛 (𝛼), 𝑢𝑛 (𝛼)) = (�̄�𝑛 (𝛼), �̄�𝑛 (𝛼)) in R × 𝐵𝑉 (𝐵(0, 𝑅)),

for every 0 < 𝛼 < 1.
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Fig. 3 Convergence of branches as 𝑝 → 1+.

v) [Uniqueness] Every nontrivial solution 𝑢 to (4.1) fulfilling the ‘energy’ condition,

𝑑

𝑑𝑟

(
𝜆 |𝑢 | − |𝑢 |

𝑞

𝑞

)
= −𝑁 − 1

𝑟
|𝑢𝑟 | in D(0, 𝑅) ′. (4.2)

necessarily belongs to some of the previous families C𝑛 = {±�̄�𝜆,𝑛}.

Proof (Sketch) A first step of compactness nature is the following (subindex 𝑝 refers to dependence on 𝑝). Family
𝑣𝑝 (·, 𝛼) of solutions to (3.2) admits a subfamily, still denoted 𝑣𝑝 , while a function 𝑣1 ∈ 𝐵𝑉𝑙𝑜𝑐 (0,∞) exists so that,

𝑣𝑝 ⇀ 𝑣1 weakly in 𝐿𝑠 (0, 𝑏; 𝑡𝑁−1 𝑑𝑡) as 𝑝 → 1,

for every 𝑏 > 0 and 1 ≤ 𝑠 < ∞.
A second step consists in proving that 𝑣 = 𝑣1 (𝑡) solves in the sense of Definition 2.1 the initial value problem,



−

(
𝑣𝑡
|𝑣𝑡 |

)
𝑡

− 𝑁 − 1
𝑡

𝑣𝑡
|𝑣𝑡 | =

𝑣

|𝑣 | − |𝑣 |
𝑞−2𝑣, 𝑡 > 0,

𝑣(0+) = 𝛼, 𝑣𝑡 (0) = 0,
(4.3)

together with the energy condition,(
|𝑣 | − |𝑣 |

𝑞

𝑞

)
𝑡

= −𝑁 − 1
𝑡
|𝑣𝑡 | in D(0, 𝑅) ′. (4.4)

A third and crucial step is showing that problem (4.3) constrained with condition (4.4) exhibits a unique solution.
Moreover, such solution can be expressed in the exact form,

𝑣1 (𝑡) =
∞∑︁
𝑛=1
(−1)𝑛−1�̄�𝑛−1𝜒(𝜃𝑛−1 , 𝜃𝑛) (𝑡),

for a precisely computed pair �̄�𝑛, 𝜃𝑛, of monotone sequences of positive numbers satisfying �̄�𝑛 → 0 and 𝜃𝑛 →∞.
Final step is checking that family �̄�𝜆,𝑛 can be defined as,

�̄�𝜆,𝑛 (𝑟) = 𝜆
1
𝑞−1 𝑣1 (𝜆𝑟), where 𝜆 = 𝑅−1𝜃𝑛.

To this purpose suitable candidates for z and 𝛽 in Definition 2.1 must be furnished.
A detailed account of the (lengthy) proofs of all these assertions is contained in [22]. □

Remark 4.2
a) Functions 𝜃𝑛 (𝛼) and �̄�𝑛 (𝛼) can be recursively computed starting at 𝑛 = 0 with values 𝜃0 (𝛼) = 0, �̄�0 (𝛼) = 𝛼.
b) Further families of nontrivial solutions to (4.1) not satisfying the energy condition (4.2) can be found. A
characteristic property of such solutions is that they vanish in nonempty interior regions.
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Abstract

Computation of Wall Shear Stress (WSS) in the aorta wall is a relevant problem, since it has been related to the
appearance of several cardiovascular diseases. In this context, our aim is to solve Navier-Stokes (NS) equations
with boundary conditions in the aorta. For an accurate estimation of WSS, a proper election of the turbulence
model is of great relevance. We present a study to compare WSS estimation considering three different turbulence
models in the thoracic aorta and an analysis of the influence of the aortic valve. The size and properties of the
appropriate mesh to use is also discussed. Our simulations are carried out with the Finite Volume Method solver
OpenFoam.

1. Introduction
Computational Fluid Dynamics has become an essential tool in the study of blood flow in order to understand
genesis of cardiovascular diseases. In this work we focus on the WSS reached in the toracic aorta at peak systolic
conditions. Particularly, we know that low values of WSS are related to atherosclerosis, see [5]. To do so, we first
need to determine what model is more appropiate to this task. On the one hand we test a model based in the NS
equations and on the other hand 𝑘 − 𝜖 , 𝑘 −𝜔 and SST 𝑘 −𝜔 turbulence models which are reformulations of the first
one. Once we have chosen our model we will study the influence of three types of aortic valves: a healhty valve
and two prosthetic valves. This document is structured as follows: In section 2 we introduce the models of fluid
likely to be chosen and the corresponding equations. In section 3 we explain tecnical details of simulations and
results obtained. Finally, in section 4 we summarize, conclude and expose some improvements and future works.

2. Models and boundary conditions
Fluid dynamics is governed by NS equations, a system of coupled partial differential equations concerning fluid
velocity and pressure. In this work we deal with blood flowing through aorta. In this context we can suppose that
blood is an incompressible newtonian fluid. As our aim is to get WSS, we first need to compute blood flow. This
requires to solve NS equations with a set of boundary conditions that, in our case, will reproduce peak systolic
conditions. We also neglect time derivatives in all model considered so we are calculating instantaneous WSS in
the time of maximum blood flow. We consider, in the first place, the usual stationary Navier-Stokes equations for
an incompressible Newtonian fluid, given by

∇ · ®𝑣 = 0; ®𝑣 · ∇𝒗 = − 1
𝜌
∇𝑝 + 1

𝜌
∇ · Σ, (2.1)

where 𝒗 is blood velocity, 𝑝 is pressure, 𝜌 is the blood density and Σ = 𝜇
(∇𝒗 + ∇𝒗𝑇 )

is the viscous stress tensor for
a Newtonian fluid, with 𝜇 the viscosity of blood. We apply a zero-gradient condition in the outlet for the velocity
and a non-slip condition in the aortic wall. Besides, velocity profiles in the inlet are settled trying to reproduce
a healthy valve and two artificial prosthetic valves as shown in Figure 1. For pressure, we use a zero-gradient
condition in the inlet and set a 0 value condition in the outlet.
The other three models are turbulence models (as 𝑅𝑒 ∼ 6500) and are included in the context of the Reynolds-

Averaged-Navier-Stokes (RANS) equations, consisting in the decomposition of each variable in a time average
component and a fluctuating component. For example, 𝒗 = 𝑽 + 𝒗′ where 𝑽 and 𝒗′ are the time averaged and the
fluctuating component of velocity respectively. The average is taken in a sufficiently high time. The first RANS
model considered is the 𝑘 − 𝜖 model where turbulence is stored in the new variables

𝑘 =
𝒗′ · 𝒗′
2

,
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(a) Natural healthy valve. (b) Artificial bileaflet valve. (c) Artificial tilting disk valve.

Fig. 1 Vertical profile of some of the inlet boundary conditions considered. The maximum velocity is 1 m/s.

variable inlet wall outlet
𝜖 2 zero gradient zero gradient
𝑘 10−6 10−10 zero gradient
𝜔 1 𝜔-wall-function zero gradient

Tab. 1 Boundary conditions applied to turbulent variables. All units in SI.

and 𝜖 . 𝑘 is called turbulent kinetic energy and 𝜖 is the rate of dissipation of 𝑘 . The new equations for these variables
are:

𝑽 · ∇𝑘 =
1
𝜌
∇ · (𝜇𝑘∇𝑘) + 𝜇𝑡

𝜌
(Σ′ : ∇𝑽) − 𝜖, (2.2)

𝑽 · ∇𝜖 = 1
𝜌
∇ · (𝜇𝜖∇𝜖) + 𝐶𝜖 1 𝜖

𝜌𝑘
(Σ′ : ∇𝑽) − 𝐶𝜖 2 𝜖

2

𝑘
, (2.3)

where 𝜇𝑡 = 𝜌𝐶𝜇𝑘
2/𝜖 is the tubulent viscosity, 𝜇𝑘 = 𝜇 + 𝜇𝑡/𝜎𝑘 and 𝜇𝜖 = 𝜇 + 𝜇𝑡/𝜎𝜖 are effective viscosities and

𝐶𝜇, 𝐶𝜖 1,𝐶𝜖 2, 𝜎𝑘 and 𝜎𝜖 are empirical constants whose values can be consulted in [6]. On the other hand

Σ′ = 𝜌𝒗′ ⊗ 𝒗′

is the Reynolds stress tensor.

The second model used is the 𝑘 −𝜔 model. We introduce here the variable 𝜔 = 𝜖/(𝐶𝜇𝑘) for which an equation
can be derived from (2.3). The new set of equations for the turbulent variables rest

𝑽 · ∇𝑘 =
1
𝜌
∇ · (𝜇𝑘∇𝑘) + 𝜇𝑡

𝜌
(Σ′ : ∇𝑽) − 𝛽∗𝑘𝜔, (2.4)

𝑽 · ∇𝜔 =
1
𝜌
∇ · (𝜇𝜔∇𝜔) + 𝐶𝛼1 𝜔

𝜌𝑘
(Σ′ : ∇𝑽) − 𝐶𝛽1𝜔2, (2.5)

This model has the advantage of being more precise near the wall than 𝑘 − 𝜖 model, meanwhile the latter is
more precise in the bulk flow (the stream outside the boundary layer). The last turbulence model used is the SST
𝑘 −𝜔 model which combines 𝑘 − 𝜖 and 𝑘 −𝜔 models through blending functions. The details on the construction
of this model are too extensive to be included in this document and can be consulted in [6].

Boundary conditions over the new turbulent variables are shown in table 1. We have taken considerations
from [4], for 𝑘 and 𝜔 where also the 𝜔-wall-function can be read. Moreover, we have used formulas and
information from [1], to settle boundary conditions on 𝜖 .

3. Simulation and results
We employ the Finite Volume Method solver OpenFoam to solve the previous models of NS equations in a real
aorta acquired from Computerized Tomography. A mesh of about 8.6M elements with maximum spatial resolution
of 50𝜇𝑚 in the wall normal direction has been used in order to have accurate computation of the boundary layer.
We will not use wall functions in the simulations presented here for pressure and velocity so we compute the entire
boundary layer. A representation of the mesh used is shown in figure 2.
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Fig. 2 Section of aorta where the mesh used was outlined.

As it can be seen a 4 refinement level is used combined with 15 extra layers in the aortic wall in order to
get good WSS estimation. A Green-Gauss finite volume discretization is employed for the gradient of scalar
variables. On the other hand upwind schemes are applied in divergence terms. After discretization a combination
of a Gauss-Seidel method, Geometric-algebraic-multi-grid method and a smooth solver are used to solve the linear
systems involved. Details can be found in [6, 7]. Also, the resolution algorithm called semi-implicit method for
pressure-linked equations (SIMPLE algorithm) is employed in the conservation laws involving pressure and velocity.

Results are shown in figure 3. In the first row blood streamlines are presented, while the corresponding WSS
distribution are shown below. Each column corresponds to a different model. In the first four columns a healthy
valve has been settled and in the last two columns the bileaflet valve and tilting disk valve for the SST 𝑘 −𝜔 model
haven been implemented.

(a) No turbulence model
and healthy valve.

(b) 𝑘−𝜖 model and
healthy valve.

(c) 𝑘−𝜔model and
healthy valve.

(d) SST 𝑘 − 𝜔
model and healthy
valve.

(e) SST 𝑘 − 𝜔
model and bileaflet
valve.

(f) SST 𝑘 − 𝜔
model and tilting
disk valve.

Fig. 3 Streamlines (upper row) and WSS/𝜌 profiles (lower row) obtained with different turbulence models. All units in the SI.

The most remarkable result is the high values of WSS provided by the 𝑘 − 𝜖 in the descending aorta. Since this
model does not properly compute turbulence in regions with large pressure gradients (such as the boundary layer)
and strong accelerations (when the aortic duct narrows), this model can be assumed to provide a poor approximation.
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On the other hand, we know that the 𝑘−𝜔model is sensitive to boundary conditions of the turbulent variables in the
inlet free stream, which does not happen with the 𝑘 − 𝜖 model. This explains the distinct behaviour of streamlines
computed with 𝑘 −𝜔 model in the cavity of the aorta. Hence, it seems that the most suitable turbulence model, out
of the ones used here, is SST 𝑘 −𝜔 model. The cavity flow computed with this model looks like the one computed
with 𝑘 − 𝜖 model, which is most reliable in this region. Also, the WSS profile computed with SST 𝑘 − 𝜔 model
has more resemblance with the one computed with 𝑘 − 𝜔 model, the one that behaves well near the wall. Not
applying any turbulence model seems in good agreement with SST 𝑘 − 𝜔 model. Nevertheless 𝑘 is an esential pa-
rameter in the study of diseases like stenosis or coarctation. Then, SST 𝑘−𝜔model is the one selected from now on.

Streamlines obtained in ascending aorta with the three types of valves are trustable when comparing with
experimental and theoretical works, see [2, 8]. Regarding the effect of the valve type, it clearly affects the WSS
profile. We consider a WSS critical value of 0.5 Pa below which there is risk of atherosclerosis appearence. Figure
4 shows a detailed analysis of the influence of the type of valve on the WSS values. We analize 7 sections along
the aorta, 𝑆𝑖 for 1 ≤ 𝑖 ≤ 7. 𝑆1, 𝑆2 and 𝑆3 are placed in the ascending aorta where the results are more trustworthy.
We can see that in the case of the bileaflet valve almost 16% of 𝑆1 is in risk, the highest value of the analysis,
meanwhile 10% with the tilting disk valve around and 2% with the healthy valve. In 𝑆2 there is no region in risk
for any valve and in 𝑆3 we have 6%, 5% and 4% for the healthy, bileaflet and tilting disk valve respectivelly.

Fig. 4 Locations where sections analyzed were placed (left) and histogram of the percentage of section with critical WSS for
the seven sections and for the three types of valve (right).

Values on the descending aorta are not trustable as we are neglecting the supraortic arteries which suppose the
30% of the entire flow. However, we observe an increase of the risk region with artificial valves.

4. Conclusions
First of all we made an analsys about what model of turbulence was more suitable forWSS estimation. We conclude
that the SST 𝑘 −𝜔 model was the most realiable as it possesses the good properties from both 𝑘 − 𝜖 and 𝑘 −𝜔 mod-
els and, besides, it calculates the turbulent kinetic energy 𝑘 which is important in the study of cardiovascular diseases.

Concerning WSS values, it can be observed that both prosthetic valves contribute to increase them and that the
bileaflet valve does it in a minor level than the tilting disk valve in the ascending aorta. Hence, we can say that the
human biology has made a good work and that whenever a prosthetic valve is needed we support the bileaflet valve
above the tilting disk one.
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Transitory simulations to take into account the whole cardiac cycle are now taking place, so we will be able to
compute other hemodynamic variables of interest as OSI or TAWSS. Also, in the future, a fluid-structure interaction
should be considered to get a complete study of genesis of cardiovascular diseases.
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Overdetermined elliptic problems in onduloid-type domains with general
nonlinearities

Jing Wu
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Abstract
In this paper, we prove the existence of solutions to a general semilinear elliptic problem with overdetermined

boundary conditions. The proof uses a local bifurcation argument from the straight cylinder, in analogy with the
onduloids and the theory of Constant Mean Curvature surfaces. Such examples have been found already for linear
problems or with nonlinearity 𝑓 (𝑢) = 1. In this work we are able to extend this phenomenon for a large class of
functions 𝑓 (𝑢).
Remark: This manuscript, especially the whole proof, is a work in progress in collaboration with David Ruiz and
Pieralberto Sicbaldi.

1. Introduction
This paper is devoted to the existence of new solutions of a semilinear overdetermined elliptic problem in the form




Δ𝑢 + 𝑓 (𝑢) = 0 in Ω
𝑢 > 0 in Ω
𝑢 = 0 on 𝜕Ω
𝜕𝑢
𝜕𝜈 = constant on 𝜕Ω

(1.1)

where Ω is a domain of R𝑛+1, 𝑛 ≥ 1, 𝑓 : [0, +∞) → R is a 𝐶1,𝛼 function and 𝜈 stands for the exterior normal unit
vector about 𝜕Ω.

A classical result by Serrin [16,23] states that the existence of a positive solution to the overdetermined problem
(1.1) yields that the smooth bounded domainΩmust be a ball. This result has applications in various mathematical
and physical problems, such as isoperimetric inequalities, spectral geometry and hydrodynamics (see [4,26,27] for
the details).

The case when the domain Ω is supposed to be unbounded is also very interesting. Indeed, overdetermined
boundary conditions appear in free boundary problems if the variational structure imposes suitable conditions on
the separation interface (see [2,6]). In this process, several methods applied to study the regularity of free boundary
problems are based on blow-up techniques that lead to the study of an elliptic problem in an unbounded domain.
In this framework, Berestycki, Caffarelli and Nirenberg [5] were concerned with the problem (1.1) in unbounded
domains and concluded the following conjecture:

BCN Conjecture. Assume that Ω is a smooth domain with R𝑛\Ω̄ connected, then the existence of a bounded
positive solution to problem (1.1) for some Lipschitz function 𝑓 implies that Ω is either a ball, a half-space, a
generalized cylinder 𝐵𝑘 × R𝑛−𝑘 (𝐵𝑘 is a ball in R𝑘 ), or the complement of one of them.
Such conjecture, in the case of exterior domains, is motivated by the works of Reichel [17], Aftalion and

Busca [1]. BCN Conjecture actually has motivated various interesting works. For example, Farina and Valdinoci
[11] obtained some natural assumptions to conclude thatΩmust be a half-space and 𝑢 is a function only depending
on one variable, when Ω is an epigraph for which the problem (1.1) has a solution. Furthermore, in [18] the BCN
conjecture is proved for some classes of nonlinearities 𝑓 ; the work [28] gives a complete classification of solutions
to harmonic overdetermined problems in the plane; Ros, Ruiz and Sicbaldi in [19] proved that if 𝜕Ω is connected
and unbounded in dimension 2, then Ω is a half-plane.

The conjecture has been answered with a counterexample for 𝑛 ≥ 3 in [25], where the second author constructed
a domain by a periodic perturbation of the straight cylinder 𝐵𝑛 × R for which there exists a periodic solution to
the problem (1.1) for 𝑓 (𝑢) = 𝜆𝑢, 𝜆 > 0. More precisely, such domains, as shown in [22], belong to a 1-parameter
family {Ω𝑠}𝑠∈(−𝜖 , 𝜖 ) and are given by

Ω𝑠 =

{
(𝑥, 𝑡) ∈ R𝑛 × R : |𝑥 | < 1 + 𝑠 cos

(
2𝜋
𝑇𝑠
𝑡

)
+𝑂 (𝑠2)

}
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where 𝜖 is a small constant, 𝑇𝑠 = 𝑇0+𝑂 (𝑠) and𝑇0 depends only on the dimension 𝑛. In [10], Fall, Minlend andWeth
provided the same kind of work for 𝑓 (𝑢) = 1. In [8] similar solutions are found for the Allen-Cahn nonlinearity
𝑓 (𝑢) = 𝑢−𝑢3, but in domains that are perturbations of a dilated straight cylinder, i.e. perturbations of (𝜖−1 𝐵𝑛) ×R
for 𝜖 small. In addition, Ros, Ruiz and Sicbaldi [20] found a perturbation of the complement of a ball 𝐵𝑅 that
supports a bounded solution to the problem (1.1), when 𝑓 is a nonlinear function 𝑓 (𝑢) = 𝑢𝑝 − 𝑢.
The aim of this paper is to perform such a construction under somewhat minimal assumptions on the nonlinearity

𝑓 (𝑢). For technical reasons, we need the following assumptions:
Assumption 1: There exists a positive radially symmetric solution 𝜙1 ∈ 𝐶2,𝛼 (𝐵) of the problem{

Δ𝜙1 + 𝑓 (𝜙1) = 0 in 𝐵
𝜙1 = 0 on 𝜕𝐵

(1.2)

with 𝜕𝜈 (𝑥) ≠ 0 for 𝑥 ∈ 𝜕𝐵.
Assumption 2: Define the linearized operator 𝐿𝐷 : 𝐶2,𝛼0,𝑟 (𝐵) → 𝐶0,𝛼𝑟 (𝐵) by

𝐿𝐷 (𝜙) = Δ𝜙 + 𝑓 ′(𝜙1)𝜙 , (1.3)

where𝐶2,𝛼0,𝑟 (𝐵) and𝐶0,𝛼𝑟 (𝐵) denote the spaces of radial functions in𝐶2,𝛼0 (𝐵) and𝐶0,𝛼 (𝐵) respectively. We assume
that the linearized operator 𝐿𝐷 is non-degenerate; in other words, if 𝐿𝐷 (𝜙) = 0 then 𝜙 = 0.
Observe that by [12], any solution 𝜙1 of (1.2) needs to be a radially symmetric function.
We are now in position to state our main result:

Theorem 1.1 If 𝑛 ≥ 1, 𝑓 : [0, +∞) → R is 𝐶1,𝛼 and assumptions 1 and 2 hold, then there exists a positive number
𝑇∗ and a smooth map

(−𝜖, 𝜖) → 𝐶2,𝛼 (R/Z) × R
𝑠 ↦→ (𝑣𝑠 , 𝑇𝑠)

with 𝑣0 = 0 and 𝑇0 = 𝑇∗ such that the overdetermined problem (1.1) has a solution in the domain

Ω𝑠 =

{
(𝑥, 𝑡) ∈ R𝑛 × R : |𝑥 | < 1 + 𝑣𝑠

(
𝑡

𝑇𝑠

)}
.

The solution 𝑢 = 𝑢𝑠 of problem (1.1) is 𝑇𝑠-periodic in the variable 𝑡 and hence bounded. Moreover
∫ 1

0
𝑣𝑠 (𝑡) 𝑑𝑡 = 0

and
𝑣𝑠 (𝑡) = 𝑠 cos(2𝜋 𝑡) + O(𝑠2) .

As a consequence, for all functions 𝑓 satisfying assumptions 1 and 2 we produce a counterexample to the BCN
conjecture diffeomorphic to a cylinder. Assumptions 1 and 2 hold for example in the following cases among many
others:

(1) If 𝑓 (0) > 0 and 𝑓 ′(𝑠) < 𝜆1 for any 𝑠 ∈ (0, +∞), where 𝜆1 is the first eigenvalue of the Dirichlet Laplacian
in the unit ball of R𝑛.

(2) If 𝑓 (𝑢) = 𝑢𝑝 − 𝑢, 1 < 𝑝 < 𝑛+2
𝑛−2 if 𝑛 > 2, see [15].

(3) If 𝑓 (𝑢) = 𝜆𝑒𝑢 and 𝜆 ∈ (0, 𝜆∗), 𝜆∗ > 0 receives the name of extremal value, see for instance [9].
Obviously, our theorem covers the result in [10] and is complementary to the results in [22, 25].

2. Some details
The operator 𝐿𝐷 defined in Assumption 2 has a diverging sequence of eigenvalues 𝛾𝐷 𝑗 , hence there are only a
finite number 𝑙 of them which are negative, i.e.

𝛾𝐷1 < 𝛾𝐷2 < · · · < 𝛾𝐷𝑙 < 0, 𝛾𝐷𝑙+1 > 0.

Actually, these eigenvalues 𝛾𝐷 𝑗 are all simple.
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Let 𝑧 𝑗 ∈ 𝐶2,𝛼0,𝑟 (𝐵) (normalized by ‖𝑧 𝑗 ‖𝐿2 = 1) be the eigenfunctions corresponding to the eigenvalues 𝛾𝐷 𝑗 , i.e.{
Δ𝑧 𝑗 + 𝑓 ′(𝜙1)𝑧 𝑗 + 𝛾𝐷 𝑗 𝑧 𝑗 = 0 in 𝐵
𝑧 𝑗 = 0 on 𝜕𝐵

. (2.1)

As is well known, the operator 𝐿𝐷 is related to the quadratic form

𝑄𝐷 : 𝐻10,𝑟 (𝐵) → R, 𝑄𝐷 (𝜙) :=
∫
𝐵

( |∇𝜙|2 − 𝑓 ′(𝜙1)𝜙2) .
The first eigenvalue of 𝐿𝐷 is given by

𝛾𝐷1 = inf
{
𝑄𝐷 (𝜙) : ‖𝜙‖𝐿2 (𝐵) = 1

}
.

We also define the quadratic form

𝑄 : 𝐻1𝑟 (𝐵) → R, 𝑄(𝜓) :=
∫
𝐵

( |∇𝜓 |2 − 𝑓 ′(𝜙1)𝜓2) + 𝑐 𝜔𝑛𝜓(1)2,
where 𝜔𝑛 is the area of S𝑛−1 and 𝑐 = −𝜙′′1 (1) = 𝑛 − 1 +

𝑓 (0)
𝜙′1 (1)

.

Observe that,
𝑄 |𝐻 10,𝑟 (𝐵) = 𝑄𝐷 .

Analogously, we can define

𝛾1 = inf
{
𝑄(𝜓) : ‖𝜓‖𝐿2 (𝐵) = 1

}
. (2.2)

It is rather standard to show that 𝛾1 is achieved by the minimizer 𝜓1, and that 𝛾1 is simple, so 𝜓1 is uniquely
determined up to a sign. In addition, there holds: 𝛾1 < min{0, 𝛾𝐷1 }. In fact, it is evident that 𝛾1 ≤ 𝛾𝐷1 from the
variational characterization of the eigenvalues. The strict inequality follows because of the uniqueness of solutions
of Initial Vale Problems for ODEs (see [21] for details).
Next, we will consider the Dirichlet problem for the linearized equation in a straight cylinder for periodic

functions, namely, {
Δ𝜓 + 𝑓 ′(𝜙1)𝜓 = 0 in 𝐵 × R
𝜓(𝑥) = 0 on (𝜕𝐵) × R (2.3)

where 𝜓(𝑥, 𝑡) is 𝑇-periodic in the variable 𝑡.
Define:

𝐶𝑇1 = 𝐵 × R/𝑇Z.
Hence (2.3) is just the linearization of the problem:{

Δ𝜙 + 𝑓 (𝜙) = 0 in 𝐶𝑇1
𝜙 = 0 on 𝜕𝐶𝑇1

. (2.4)

If 𝜙1 is the solution of Problem (1.2), then the function 𝜙1 (𝑥, 𝑡) = 𝜙1 (𝑥) (we use a natural abuse of notation)
solves (2.4). Define the linearized operator 𝐿𝑇𝐷 : 𝐶

2,𝛼
0,𝑟 (𝐶𝑇1 ) → 𝐶𝛼𝑟 (𝐶𝑇1 ) (associated to Problem (2.4)) by

𝐿𝑇𝐷 (𝜙) = Δ𝜙 + 𝑓 ′(𝜙1)𝜙,
and consider the eigenvalue problem

𝐿𝑇𝐷 (𝜙) + 𝜏𝜙 = 0.

Then the functions 𝑧 𝑗 (𝑥, 𝑡) = 𝑧 𝑗 (𝑥) from (2.1) solve the problem{
Δ𝑧 𝑗 + 𝑓 ′(𝜙1)𝑧 𝑗 + 𝜏𝑗 𝑧 𝑗 = 0 in 𝐶𝑇1
𝑧 𝑗 = 0 on 𝜕𝐶𝑇1

.

Let us define the quadratic form 𝑄𝑇𝐷 : 𝐻
1
0,𝑟 (𝐶𝑇1 ) → R related to 𝐿𝑇𝐷 ,

𝑄𝑇𝐷 (𝜓) :=
∫
𝐶𝑇1

( |∇𝜓 |2 − 𝑓 ′(𝜙1)𝜓2) .
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We will also need to define the quadratic form 𝑄𝑇 : 𝐻1𝑟 (𝐶𝑇1 ) → R,

𝑄𝑇 (𝜓) :=
∫
𝐶𝑇1

( |∇𝜓 |2 − 𝑓 ′(𝜙1)𝜓2) + 𝑐
∫
𝜕𝐶𝑇1

𝜓2.

In next proposition we study the behavior of these quadratic forms:

Proposition 2.1 Define:

𝛼 = inf

{
𝑄𝑇𝐷 (𝜓) : 𝜓 ∈ 𝐻10,𝑟 (𝐶𝑇1 ), ‖𝜓‖𝐿2 = 1,

∫
𝐶𝑇1

𝜓 𝑧 𝑗 = 0, 𝑗 = 1, . . . 𝑙.

}
,

𝛽 = inf

{
𝑄𝑇 (𝜓) : 𝜓 ∈ 𝐻1𝑟 (𝐶𝑇1 ), ‖𝜓‖𝐿2 = 1,

∫
𝜕𝐶𝑇1

𝜓 = 0,
∫
𝐶𝑇1

𝜓 𝑧 𝑗 = 0, 𝑗 = 1, . . . 𝑙.

}
,

then
𝛼 = min

{
𝛾𝐷𝑙+1 , 𝛾𝐷1 +

4𝜋2

𝑇2

}
, 𝛽 = min

{
𝛾𝐷𝑙+1 , 𝛾1 +

4𝜋2

𝑇2

}
.

Moreover, those infima are achieved. If 𝛽 = 𝛾1 + 4𝜋2𝑇 2 , the minimizer is equal to

𝜓1 (𝑥) cos
(
2𝜋
𝑇
(𝑡 + 𝛿)

)
,

where 𝜓1 is the minimizer for (2.2) and 𝛿 ∈ [0, 1].

Proof Just by defining �̄�(𝑥) =
∫ 𝑇
0 𝜓(𝑥, 𝑡)𝑑𝑡 and the Poincaré-Wirtinger inequality, see [21] for details. �

Corollary 2.2 Define 𝑇 as:

𝑇 =

{
2𝜋√−𝛾𝐷1

if 𝛾𝐷1 < 0,
+∞ if 𝛾𝐷1 > 0.

(2.5)

Then, for 𝑇 ∈ (0, 𝑇), we have that 𝑄𝑇𝐷 (𝜓) > 0 for any 𝜓 ∈ 𝐻10,𝑟 (𝐶𝑇1 ) such that
∫
𝐶𝑇1

𝜓𝑧 𝑗 = 0, 𝑗 = 1, 2, · · · , 𝑙 . As a
consequence, 𝐿𝑇𝐷 is nondegenerate.

Defining the cylinder-type domain

𝐶𝑇1+𝑣 =
{
(𝑥, 𝑡) ∈ R𝑛 × R/Z : 0 ≤ |𝑥 | < 1 + 𝑣

( 𝑡
𝑇

)}
,

we start with the following result, that allows us to obtain a solution for the Dirichlet problem in the domain 𝐶𝑇1+𝑣
and its smooth dependence on 𝑇 and 𝑣.

Proposition 2.3 Assume that 𝑇 < 𝑇, where 𝑇 is given by (2.5). Then, for all 𝑣 ∈ 𝐶2,𝛼𝑒 (R/Z) whose norm is
sufficiently small, the problem {

Δ𝜙 + 𝑓 (𝜙) = 0 in 𝐶𝑇1+𝑣
𝜙 = 0 on 𝜕𝐶𝑇1+𝑣

(2.6)

has a unique positive solution 𝜙 = 𝜙1+𝑣,𝑇 ∈ 𝐶2,𝛼 (𝐶𝑇1+𝑣 ). Moreover, 𝜙 depends smoothly on the function 𝑣, and
𝜙 = 𝜙1 when 𝑣 ≡ 0.

Proof Following the nondegeneracy of the Dirichlet problem, please refer to [21] for details. �

For any 𝑇 < 𝑇 , there exists a neighborhood U of 0 in 𝐶2,𝛼𝑒,𝑚 (R/Z) where the following Dirichlet-to-Neumann
operator is well defined and 𝐶1:

𝐺 : U × (0, 𝑇) → 𝐶1,𝛼𝑒,𝑚 (R/Z),

𝐺 (𝑣, 𝑇) (𝑡) = 𝜕𝜙1+𝑣,𝑇
𝜕𝜈

����
𝜕𝐶𝑇1+𝑣

(𝑇 𝑡) − 1
Vol(𝜕𝐶𝑇1+𝑣 )

∫
𝜕𝐶𝑇1+𝑣

𝜕𝜙1+𝑣,𝑇
𝜕𝜈

, (2.7)

where 𝜙(𝑣, 𝑇) is the solution of (2.6) verified by Proposition 2.3.
We will next compute the Fréchet derivative of the operator 𝐺. For so, we will need the following lemmas.
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Lemma 2.4 Assume that 𝑇 < 𝑇, where 𝑇 is given by (2.5). Then for all 𝑣 ∈ 𝐶2,𝛼𝑒 (R/Z), there exists a unique
solution 𝜓𝑣,𝑇 to the problem {

Δ𝜓𝑣,𝑇 + 𝑓 ′(𝜙1)𝜓𝑣,𝑇 = 0 in 𝐶𝑇1
𝜓𝑣,𝑇 = 𝑣(·/𝑇) on 𝜕𝐶𝑇1

. (2.8)

Proof Let𝜓0 (𝑥, 𝑡) ∈ 𝐶2,𝛼 (𝐶𝑇1 ) such that𝜓0 |𝜕𝐶𝑇1 = 𝑣(·/𝑇). If we set𝜔 = 𝜓𝑣,𝑇 −𝜓0, the problem (2.8) is equivalent
to the problem {

Δ𝜔 + 𝑓 ′(𝜙1)𝜔 = −
(
Δ𝜓0 + 𝑓 ′(𝜙1)𝜓0

)
in 𝐶𝑇1

𝜔 = 0 on 𝜕𝐶𝑇1
.

Observe that the right hand side of the above equation is in𝐶𝛼𝑟 (𝐶𝑇1 ). Recall the Corollary 2.2, 𝐿𝑇𝐷 is nondegenerate.
Hence it is a bijection and the result follows. �

Lemma 2.5 Let 𝑣 ∈ 𝐶2,𝛼𝑒,𝑚(R/Z) and 𝜓𝑣 = 𝜓𝑣,𝑇 ∈ 𝐶2,𝛼𝑟 (𝐶𝑇1 ) be the solution of (2.8). Then∫
𝐶𝑇1

𝜓𝑣 𝑧 𝑗 = 0,
∫
𝜕𝐶𝑇1

𝜕𝜓𝑣
𝜕𝜈

= 0 , 𝑗 = 1, 2, · · · , 𝑙 .

Proof We can get these results by the straight computation, refer to [21]. �

For 𝑇 < 𝑇 we can define the linear and continuous operator 𝐻𝑇 : 𝐶2,𝛼𝑒,𝑚 (R/Z) → 𝐶1,𝛼𝑒,𝑚 (R/Z) by

𝐻𝑇 (𝑣) (𝑡) = 𝜕𝜈𝜓𝑣 (𝑇𝑡) + 𝑐 𝑣,

and 𝜓𝑣 = 𝜓𝑣,𝑇 as in Lemma 2.4. We present some properties of 𝐻𝑇 .

Lemma 2.6 For any 𝑇 < 𝑇, the operator

𝐻𝑇 : 𝐶2,𝛼𝑒,𝑚(R/Z) → 𝐶1,𝛼𝑒,𝑚(R/Z)

is a linear essentially self-adjoint operator and has closed range. Moreover, it is also a Fredholm operator of index
zero.

Proof By the straight computation, we can get that the operator 𝐻𝑇 is a linear essentially self-adjoint operator.
And the rest results follow from [3,14]. More details refer to [21]. �

We show now that the linearization of the operator 𝐺 with respect to 𝑣 at 𝑣 = 0 is given by 𝐻𝑇 , up to a constant.

Proposition 2.7 The map 𝐺 is 𝐶1, and 𝐷𝑣 (𝐺) |𝑣=0 = −𝜙′1 (1) 𝐻𝑇 .

Proof By the Proposition 2.3 (the function 𝜙(𝑣, 𝑇) depends smoothly on 𝑣), the operator 𝐺 is 𝐶1. The linear
operator obtained by the directional derivative of linearizing 𝐺 with respect to 𝑣, computed at (𝑣, 𝑇), is given by

𝐺 ′(𝑤) = lim
𝑠→0

𝐺 (𝑠𝑤, 𝑇) − 𝐺 (0, 𝑇)
𝑠

= lim
𝑠→0

𝐺 (𝑠𝑤, 𝑇)
𝑠

.

Let 𝑣 = 𝑠𝑤, for 𝑦 ∈ R𝑛 and 𝑡 ∈ R, we consider the parameterization of 𝐶𝑇1+𝑣 given by

𝑌 (𝑦, 𝑡) :=
((
1 + 𝑣

( 𝑡
𝑇

))
𝑦, 𝑡

)
.

Let 𝑔 be the induced metric such that 𝜙 = 𝑌 ∗𝜙 (smoothly depending on the real parameter 𝑠) solves the problem{
Δ𝑔𝜙 + 𝑓 (𝜙) = 0 in 𝐶𝑇1
𝜙 = 0 on 𝜕𝐶𝑇1

.

We remark that 𝜙1 = 𝑌 ∗𝜙1 is the solution of

Δ𝑔𝜙1 + 𝑓 (𝜙1) = 0

in 𝐶𝑇1 , and
𝜙1 (𝑦, 𝑡) = 𝜙1

((1 + 𝑠𝑤)𝑦, 𝑡)
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on 𝜕𝐶𝑇1 . Let 𝜙 = 𝜙1 + �̂�, we can get that{
Δ𝑔�̂� + 𝑓 (𝜙1 + �̂�) − 𝑓 (𝜙1) = 0 in 𝐶𝑇1
�̂� = −𝜙1 on 𝜕𝐶𝑇1

. (2.9)

Obviously, �̂� is a smooth function of 𝑠. When 𝑠 = 0, we have 𝜙 = 𝜙1. Then, �̂� = 0 and 𝜙1 = 𝜙1 as 𝑠 = 0.We set

¤𝜓 = 𝜕𝑠�̂� |𝑠=0.
Differentiating (2.9) with respect of 𝑠 and evaluating the result at 𝑠 = 0, we have{

Δ ¤𝜓 + 𝑓 ′(𝜙1) ¤𝜓 = 0 in 𝐶𝑇1
¤𝜓 = −𝜙′1 (1)𝑤 on 𝜕𝐶𝑇1

where 𝑟 := |𝑦 |. Then ¤𝜓 = −𝜙′1 (1) 𝜓𝑤 where 𝜓𝑤 is as given by Lemma 2.4 (with �̃� = 𝑤). Then, we can write

𝜙(𝑥, 𝑡) = 𝜙1 (𝑥, 𝑡) + 𝑠 ¤𝜓(𝑥, 𝑡) + O(𝑠2).
In particular, in a neighborhood of 𝜕𝐶𝑇1 we have

𝜙(𝑦, 𝑡) = 𝜙1
((1 + 𝑠𝑤)𝑦, 𝑡) + 𝑠 ¤𝜓(𝑦, 𝑡) + O(𝑠2)

= 𝜙1 (𝑦, 𝑡) + 𝑠
(
𝑤𝑟𝜕𝑟𝜙1 + ¤𝜓(𝑦, 𝑡)

) + O(𝑠2).
In order to complete the proof of the result, it is enough to calculate the normal derivation of the function 𝜙 when
the normal is calculated with respect to the metric 𝑔. By using cylindrical coordinates (𝑦, 𝑡) = (𝑟𝑧, 𝑡) where 𝑟 > 0
and 𝑧 ∈ S𝑛−1, then the metric 𝑔 can be expanded in 𝐶𝑇1 as

𝑔 = (1 + 𝑠𝑤)2𝑑𝑟2 + 2𝑠𝑟𝑤′(1 + 𝑠𝑤)𝑑𝑟𝑑𝑡 + (
1 + 𝑠2𝑟2 (𝑤′)2)𝑑𝑡2 + 𝑟2 (1 + 𝑠𝑤)2 ◦ℎ

where
◦
ℎ is the metric on S𝑛−1 induced by the Euclidean metric. It follows from this expression that the unit normal

vector fields to 𝜕𝐶𝑇1 for the metric 𝑔 is given by

�̂� =
((1 + 𝑠𝑤)−1 + O(𝑠2))𝜕𝑟 + O(𝑠)𝜕𝑡 .

By this, we conclude that
𝑔(∇𝜙, �̂�) = 𝜕𝑟𝜙1 + 𝑠

(
𝑤𝜕2𝑟 𝜙1 + 𝜕𝑟 ¤𝜓

) + O(𝑠2)
on 𝜕𝐶𝑇1 . From the fact that 𝜕𝑟𝜙1 is constant and the fact that the term 𝑤𝜕

2
𝑟 𝜙1 + 𝜕𝑟 ¤𝜓 has mean 0 on 𝜕𝐶𝑇1 we obtain

𝐺 ′(𝑤) = 𝜕𝑟 ¤𝜓 + 𝜙′′1 (1) 𝑤 = −𝜙′1 (1) 𝜕𝑟𝜓𝑤 + 𝜙′′1 (1) 𝑤 = −𝜙′1 (1) 𝐻𝑇 (𝑤).
This concludes the proof of the result. �

We now define the first eigenvalue of the operator 𝐻𝑇 as

𝜎(𝑇) = inf
{ ∫ 1

0
𝐻𝑇 (𝑣)𝑣 : 𝑣 ∈ 𝐶2,𝛼𝑒,𝑚 (R/Z) ,

∫ 1

0
𝑣2 = 1

}
.

By the Divergence formula, we have

𝑄𝑇 (𝜓𝑣 ) = 𝑇𝜔𝑛
∫ 1

0
𝐻𝑇 (𝑣)𝑣.

Next lemma characterizes the eigenvalue 𝜎(𝑇) in terms of the quadratic form 𝑄𝑇 .

Lemma 2.8 For any 𝑇 < 𝑇 , we have

𝜎(𝑇) = min
{
1
𝑇
𝑄𝑇 (𝜓) : 𝜓 ∈ 𝐸,

∫
𝜕𝐶𝑇1

𝜓2 = 1

}
,

where

𝐸 =

{
𝜓 ∈ 𝐻1𝑟 (𝐶𝑇1 ) :

∫
𝜕𝐶𝑇1

𝜓 = 0,
∫
𝐶𝑇1

𝜓𝑧 𝑗 = 0, 𝑗 = 1, . . . 𝑙

}
. (2.10)

Moreover, the infimum is attained.

J. WU

349



Proof Define 𝜇1 := inf
{
𝑄𝑇𝐷 (𝜓) : 𝜓 ∈ 𝐸,

∫
𝜕𝐶𝑇1

𝜓2 = 1

}
∈ [−∞, +∞). We show that 𝜇1 is achieved by contradic-

tion. Then we can get
∫ 1
0 𝑣

2 = 1
𝑇 𝜔𝑛

, 𝐽𝑇 (𝑣) = 1
𝑇 𝜔𝑛

𝑄𝑇 (𝜓) = 1
𝑇 𝜔𝑛

𝜇1, refer to [21]. �

We are now in position to prove the following useful result:

Proposition 2.9 There exists a real positive number 𝑇∗ = 2𝜋√−𝛾1 < 𝑇 , then

(i) if 𝑇 < 𝑇∗, then 𝜎(𝑇) > 0;
(ii) if 𝑇 = 𝑇∗, then 𝜎(𝑇) = 0;
(iii) if 𝑇 > 𝑇∗, then 𝜎(𝑇) < 0.
Moreover, Ker(𝐻𝑇∗ ) = R cos(2𝜋𝑡). In particular, dim Ker(𝐻𝑇∗ ) = 1.
Proof It follows from Lemma 2.8 and Proposition 2.1, taking into account that 𝐶2,𝛼𝑒,𝑚 (R/Z) contains only even
functions. �

Now, we are ready to prove that the operator 𝐺 satisfies the hypotheses of the Crandall-Rabinowitz bifurcation
theorem (see [7, 13, 24]). And then, Theorem 1.1 follows immediately from the following proposition and the
Crandall-Rabinowitz theorem.

Proposition 2.10 There exists a real number 𝑇∗ such that the linearized operator 𝐷𝑣𝐺 (0, 𝑇∗) has 1-dimensional
kernel and can be spanned by the function 𝑣0 = cos(2𝜋𝑡),

Ker 𝐷𝑣𝐺 (0, 𝑇∗) = R𝑣0.
The cokernel of 𝐷𝑣𝐺 (0, 𝑇∗) is also 1-dimensional, and

𝐷𝑇 𝐷𝑣𝐺 (0, 𝑇∗) (𝑣0) ∉ Im 𝐷𝑣𝐺 (0, 𝑇∗).
Proof Recall from the Proposition 2.7, we know that 𝐷𝑣𝐺 (0, 𝑇∗) = −𝜙′1 (1)𝜙1𝐻𝑇∗ . Then we have

Im 𝐷𝑣𝐺 (0, 𝑇∗) = Im 𝐻𝑇∗ .
By the Proposition 2.9, we have that the kernel of the linearized operator 𝐷𝑣𝐺 (0, 𝑇∗) has dimension 1 and can be
spanned by the function 𝑣0 = cos(2𝜋𝑡),

Ker 𝐷𝑣𝐺 (0, 𝑇∗) = R 𝑣0.
Then, codim Im (𝐻𝑇∗ ) = 1 follows from the fact that 𝐻𝑇 is a Fredholm operator of index zero by Lemma 2.6.
Here, we are ready to prove 𝐷𝑇 𝐷𝑣𝐺 (0, 𝑇∗) (𝑣0) ∉ Im 𝐷𝑣𝐺 (0, 𝑇∗). Taking 𝜉 ∈ Im 𝐷𝑣𝐺 (0, 𝑇∗) = Im (𝐻𝑇∗ ), 𝜉 =

𝐻𝑇∗ (𝑣), then we have ∫ 1

0
𝜉𝑣0 =

∫ 1

0
𝐻𝑇∗ (𝑣)𝑣0 =

∫ 1

0
𝐻𝑇∗ (𝑣0)𝑣 = 0,

because of the fact 𝐻𝑇∗ (𝑣0) = 0. We have

Im (𝐻𝑇∗ ) =
{
𝜉 :

∫ 1

0
𝜉𝑣0 = 0

}
.

Notice that𝐷𝑇 𝐷𝑣𝐺 (0, 𝑇∗) (𝑣0) = −𝜙′1 (1)𝐷𝑇 |𝑇 =𝑇∗𝐻𝑇 (𝑣0), then, in order to prove𝐷𝑇 𝐷𝑣𝐺 (0, 𝑇∗) (𝑣0) ∉ Im 𝐷𝑣𝐺 (0, 𝑇∗),
we just need to prove that ∫ 1

0

(
𝐷𝑇 |𝑇 =𝑇∗𝐻𝑇 (𝑣0)

)
𝑣0 ≠ 0.

Actually, ∫ 1

0

(
𝐷𝑇 |𝑇 =𝑇∗𝐻𝑇 (𝑣0)𝑣0

)
=
𝑑

𝑑𝑇

���
𝑇 =𝑇∗

∫ 1

0
𝐻𝑇 (𝑣0)𝑣0 = 1

𝜔𝑛

𝑑

𝑑𝑇

���
𝑇 =𝑇∗

(
1
𝑇
𝑄𝑇 (𝜓𝑣0 , 𝜓𝑣0 )

)

=
1
𝜔𝑛

𝑑

𝑑𝑇

���
𝑇 =𝑇∗

(
1
2
𝑄(𝜓1, 𝜓1) + 2𝜋

2

𝑇2

∫
𝐵
𝜓21

)
= − 4𝜋

2

𝜔𝑛𝑇
3∗

∫
𝐵
𝜓21 ≠ 0,

where the third equality is given by the straight computation of𝑄𝑇 (𝜓, 𝜓)with the function𝜓𝑣0 (𝑥, 𝑡) = 𝜓1 (𝑥) cos( 2𝜋𝑡𝑇 ).
�

OVERDETERMINED ELLIPTIC PROBLEMS IN ONDULOID-TYPE DOMAINS

350



Acknowledgements
The author was supported by Junta de Andalucía Grant FQM116.

References
[1] Amandine Aftalion, Jérôme Busca. Radial symmetry of overdetermined boundary-value problems in exterior domains. Arch. Rational
Mech. Anal., 143:195–206, 1998.

[2] Hans Wilhelm Alt, Luis A. Caffarelli. Existence and regularity for a minimal problem with free boundary. J. Reine Angew. Math.,
325:105–144, 1981.

[3] Wolfgang Arendta, Antonious F.M. ter Elst, James B. Kennedya, Manfred Sauterb. The Dirichlet-to-Neumann operator via hidden
compactness. J. Functional Analysis, 266:1757-1786, 2014.

[4] CatherineBénéteau, DmitryKhavinson. The isoperimetric inequality via approximation theory and free boundary problems.Computational
Methods and Function Theory, 6:253–274, 2006.

[5] Henri Berestycki, Luis A. Caffarelli, Louis Nirenberg. Monotonicity for elliptic equations in undounded Lipschitz domains. Comm. Pure
Appl. Math., 50:1089–1111, 1997.

[6] Luis A. Caffarelli, David Jerison, Carlos Kenig. Global energy minimizers for free boundary problems and full regularity in three
dimension. Contemp. Math. Amer. Math. Soc., 350:83–97, 2004.

[7] Michael Crandall, Paul Rabinowitz. Bifurcation for simple eigenvalue. J. Functional Analysis, 8:321–340, 1983.

[8] Manuel Del Pino, Frank Pacard, Junchen Wei. Serrin’s overdetermined problem and constant mean curvature surfaces. Duke Math. J.,
64:2643–2722, 2015.

[9] Louis Dupaigne. Stable solutions of elliptic partial differential equations. Chapman-Hall/CRC Monographs and Surveys in Pure and
Applied Mathematics, 143, 2011.

[10] Mouhamed Moustapha Fall, Ignace Aristide Minlend, Tobias Weth. Unbounded periodic solutions to Serrin’s overdetermined boundary
value problem. Arch. Ration. Mech. Anal., 223:737–759, 2017.

[11] Alberto Farina, Enrico Valdinoci. Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems.
Arch. Ration. Mech. Anal., 195:1025–1058, 2010.

[12] Basilis Gidas, Wei Ming Ni, Louis Nirenberg. Symmetry and related properties via the maximum principle. Comm. Math. Phys.
68(3):209–243, 1979.

[13] Hansjörg Kielhöfer. Bifurcation Theory: An Introduction with Applications to PDEs, Appl. Math. Sci., 156, Springer-Verlag, New York
2004.

[14] Carlos S. Kubrusly. Fredholm Theory in Hilbert Space-A Concise Introductory Exposition. Bull. Belg. Math. Soc. Simon Stevin,
15:153-177, 2008.

[15] Man Kam Kwong. Uniqueness of positive solutions of Δ𝑢 − 𝑢 + 𝑢𝑝 = 0 in R𝑛. Arch. Rational Mech. Anal., 105(3):243–266, 1989.

[16] Patrizia Pucci, James Serrin. The maximum principle. Progr. Nonlinear Differential Equations Appl., 73, Birkhauser, Basel 2007.

[17] Wolfgang Reichel. Radial symmetry for elliptic boundary-value problems on exterior domains. Arch. Ration. Mech. Anal., 137:381–394,
1997.

[18] Antonio Ros, Pieralberto Sicbaldi. Geometry and Topology of some overdetermined elliptic problem. J. Differential Equations,
255(5):951–977, 2013.

[19] Antonio Ros, David Ruiz, Pieralberto Sicbaldi. A rigidity for overdetermined elliptic problems in the plane. Comm. Pure Appl. Math.,
70:1223–1252, 2017.

[20] Antonio. Ros, David Ruiz, Pieralberto Sicbaldi. Solutions to overdetermined elliptic problems in nontrivial exterior domains. J. Eur.
Math. Soc., 22:253–281, 2020.

[21] David Ruiz, Pieralberto Sicbaldi, Jing Wu. Overdetermined elliptic problems in onduloid-type domains with general nonlinearities.
preprint.

[22] Felix Schlenk, Pieralberto Sicbaldi. Bifurcating extremal domains for the first eigenvalue of the Laplacian. Adv. Math., 229:602–632,
2012.

[23] James Serrin. A symmetry problem in potential theory. Arch. Rational Mech. Anal., 43:304–318, 1971.

[24] Joel Smoller. Shock waves and reaction-diffusion equations. Second edition, Grundlehren der Mathematischen Wissenschaften 258,
Springer-Verlag, New York, 1994.

[25] Pieralberto Sicbaldi. New extremal domains for the first eigenvalue of the Laplacian in flat tori. Calc. Var. Partial Differential Equations,
37:329–344, 2010.

[26] Boyan Sirakov. Overdetermined elliptic problems in physics. Nonlinear PDEs in CondensedMatter and Reactive Flows, Kluwer, 273–295,
2002.

[27] Ivan Stephen Sokolnikoff. Mathematical theory of elasticity. McGraw-Hill, New York, 1956.

[28] Martin Traizet. Classification of the solutions to an overdetermined elliptic problem in the plane. Geom. Func. An., 24(2):690–720, 2014.

J. WU

351



A method to construct irreducible totally nonnegative matrices with a
given Jordan canonical form

Begoña Cantó1, Rafael Cantó1, Ana M. Urbano1
Institut de Matemática Multidisciplinar, Universitat Politècnica de València, 46071 València, Spain.

Abstract
Let 𝐴 ∈ R𝑛×𝑛 be an irreducible totally nonnegative matrix (ITN), that is, 𝐴 is irreducible with all its minors

nonnegative. A triple (𝑛, 𝑟, 𝑝) is called realizable if there exists an ITN matrix 𝐴 ∈ R𝑛×𝑛 with rank(𝐴) = 𝑟
and 𝑝-rank(𝐴) = 𝑝 (recall that 𝑝-rank(𝐴) is the size of the largest invertible principal submatrix of 𝐴). Each
ITN matrix 𝐴 associated with a realizable triple (𝑛, 𝑟, 𝑝) has 𝑝 positive and distinct eigenvalues, and for the
zero eigenvalue it is verified that 𝑛 − 𝑟 and 𝑛 − 𝑝 are the geometric and the algebraic multiplicity, respectively.
Moreover, since rank(𝐴𝑝) = 𝑝, 𝐴 has 𝑛 − 𝑟 zero Jordan blocks whose sizes are given by the Segre characteristic,
𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑛−𝑟 ), with 𝑠𝑖 ≤ 𝑝, 𝑖 = 1, 2, . . . , 𝑛 − 𝑟 .
We know the number of zero Jordan canonical forms of ITN matrices associated with a realizable triple

(𝑛, 𝑟, 𝑝) and all these zero Jordan canonical forms. The following important question that we present in this
talk deals with how to construct an ITN matrix 𝐴 associated with (𝑛, 𝑟, 𝑝) and exactly with one of these Segre
characteristic 𝑆 corresponding to the zero eigenvalue.

1. Introduction
A matrix 𝐴 ∈ R𝑛×𝑛 is called totally nonnegative if all its minors are nonnegative and it is abbreviated as TN. The
wide study of these matrices is due to the large number of applications in different branches of science, see for
instance [1, 7–18]. Now, we recall some basic concepts that we will use throughout the paper:

1. The rank of 𝐴, denoted by rank(𝐴), is the size of the largest invertible square submatrix of 𝐴. The principal
rank of 𝐴, denoted by 𝑝-rank(𝐴), is the size of the largest invertible principal submatrix of 𝐴. It is clear that

0 ≤ 𝑝-rank(𝐴) ≤ rank(𝐴) ≤ 𝑛

2. The characteristic polynomial of a matrix 𝐴 is given by

𝑞𝐴(𝜆) = det(𝜆𝐼 − 𝐴) = 𝜆𝑛 +
𝑛∑︁
𝑘=1
(−1)𝑘 ©«

∑︁
∀𝛼∈Q(k,n)

det(𝐴[𝛼])ª®¬
𝜆𝑛−𝑘

where Q(k,n) denotes the set of all increasing sequences of 𝑘 natural numbers less than or equal to 𝑛, for
𝑘, 𝑛 ∈ N, 1 ≤ 𝑘 ≤ 𝑛, see [1]. If 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑘) ∈ Q𝑘,𝑛 and 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑘) ∈ Q𝑘,𝑛, 𝐴[𝛼 |𝛽]
denotes the 𝑘 × 𝑘 submatrix of 𝐴 lying in rows 𝛼𝑖 and columns 𝛽𝑖 , 𝑖 = 1, 2, . . . , 𝑘 . The principal submatrix
𝐴[𝛼 |𝛼] is abbreviated as 𝐴[𝛼].
If 𝐴 is TN and 𝑝-rank(𝐴) = 𝑝, the minors of the same order have the same sign or are zero, then there are
no cancelations in the summands and then,

𝑞𝐴(𝜆) = 𝜆𝑛−𝑝
(
𝜆𝑝 +∑𝑝

𝑘=1 (−1)𝑘
(∑
∀𝛼∈Q(k,n) det(𝐴[𝛼])

)
𝜆𝑝−𝑘

)
= 𝜆𝑛−𝑝

(
𝜆𝑝 − 𝑐1𝜆𝑝−1 + · · · + (−1) 𝑝𝑐𝑝

)
.

Then, if 𝐴 is a TN matrix with rank(𝐴) = 𝑟 and 𝑝-rank(𝐴) = 𝑝, has 𝑝 nonzero eigenvalues and the algebraic
and geometric multiplicities of the zero eigenvalue are equal to 𝑛 − 𝑝 and 𝑛 − 𝑟 , respectively.

3. A matrix 𝐴 ∈ R𝑛×𝑛, with 𝑛 ≥ 2, is an irreducible matrix if there is not a permutation matrix 𝑃 such that
𝑃𝐴𝑃𝑇 =

[
𝐵 𝐶
𝑂 𝐷

]
, where 𝑂 is an (𝑛 − 𝑟) × 𝑟 zero matrix (1 ≤ 𝑟 ≤ 𝑛 − 1). If 𝑛 = 1, 𝐴 = (𝑎) is irreducible

when 𝑎 ≠ 0.

Fallat, Gekhtman and Johnson in [8] characterize the irreducible TN matrices as follows: a TN matrix
𝐴 = [𝑎𝑖 𝑗 ] ∈ R𝑛×𝑛 is irreducible if and only if 𝑎𝑖 𝑗 > 0 for all 𝑖, 𝑗 such that |𝑖 − 𝑗 | ≤ 1 and they represent this
class of matrices by ITN.

XXVI CONGRESO DE ECUACIONES DIFERENCIALES Y APLICACIONES
XVI CONGRESO DE MATEMÁTICA APLICADA
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4. If there exists an ITN matrix 𝐴 ∈ R𝑛×𝑛 with rank(𝐴) = 𝑟 and 𝑝-rank(𝐴) = 𝑝, then the triple (𝑛, 𝑟, 𝑝) is
called realizable [8, p. 709], and 𝐴 is considered as an ITN matrix associated with the triple (𝑛, 𝑟, 𝑝). In
order to a triple (𝑛, 𝑟, 𝑝) be realizable it is necessary that 𝑝 ≤ 𝑟 ≤ 𝑛 −

⌈
𝑛 − 𝑝
𝑝

⌉
.

5. If 𝐴 is an associated matrix with a realizable triple (𝑛, 𝑟, 𝑝) then, its 𝑝 nonzero eigenvalues are positive and
distinct ( [8, Theorem 3.3]). That is, if 𝜆1, . . . , 𝜆𝑝 , . . . 𝜆𝑛 are the eigenvalues of 𝐴, we have

𝜆1 > 𝜆2 > . . . > 𝜆𝑝 > 0, and 𝜆𝑝+1 = 𝜆𝑝+2 = . . . = 𝜆𝑛 = 0, (1.1)

Moreover, since the algebraic multiplicity of the zero eigenvalue is 𝑛 − 𝑝 and rank(𝐴𝑝) = 𝑝, the size of the
zero Jordan blocks of 𝐴 is at most 𝑝.

Taking into account the above results, given a realizable triple (𝑛, 𝑟, 𝑝) the following questions arises in a natutal
way:

First question: How many different zero Jordan canonical forms are associated with a realizable triple (𝑛, 𝑟, 𝑝)?
As we have seen, the ITN matrices associated with a realizable triple (𝑛, 𝑟, 𝑝) verify that the algebraic multiplicity
of the zero eigenvalue is 𝑛− 𝑝, the geometric one is 𝑛−𝑟 and the size of the Jordan blocks is maximum 𝑝. Therefore,
this problem is equivalent to the following in how many ways can we distribute 𝑛− 𝑝 marbles in 𝑛−𝑟 bags, knowing
that all bags must have at least one marble and that at most each bag will fit 𝑝 marbles.

In [6], by using Number Theory, the authors calculated this number (represented by 𝑝 (𝑝)𝑛−𝑟 (𝑛− 𝑝)) and they gived
an algorithm to obtain it. For example, if we have the triple realizable (19, 14, 8) applying this algorithm we have
that 𝑝 (8)5 (11) = 10.

Second question: Since we konw the number of different zero Jordan canonical forms associated with a realizable
triple (𝑛, 𝑟, 𝑝), then what are these zero Jordan forms?
In [6], using properties and the full rank 𝐿𝑈 factorization of ITNmatrices and the Flanders Theorem the authors

give and Procedure and the corresponding algorithm to compute the specific different zero Jordan canonical forms.
For example, for the realizable triple (19, 14, 8) we have obtained that there are 10 different zero Jordan canonical
forms and applying the new algorithm we obtain these specific zero Jordan structures, all of them have 5 zero
Jordan blocks of differents sizes. These structures are,

7 1 1 1 1
6 2 1 1 1
5 3 1 1 1
5 2 2 1 1
4 4 1 1 1
4 3 2 1 1
4 2 2 2 1
3 3 3 1 1
3 3 2 2 1
3 2 2 2 2

Remark 1.1 The sizes of the zero Jordan blocks of a matrix 𝐴 are known as the Segre characteristic of 𝐴 relative
to its zero eigenvalue. Given an ITN matrix 𝐴 associated to a realizable triple (𝑛, 𝑟, 𝑝), if we represent this Segre
sequence by 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑛−𝑟 ) then, it is satisfied that

(1) 𝑠1 ≤ min{𝑟 − 𝑝 + 1, 𝑝}
(2) 𝑠𝑖 ≤ 𝑠𝑖−1, 𝑖 = 2, 3, . . . , 𝑛 − 𝑟
(3) ∑𝑛−𝑟

𝑖=1 𝑠𝑖 = 𝑛 − 𝑝
(1.2)

Associated to the Segre characteristic 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑛−𝑟 ) we have the Weyr characteristic of 𝐴 relative to the
zero eigenvalue𝑊 = (𝑤1, 𝑤2, . . . , 𝑤𝑠1 ), where 𝑤𝑖 = Car{𝑘 : 𝑠𝑘 ≥ 𝑖} for 𝑖 = 1, 2, . . . , 𝑠1 and

(1) 𝑤1 = dim Ker(𝐴) = 𝑛 − 𝑟
(2) 𝑤𝑖 ≤ 𝑤𝑖−1, 𝑖 = 2, 3, . . . , 𝑠1
(3) ∑𝑖

𝑗=1 𝑤 𝑗 = dim Ker(𝐴𝑖)
(4) ∑𝑠1

𝑗=1 𝑤 𝑗 = dim Ker(𝐴𝑠1 ) = 𝑛 − 𝑝

(1.3)
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Thirth question: Finally, knowing the number of zero Jordan canonical forms and the specific structures associated
with a realizable triple (𝑛, 𝑟, 𝑝), the following question is the main goal of this work, how to construct an ITN
matrix associated with a realizable triple (𝑛, 𝑟, 𝑝) and with 𝑛 − 𝑟 zero Jordan blocks whose sizes are given by the
Segre characteristic 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑛−𝑟 ) satisfying (1.2).
To answer this question, in the next section we first described a procedure that allow us to construct an upper

block echelon matrix 𝑈 ∈ R𝑛×𝑛, with rank(𝑈) = 𝑟, 𝑝-rank(𝑈) = 𝑝 and 𝑛 − 𝑟 zero Jordan blocks whose sizes are
given by the Segre characteristic 𝑆 satisfying (1.2). After that, from 𝑈 we will obtain the desired ITN matrix 𝐴
associated with the realizable triple (𝑛, 𝑟, 𝑝) and with the same zero Jordan structure that𝑈 as 𝐴 = 𝐿𝑈, where 𝐿 is
a lower triangular matrix with all its nonzero entries equal to 1.

2. Constructing an upper block echelon TN matrix𝑈 with a zero Jordan canonical form
In this section we describe a procedure to construct an upper block echelon matrix 𝑈 ∈ R𝑛×𝑛, with rank(𝑈) = 𝑟 ,
𝑝-rank(𝑈) = 𝑝 and 𝑛 − 𝑟 zero Jordan blocks whose sizes are given by the Segre characteristic 𝑆 satisfaying (1.2).
We recall that a matrix is upper block echelon if each nonzero block, starting from the left, is to the right of

the nonzero blocks below and the zero blocks are at the bottom. A matrix is a lower (block) echelon matrix if its
transpose is an upper (block) echelon matrix. In the Procedure 1 we use the nonsingular ITN matrix

𝑉𝑞 =



1 1 1 . . . 1 1
1 2 2 . . . 2 2
1 2 3 . . . 3 3
...

...
...

...
...

1 2 3 . . . 𝑞 − 1 𝑞 − 1
1 2 3 . . . 𝑞 − 1 𝑞



= [min{𝑖, 𝑗}]𝑞×𝑞

and the followingMatLab notation: 𝐴(𝑖, :) denotes the 𝑖-th row of 𝐴 and 𝐴(:, 𝑗) denotes its 𝑗-th column; ones(𝑛, 𝑚)
denotes the 𝑛 × 𝑚 matrix of ones; triu(ones(𝑛, 𝑚)) denotes the upper triangular part of ones(𝑛, 𝑚); zeros(𝑛, 𝑚)
denotes the 𝑛 × 𝑚 zero matrix.
Note that if 𝑟 = 𝑝 the algebraic and geometric multiplicity of the zero eigenvalue Of𝑈 is the same, therefore𝑈

has 𝑛 − 𝑟 zero Jordan blocks of size 1 × 1. In this case is easy to see that the matrix𝑈 can be the following

𝑈 =

[
triu(ones(𝑝, 𝑛))
zeros(𝑛 − 𝑝, 𝑛)

]
.

If 𝑝 < 𝑟 we construct a matrix𝑈 by blocks as follows

𝑈 =



𝑈11 𝑈12 𝑈13 𝑈14 . . . 𝑈1,𝑠1−1 𝑈1,𝑠1 𝑈1,𝑠1+1
𝑂 𝑂 𝑈23 𝑈24 . . . 𝑈2,𝑠1−1 𝑈2,𝑠1 𝑈2,𝑠1+1
𝑂 𝑂 𝑂 𝑈34 . . . 𝑈3,𝑠1−1 𝑈3,𝑠1 𝑈3,𝑠1+1
...

...
...

...
...

...
...

𝑂 𝑂 𝑂 𝑂 . . . 𝑂 𝑈𝑠1−1,𝑠1 𝑈𝑠1−1,𝑠1+1
𝑂 𝑂 𝑂 𝑂 . . . 𝑂 𝑂 𝑈𝑠1 ,𝑠1+1
𝑂 𝑂 𝑂 𝑂 . . . 𝑂 𝑂 𝑂



.

Each block and its size are given in the following procedure.

Procedure 1. Given a realizable triple (𝑛, 𝑟, 𝑝) and the Segre characteristic 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑛−𝑟 ) satisfying (1.2),
this procedure obtains an upper block echelon matrix 𝑈 ∈ R𝑛×𝑛, with rank(𝑈) = 𝑟 , 𝑝-rank(𝑈) = 𝑝 and 𝑛 − 𝑟 zero
Jordan blocks whose sizes are given by 𝑆.

Step 1. Obtain the conjugated sequence of 𝑆,𝑊 = (𝑤1, 𝑤2, . . . , 𝑤𝑠1 ) and from𝑊 define 𝑅 = (0, 𝑟2, . . . , 𝑟𝑠1 ), with
𝑟𝑖 = 𝑤𝑖 , 𝑖 = 2, 3, . . . , 𝑠1.

Step 2. Calculate 𝑛1 = 𝑝 + 1 − 𝑠1 and construct[
𝑈11 𝑈12 𝑈13 . . . 𝑈1,𝑠1 𝑈1,𝑠1+1

]
= triu(ones(𝑛1, 𝑛))]

Step 3. Construct𝑈23 = 𝑉𝑟2+1 and [
𝑂 𝑂 𝑈23 𝑈24 . . . 𝑈2,𝑠1 𝑈2,𝑠1+1

]
= [zeros(𝑟2 + 1, 𝑛1 + 𝑟2) 𝑈23 𝑈23 (:, 𝑟2 + 1) ∗ ones(1, 𝑛 − 𝑛1 − 2𝑟2 − 1)]
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Step 4. For 𝑖 = 3, 4, . . . , 𝑠1

4.1. If 𝑟𝑖 = 𝑟𝑖−1 construct𝑈𝑖,𝑖+1 = 𝑉𝑟𝑖+1.

4.2. If 𝑟𝑖 < 𝑟𝑖−1 construct𝑈𝑖,𝑖+1 =
[

𝑉𝑟𝑖+1
ones(𝑟𝑖−1 − 𝑟𝑖 , 1) ∗𝑉𝑟𝑖+1 (𝑟𝑖 + 1, :)

]

After, in both cases, [
𝑂 . . . 𝑂 𝑈𝑖,𝑖+1 𝑈𝑖,𝑖+2 . . . 𝑈𝑖,𝑠1 𝑈𝑖,𝑠1+1

]
= [zeros(𝑟𝑖−1 + 1, 𝑛1 + 𝑟2 +

∑𝑖−1
𝑗=2 (𝑟 𝑗 + 1)) 𝑈𝑖,𝑖+1 𝑈𝑖,𝑖+1 (:, 𝑟𝑖 + 1) ∗ ones(1, 𝑛 − 𝑛1 − 𝑟2 −

∑𝑖
𝑗=2 (𝑟 𝑗 + 1))]

Step 5. Finally, the last block is equal to

zeros

(
𝑛 − 𝑛1 − (𝑟2 + 1) −

𝑠1−1∑︁
𝑖=2
(𝑟𝑖 + 1), 𝑛

)

□
In the answer to the second question we have seen that the realizable triple (19, 14, 8) has associated 10 different

zero Jordan canonical forms, being (4, 3, 2, 1, 1) one of them. In the following example we construct an upper
block echelon TN matrix𝑈 with this Jordan canonical form using Procedure 1.

Example 2.1 Obtain a 19 × 19 upper block echelon TN matrix 𝑈, with rank(𝑈) = 14, 𝑝-rank(𝑈) = 8 and with 5
zero Jordan blocks of sizes 𝑆 = (4, 3, 2, 1, 1).
Since 𝑟 ≠ 𝑝 and 𝑠1 = 4, following Procedure 1 we construct an upper block TN matrix

𝑈 =



𝑈11 𝑈12 𝑈13 𝑈14 𝑈15
𝑂 𝑂 𝑈23 𝑈24 𝑈25
𝑂 𝑂 𝑂 𝑈34 𝑈35
𝑂 𝑂 𝑂 𝑂 𝑈45
𝑂 𝑂 𝑂 𝑂 𝑂


.

Step 1. The conjugated sequence of 𝑆 is𝑊 = (5, 3, 2, 1) and then, 𝑅 = (0, 3, 2, 1).
Step 2. 𝑛1 = 𝑝 + 1 − 𝑠1 = 5 and[

𝑈11 𝑈12 𝑈13 𝑈14 𝑈15
]
= triu(ones(5, 19)) =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


.

Step 3. 𝑈23 = 𝑉4 and[
𝑂 𝑂 𝑈23 𝑈24 𝑈2,5

]
= [zeros(4, 8) 𝑈23 𝑈23 (:, 4) ∗ ones(1, 7)] =



0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 3 3 3
0 0 0 0 0 0 0 0 1 2 3 4 4 4 4 4 4 4 4


.

Step 4. For 𝑖 = 3, since 𝑟3 < 𝑟2, construct

𝑈34 =

[
𝑉3

ones(1, 1) ∗𝑉3 (3, :)
]
=



1 1 1
1 2 2
1 2 3
1 2 3


.
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and [
𝑂 𝑂 𝑂 𝑈34 𝑈35

]
= [zeros(4, 12) 𝑈34 𝑈(34) (:, 3) ∗ ones(1, 4)] =



0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3 3 3
0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3 3 3


.

Now, for 𝑖 = 4 since 𝑟4 < 𝑟3, construct

𝑈45 =

[
𝑉2

ones(1, 1) ∗𝑉2 (2, :)
]
=


1 1
1 2
1 2


and [

𝑂 𝑂 𝑂 𝑂 𝑈45
]
= [zeros(3, 15) 𝑈45 𝑈(45) (:, 2) ∗ ones(1, 2)] =


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2


Step 5. The last zero block is[

zeros

(
𝑛 − 𝑛1 − (𝑟2 + 1) −

𝑠1−1∑︁
𝑖=2
(𝑟𝑖 + 1), 𝑛

)]
= [zeros(3, 19)] .

Therefore, the matrix𝑈 is



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 3 3 3
0 0 0 0 0 0 0 0 1 2 3 4 4 4 4 4 4 4 4
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3 3 3
0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3 3 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

The following result proves that the matrix𝑈 constructed by Procedure 1 verifies the desired properties.

Theorem 2.2 [6, Theorem 1]
Consider the matrix𝑈 constructed by Procedure 1. Then the following properties hold:

1. 𝑈 is a TN matrix with rank(𝑈) = 𝑟 and 𝑝-rank(𝑈) = 𝑝.
2. 𝑈 has 𝑛 − 𝑟 zeros Jordan blocks whose sizes are given by the sequence 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑛−𝑟 ).
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3. Construct an ITN matrix with a prescribed zero Jordan structure
In this section we construct an ITN matrix 𝐴 associated with the realizable triple (𝑛, 𝑟, 𝑝) and with a zero Jordan
canonical form associated with this triple. For that, we use the procedure given in the previous section to construct
an upper block echelon TN matrix 𝑈 of size 𝑛 × 𝑛, with rank(𝑈) = 𝑟, 𝑝-rank(𝑈) = 𝑝 and with a zero Jordan
canonical form associated with this triple. Now, we give the following procedure to compute the matrix 𝐴.

Procedure 2. Given a realizable triple (𝑛, 𝑟, 𝑝) and the Segre characteristic 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑛−𝑟 ) satisfying (1.2),
this procedure obtains an ITN matrix 𝐴 ∈ R𝑛×𝑛, associated with this triple and with 𝑛− 𝑟 zero Jordan blocks whose
sizes are given by 𝑆.

Step 1. Apply Procedure 1 to construct the upper block matrix𝑈.

Step 2. Construct the lower triangular TN matriz 𝐿 = tril(ones(𝑛, 𝑛)).
Step 3. Obtain 𝐴 = 𝐿 ∗𝑈.

□
The following result proves that the matrix 𝐴 satisfies the prescribed conditions.

Theorem 3.1 [6, Proposition 1, Theorem 2]
The matrix 𝐴 constructed by Procedure 2 satisfies the following conditions:

1. 𝐴 is a ITN matrix.

2. rank(𝐴) = 𝑟.
3. 𝑝-rank(𝐴) = 𝑝.
4. Matrices 𝐴 and𝑈 have the same zero Jordan structure.

Example 3.2 Construct a 19 × 19 ITN matrix 𝐴, associated with the realizable triple (19, 14, 8) and with 5 zero
Jordan blocks of sizes 𝑆 = (4, 3, 2, 1, 1).
Using the matrix𝑈 obtained in Example 2.1 and following Procedure 2, we have

𝐴 = tril(ones(𝑛, 𝑛)) ∗𝑈 =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1 2 3 4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6
1 2 3 4 5 5 5 5 7 8 8 8 8 8 8 8 8 8 8
1 2 3 4 5 5 5 5 8 10 11 11 11 11 11 11 11 11 11
1 2 3 4 5 5 5 5 9 12 14 15 15 15 15 15 15 15 15
1 2 3 4 5 5 5 5 9 12 14 15 16 16 16 16 16 16 16
1 2 3 4 5 5 5 5 9 12 14 15 17 18 18 18 18 18 18
1 2 3 4 5 5 5 5 9 12 14 15 18 20 21 21 21 21 21
1 2 3 4 5 5 5 5 9 12 14 15 19 22 24 24 24 24 24
1 2 3 4 5 5 5 5 9 12 14 15 19 22 24 25 25 25 25
1 2 3 4 5 5 5 5 9 12 14 15 19 22 24 26 27 27 27
1 2 3 4 5 5 5 5 9 12 14 15 19 22 24 27 29 29 29
1 2 3 4 5 5 5 5 9 12 14 15 19 22 24 27 29 29 29
1 2 3 4 5 5 5 5 9 12 14 15 19 22 24 27 29 29 29
1 2 3 4 5 5 5 5 9 12 14 15 19 22 24 27 29 29 29
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López-Gómez, J., 258
Lozano, M., 339

359



M

Macı́as, J., 197
Maestre, F., 265
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