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a b s t r a c t

The traditional model used to represent the electrical behavior of supercapacitors (SCs) operating at
constant power leads to a well-known differential equation which allows to obtain the charge/discharge
time of the device as a function of its internal voltage. However, the opposite is not true, i.e. it is
necessary to resort to numerical methods to derive the internal voltage of the SC at any specific time. In
this paper, new explicit expressions for the evolution of the electrical variables involved in the charge/
discharge process of a SC bank operated at constant power are derived. The proposed formulation, which
is based on the use of the Lambert W function, does not only allow a straightforward calculation of all the
electrical variables as a function of time, but also sheds light on the direct relations between those
variables. In the assumption of validity of the classic model, the results derived in this work can be
considered exact, as no further approximations are made. The accuracy of the proposal is demonstrated
by comparing the results derived from the new formulation with those yielded from the classical iter-
ative resolution of the differential equations using numerical methods. The new closed-form expressions
presented in this paper have the potential to simplify the sizing, regulation and control of power ap-
plications with embedded SC banks operated at constant power.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the last years, energy storage systems are undergoing a fast
development due to their innate potential of easing the growing
pressure of polluting emissions on the environment. Continuous
innovations in the manufacturing methods of supercapacitors (SCs)
have made these devices an interesting option for the design of a
wide range of energy storage applications [1]. The use of SCs are
especially well-suited for processes involving abrupt power varia-
tions, as their inherent capability of dealing with high peak power
values opens the door to their hybridization with other energy
sources with slower dynamics [2e8]. The combination of SCs and
batteries in electric vehicle charging stations serves as a good
example of these type of applications [9e14]. L. Kouchachvili et al.
[9] claim that the life of the batteries can be remarkably boosted by
avoiding sharp current variations with the support of SC banks.

In parallel with the growing interest in the use of SCs, different
drayes).

r Ltd. This is an open access article
models of these devices have been proposed to allow studies for the
optimization of their applications. As indicated by J. F. Pedrayes
et al. [15,16], this is the case of sizing SC banks or conducting an
analytical characterization of their behavior. Focusing on the elec-
trical performance, L. Zhang et al. [17] classify SC models in four
different types: electrochemical, equivalent circuit, intelligent and
fractional-order. From this set of alternatives, equivalent circuit
models have been widely recognized due to their simplicity and
accuracy in real-time energy management synthesis. In certain
studies, like those conducted by P.J. Grbovic et al. [18,19] the SC is
treated as a varying capacity linked to the value of its internal
voltage. On the contrary, V. Musolino et al. [20] utilize more com-
plexmodels in order to analyze the effect of lowand high frequency
currents on SC cells. A classical approach consists in assuming that
the SC can be correctly represented by a series connected resistance
and capacitance (RC model), with these parameters showing no
correlation with the internal voltage value [21e25]. The RC model
is, by far, the most widespread version used in the study of the
charge/discharge process of SCs. The value of the resistance and
capacitance are typically provided by manufacturers who,
furthermore, add data on their dependence with temperature. In
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. Discharge of a SC at constant power.
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any case, those parameters can be considered constant without
significant error while in normal operating conditions, 0 to 65 �C
[26,27]. Some authors like R. L. Spyker et al. [28] or O. Abdel-baqi
et al. [29] use an alternative model, including a parallel resis-
tance, which can be used to account for the leakage current;
however, this is only relevant when the self-discharge phenome-
non is on the focus of the analysis.

In most practical applications, SCs are operated through charge/
discharge processes that take place at constant current or constant
power. As it is pointed out by M.E. Fouda et al. [30], only some
specific cases require a modeling of the discharge process in the
contest of a constant load impedance. With the focus on constant
power applications, which is the topic addressed in this work,
studies as the one conducted by J. M. Miller [31], provide methods
for calculating the time of a SC going from an initial specific internal
voltage to a final value. However, even if this discharge time can be
explicitly calculated as a function of the internal voltage, the
opposite, i.e. formulating the internal voltage as a function of time
in a closed-form, does not hold true. In the same context, some
efforts can be found in existing literature with the aim of providing
analytical expressions for other electrical values involved in the
charge/discharge processes. P.J. Grbovic et al. [19,32] develop an
approximate expression for calculating the discharge current and
the dissipated energy as a function of time, when considering the
RC series model with constant parameters. Starting from this
approximate function for dissipated energy, [19] provides a
method, obtained through an energy balance, to estimate the
discharge time at constant power.

The present work introduces a thorough mathematical analysis
which, by using the Lambert W function, accomplishes the explicit
calculation of all the electrical variables involved in the charge/
discharge processes of SCs operated at constant power as a function
of time. Moreover, the time itself can be also explicitly calculated as
a function of any of these electrical variables and, what is more, any
variable involved in the process can be expressed as a function of
any other electrical variable. Thus, the need to resort to numerical
methods to solve the affected differential equations is completely
avoided. As a consequence, the proposed formulation is potentially
valuable to help in the sizing process of SC banks as well as in the
design of its related controllers. The methodology used in this work
resembles the one adopted by previous studies such as [33e37], in
which the results yielded by the new closed-form expressions are
verified by comparing them with those obtained by solving the
differential equations using numerical methods.

This paper is organized according to the following structure. In
section 2, an electrical analysis of the SC during a constant power
discharge is conducted, yielding an expression for the time elapsed
between two values of the internal voltage of the device. In section
3, the mathematical procedure, based in Lambert W function, that
allows to obtain analytical expressions of all the electrical values as
a function of time (or vice versa) is presented. In section 4, these
expressions are applied to a case study using data from a SC cell by
Maxwell Technologies. The conclusions of the paper are presented
in section 5. This paper includes also an appendix to summarize the
closed-form expressions derived in this contributionwhich may be
a valuable tool for engineering practitioners and researchers
t¼ C
4,P

,

2
4U2

0 þU0 ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2
0 � 4,P,R

q
� u2 �u ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4,P,R

p
�4 ,R , P

2

working in the field.
2. Electrical analysis of SCs operated at constant power

Fig. 1 shows a SC modeled by means of its capacitance, C, and its
internal resistance, R, discharging at constant power, P. The circuit
also shows the discharge current, i, the internal voltage, u, and
external voltage, uC0, of the device.

Henceforth, in all expressions, time functions in the form f ðtÞ
will be represented as f and their time derivatives as f 0. The con-
stants will be represented with capital letters. Taking into account
the balance of power, it must be fulfilled that

PþR,i2 ¼ u,i: (1)

In this case, the internal voltage of the SC bank can be expressed
as

u¼uco þ R,i: (2)

Taking into account the relationship between the current and
the internal voltage of the SC when it is discharging,

u0 ¼ � i
C
; (3)

and considering (1), the following differential equation is obtained

R ,C2,u02 þ C,u,u0 þ P ¼ 0: (4)

Dividing the expression (4) by R,C2, then

u0
2 þ u

R,C
,u0 þ P

R,C2 ¼ 0; (5)

where P> 0 for a discharge and P< 0 for a charge. Equation (5) has
two alternative solutions. The one that leads to the lower discharge
current should be chosen in order to improve the efficiency and
autonomy of the SC, that is

u0 ¼ �u
2,R,C

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4,P,R

p

2,R,C
: (6)

Thus, the time, t, needed by the internal voltage to reach each
current value, u, from the initial one, U0, can be obtain from (6) as
, ln

0
@U0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2
0 � 4,P,R

q
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4,P,R

p
1
A
3
5: (7)
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From (7), we can conclude that a closed-form expression of the
internal voltage, u, as a function of time is not obvious. As a
consequence, it is also not possible to derive such expression for
any other electrical value related with it. Thus, in order to calculate
the value of any electrical variable at a specific instant, resorting to
numerical methods or approximated expressions is, up to now,
mandatory. In the following section, the authors demonstrate that
the use of the Lambert W function makes it possible to obtain an
explicit formulation of the internal voltage, u, free of any
simplification.
3. SC model formulation based on lambert W function

3.1. Lambert W function

The Lambert W function, W(z), is defined as the inverse of the
function f¼ xex [38]; in such a way that, if f¼ z, then W(z) verifies

WðzÞe wðzÞ ¼ z: (8)

Equation (8) is known as the defining expression of the Lambert
W function [39] and it resembles the inverse trigonometric func-
tions in the sense that it is a multi-valued function on a given
domain. In general, z is a complex number but, in the particular case
of z being real, W(z) has two possible values in the interval �1/
e< z< 0, as it can be seen in Fig. 2. The branch satisfying W(z)>�1
is denoted by W0(z) and it is referred as the principal branch [38].
The secondary branch, satisfying W(z)<�1, is denoted by W�1 (z).

The Lambert W function was proposed to be applied in the so-
lution of problems embracing a wide range of practical applica-
tions, such as jet fuel and combustion, models of enzyme kinetics,
molecular physics, water movement in soil, epidemics and the
analysis of algorithms, among others [38].
3.2. Solution based on the lambert W function

Equation (7) can be reformulated as

u2 þu ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4,P,R

p
�4 ,R , P , ln

�
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4,P,R

p �
¼h;

(9)

with h being a function that follows the expression
Fig. 2. Lambert W function plot showing the two real branches: W0[z] (solid line) and
W-1[z] (dashed line).

3

h¼U2
0 þU0 ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2
0 � 4,R,P

q
�4 ,R , P , ln

�
U0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2
0 � 4,R,P

q �

� 4,P,t
C

:

(10)

In order to clear the internal voltage from (9), a change of var-
iable must be conducted. Thus, a new variable, z, with voltage di-
mensions, is defined as

z¼ � uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4,R,P

p
: (11)

Using (11), those terms appearing in (9) that are a function of the
internal voltage, u, can now be expressed as a function of the newly
defined intermediate variable, z, as

u¼�z
2

� 2,R,P
z

; (12)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4,P,R

p
¼ z
2
� 2,R,P

z
; (13)

uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4,P,R

p
¼ �4,R,P

z
: (14)

Replacing (12), (13), and (14) in (9) leads to

8,R2,P2

z2
þ2 ,R , P�4 ,R , P , ln

�
�4,R,P

z

�
¼h: (15)

Equation (15) can be reformulated as

8,R2,P2

z2
�2,R,P,ln

 
16,R2,P2

z2

!
¼ h� 2,R,P: (16)

According to the properties of natural logarithms, (16) can be
expressed as

8,R2,P2

z2
�2 ,R , P ,

"
lnð2Þþ ln

 
8,R2,P2

z2

!#
¼h�2 ,R,P:

(17)

By reassigning the terms in (17), the following equation yields

8,R2,P2

z2
�2 ,R , P , ln

 
8,R2,P2

z2

!
¼hþ2 ,R , P,½lnð2Þ�1�:

(18)

With the aim turning (18) into a more compact expression, two
new intermediate variables are defined at this point,

x¼8,R2,P2

z2
; (19)

g¼hþ2 ,R , P,½lnð2Þ�1�: (20)

Using (19) and (20) in (18) the following expression is obtained,

x�2,R,P,lnðxÞ ¼ g: (21)

Solving for x in (21) and taking into account the definition of the
Lambert W function shown in 3.1 yields
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x¼ � 2,R,P,W�1

0
B@�exp

� �g
2,R,P

�
2,R,P

1
CA: (22)

By undoing the change of variable in (19), z can now be calcu-
lated in closed-form as

z¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4,R,P

�W�1

0
B@ �exp

�
�g

2,R,P

�
2,R,P

1
CA

vuuuuuut
: (23)

Note that in (22) and (23), the secondary branch of the Lambert
W function has been used. This branch should be taken in the case
of a discharge process (P> 0). If the SC is charging (P< 0), the
principal branch must be used. The justification for this will be
clarified later. The sign preceding the second term in (23) is selected
in order to agree with the physical constraints of the device (u, is
always positive). Indeed, according to (11), z should be negative
during a discharge process, i.e. P>0.

With the aim of simplifying the upcoming expressions a
dimensionless function, g1; is defined as

g1 ¼ �W�1

0
B@�exp

� �g
2,R,P

�
2,R,P

1
CA: (24)

Thus, using (24) in (23), z can be expressed as a function of g1 as

z¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4,R,P
g1

s
: (25)
3.3. Reformulation of electric variables

Considering (12) and (25), an explicit formulation of the internal
voltage of the SC, u, as a function of g1 can be obtained as follows

u¼
ffiffiffiffiffiffiffiffi
R,P

p
,

� ffiffiffiffiffi
g1

p þ 1ffiffiffiffiffi
g1

p
�
: (26)

The rest of the electrical variables involved in the charge/
discharge process of the SC can also be easily obtained as a function
of g1, and hence, according to (24), they can be expressed in closed-
form as a function of time. For example, the discharge current can
be obtained from (3) and (26). The chain rule is needed in that case
to obtain the time derivative of the internal voltage,

u0 ¼ du
dg1

, g01 ¼
ffiffiffiffiffiffiffiffi
R,P

p
,

�
1
2
, g�0:5

1 �1
2
, g�1:5

1

�
,g01: (27)

For its part, the time derivative of g1 can be easily calculated
from (24) as

g01 ¼ � 2
R,C

,

W�1

0
B@�exp

�
�g

2,R,P

�
2,R,P

1
CA

1þW�1

0
B@�exp

�
�g

2,R,P

�
2,R,P

1
CA

¼ 2
R,C

,
g1

1� g1
: (28)

Thus, from (3), (27), and (28), the explicit formulation of the
discharge current, i, as a function of g1 can be expressed as
4

i¼
ffiffiffiffiffiffiffiffiffiffi
P

R,g1

s
: (29)

In the sameway, considering the relation between the discharge
power and current, P and i, the external voltage of the SC can be
expressed in closed-form as

uco ¼ P
i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R,P,g1

p
: (30)

Moreover, SC power losses, pd, justified in the model by the
internal resistance, can be formulated as

pd¼R,i2 ¼ P
g1
: (31)

In order to obtain a closed-form of the energy losses, ed, as a
function of g1, it should be considered that

pd¼
ded
dt

: (32)

By applying the chain rule to (32) and using the result in (31),
the following first order differential equation is obtained

P
g1

¼ ded
dg1

,g01 ¼ 2
R,C

,
g1

1� g1
,
ded
dg1

: (33)

The integration of (33) yields to the following closed-form
expression of energy losses, where g1ð0Þ stands for the value of g1
at the initial instant, t¼ 0.

ed¼
ðg1

g1ð0Þ

R,C,P
2

,

 
1�g1
g21

!
,dg1¼

R,C,P
2

,

�
1

g1ð0Þ
� 1
g1

þ ln
�
g1ð0Þ
g1

��
:

(34)

Other important variables in the analysis of SCs can be also
obtained as a function of g1. Thus, the following equations show,
respectively, closed-form expressions of the instantaneous energy
stored in the cell, estored, the energy discharged since an initial state,
edch, and the state of charge (SOC).

estored ¼
1
2
,C ,u2 ¼R,C,P

2
,

�
g1 þ

1
g1

þ2
�
; (35)

edch ¼
1
2
,C ,

�
U2
0 �u2

�
¼R,C,P

2
,

 
U2
0

R,P
� g1 �

1
g1

�2

!
; (36)

SOC¼ estored
emax

¼R,P
U2
N

,

�
g1 þ

1
g1

þ2
�
: (37)

Notice that in (37), UN stands for the rated voltage of the SC,
wich, for a single cell, is typically within the range 2.7e3 V, and emax

is the energy stored at that voltage.
It is important to note that in (22)-(24) and (28) the secondary

branch of the Lambert W function,W�1, was selected. In fact, this is
the correct choice during a discharge process, i.e. P>0. Indeed,
under that operating conditions g decreases with time according to
(10) and (20) and thus, the same can be said for the argument of the
Lambert W function in (24). Considering Fig. 2, the secondary
branch of the Lambert W function leads to a positive decreasing
value of g1 while the principal branch leads to a positive increasing
value. The first of these alternatives must be selected as, according
to (29), the discharge process implies an increasing current and
thus, a decreasing value of g1. On the contrary and for the same
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reasons, during a charge process, i.e. P<0, the principal branch of
the Lambert W function, W0, should be used in (22)-(24) and (28).

From equation (24), an expression yielding time as a function of
g1 can be obtained. According to the properties of the Lambert W
function,

�exp
� �g
2,R,P

�
2,R,P

¼ � g1,expð�g1Þ: (38)

From the computation of the natural logarithm of both sides of
(38),

g¼2 ,R , P,½g1 � lnð2 ,R , P , g1Þ�: (39)

For the sake of simplicity, and from (10) and (20),

g¼A� 4,P
C

,t; (40)

where A is a constant measured in V2,
Table 1
Electrical parameters of the SC.

U0 (V) P(W) C (kF) R (mU)

2.7 100 1.2 0.58

A¼U2
0 þU0 ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2
0 � 4,R,P

q
�4 ,R , P , ln

�
U0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2
0 � 4,R,P

q �
þ2 ,R , P,½lnð2Þ�1�: (41)
From (39)-(41), time as a function of g1 can be obtained,

t¼At �R,C
2

,ðg1 � lnð2 ,R , P , g1ÞÞ; (42)

where At is a constant measured in seconds,

At ¼A,C
4,P

: (43)

Once all variables are expressed as a function of g1, it is inter-
esting to obtain g1 as a function of them in order to have a set of
equations that can be solved for any of the said variables, as well as
their respective inverses. Equation (24) already shows g1 as a
function of time. From (29), g1 can be obtained as a function of the
current,

g1 ¼
P

R,i2
: (44)

According to the definition of power losses, pd,

g1 ¼
P
pd

: (45)

As shown in (45), g1 represents the relationship between the
charge/discharge power, P, and the power dissipated at the internal
resistor, pd, thus g1 being dimensionless.

From (30), g1 can be obtained as a function of the external
voltage, uco,

g1 ¼
u2co
R,P

: (46)

Equation (26) can be solved for g1 to express the said variable as
a function of the internal voltage, u,

g1 ¼
u

2,R,P
,
�
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4,R,P

p �
� 1: (47)
5

From (34), g1 can be obtained as a function of the energy losses,
ed. Equation (34) can be rewritten as

1
g1

� ln
�
1
g1

�
¼ 1

g1ð0Þ
þ lnðg1ð0ÞÞ �

2,ed
R,C,P

: (48)

Equation (48) can be expressed compactly,

1
g1

� ln
�
1
g1

�
¼ A1 � B1,ed; (49)

by defining two constants,

A1 ¼
1

g1ð0Þ
þ lnðg1ð0ÞÞ; (50)

B1 ¼
2

R,C,P
: (51)

A1 being dimensionless, whereas B1 is measured in J�1. Therefore,
from (49),
g1 ¼
�1

W0ð � expðB1,ed � A1ÞÞ
: (52)

When the variable g1 is calculated as a function of energy losses,
ed, the principal branch of the Lambert W function must be always
taken, independently of the sign of P. Therefore in (52) the W0(x)
form has been used.

Finally, from (35) and (37), g1 can be expressed as a function of
estored, edch; and SOC,

g1 ¼
estored
R,C,P

� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�estored
R,C,P

�2
� 2,

estored
R,C,P

r
; (53)

g1 ¼
edch

2,R,C,P
� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� edch
2,R,C,P

�2
� edch
R,C,P

r
; (54)

g1 ¼
U2
N,SOC
2,R,P

� 1þ UN,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
UN,SOC
2,R,P

�2
� SOC

R,P

s
: (55)

Once all the electrical variables and time are obtained as a
function of g1 and vice versa, any of the said variables can be
expressed as a function of the rest of them. For instance (29), and
(52) can be combined in order to obtain the current as a function of
the energy losses, iðedÞ,



Table 2
Constants used in case study.

g1ð0Þ A (V2) AtðsÞ A1 B1(J
�1)

123.6816 14.0381 42.1143 4.8258 0.0287
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iðedÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P
R
,W0

	� expðB1,ed � A1

s
; (56)

and (42), (43), and (45) can be combined to compute how long it
takes the power losses, pd, to reach a specific value,

tðpdÞ¼At �R,C
2

,

"
P
pd

� ln

 
2,R,P2

pd

!#
: (57)
Fig. 3. Values of g1 as a function of tim

Fig. 4. Internal voltage as a function of tim

6

As in these examples, the same procedure could be followed to
express any variable as a function of the rest.

4. Results and discussion

In this Section, the equations deduced in Section 3 are utilized to
obtain all the electrical variables involved in the discharge of a SC
whose initial internal voltage, U0, discharge power, P, and electrical
resistance and capacitance, R and C, are known.

A SC discharge process starting from a 2.7-V initial voltage and
at a 100-W constant power value during 30 s is studied. The elec-
trical parameters used in this case study are those in Table 1, cor-
responding to a 1.2 kF cell manufactured by Maxwell Technologies.

Table 2 shows the values of g1ð0Þ (g1ðtÞ at t¼ 0), A, At, A1, and B1,
obtained from (24), (41), (43), (50), and (51), respectively.

From the values given in Tables 1 and 2, it is now possible to
define the function gðtÞ with (40). Once gðtÞ is built, the function
e when using (10), (20) and (24).

e when using (10), (20), (24), and (26).



Fig. 5. Current as a function of time when using (10), (20), (24), and (29).

Fig. 6. Power losses as a function of time when using (10), (20), (24), and (31).
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g1ðtÞwill be created with (24). To obtain, the internal voltage, u, the
discharge current i, the dissipated power, pd, and the energy losses
ed, as a function of time, function g1ðtÞ should be replaced in (26),
(29), (31), and (34), respectively. Other electrical variables, such as
stored internal energy, estored, discharged energy, edch, or the state of
charge, SOC, can be obtained using (35), (36), and (37).

Figs. 3e7 show, respectively, the values of g1, u, i, pd, and ed as a
function of time, obtained by utilizing the equations proposed in
Section 3 for instants taken every 3 s. These results coincide with
those that would have been obtained by solving the equations by
using numerical methods.

The electrical variables can also be expressed as a function of
each other with no need for their being previously computed with
respect to time. For instance, Fig. 8 shows the values of iðedÞ, i.e. the
current as a function of the energy losses, by utilizing (56)
straightforwardly, and Fig. 9 shows the values of pdðedÞ, i.e. the
power losses as a function of the energy losses, by combining (31)
7

and (52), which yields

pdðedÞ¼ � P ,W0ð� expðB1 , ed �A1ÞÞ (58)
5. Conclusion

In this paper, the Lambert W function is utilized to compute the
main electrical variables involved in a SC constant-power charge/
discharge cycle. The classical RC-series model is considered and the
proposed equations render exact results because no simplifications
are made. Therefore, the said results are the same as those obtained
when solving the participating differential equations by utilizing
numerical methods. However, the proposed strategy is faster than
the said numerical methods because all variables can be computed
at a given instant from the electrical resistance and capacitance, the



Fig. 7. Energy losses as a function of time when using (10), (20), (24), and (34).

Fig. 8. Current as a function of the energy losses when using (56).

Fig. 9. Power losses as a function of energy losses when using (58).
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power, and the initial internal voltage straightforwardly. Any elec-
trical variable involved in the charge/discharge processes can be
expressed as a function of time, and as a function of any other
electrical variables, by virtue of the proposed formulas. Therefore, a
thorough and theoretical basis for developing novel sizing and
control techniques for SCs when charged/discharge at constant
power is presented.
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