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Abstract
Although the order-based definition of the univariate median is ubiquitous
in statistics, the same order-based definition is typically abandoned when ex-
tending the univariate median to higher dimensions. In this paper, an exam-
ple of order-based multivariate median based on the use of a linear extension
of the product order is brought to the attention. Symmetry and internality
properties are fulfilled by such order-based multivariate median, however, it
turns out that this function fails to fulfil in general other appealing properties
such as equivariance to different geometrical transformations, monotonicity
properties and continuity. Interestingly, translation and scale equivariance
and some monotonicity properties can be guaranteed if the linear extension
of the product order is carefully chosen. Finally, it is proved that, unlike in
the univariate setting, the finite-sample breakdown point of the order-based
multivariate median is 1/n, thus implying that it is not robust in the presence
of outliers.
Keywords: Multivariate median; Order; Linear extension; Robustness.

1. Introduction

When dealing with univariate data, the median is commonly described
as the point that lies in the middle after an increasing reordering of the
points. However, when one moves to a higher dimension m ≥ 2, there is
very little mention of this order-based definition of the median (see, e.g.,
the definition of R-ordering by Barnett [1]) and other characterizations are
used instead [21]. For instance, the spatial median [23, 24] minimizes the
sum of Euclidean distances; Tukey’s halfspace median [22] is the point that
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maximizes the halfspace depth; Oja’s simplex median [17] is the point that
minimizes the sum of volumes of all simplices formed by m + 1 subsets of
data points; the convex hull peeling median [8] is the point that remains after
recursively removing the convex hull; and Liu’s simplicial depth median [14]
lies inside the most simplices formed by m+ 1 subsets of data points.

A possible explanation for the absence of an order-based multivariate me-
dian could follow from claims encouraging us to abandon order-based think-
ing for multivariate data, as those by Kendall [13] “order properties [. . . ]
exist only in one dimension” and by Bell and Haller [2] “there is no unique
‘natural’ concept of rank [for bivariate data]”. However, as Barnett warned
us back in 1976 [1], “This is not to say that the idea of order or rank is
entirely absent from the multivariate scene.”

For instance, consider five individuals with the following heights and
weights:

Height (in cm) 169 176 178 183 190
Weight (in kg) 65 75 79 82 83

The size of an individual can be defined as a bivariate notion formed by
both the height and the weight of the individual. It is clear that the five
individuals above can be ordered increasingly according to their size:

(169, 65)T ≤2 (176, 75)T ≤2 (178, 79)T ≤2 (183, 82)T ≤2 (190, 83)T ,

where ≤2 denotes the classic product order on R2 defined by (a, b)T ≤2 (c, d)T
if a ≤ c and b ≤ d. One could then think of a straightforward order-based
extension of the median to couples that, here, results in the couple (178, 79)T .

Unfortunately, there are some situations in which such order-based mul-
tivariate median is not explicitly defined. For instance, consider that the five
individuals have the following heights and weights:

Height (in cm) 169 176 178 183 190
Weight (in kg) 83 82 79 75 65

All couples above are incomparable with respect to the product order since
the individuals are arranged in increasing height but decreasing weight. The
order-based multivariate median is then undefined. It is nonetheless evident
that a simple choice of linear extension of the product order turns the order-
based multivariate median well-defined. For instance, one could order the
couples lexicographically [9], firstly by increasing height and, in case two
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individuals have the same height, by increasing weight. In particular, the
(first) lexicographic order �Lex results in the order below:

(169, 83)T �Lex (176, 82)T �Lex (178, 79)T �Lex (183, 75)T �Lex (190, 65)T .

The resulting order-based multivariate median is (178, 79)T .
As intuitive as this sounds, I am not aware1 of any such order-based

extension of the median that explicitly uses a linear extension of the prod-
uct order prior to De Miguel et al. [5]. Although their proposal actually
aims at extending OWA operators [27, 28] to the multivariate framework, it
is straightforward to obtain a definition of order-based multivariate median
from their work. In the upcoming section, their proposal is briefly sum-
marized and their terminology is adapted restricting to the context of this
paper.

2. The order-based multivariate median

2.1. The linear extension of the product order based on m linearly indepen-
dent weighted arithmetic means

Consider n points x1, . . . ,xn ∈ Rm, with m ≥ 2. All xi are treated as
column vectors and (x1, . . . ,xn) is treated as a matrix with m rows and n
columns. The j-th component of the point xi is denoted by xi(j). The
product order ≤m on Rm is defined as xi1 ≤m xi2 if xi1(j) ≤ xi2(j) for any
j ∈ {1, . . . ,m}. Obviously, the product order ≤m is not a linear order on Rm.

A possible way to refine the product order ≤m is based on the use of a
monotone increasing function f : Rm → R. More specifically, an extension
-f of the product order ≤m based on a monotone increasing function f :
Rm → R can be defined as xi1 -f xi2 if xi1 = xi2 or f(xi1) < f(xi2). In
order to assure that the resulting extension is a linear order, several such
extensions based on more than one monotone increasing function need to be
sequentially considered.

It is quite typical to consider these functions to be weighted arithmetic
means, i.e., functions of the form Mj : Rm → R defined as Mj(xi) =∑m
`=1 αj` xi(`) with all αj` ∈ [0, 1] and∑m

`=1 αj` = 1. The vector (αj1, . . . , αjm)

1Admittedly, one may find examples for which multivariate data is reduced into a one-
dimensional space by means of a linear combination of the components, being the median
ultimately computed within this one-dimensional space, see, e.g., [3].
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is referred to as the vector of weights associated with Mj. The subindex j is
used because, as stated in the definition below, a linear extension � of ≤m
arises when m linearly independent weighted arithmetic meansM1, . . . ,Mm :
Rm → R are considered. It is recalled that m weighted arithmetic means
M1, . . . ,Mm : Rm → R are called linearly independent if their vectors of
weights are all linearly independent or, equivalently, if the matrix

A =


α11 . . . α1m
... . . . ...

αm1 . . . αmm


is regular (invertible).

Definition 1. [5] Consider m ≥ 2 linearly independent weighted arithmetic
means M1, . . . ,Mm : Rm → R. The linear extension �M of ≤m based on
M = (M1, . . . ,Mm) is defined as xi1 �M xi2 if xi1 = xi2 or there exists
k ∈ {1, . . . ,m} such that

Mj(xi1) = Mj(xi2) , for any j ∈ {1, . . . , k − 1} ,
Mk(xi1) < Mk(xi2) .

Typical examples of linear extensions of Rm defined by means of weighted
arithmetic means are the lexicographic orders [9], where the considered arith-
metic means are the projections, i.e., Mj(xi) = xi(σ(j)) with σ a permuta-
tion of {1, . . . , n}. Other common example is Xu and Yager’s linear order
on R2 [26]2, where M1(xi) = 1

2xi(1) + 1
2xi(2) and M2(xi) = xi(2).

2.2. The order-based multivariate median based on a linear extension of the
product order

The order-based multivariate median can be simply defined by making
use of a linear extension of the product order. For an odd number of points,
the order-based multivariate median is the point that lies in the middle after
increasingly re-ordering all the points according to the considered linear ex-
tension of the product order. For an even number of points, the order-based

2Note that an equivalent definition of Xu and Yager’s linear order on R2 is admittedly
more common. More precisely, M2 is alternatively defined as M2(xi) = xi(2) − xi(1).
This equivalent definition is here abandoned in order to guarantee M2 to be a weighted
arithmetic mean.
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multivariate median may be defined as any convex combination of the two
points that lie in the middle after increasingly re-ordering all the points ac-
cording to the considered linear extension of the product order. Throughout
this paper, the centroid (i.e., the componentwise arithmetic mean) of these
two points is considered.
Definition 2. Consider n,m ∈ N with m ≥ 2 and a linear extension �
of ≤m. The order-based multivariate median based on � is defined as the
function F� : (Rm)n → Rm defined if n is an odd number by

F�(x1, . . . ,xn) = x( n+1
2 ) ,

and if n is an even number by

F�(x1, . . . ,xn) = 1
2x( n

2 ) + 1
2x( n

2 +1) ,

where x(i) denotes the i-th greatest point among x1, . . . ,xn according to �.
By definition, the order-based multivariate median differs from the cen-

troid if and only if n > 2. Obviously, this does not mean that one cannot
find lists of n elements with n > 2 for which both the centroid and the
order-based multivariate median coincide (e.g., lists for which all the points
coincide).
Example 1. Consider the points x1 = (1, 3)T , x2 = (3, 1)T , x3 = (5, 4)T ,
x4 = (6, 8)T and x5 = (9, 7)T , and the following list M = (M1,M2) of
weighted arithmetic means, where

M1(xi) = 1
2xi(1) + 1

2xi(2) ,

M2(xi) = xi(2) .
Note that the first weighted arithmetic mean serves us to establish an order
between all the points except (1, 3)T and (3, 1)T since it holds that

M1

((
1
3

))
= M1

((
3
1

))
< M1

((
5
4

))
< M1

((
6
8

))
< M1

((
9
7

))
.

Finally, since M2
(
(3, 1)T

)
= 1 < 3 = M2

(
(1, 3)T

)
, it follows that:(

3
1

)
�M

(
1
3

)
�M

(
5
4

)
�M

(
6
8

)
�M

(
9
7

)
.

The order-based multivariate median of x1, x2, x3, x4 and x5 based on �M
is x3 = (5, 4)T . An illustration of this procedure is given in Figure 1.

5



•

•

•

•
•

Figure 1: Graphical representation of the process of finding the order-based multivariate
median of the points x1 = (1, 3)T , x2 = (3, 1)T , x3 = (5, 4)T , x4 = (6, 8)T and x5 = (9, 7)T

based on M1(xi) = 1
2 xi(1) + 1

2 xi(2) and M2(xi) = xi(2). The green area represents the
points of R2 that lead to values of M1 smaller than those given by x1 and x2. The blue
area represents the points of R2 that lead to values of M2 smaller than that given by x2.
The green and blue dashed arrows respectively represent the direction in which M1 and
M2 increase. The red line represents the points in the same level set of M1 as x3.
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3. Properties of the order-based multivariate median

In this section, some basic properties of the order-based multivariate me-
dian are studied. Special attention is devoted to the relation of the order-
based multivariate median with the componentwise median and the fulfill-
ment of several properties such as symmetry, internality properties, equivari-
ance to different geometrical transformations, monotonicity properties and
continuity.

3.1. Relation with the componentwise median
The easiest multivariate extension of the univariate median, referred to as

the componentwise median and denoted by FCWM, considers the median in
each of the components independently. For example, given x1 = (0, 1)T , x2 =
(1, 0)T and x3 = (2, 2)T , the componentwise median is FCWM(x1,x2,x3) =
(1, 1)T .

It is immediate to see that the order-based multivariate median does not
need to coincide with the componentwise median. For instance, it suffices to
consider Xu and Yager’s linear order on R2 resulting in (0, 1)T as the order-
based multivariate median for the very same points x1 = (0, 1)T , x2 = (1, 0)T
and x3 = (2, 2)T .

Even though the componentwise median and the order-based multivariate
median might not coincide, both of them are assured to coincide in case the
points are already linearly ordered with respect to ≤m. Note that this result
is independent of the considered linear extension of ≤m.

Proposition 1. Consider n,m ∈ N with m ≥ 2. If the points x1, . . . ,xn
are linearly ordered with respect to ≤m, then it holds that F�(x1, . . . ,xn) =
FCWM(x1, . . . ,xn) for any linear extension � of ≤m.

Proof. Let x1, . . . ,xn be indexed such that x1 ≤m . . . ≤m xn. For any linear
extension � of ≤m, it follows that x1 � . . . � xn. Moreover, by definition
of product order, it follows that x1(i) ≤ . . . ≤ xn(i) for any i ∈ {1, . . . ,m}.
Thus, it holds that the order-based multivariate median coincides with the
componentwise median independently of the choice of linear extension of the
product order.

3.2. Symmetry
One of the most basic properties of a function is that of symmetry, which

assures the result to be the same after the input points have been subjected
to any permutation.
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Definition 3. Consider n,m ∈ N. A function F : (Rm)n → Rm is called
symmetric if

F (x1, . . . ,xn) = F (xσ(1), . . . ,xσ(n)) ,

for any (x1, . . . ,xn) ∈ (Rm)n and any permutation σ of {1, . . . , n}.

Obviously, as the points to be aggregated are re-ordered according to the
considered linear extension, the order-based multivariate median is symmet-
ric.

Proposition 2. Consider n,m ∈ N with m ≥ 2 and a linear extension � of
≤m. The order-based multivariate median F� : (Rm)n → Rm is symmetric.

Proof. The result follows from the fact that the order � on {x1, . . . ,xn} does
not change after reindexing the points.

3.3. Internality properties
We recall that the convex hull of x1, . . . ,xn ∈ Rm is defined as

CH(x1, . . . ,xn) =
{

x =
n∑
i=1

λixi ∈ Rm | λi ≥ 0,
n∑
i=1

λi = 1
}
,

and the bounding box of x1, . . . ,xn ∈ Rm is defined as

BB(x1, . . . ,xn) =
[

n
min
i=1

xi(1), nmax
i=1

xi(1)
]
× · · · ×

[
n

min
i=1

xi(m), nmax
i=1

xi(m)
]
.

There exist many types of internality properties for multivariate medians
(see, e.g., [10]). Here, the four most classical types of internality are dis-
cussed: internality within the points, convex-hull internality (CH-internality,
for short), bounding-box internality (BB-internality, for short) and idempo-
tence.

Definition 4. Consider n,m ∈ N. A function F : (Rm)n → Rm is called:

(i) internal within the points if

F (x1, . . . ,xn) ∈ {x1, . . . ,xn} ,

for any (x1, . . . ,xn) ∈ (Rm)n;
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(ii) CH-internal if
F (x1, . . . ,xn) ∈ CH(x1, . . . ,xn) ,

for any (x1, . . . ,xn) ∈ (Rm)n;

(iii) BB-internal if
F (x1, . . . ,xn) ∈ BB(x1, . . . ,xn) ,

for any (x1, . . . ,xn) ∈ (Rm)n;

(iv) idempotent if
F (x, . . . ,x) = x ,

for any x ∈ Rm.

Since {x1, . . . ,xn} ⊆ CH(x1, . . . ,xn) ⊆ BB(x1, . . . ,xn), it holds that
internality within the points implies CH-internality, which at the same time
implies BB-internality. Finally, all three among internality within the points,
CH-internality and BB-internality imply idempotence.

Independently of the choice of linear extension of the product order, the
order-based multivariate median is CH-internal, BB-internal and idempotent.
In case n is an odd number, it additionally is internal within the points.

Proposition 3. Consider n,m ∈ N with m ≥ 2 and a linear extension � of
≤m. The order-based multivariate median F� : (Rm)n → Rm:

(i) is internal within the points if n is and odd number, but is not neces-
sarily internal within the points if n is an even number;

(ii) is CH-internal;

(iii) is BB-internal;

(iv) is idempotent.

Proof. (i) The result follows from the fact that x( n+1
2 ) ∈ {x1, . . . ,xn}, whereas

this is not necessarily the case for 1
2x( n

2 ) + 1
2x( n

2 +1).
(ii) If n is an odd number, then the result follows from (i) and the fact that

internality within the points implies CH-internality. If n is an even number,
the result follows from the CH-internality of the centroid of two points.

(iii) The result follows from (ii) and the fact that CH-internality implies
BB-internality.

(iv) The result follows from (iii) and the fact that BB-internality implies
idempotence.
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3.4. Equivariance to different geometrical transformations
The field of multivariate statistics is typically interested in the equivari-

ance to different geometrical transformations. More specifically, the interest
lies in whether the order in which the function and the geometrical trans-
formation are applied can be interchanged. Typically studied geometrical
transformations within this context are affine transformations, in general,
and some specific families of affine transformations such as orthogonal trans-
formations, scalings and translations, in particular.

Definition 5. Consider n,m ∈ N. A function F : (Rm)n → Rm is called:

(i) affine equivariant if

F (Ax1 + t, . . . ,Axn + t) = AF (x1, . . . ,xn) + t ,

for any (x1, . . . ,xn) ∈ (Rm)n, any regular A ∈ Rm×m and any t ∈ Rm;

(ii) orthogonal equivariant if

F (Ox1, . . . ,Oxn) = OF (x1, . . . ,xn) ,

for any (x1, . . . ,xn) ∈ (Rm)n and any orthogonal matrix O ∈ Rm×m,
i.e., a square matrix such that OT = O−1;

(iii) scale equivariant if

F (sx1, . . . , sxn) = s F (x1, . . . ,xn) ,

for any (x1, . . . ,xn) ∈ (Rm)n and any s > 0;

(iv) translation equivariant if

F (x1 + t, . . . ,xn + t) = F (x1, . . . ,xn) + t ,

for any (x1, . . . ,xn) ∈ (Rm)n and any t ∈ Rm.

Obviously, affine equivariance implies all other three properties.
The order-based multivariate median is not equivariant to any of the

above geometrical transformations in case n > 2. However, it turns out that,
if the considered linear extension is based onm linearly independent weighted
arithmetic means, then the properties of scale equivariance and translation
equivariance are fulfilled. The same result does not hold for the properties
of affine equivariance and orthogonal equivariance.
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Proposition 4. Consider n,m ∈ N with m ≥ 2 and a linear extension � of
≤m. The order-based multivariate median F� : (Rm)n → Rm:

(i) is affine equivariant if and only if n ≤ 2;

(ii) is orthogonal equivariant if and only if n ≤ 2;

(iii) is scale equivariant if n ≤ 2 but is not necessarily scale equivariant if
n > 2. For any n ∈ N, F� is assured to be scale equivariant if �=�M,
with M = (M1, . . . ,Mm) being m linearly independent weighted arith-
metic means;

(iv) is translation equivariant if n ≤ 2 but is not necessarily translation
equivariant if n > 2. For any n ∈ N, F� is assured to be transla-
tion equivariant if �=�M, with M = (M1, . . . ,Mm) being m linearly
independent weighted arithmetic means.

Proof. The order-based multivariate median coincides with the centroid if
and only if n ≤ 2, and the centroid is known to satisfy all properties above.
It only remains to check the case in which n > 2.

(i) We first prove the result for n = 3. Consider x = (1, 0, . . . , 0)T ,
y = (0, 1, 0, . . . , 0)T and z = (0, . . . , 0)T . Since � is a linear extension of ≤m,
it holds that z � x and z � y. We distinguish two cases:

• If x � y, then F�(x,y, z) = x. Consider t = (0, . . . , 0)T and the
rotation matrix A for rotating the first two components 45◦ counter-
clockwisely:

A =



√
2

2 −
√

2
2 0 . . . 0√

2
2

√
2

2 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1

 .

Since � is a linear extension of ≤m, it holds that Ay � Ax and Az �
Ax. Therefore, it holds that F�(Ax, Ay, Az) 6= Ax.

• If y � x, then F�(x,y, z) = y. Consider t = (0, . . . , 0)T and the
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rotation matrixA′ for rotating the first two components 45◦ clockwisely:

A′ =



√
2

2

√
2

2 0 . . . 0
−
√

2
2

√
2

2 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1

 .

Since � is a linear extension of ≤m, it holds that A′x � A′y and
A′z � A′y. Therefore, it holds that F�(A′x, A′y, A′z) 6= A′y.

If n > 3 is odd, it suffices to additionally consider the points (−1, 0, . . . , 0)T
and (2, 0, . . . , 0)T , both of them with cardinality n−3

2 for the case in which
x � y; and the points (0,−1, 0, . . . , 0)T and (0, 2, 0, . . . , 0)T , both of them
with cardinality n−3

2 for the case in which y � x. If n ≥ 4 is even, it suffices
to consider the points for n− 1 and considering an additional appearance of
x for the case in which x � y and an additional appearance of y for the case
in which y � x.

(ii) The result follows straightforwardly from (i) bearing in mind that the
matrices A and A′ above are orthogonal.

(iii) Consider m = 2, M1(xi) = xi(1) and M2(xi) = xi(2). Let �M1

and �M2 be the linear extensions of ≤2 respectively associated with M1 =
(M1,M2) and M1 = (M2,M1). Let �∗ be the linear extension of ≤2 defined
as xi �∗ xj if:

(a) xi(1) ≤ 3 and xi �M1 xj;

(b) xi(1) > 3, xj(1) > 3 and xi �M2 xj.

Consider x1 =
(

0
2

)
, x2 =

(
1
1

)
, x3 =

(
2
0

)
, s = 5. It follows that x1 �∗ x2 �∗

x3 but sx1 �∗ sx3 �∗ sx2. Thus, it holds that

F� (sx1, sx2, sx3) = F�

((
0
10

)
,

(
5
5

)
,

(
10
0

))
=
(

10
0

)
,

and
s F� (x1,x2,x3) = 5F�

((
0
2

)
,

(
1
1

)
,

(
2
0

))
=
(

5
5

)
.

Therefore, F� is not scale equivariant.
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We now prove that scale equivariance is guaranteed if �=�M, with M =
(M1, . . . ,Mm) being m linearly independent weighted arithmetic means.

Firstly, it should be noted that scaling does not affect the order �M.
Consider xi1 and xi2 such that xi1 �M xi2 . We distinguish two cases. (a) If
xi1 = xi2 , then it is immediate to see that sxi1 �M sxi2 for any s > 0. (b)
If there exists k ∈ {1, . . . , n} such that

Mj(xi1) = Mj(xi2) , for any j ∈ {1, . . . , k − 1} ,
Mk(xi1) < Mk(xi2) ,

then it follows that

Mj(sxi1) = sMj(xi1) = sMj(xi2) = Mj(sxi2) , for any j ∈ {1, . . . , k − 1} ,
Mk(sxi1) = sMk(xi1) < sMk(xi2) = Mk(sxi2) ,

for any s > 0. Thus, it holds that sxi1 �M sxi2 .
The scale equivariance of the order-based multivariate median then fol-

lows immediately if n is an odd number, and from the fact that the centroid
of two points is scale equivariant if n is an even number.

(iv) Consider the counterexample in (iii) with t =
(

2.5
2.5

)
. It follows that

x1 �∗ x2 �∗ x3 but x1 + t �∗ x3 + t �∗ x2 + t. Thus, it holds that

F� (x1 + t,x2 + t,x3 + t) = F�

((
2.5
4.5

)
,

(
3.5
3.5

)
,

(
4.5
2.5

))
=
(

4.5
2.5

)
,

and

F� (x1,x2,x3) + t = F�

((
0
2

)
,

(
1
1

)
,

(
2
0

))
+
(

2.5
2.5

)
=
(

3.5
3.5

)
.

Therefore, F� is not translation equivariant.
We now prove that translation equivariance is guaranteed if �=�M, with

M = (M1, . . . ,Mm) beingm linearly independent weighted arithmetic means.
Firstly, it should be noted that a translation does not affect the order

�M. Consider xi1 and xi2 such that xi1 �M xi2 . We distinguish two cases.
(a) If xi1 = xi2 , then it is immediate to see that xi1 + t �M xi2 + t for any
t ∈ Rm. (b) If there exists k ∈ {1, . . . , n} such that

Mj(xi1) = Mj(xi2) , for any j ∈ {1, . . . , k − 1} ,
Mk(xi1) < Mk(xi2) ,
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then it follows that

Mj(xi1 + t)) = Mj(xi1) + t) = Mj(xi2) + t) = Mj(xi2 + t)) , for any j ∈ {1, . . . , k − 1} ,
Mk(xi1 + t)) = Mk(xi1) + t) < Mk(xi2) + t) = Mk(xi2 + t)) ,

for any t ∈ Rm. Thus, it holds that xi1 + t �M xi2 + t.
The translation equivariance of the order-based multivariate median then

follows immediately if n is an odd number, and from the fact that the centroid
of two points is translation equivariant if n is an even number.

3.5. Monotonicity properties
Monotonicity is a largely venerated property in the field of aggregation

theory that assures that an increase in the inputs does not result in a de-
crease in the output. Since the set (�,Rm) is totally ordered given a linear
extension � of the product order ≤m, it is evident that the order-based multi-
variate median based on � is monotone (increasing) with respect to � itself.
However, monotonicity of multivariate functions is typically understood quite
differently. A taxonomy of different monotonicity properties that have been
studied in the context of multivariate data3 can be found in [19]. In the
following, some of these monotonicity properties are presented.

Definition 6. Consider n,m ∈ N. A function F : (Rm)n → Rm is called:

(i) orthomonotone if, for any (x1, . . . ,xn), (y1, . . . ,yn) ∈ (Rm)n and any
orthogonal matrix O ∈ Rm×m such that O xi ≤m O yi for any i ∈
{1, . . . , n}, it holds that

OF (x1, . . . ,xn) ≤m OF (y1, . . . ,yn) .

(ii) ultramonotone if, for any (x1, . . . ,xn) ∈ (Rm)n, any t1, . . . , tn ≥ 0 and
any u,u1, . . . ,un ∈ Rm such that u · ui ≥ 0 for any i ∈ {1, . . . , n}, it
holds that(

F (x1 + t1u1, . . . ,xn + tnun)− F (x1, . . . ,xn)
)
· u ≥ 0 .

3Other examples of monotonicity properties for multivariate data can be found in [20]
when considering the specific space (Rm,≤m).
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(iii) componentwisely monotone if, for any fixed j ∈ {1, . . . ,m} and any
(x1, . . . ,xn) , (y1, . . . ,yn) ∈ (Rm)n satisfying that xi(j) ≤ yi(j) for any
i ∈ {1, . . . , n}, it holds that

F (x1, . . . ,xn) (j) ≤ F (y1, . . . ,yn) (j) .

(iv) SP-monotone if, for any (x1, . . . ,xn) ∈ (Rm)n, any i ∈ {1, . . . , n}, any
t ≥ 0 and any u ∈ Rm\{0}, there exists k ≥ 0 such that

F (x1, . . . ,xi + tu, . . . ,xn)− F (x1, . . . ,xi, . . . ,xn) = k u .

(v) SC-monotone if, for any (x1, . . . ,xn) ∈ (Rm)n, any i ∈ {1, . . . , n}, any
t ≥ 0 and any u ∈ Rm\{0}, it holds that(

F (x1, . . . ,xi + tu, . . . ,xn)− F (x1, . . . ,xi, . . . ,xn)
)
· u ≥ 0 .

(vi) MP-monotone if, for any (x1, . . . ,xn) ∈ (Rm)n, any t ≥ 0 and any
u ∈ Rm\{0}, there exists k ≥ 0 such that:

F (x1 + tu, . . . ,xn + tu)− F (x1, . . . ,xn) = k u.

(vii) MC-monotone if, for any (x1, . . . ,xn) ∈ (Rm)n, any t ≥ 0 and any
u ∈ Rm\{0}, it holds that(

F (x1 + tu, . . . ,xn + tu)− F (x1, . . . ,xn)
)
· u ≥ 0 .

(viii) ≤m-monotone if, for any (x1, . . . ,xn), (y1, . . . ,yn) ∈ (Rm)n such that
xi ≤m yi for any i ∈ {1, . . . , n}, it holds that

F (x1, . . . ,xn) ≤m F (y1, . . . ,yn) .

Note that, unlike the other properties above, MP-monotonicity and MC-
monotonicity do not restrict to classical monotonicity in the univariate set-
ting, instead, both properties restrict to the property of weak monotonic-
ity [25]. Interestingly, any among monotonicity and translation equivari-
ance implies weak motonicity. These two implications are also satisfied in
the multivariate setting, where any among SP-monotonicity and translation
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equivariance implies MP-monotonicity and any among SC-monotonicity and
translation equivariance implies MC-monotonicity.

In general, the order-based multivariate median is not monotone in any
of the senses above in case n > 2. However, as translation equivariance is
guaranteed if the considered linear extension is based on m linearly inde-
pendent weighted arithmetic means, then it turns out that the order-based
multivariate median is MP-monotone and MC-monotone in such a case.

Proposition 5. Consider n,m ∈ N with m ≥ 2 and a linear extension � of
≤m. The order-based multivariate median F� : (Rm)n → Rm:

(i) is orthomonotone if and only if n ≤ 2;

(ii) is ultramonotone if and only if n ≤ 2;

(iii) is componentwisely monotone if and only if n ≤ 2;

(iv) is SP-monotone if and only if n ≤ 2;

(v) is SC-monotone if and only if n ≤ 2;

(vi) is MP-monotone if n ≤ 2 but is not necessarily MP-monotone if n > 2.
For any n ∈ N, F� is assured to be MP-monotone if �=�M, with
M = (M1, . . . ,Mm) being m linearly independent weighted arithmetic
means;

(vii) is MC-monotone if n ≤ 2 but is not necessarily MC-monotone if n > 2.
For any n ∈ N, F� is assured to be MC-monotone if �=�M, with
M = (M1, . . . ,Mm) being m linearly independent weighted arithmetic
means;

(viii) is ≤m-monotone if and only if n ≤ 2;

Proof. The order-based multivariate median coincides with the centroid if
and only if n ≤ 2, and the centroid is known to satisfy all properties above.
It only remains to check the case in which n > 2.

(i) Theorem 1 in [11] states that the only symmetric, idempotent and
orthomonotone function is the centroid. The result follows from the fact that
the order-based multivariate median is symmetric, idempotent and differs
from the centroid (when n > 2).
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(ii) Theorems 28 and 41 in [19] imply that the only symmetric, idempotent
and ultramonotone function is the centroid. The result follows from the
fact that the order-based multivariate median is symmetric, idempotent and
differs from the centroid (when n > 2).

(iii) Consider any x and y such that x(1) < y(1) and y(2) < x(2). We
distinguish two cases:

• If x � y, then there exists z such that x(2) < z(2) and x � y � z.
Consider xi = x for any i ≤ n

2 + 1 and xi = y for any i > n
2 + 1. Inde-

pendently of whether n is odd or even, it holds that F�(x1, . . . ,xn) = x.
However, if one substitutes xi by z (with i = n+1

2 if n is odd and both
i = n

2 and i = n
2 +1 if n is even), it holds that F�(x1, . . . , z, . . . ,xn) = y.

The result then follows from the fact that x(2) < z(2) but x(2) > y(2).

• If y � x, then there exists z such that y(1) < z(1) and y � x � z.
Consider xi = y for any i ≤ n

2 + 1 and xi = x for any i > n
2 + 1. Inde-

pendently of whether n is odd or even, it holds that F�(x1, . . . ,xn) = y.
However, if one substitutes xi by z (with i = n+1

2 if n is odd and both
i = n

2 and i = n
2 +1 if n is even), it holds that F�(x1, . . . , z, . . . ,xn) = x.

The result then follows from the fact that y(1) < z(1) but y(1) > x(1).

(iv) Theorem 28 in [19] implies that the only symmetric, idempotent and
SP-monotone function is the centroid. The result follows from the fact that
the order-based multivariate median is symmetric, idempotent and differs
from the centroid (when n > 2).

(v) Consider any x, y, u and v such that u(j) > 0 and v(j) > 0 for any
j ∈ {1, . . . ,m}, x(1) < y(1), y(2) < x(2), (y−x) ·u < 0 and (x−y) ·v < 0.
Note that such values exist (e.g., x = (0, . . . , 0)T , y = (1,−1, . . . ,−1)T ,
u = (0.5, 1, . . . , 1)T and v = (m+ 1, 1, . . . , 1)T ). We distinguish two cases:

• If x � y, then there exists t > 0 such that z = x + tu satisfies that
x � y � z. Consider xi = x for any i ≤ n

2 + 1 and xi = y for any
i > n

2 + 1. Independently of whether n is odd or even, it holds that
F�(x1, . . . ,xn) = x. If n is odd and xn+1

2
is substituted by z, it follows

that F�(x1, . . . , z, . . . ,xn) = y. If n is even and xn
2 +1 is substituted by

z, it follows that F�(x1, . . . , z, . . . ,xn) = x+y
2 . In both cases, the result

then follows from the fact that (y− x) · u < 0.

• If y � x, then there exists t > 0 such that z = y + tv satisfies that
y � x � z. Consider xi = y for any i ≤ n

2 + 1 and xi = x for any
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i > n
2 + 1. Independently of whether n is odd or even, it holds that

F�(x1, . . . ,xn) = y. If n is odd and xn+1
2

is substituted by z, it follows
that F�(x1, . . . , z, . . . ,xn) = x. If n is even and xn

2 +1 is substituted by
z, it follows that F�(x1, . . . , z, . . . ,xn) = x+y

2 . In both cases, the result
then follows from the fact that (x− y) · v < 0.

(vi) Consider the linear extension �∗ defined in Proposition 4(iii). Con-
sider x1 = (4, 4)T , x2 = (7, 7)T and x3 = (7, 1)T . It holds that x3 �∗
x1 �∗ x2, and, therefore, F�∗(x1,x2,x3) = x1. Consider t = 2 and u =
(−1, 0)T . It holds that x1 + tu �∗ x3 + tu �∗ x2 + tu, and, therefore,
F�∗(x1 + tu,x2 + tu,x3 + tu) = x3 + tu. Therefore, it holds that

x3 + tu− x1 =
((

5
1

)
−
(

4
4

))
=
(

1
−3

)
6= ku ,

for any k > 0. Thus, F�∗ is not MP-monotone.
The MP-monotonicity in case �=�M, with M = (M1, . . . ,Mm) being m

linearly independent weighted arithmetic means, follows straightforwardly
from Proposition 4(iv) and the fact that translation equivariance implies
MP-monotonicity (see Proposition 18 in [19]).

(vii) Consider the linear extension �∗ defined in Proposition 4(iii). Con-
sider x1 = (4, 4)T , x2 = (7, 7)T and x3 = (7, 1)T . It holds that x3 �∗
x1 �∗ x2, and, therefore, F�∗(x1,x2,x3) = x1. Consider t = 2 and u =
(−1, 0)T . It holds that x1 + tu �∗ x3 + tu �∗ x2 + tu, and, therefore,
F�∗(x1 + tu,x2 + tu,x3 + tu) = x3 + tu. Therefore, it holds that

(x3 + tu− x1) · u =
((

5
1

)
−
(

4
4

))
·
(
−1
0

)
= −1 < 0 .

Thus, F�∗ is not MC-monotone.
The MC-monotonicity in case �=�M, with M = (M1, . . . ,Mm) being m

linearly independent weighted arithmetic means, follows straightforwardly
from Proposition 4(iv) and the fact that translation equivariance implies
MC-monotonicity (see Theorem 14 and Proposition 18 in [19]).

(viii) Consider any x and y such that x(1) < y(1) and y(2) < x(2). We
distinguish two cases:

• If x � y, then there exists z such that x ≤m z and x � y � z. Consider
xi = x for any i ≤ n

2 +1 and xi = y for any i > n
2 +1. Independently of
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whether n is odd or even, it holds that F�(x1, . . . ,xn) = x. However,
if one substitutes xi by z (with i = n+1

2 if n is odd and both i = n
2 and

i = n
2 + 1 if n is even), it holds that F�(x1, . . . , z, . . . ,xn) = y. The

result then follows from the fact that x ≤m z but x 6≤m y.

• If y � x, then there exists z such that y ≤m z and y � x � z. Consider
xi = y for any i ≤ n

2 +1 and xi = x for any i > n
2 +1. Independently of

whether n is odd or even, it holds that F�(x1, . . . ,xn) = y. However,
if one substitutes xi by z (with i = n+1

2 if n is odd and both i = n
2 and

i = n
2 + 1 if n is even), it holds that F�(x1, . . . , z, . . . ,xn) = x. The

result then follows from the fact that y ≤m z but y 6≤m x.

3.6. Continuity
The property of continuity assures that small changes in the input do

not cause large changes in the output of a function. Since the set (�,Rm)
is totally ordered given a linear extension � of the product order ≤m, it is
evident that the order-based multivariate median based on � is continuous
with respect to the order topology induced by � itself. However, as it was the
case with the monotonicity properties, continuity of multivariate functions is
typically understood quite differently.

Definition 7. Consider n,m ∈ N. A function F : (Rm)n → Rm is called
(pointwisely) continuous if

lim
yi→xi

i∈{1,...,n}

F (y1, . . . ,yn) = F (x1, . . . ,xn) ,

for any (x1, . . . ,xn) ∈ (Rm)n.

It turns out that the oversimplification of an m-dimensional space into a
unidimensional space makes the order-based multivariate median, which is
known to be continuous in the univariate setting, to no longer be a continuous
function in case n > 2.

Proposition 6. Consider n,m ∈ N with m ≥ 2 and a linear extension � of
≤m. The order-based multivariate median F� : (Rm)n → Rm is continuous
if and only if n ≤ 2.
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Proof. The order-based multivariate median coincides with the centroid if
and only if n ≤ 2, and the centroid is known to be continuous. It only
remains to check the case in which n > 2.

Consider x � y, u = (u1, . . . , um) with uj > 0 for any j and such that
(y − x) 6= ku for any k ∈ R. We define t = inf{a > 0 | y � x + au}. Note
that this t is assured to exist since � is a linear extension of ≤m and uj > 0
for any j. We define x′ = x + tu. By definition, it holds that (y− x′) 6= ku
and x′ − εu � y � x′ + εu for any ε > 0. We distinguish two cases:

• If x′ � y, then it holds that x′ � y � x′ + εu for any ε > 0. Consider
xi = x′ for any i ≤ n

2 + 1 and xi = y for any i > n
2 + 1. It follows that

F�(x1, . . . ,xn) = x′. In case n is odd, if one considers yn+1
2

= xn+1
2

+εu
and yi = xi for any other i, then F�(y1, . . . ,yn) = y and, therefore,
F� is not continuous. In case n is even, if one considers yn

2
= xn

2
+ εu,

yn
2 +1 = xn

2 +1 +εu and yi = xi for any other i, then F�(y1, . . . ,yn) = y
and, therefore, F� is not continuous.

• If y � x′, then it holds that x′ − εu � y � x′ for any ε > 0. Consider
xi = x′ for any i ≤ n

2 + 1 and xi = y for any i > n
2 + 1. It follows that

F�(x1, . . . ,xn) = x′. In case n is odd, if one considers yn+1
2

= xn+1
2
−εu

and yi = xi for any other i, then F�(y1, . . . ,yn) = y and, therefore,
F� is not continuous. In case n is even, if one considers yn

2
= xn

2
− εu,

yn
2 +1 = xn

2 +1−εu and yi = xi for any other i, then F�(y1, . . . ,yn) = y
and, therefore, F� is not continuous.

4. The finite-sample breakdown point of the order-based multivari-
ate median

The finite-sample breakdown point [7, 12] is a popular measure of robust-
ness that indicates the smallest proportion of contaminated observations that
may cause a function F : (Rm)n → Rm to take arbitrarily large values.

Definition 8. Consider n,m ∈ N. Consider X = (x1, . . . ,xn) ∈ (Rm)n. The
set Zq(X) of q-corrupted (by replacement) lists given X is defined as the set
of all lists Z = (z1, . . . , zn) ∈ (Rm)n such that

| {i ∈ {1, . . . , n} | xi 6= zi} | ≤ q .
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The maximum bias caused by q-corruption at X for a function F : (Rm)n →
Rm is defined as

b(F,X, q) = sup
Z∈Zq(X)

||F (X)− F (Z)|| .

The finite-sample breakdown point of a function F : (Rm)n → Rm at X is
defined as

ε(F,X) = inf
q∈{1,...,n}

b(F,X,q)=+∞

q

n
.

The finite-sample breakdown point of a function F : (Rm)n → Rm is defined
as

ε(F ) = inf
X∈(Rm)n

ε(F,X) .

The finite-sample breakdown point of the univariate median is 0.5, which
is the maximum value that can be attained by a translation equivariant
function F : (Rm)n → Rm. Some multivariate generalizations of the median,
such as the componentwise median and the spatial median, inherit this max-
imum finite-sample breakdown point value (see [15]), whereas some others,
such as Tukey’s halfspace median, are still very robust with a finite-sample
breakdown point of at least 1

m+1 [6]. However, there are some other gener-
alizations such as Oja’s simplex median (see [16]) or Liu’s simplicial depth
median (see [4]) that are not very robust. Unfortunately, it can be seen that
the order-based multivariate median is of the latter type and its finite-sample
breakdown point converges to zero as n tends to infinity.

Proposition 7. Consider n,m ∈ N with m ≥ 2 and a linear extension �
of ≤m that linearly extends the extension -f of ≤m based on an idempotent
and monotone increasing function f : Rm → R. The finite-sample breakdown
point of the order-based multivariate median F� : (Rm)n → Rm is 1

n
.

Proof. Since f is monotone increasing there exists at least one unbounded
level set of f (see, e.g., Proposition 4.3.2 in [18]). Denote by c the value
associated with such level set. Consider x1, . . . ,xn such that f(xi) < c if
i < n

2 ; f(xi) = c if i = n+1
2 in case n is odd and i ∈ {n2 ,

n
2 + 1} in case

n is even; and f(xi) > c if i > n
2 + 1. Note that the idempotence of f

assures that such points exist. It obviously holds that F�(x1, . . . ,xn) = xn+1
2

in case n is odd and F�(x1, . . . ,xn) =
x n

2
+x n

2 +1

2 in case n is even. This
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result will still hold even if the corresponding point is changed by any other
point in its level set. Since the level set is unbounded, this implies that
b(F�, (x1, . . . ,xn), 1) = +∞, and, therefore, ε(F�,X) = ε(F�) = 1

n
.

In particular, the result above implies that, whenever a linear extension
of the product order based on m linearly independent weighted arithmetic
means is considered, the finite-sample breakdown point of the order-based
multivariate median is 1

n
. Note that the result still holds even in case the first

weighted arithmetic mean is substituted by a more robust function such as
the median. As natural as it is, the order-based multivariate median behaves
in a way that inherently depends on the level sets of the considered function.
This behaviour is particularly undesirable in the presence of outliers and
results in the same finite-sample breakdown point value as the centroid.

5. Concluding remarks

The order-based multivariate median has been proved to be symmet-
ric, CH-internal, BB-internal and idempotent (also being internal within the
points for an odd number of points). Properties such as affine equivariance,
orthogonal equivariance, most monotonicity properties and continuity are
assured to fail, regardless of the choice of linear extension of the product
order. However, scale equivariance and translation equivariance (and thus
MP-monotonicity and MC-monotonicity), which are not fulfilled in general,
are assured to be fulfilled if the linear extension is based on m linearly inde-
pendent weighted arithmetic means. Interestingly, the finite-sample break-
down point of this order-based multivariate median is 1

n
. This contrasts with

the univariate case in which the median attains the maximum possible value
of the finite-sample breakdown point (1

2) that could be attained by functions
that are translation equivariant.

Even though the properties fulfilled by the the order-based multivariate
median are not very appealing, it is admittedly still natural to consider such
function in some settings. For instance, the in-shoes height of an individual
depends on both the actual height of the individual and the height of the
shoes that the individual is wearing. In this setting, it might be natural to
compare individuals in terms of their in-shoes height at first, and further
refine this order by considering the actual height as a tie-breaker for indi-
viduals with the same in-shoes height. Note that this would be the result
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of considering the linear extension of the product order by Xu and Yager
(M = (M1,M2), with M1(xi) = 1

2xi(1) + 1
2xi(2) and M2(xi) = xi(2)).

As an illustrative example, consider five individuals with the following
actual heights and shoe heights:

Shoe height (in cm) 17 7 3 8 9
Actual height (in cm) 169 176 178 183 190

The five couples above can be ordered increasingly in terms of their in-
shoes height:

(3, 178)T �M (7, 176)T �M (17, 169)T �M (8, 183)T �M (9, 190)T .

The resulting order-based multivariate median is (17, 169)T , which intuitively
represents the median in-shoes height of the five individuals. The fact that
the shortest individual is the one with the median in-shoes height does not
actually matter. Admittedly, this individual could be substituted by a kid
on stilts (represented by (70, 118)T ) and it will still be considered to be the
individual with the median in-shoes height. This is because the in-shoes
height is a notion univariate in nature, even though it is here represented as
a bivariate notion. Obviously, when jointly discussing the shoe height and
the actual height, this kid on stilts should never be considered to be a good
representative of the group. Most of the literature on multivariate location
points towards this direction and, probably, this is the reason why there is
little to no mention of the order-based multivariate median.

As a final comment, it is highlighted that most of the results here pre-
sented for the the order-based multivariate median are easily translated into
the original setting of OWA operators by De Miguel et al. [5]. Obviously, the
result concerning the property of internality within the points would only
be fulfilled by order statistics (i.e., OWA operators with an associated vec-
tor of weights that only has one non-null element). Special attention should
be devoted to the centroid, which is the only order-based extension of an
OWA operator in the sense of De Miguel et al. [5] that does not depend on
the chosen linear extension of the product order, and satisfies all properties
discussed in this paper (but internality within the points).

Acknowledgements. This research has been partially supported by the Span-
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