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Camera calibration requires three steps: estimation of correspondences between world and image coordi-
nates, computation of a linear solution, and non-linear optimization using the linear estimate as starting
point. The resulting accuracy depends mostly on the first and final steps. However, the non-linear opti-
mization method can only achieve an accurate result when given an initial estimate close to the global
solution. Therefore, obtaining a good linear estimation is crucial for the performance of the camera cali-
bration procedure. This work proposes a robust method to estimate a linear solution for the calibration
of line-scan cameras, resulting in the individual intrinsic and extrinsic parameters by only using a single
line-scan. The calculated parameters can then be used by non-linear optimization methods to finely ad-
just the estimation of all the line-scan camera parameters, including distortions. The proposed procedure
does not impose restrictions on particular orientations, always generating a well-conditioned problem
than can be solved analytically with no optimization required. Extensive experiments are performed to
verify the robustness and accuracy of the proposed method. The comparative results demonstrate that the
proposed method provides excellent performance. © 2021 Optical Society of America
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1. INTRODUCTION

Automated surface inspection requires fast speed and high reso-
lution. This way, even small flaws can be accurately identified
within the production process [1]. In scenarios where the inspec-
tion needs to be performed in long moving products or even
continuous materials, area-scan cameras are discarded in favor
of line-scan cameras, which provide the best solution. Line-scan
cameras can acquire images of high resolution at high frame
rates [2], presenting a far more cost-efficient solution than area-
scan cameras. A wide array of automated surface inspection
applications successfully use line-scan cameras, from the inspec-
tion of steel strips [3] to the inspection of large aperture optical
elements [4].

Camera calibration determines the relationship between 3D
world coordinates and the image coordinates, a required step for
surface inspection and metrology applications in order to extract
the required information to characterize and classify defects.
Moreover, calibration enables the determination of the position
of regions of interest in the images. It is also required for 3D
reconstruction and recognition. Camera calibration is a topic
of major interest in computer vision [5, 6]. However, line-scan
cameras are different from area-scan cameras, as the second
dimension of the image in line-scan cameras is created by the
motion of the sensor with respect to the inspected object. This

way, the coordinate in the array of pixels in the line-scan camera
follows a central projection, while the other coordinate follows
an orthogonal projection. Therefore, methods used for camera
calibration in area-scan cameras cannot be directly used for line-
scan cameras. Line-scan camera calibration is thus a different
problem, with scarce research and almost no tools availability.

Line-scan camera calibration follows two main approaches:
scan-based calibration and line-based calibration. Methods
based on scan-based calibration [7–9] acquire line-scans while
the camera moves relatively from a calibration pattern or calibra-
tion object with well-known features. The sequence of line-scans
is used to compose a two-dimensional synthetic image consid-
ering constant velocity [10]. Then, positions of features with
well-known correspondences to world coordinates are detected
in the image. Techniques and tools similar to area-scan cam-
eras can then be used to calibrate the line-scan camera. These
methods are robust and provide good accuracy. However, they
require an elaborated and complex setup [11]. Moreover, these
requirements are not suitable for industrial applications that
may require periodic calibration [12].

Line-based calibration methods, also known as static calibra-
tion methods, are based on line-scan camera imaging models
[13–16]. They do not create 2D synthetic images; a single line-
scan is enough to calibrate the camera. Thus, they do not require
the acquisition of multiple images while the calibration target

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Research Article Applied Optics 2

is moving, overcoming the limitations of scan-based calibration.
However, the estimation of correspondences between world and
image coordinates is more difficult. The most common method
is derived from the procedure proposed in [13], where a pattern
with parallel and diagonal lines is used. The geometry of the
pattern and the principle of cross-ratio invariance is used to
calculate the world coordinates. The correspondences in the line-
scan are obtained using basic signal processing techniques. The
procedure to calibrate line-scan cameras using line-based cali-
bration methods is considerably easier, providing the possibility
to calibrate the camera in harsh environments with minimal
equipment.

Any camera calibration method requires, in general, three
steps: estimation of correspondences between points in world
and image coordinates, computation of a linear solution, and
non-linear optimization using the linear estimate as a starting
point. A mathematical model describes the mapping between
the world and the image coordinates, such as the pinhole model.
In order to estimate the parameters of the model, observations
of the scene in world coordinates and the corresponding image
need to be estimated. In area-scan images, a flat calibration
plate with a printed pattern is commonly used, following the
calibration method proposed in [17]. In line-based calibration
methods, a common approach is to print parallel and diagonal
lines on different planes. An alternative approach is to use a
planar pattern observed with different orientations, but this
requires a secondary area-scan camera [2, 11]. The result is a set
of points in world coordinates that lie on the same plane, but they
are not collinear. The next step is the computation of an initial
estimation of the parameters models using a linear method. In
area-scan cameras, the direct linear transformation is used [18].
Finally, a non-linear optimization method, such as the Newton
or the Levenberg–Marquardt methods [19], is used to minimize
a particular geometric error. The result is an accurate estimation
of the parameter models including non-linear parameters, such
as lens distortions.

The accuracy of non-linear optimization methods greatly de-
pends on the starting point used to minimize the cost function.
Using an incorrectly calculated starting point can cause the op-
timization method to converge to a local minimum rather than
the global minimum, resulting in a slow suboptimal estimation
of the camera model parameters. Moreover, there is a risk the
optimization method does not converge, which also requires
a difficult to establish stopping criterion. Even when the op-
timization method reaches the global optimum, the further it
starts from the final solution the larger the number of iterations
required. Non-linear methods can also avoid using an starting
point by sampling the parameter space. Genetic algorithms are
examples of such optimization methods [20]. These methods
can even avoid premature convergence to local minimum, but
requiring a large number of iterations and with no guaranteed
convergence to the global minimum. Therefore, an accurate and
robust linear solution as starting point is always preferred and
crucial for the ability of the calibration procedure to produce the
expected results. This work is focused on such linear solution
for line-based calibration methods.

This work proposes a robust method for estimating the cam-
era projection matrix from corresponding world and image coor-
dinates in a line-scan camera, providing the detailed mathemati-
cal procedure. The robust method estimates a well-conditioned
linear solution for the calibration of line-scan cameras that can be
solved analytically with no optimization required and minimum
constraints. The main contributions of the proposed approach

are the following:

• The individual intrinsic and extrinsic parameters are esti-
mated from a single line-scan, not requiring movements
between the camera and the calibration target, and thus
suitable for the application in industrial environments.

• The proposed approach does not require optimization meth-
ods to estimate the parameters, which represents a major
advantage compared with other methods in the literature.
The calibration can be solved analytically with no optimiza-
tion required and minimum constraints. This represents
an advantage compared with previous works that have
proposed linear methods based on variations of the direct
linear transformation, which lead to rank deficiency prob-
lems due to the coplanarity of the points in the scene. This
is solved using constraints for optimizations that provide
unstable results.

• No assumption is established about the orientation or po-
sition of the camera. In previous works, the orientation of
the camera leads to an ill-conditioned problem where no
solution can be found.

• The proposed solution is stable, even when considering
Gaussian distributed noise. A robust estimation approach
is also proposed to deal with outliers.

• The linear estimation of the projection parameters can be
used to initialize the search for non-linear optimizers that
guarantee a final accurate estimation of both linear and non-
linear camera parameters. This improves the calibration
accuracy by also estimating non-linear distortions.

• The proposed method does not dependent on the particular
approach used to estimate the world and image correspon-
dences. Calibration targets with multiples flat planes are
the most common, but a single flat calibration target could
also be used with a secondary are scan camera.

The remainder of this paper is organized as follows. Section 2
introduces Line-scan camera imaging model; Section 3 presents
the proposed approach for the robust computation of the cam-
era matrix; Section 4 discusses the results obtained including
the application of non-linear optimization methods; and finally,
Section 5 reports conclusions.

2. LINE-SCAN CAMERA IMAGING MODEL

A line-scan camera is modeled by the pinhole model or cen-
tral projection as shown in Figure 1. Based on this model,
the projection of a 3D point in world coordinates denoted
by M = [X, Y, Z]T onto the 2D point in image coordinates
m = [u, v]T is given by (1), where s is an arbitrary scale fac-
tor, P is the camera projection matrix, and M′ and m′ are the
homogeneous coordinates of M and m. Figure 1 also represents
the most common layout of calibration target with parallel and
diagonal lines on different planes.

s m′ = PM′ (1)

A line-scan camera is a special case of camera consisting of
only one array of pixels. Thus, a 3D point is projected onto the
image point [0, v]T , which can be described using (2), where Rt is
the rotation and translation matrix that relates the world and the
camera coordinate systems, and A is the camera intrinsic matrix
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Fig. 1. Line-scan camera imaging model

that describe the camera internal parameters. The composition
of A and Rt gives P .
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The camera intrinsic matrix, A, combines a perspective pro-
jection and a 2D affine transformation expressed as (3), where fy
is the focal length in the image v axis expressed in pixel units,
and cy is the principal point that is usually at the center of the
array of pixels. These parameters are often referred to as intrin-
sic parameters. The imaging model assumes that the sensor line
is mounted exactly behind the principal point and the principal
distance perpendicular to the sensor line is ignored.

A =


1 0 0 0

0 fy cy 0

0 0 1 0

 (3)

The transformation from world coordinates in the scene to
camera coordinates is performed using a 3D rigid-body trans-
formation that involves three rotations (α, β, γ) and three trans-
lations (t1, t2, t3). These parameters are often referred to as ex-
trinsic parameters. The transformation can be expressed as (4),
where rij are the coefficients of the rotation matrix using the
angles α, β, and γ.

Rt = TR =


1 0 0 t1

0 1 0 t2

0 0 1 t3

0 0 0 1




r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

0 0 0 1



=


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1

 (4)

The camera projection matrix, P , is the composition ofA and
Rt, resulting in (5).

P =


r11 r12 r13 t1

cy r31 + fy r21 cy r32 + fy r22 cy r33 + fy r23 cy t3 + fy t2

r31 r32 r33 t3


(5)

Consequently, the line-scan camera model, not considering
lens distortion, can be represented using (6) and (7). Therefore,
eight parameters describe the line-scan camera model, in which
two are the intrinsic parameters ( fy, cy) and six are the extrinsic
parameters (α, β, γ, t1, t2, t3).

0 = X r11 + Y r12 + Z r13 + t1 (6)

v = cy + fy
X r21 + Y r22 + Z r23 + t2
X r31 + Y r32 + Z r33 + t3

(7)

The accuracy of this linear model can be improved by consid-
ering lens distortions, which provoke non-linear projections of
the scene points onto the image. The most common distortion
model is the polynomial model [17]. Other models also exist,
such as the division model [21]. In area-scan cameras, 8 coeffi-
cients are considered, 6 to model the radial distortion, and 2 to
model the tangential distortion. In line-scan cameras, the most
common approach is to use only 3 parameters to model radial
distortion. Radial distortion is related to light rays bending near
the edges of the lens. The radial distortion coefficients are part
of the intrinsic parameters, as they do not depend on the scene
viewed.

Radial distortion is modeled using (8), where v′ denote the
distorted image point, r = v− cy is the distortion radius, and k1,
k2 and k3 are the radial distortion coefficients.

v′ = v (1 + k1 r2 + k2 r4 + k3 r6) (8)

A. Properties of the rotation matrix

A rotation matrix, R, is an orthogonal matrix that satisfies
R RT = I, where I is the identity matrix [22]. Therefore,
RT = R−1. A rotation is a linear transformation that preserves
angles and lengths. Thus, det(R) = ±1. The row and column
vectors of R are orthogonal and of unit norm [23].

In R3, a rotation can be represented using rotation vectors
as (9).

R =


r1

r2

r3

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (9)

Given the coefficients of the rotation matrix, rij, and a rota-
tion order around the axes, the Euler angles α, β and γ can be
calculated [24].

Because the rows and columns of the rotation matrix are
orthogonal, the row vectors satisfy (10). This represents the 6
constraints represented in (11). Thus, a rotation matrix in R3 has
9 coefficients, but only 3 degrees of freedom (α, β and γ).

ri rT
j =

{
1 i = j
0 i 6= j

(10)
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

r2
11 + r2

12 + r2
13 = 1

r2
21 + r2

22 + r2
23 = 1

r2
31 + r2

32 + r2
33 = 1

r11 r21 + r12 r22 + r13 r23 = 0

r11 r31 + r12 r32 + r13 r33 = 0

r21 r31 + r22 r32 + r23 r33 = 0

(11)

The orthonormality of the rotation matrix can also be used to
express the relations in (12), i.e., the cross product of two given
rotation vectors is equal to the third.

r2 × r3 = r1

r1 × r3 = r2

r1 × r2 = r3

(12)

The coefficients of the rotation matrix, rij, represent trigono-
metric operations with angles α, β and γ. These coefficients
satisfy the relations in (13), regardless of the rotation order.

For example, the demonstration of the first relation in (13)
can be seen in (14).

r11 r22 − r12 r21 = r33

r22 r33 − r23 r32 = r11

r11 r23 − r13 r21 = −r32

r11 r32 − r12 r31 = −r23

r11 r22 − r12 r21 = r33

r22 r33 − r23 r32 = r11

r11 r33 − r13 r31 = r22

r12 r33 − r13 r32 = −r21

r12 r23 − r13 r22 = r31

r12 r33 − r13 r32 = −r21

(13)

r11 r22 − r12 r21 =

cos (β) cos (γ)
(

cos (α) cos (γ)− sin (α) sin (β) sin (γ)

)
+ cos (β) sin (γ)

(
cos (α) sin (γ) + cos (γ) sin (α) sin (β)

)
=

cos (α) cos (β) cos (γ)2 + cos (α) cos (β) sin (γ)2 =

cos (α) cos (β) = r33 (14)

3. COMPUTATION OF THE LINE-SCAN CAMERA MA-
TRIX

The procedure to calculate the camera projection matrix requires
a set of points Mi in world coordinates and the set of correspond-
ing points mi in the image. The points Mi are constrained to lie
on the viewing plane. The objective is to compute the projective
transformation, P , that maps Mi to mi.

The development of (2) produces two equations: (6) and
(7). The first equation, (6), represents the viewing plane. The
variables of this equation are the first row of P , described in (5).
The second equation, (7), represent the central projection in the
camera. The variables of this equation are the second and third
row of P . These equations have different unknown variables.
Thus, they can be solved independently. The proposed approach
for the calculation of the viewing plane and the central projection
is described next.

A. Calculation of the viewing plane
The calculation of the viewing plane can be seen as fitting a
plane from a set of points. Many algorithms make assumptions
about the orientation. These methods can fail when the plane
is (nearly) parallel to a specific axis, such as Z = 0. This work
uses a method based on singular value decomposition that min-
imizes the orthogonal distance making no assumptions about
the orientation.

The viewing plane can be defined using (15). In order to
calculate the coefficients of the plane, at least 3 non-collinear
points are required. However, due to the influence of noise more
points are required to robustly calculate the coefficients of the
plane.

X r11 + Y r12 + Z r13 + 1 t1 = 0 (15)

Given n points on the plane, the coefficients of the plane can
be obtained by solving the system of homogeneous equation
in (16), where AJ and J can be expressed as (17) and (18). The
obvious solution to this over-determined set of equations is
J = 0, but this solution is not of interest. Moreover, if J is a
solution of this set of equations, then ρJ is also a solution for any
scalar ρ. Thus, a constraint is established: ||J|| = 1. Then, the
least-squares solution can be estimated.

AJ J = 0 (16)

AJ =


X1 Y1 Z1 1
...

...
...

...

Xn Yn Zn 1

 (17)

J =


r11

r12

r13

t1

 (18)

The matrix AJ can be decomposed using singular value de-
composition as (19).

AJ = USVT (19)

The solution of the system of homogeneous equation is the
last column of V, Vlast, which is the eigenvector of AT

J AJ cor-
responding to the smallest eigenvalue [18]. The solution, J′, is
worked out up to a scale factor, i.e., J′ = Vlast = ρ J, where the
value of ρ is unknown. However, considering the constraint
established by r1 in (11), the coefficients of the plane can be
finally calculated using (20).

r11

r12

r13

t1

 =
±1√(

J′1
)2

+
(

J′2
)2

+
(

J′3
)2


J′1
J′2
J′3
J′4

 (20)

B. Calculation of the projection
A possible solution for the estimation of the projection repre-
sented by the last two rows of P is to extract X from (6) and
substitute it into (7). This is the procedure proposed in [13]
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and followed in more recent works [9, 11, 14]. However, this
method is numerically unstable depending on the orientation
of the camera. Extracting and substituting X when the viewing
plane is close to X = 0 will fail. Moreover, when the plane
is nearly parallel to X = 0 the method is very sensitive to
changes or errors in the input, leading to and ill-conditioned
problem. Therefore, this is not a completely general solution.
The robust approach is to pick the path with best condition-
ing: extracting the variable with the largest coefficient in the
viewing plane. Only when |r11| > max(|r12|, |r13|) shall X
be used. When |r21| > max(|r11|, |r13|), Y is used; and when
|r13| > max(|r11|, |r12|), Z is used. The procedure for each vari-
able is similar, but the resulting equations are different. The
result is a well-conditioned problem than can be solved analyti-
cally very robustly with no optimization required.

When r11 > max(r12, r13), X is extracted from (6) resulting
in (21).

X = − t1 + Y r12 + Z r13
r11

(21)

Substituting X into (7) results in (22), where the numerator,
N, can be represented as (23) and the denominator, D, as (24).

v =
N
D

(22)

N = (r11 r22 − r12 r21) Y fy + (r11 r32 − r12 r31) Y cy

+ (r11 r23 − r13 r21) Z fy + (r11 r33 − r13 r31) Z cy

+ (r11 t2 − r21 t1) fy + (r11 t3 − r31 t1) cy (23)

D = (r11 r32 − r12 r31) Y + (r11 r33 − r13 r31) Z + r11 t3 − r31 t1
(24)

Considering the relations between the coefficients of the rota-
tion matrix in (13), (23) and (24) can be further simplified as (25)
and (26).

N =
(

fy r33 − cy r23
)

Y +
(
cy r22 − fy r32

)
Z

+ cy (r11 t3 − r31 t1) + fy (r11 t2 − r21 t1) (25)

D = −Y r23 + Z r22 + r11 t3 − r31 t1 (26)

Renaming variables according to (27) results in (28), which
represents a projection. This equation can be expressed as (29).

K1 = fy r33 − cy r23

K2 = cy r22 − fy r32

K3 = cy (r11 t3 − r31 t1) + fy (r11 t2 − r21 t1)

K4 = −r23

K5 = r22

K6 = r11 t3 − r31 t1

(27)

v =
K1 Y + K2 Z + K3
K4 Y + K5 Z + K6

(28)

Y K1 + Z K2 + 1 K3 − v Y K4 − v Z K5 − v K6 = 0 (29)

Given n points, the coefficients of K = [K1, . . . , K6]
T can be

obtained by the system of homogeneous equation in (30), where

AK can be expressed as (31). A minimum of 6 points are required
to solve the system of equations with 6 unknowns.

AK K = 0 (30)

AK =


Y1 Z1 1 −v Y1 −v Z1 −v
...

...
...

...

Yn Zn 1 −v Yn −v Zn −v

 (31)

The matrix AK can be decomposed using singular value de-
composition as before. The solution of the system of homoge-
neous equation is the eigenvector of AK corresponding to the
smallest eigenvalue. This provides a solution up to a scale factor,
i.e., the obtained solution is K′ = λ K, with the value of λ un-
known. Thus, this solution provides the values of λ r23 = −K′4
and λ r22 = K′5 considering the variables in (27).

Because r1 and r2 are perpendicular, the dot product of these
vectors is null, as indicated in (11). Thus, (32) can be obtained
by multiplying both sides by λ. Solving this equation for λ r21
results in (33). This division is always safe as r1 is a unit vector
and |r11| > max(|r12|, |r13|), i.e., |r11| > 0.

0 = λ r11 r21 + λ r12 r22 + λ r13 r23 (32)

λ r21 = − r12 λ r22 + r13 λ r23
r11

(33)

The value of λ can finally be obtained from (34) using the
constraint about the unit length of the rotation vector.

Because r2 is a rotation vector, the length is 1 as indicated
in (11). This can be also expressed as (34). Thus, (35) can be
obtained by multiplying both sides by λ. This gives the solution
for λ.

1 = ±
√
(r21)2 + (r22)2 + (r23)2 (34)

λ = ±
√
(λ r21)2 + (λ r22)2 + (λ r23)2 (35)

Using the calculated value of λ, the value of r2 can be ob-
tained from (36). 

r21

r22

r23

 =
1
λ


λ r21

λ r22

λ r23

 (36)

The orthonormality properties of the rotation matrix de-
scribed in (12) can be used to calculate r3 using (37).

r31

r32

r33

 =


r11

r12

r13

×


r21

r22

r23

 (37)

The coefficients of K can be obtained from (38). Finally, the
rest of the required variables to calculate the coefficients of the
camera projection matrix P can be calculated from (39).

K =
1
λ

K′, (38)
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

fy = K1 r22+K2 r23
r22 r33−r23 r32

cy = K1 r32+K2 r33
r22 r33−r23 r32

t2 = − K1 K6 r32+K2 K6 r33−K3 r22 r33+K3 r23 r32−K1 r21 r22 t1−K2 r21 r23 t1
r11 (K1 r22+K2 r23)

t3 = K6+r31 t1
r11

(39)
When |r12| > max(|r11|, |r13|) the procedure is similar but it

all starts by extracting Y from (6), which results in (40).

Y = − t1 + X r11 + Z r13
r12

(40)

Substituting Y into (7) and renaming variables according to
(41), the solution in this case is obtained from the singular value
decomposition of (42).



K1 = cy r23 − fy r33

K2 = fy r31 − cy r21

K3 = cy (r12 t3 − r32 t1) + fy (r12 t2 − r22 t1)

K4 = r23

K5 = −r21

K6 = r12 t3 − r32 t1

(41)

AK =


X1 Z1 1 −v X1 −v Z1 −v
...

...
...

...

Xn Zn 1 −v Xn −v Zn −v

 (42)

Using a similar approach, the unknown variables required
for the projection are obtained from (43) and (44), with |r12|
always guaranteed > 0.

λ r22 = − r11 λ r21 + r13 λ r23
r12

(43)



fy = − K1 r21+K2 r23
r21 r33−r23 r31

cy = − K1 r31+K2 r33
r21 r33−r23 r31

t2 = − K1 K6 r31+K2 K6 r33+K3 r21 r33−K3 r23 r31−K1 r21 r22 t1−K2 r22 r23 t1
r12 (K1 r21+K2 r23)

t3 = K6+r32 t1
r12

(44)
When |r13| > max(|r11|, |r12|), Z is extracted from (6) result-

ing in (45).

Z = − t1 + X r11 + Y r12
r13

(45)

Following a similar procedure, Z is substituted into (7) and
variables are renamed according to (46). The solution is now
obtained from the singular value decomposition of (47).



K1 = fy r32 − cy r22

K2 = cy r21 − fy r31

K3 = cy (r13 t3 − r33 t1) + fy (r13 t2 − r23 t1)

K4 = −r22

K5 = r21

K6 = r13 t3 − r33 t1

(46)

AK =


X1 Y1 1 −v X1 −v Y1 −v
...

...
...

...

Xn Yn 1 −v Xn −v Yn −v

 (47)

The unknown variables required for the projection are ob-
tained from (48) and (49), with |r13| always guaranteed > 0.

λ r23 = − r12 λ r22 + r13 λ r23
r13

(48)



fy = K1 r21+K2 r22
r21 r32−r22 r31

cy = K1 r31+K2 r32
r21 r32−r22 r31

t2 = − K1 K6 r31+K2 K6 r32−K3 r21 r32+K3 r22 r31−K1 r21 r23 t1−K2 r22 r23 t1
r13 (K1 r21+K2 r22)

t3 = K6+r33 t1
r13

(49)

C. Non-linear optimization
The linear estimation of the projection matrix can be used as a
robust starting point in the final step of the calibration: the non-
linear optimization. This step greatly improves the calibration
accuracy by also estimating non-linear distortions. The goal is
to find the intrinsic and extrinsic parameters that minimize (50),
where M′i represents the homogeneous coordinates of world
point Mi, m′i is its correspondence in the image, n is the number
of points, and P ′ is a function that projects the world points into
the image considering lens distortions.

min
fy ,cy ,α,β,γ,t1,t2,t3,k1,k2,k3

n

∑
i=1

[
m′i −P

′(M′)
]2 (50)

D. Robust estimation
The proposed approach provides an optimal solution when con-
sidering Gaussian distributed noise. However, it would fail if
outliers were present in the data. This issue can be solved us-
ing a variation of RANSAC [25], a simple yet extremely robust
method to fit models to noisy data. This method can provide
a solution even when data is corrupted with a large number of
outliers. The proposed approach is to divide all the data points
in subsets of 6 point correspondences, the minimum number of
points required to estimate the linear solution. These subsets are
obtained from all the possible permutations of the points taken
6 at a time without repetition. Non-valid solutions are removed
(collinear points). For each of these valid subsets, an estimation
of the calibration is computed and the median reprojection dis-
tance for all the points is calculated. The subset that minimizes
the median distance is the candidate for solution. This solution
is then re-estimated for all points within a threshold distance
(inliers). The processes is repeated until the number of inliers
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converges, providing a robust solution that is not affected by
the outliers. The method only needs to be applied when outliers
are known to be present in the data. However, it also safe to be
applied when there are no outliers, providing the same results
than then linear approach with an increased computational cost.
In case it is needed, the procedure could be optimized to reduce
this cost.

E. Decomposition of the camera matrix
The previous procedure can be used to estimate the matrix P
given a set of 3D points in the scene and the corresponding im-
age coordinates. For testing purposes, a given camera matrix, P ,
can also be decomposed into the intrinsic and extrinsic parame-
ters. In general, the camera matrix decomposition if performed
using QR factorization method [26]. However, according to (5),
the parameters can be estimated from (51), where Pij are the
coefficients of the camera projection matrix. All operations are
guaranteed to provide valid results.



[r11, r12, r13] = [P11, P12, P13]

[r31, r32, r33] = [P31, P32, P33]

[r21, r22, r23] = [r11, r12, r13]× [r31, r32, r33]

t1 = P14

t3 = P34

cy = [P21, P22, P23] · [P31, P32, P33]

fy = ‖[P21, P22, P23]× [P31, P32, P33]‖
t2 =

(
P24 − cy t3

)
/ fy

(51)

The position of the camera in world coordinates, OC, can be
calculated using (52), which represents the transformation of the
camera origin, [0, 0, 0, 1] in homogeneous coordinates, from the
camera coordinates system to the world coordinates system.

OC = (Rt)−1 [0, 0, 0, 1]T (52)

Given the homogeneous coordinate of a point in the image,
m′i , the set of points in space that map to this point constitutes a
ray in space passing through the camera center. This is known
as the back-projection of points to rays. This ray can be defined
by OC and P+m′i , where P+ is the pseudo-inverse of P that can
be calculated using (53).

P+ = PT
(
P PT

)−1
(53)

4. RESULTS AND DISCUSSION

A. Application of the procedure
The calibration procedure requires a set of points in the scene
in world coordinates and the correspondences in the line-scan.
Figure 2a shows an example of points in world coordinates. In
this case, the points are distributed in the viewing plane in ideal
conditions.

In a real calibration, the experimental setup would include a
calibration target with multiples planes from where these points
could have been obtained. Another possible approach is a flat
target moved around the scene. This latter approach usually
requires a secondary camera to transform all coordinates into
a single coordinate system. The line-scan camera observes the
calibration target, producing line-scans with the coordinates of
the control points.

The objective of the experiments is to estimate the camera
intrinsic and extrinsic parameters from these points and the cor-
responding projections in the line-scan. In this first experiment,
points are distributed in 10 planes, using 5 points per plane.

The first step of the procedure is the calculation of the view-
ing plane. The result can be seen in Figure 2b. The viewing
plane where the world points lie on is estimated by minimizing
the sum of the squares of the residuals using the proposed pro-
cedure. Given the coefficients of the viewing plane, the rest of
the parameters of the projection matrix are calculated using the
described approach. The result robustly identifies the intrinsic
and extrinsic camera parameters. Figure 2c shows the resulting
position and orientation of the line-scan camera.

The result of the camera calibration procedure allows for the
projection of any point in the scene onto image coordinates. The
inverse projection is an ill-defined problem, but the projection
ray in world coordinates from any pixel in the image can also be
calculated. Moreover, given the extrinsic parameters, transfor-
mations between coordinates systems can be easily performed.
All these are advantages of having a calibrated system.

B. Comparison with previous methods

In order to demonstrate the robustness of the proposed proce-
dure, it is applied to a line-scan camera with different orienta-
tions. Also, the results are compared with the method proposed
by Li [11, 14, 16], which is a common procedure to estimate a
linear solution. The main principle of this method is also used
in [13]. Thus, similar results are expected.

This experiment assumes a set of points distributed in the
viewing plane and the correspondences in the line-scan are
known. Points are distributed in different planes, as can be
seen in Figure 2, with 10 planes and 5 points per plane. The
camera is rotated following the order ZYX.

The metric used to assess the calibration error is the Root
Mean Square Error (RMSE) defined in (54), which measures the
differences between the image coordinates m′i in homogeneous
coordinates and the projection of the world points m′i consider-
ing the estimated camera projection matrix P , where n is the
number of points.

RMSE =

√
∑n

i=1
(
m′i −PM′i

)2

n
(54)

The results of the calibration are shown in Table 1. As can be
seen, the proposed method provides similar results regardless
of the orientation of the camera. On the other hand, the method
proposed by Li fails when γ is 90º or very close. In the vicinity
of this angle, the method provides a solution that is not opti-
mal, greatly increasing the error compared with the proposed
method. In all the considered cases, the proposed method pro-
vides a negligible error, thus, robust under different orientations.
The reason why the compared method fails is the value of r11.
When this value zero or close, the mathematical operations are
unstable.

C. Performance with Gaussian noise

Gaussian noise is added to the image points to test the perfor-
mance of the procedure with noisy data. The calibration (RMSE)
is estimated considering the corrupted data. In addition, the
calculated camera parameters are compared with the real values.
The noise added to the image points has zero mean and STD
standard deviation, varied from 0 to 2 in 0.1 increments. For
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(a) (b) (c)

Fig. 2. Line-scan camera calibration. (a) Points in the scene in world coordinates, (b) Calculation of the viewing plane. (c) Computa-
tion of the projection: rotation and orientation
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Fig. 3. Performance with added noise. (a) Calibration error, (b) Errors in intrinsic parameters. (c) Errors in translations parameters
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Orientation (º) Calibration error (RMSE)

α β γ Li Proposed method

0 0 0 6.61e-07 6.61e-07

0 0 90 - 6.61e-07

70 0 85 6.11e-06 8.07e-07

70 0 90.001 2.79e-02 5.74e-07

70 0 89.999 1.11e-01 4.04e-07

Table 1. Results with different orientations

each experiment, 1000 repetitions are performed and the results
are averaged. The results can be seen in Figure 3.

The results indicate that errors increase with the noise level,
as expected. As can be seen in Figure 3a there is a linear relation-
ship between the noise level and the resulting calibration error.
Figures 3b and 3c indicate that cy and t3 are the most sensitive
parameters to noise. t1 is not affected by noise in the image
points, as it is directly calculated from the world points. These
results demonstrate that the procedure remains stable despite
the added noise in the data.

D. Performance with outliers
This experiment evaluates the performance of the proposed
procedure when data is corrupted with outliers, which can be
caused by reflections or other motives. The experiments in
Table 1 are repeated adding a varying percentage of outliers,
from 10% to 40%. The results are similar to those obtained
without the outliers. Thus, the proposed approach is able to
cope with a large proportion of outliers producing the same
accurate results. Figure 4 shows the results in one of the test. As
can be seen, the calibration parameters are estimated correctly
even when there is a large number of outliers in the data.

E. Performance with different number of planes
In order to calibrate the line-scan camera points must not be
collinear, as it is not possible to estimate a plane with only from
points on a line. Thus, multiples points must be located in differ-
ent planes, for example using a calibration target designed this
way. As the number of planes increases, the calibration should
provide better results due to the increased information available.
This experiment tests the performance of the calibration proce-
dure with a different number of planes. The results can be seen
in Figure 5.

Calibration errors decrease when the number of planes in-
creases. The relation is not linear, errors decrease faster when
using a low number of planes. From 10 planes onwards, the
results are almost negligible. The intrinsic parameter cy and
the translation t3 are also the most sensitive parameters to the
variation in the number of planes. In the rotation parameters,
β is more sensitive than the others. Calibrations errors are not
given in this experiment, as decreasing the number of points can
also decrease the overall calibration error due to overfitting.

F. Performance with lens distortion
This work presents a robust linear approach to calibrate line-scan
cameras, which provides the starting point for the non-linear
optimization required to estimate lens distortion. Calibration

only using a linear approach will not provide good results when
the lens in the camera include aberrations, as they provoke
deviations from the linear projection. This is why non-linear
optimization is a required step to obtain a highly accurate cali-
bration. This experiment shows the calibration error when the
camera lens presents radial distortion.

The results can be seen in Figure 6, varying k1 from 0 to
0.1 in 0.01 increments. The results show large errors in the
calibration (RMSE) as well as the intrinsic parameters. When
optical distortions are present, the linear estimation deviates
from the real camera parameters. This demonstrates that linear
calibration is not a final procedure. It could only be applied
when no lens distortions are present. In general, non-linear
optimization is required for better accuracy.

G. Performance with non-linear optimization
Linear calibration methods cannot deal with optical distortions.
Thus, large errors are generated when lens aberrations are
present. The solution is to use a non-linear optimization method
as the final step of the calibration. This step not only estimates
non-linear camera parameters, such as radial distortions, it also
finely adjusts the estimation about the rest of the parameters.

A comparison between the linear and non-linear calibration
is shown in Table 2, where the non-linear optimization uses the
linear estimate as a starting point as given in (50). As can be seen,
the performance of the linear calibration degrades rapidly as ra-
dial distortion increases. However, the estimation of the camera
parameters by the linear calibration can be used effectively by
the non-linear method as a robust starting point. Regardless of
the radial distortion, the non-linear optimization method pro-
vides a very low calibration error. Thus, the linear calibration
provides the required solution to enable the last calibration step
to produce the expected results. Moreover, similar calibration
errors are obtained regardless of camera orientation and other
parameters.

k1 Linear (RMSE) Non-linear (RMSE)

0.00 6.61e-07 1.15e-12

0.01 5.21e-01 8.84e-12

0.04 2.08e+00 5.37e-07

0.05 2.60e+00 1.94e-07

0.08 4.17e+00 6.14e-07

0.10 5.21e+00 6.66e-06

Table 2. Results with non-linear optimization

5. CONCLUSIONS

This work proposed a static camera calibration method for line-
scan cameras that provides an accurate solution with no assump-
tion about the orientation or position. The proposed method is
robust and accurate, only requiring a set of non-collinear points
in world coordinates and the correspondences in the image.
These correspondences can be easily obtained using the princi-
ple of cross-ratio invariance, not requiring movements between
the camera and the calibration target. Thus, suitable for the
application in industrial environments. The estimation of the
intrinsic and extrinsic camera parameters can be used effectively
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(a) (b) (c)

Fig. 4. Line-scan camera calibration with outliers. (a) Points in the scene in world coordinates, (b) Calculation of the viewing plane.
(c) Computation of the projection: rotation and orientation
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Fig. 5. Performance with different number of planes. (a) Errors in intrinsic parameters. (b) Errors in translation parameters, (c)
Errors in rotation parameters
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Fig. 6. Performance with lens distortion. (a) Calibration error, (b) Errors in intrinsic parameters. (c) Errors in translations parame-
ters

by non-linear optimization methods to finely adjust the camera
parameters, including non-linear distortions.

Tests demonstrate the accuracy and robustness of the pro-
posed procedure. Unlike previous methods, it provides very
accurate results regardless of the orientation of the camera. In
addition, it shows a stable behavior with noisy data, linearly
increasing the calibration error as the noise level increases. Tests
also indicate it can be applied with a different number of planes.
As expected, the performance when lens distortions are present
is not good. However, tests verify the linear estimation of the
parameters can be used effectively to obtain a very accurate cal-
ibration even when high distortions are present. Overall, the
proposed method provides a robust and accurate solution for a
critical step in camera calibration.
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