
PHYSICAL REVIEW B 102, 081303(R) (2020)
Rapid Communications

Quantum Hall effective action for the anisotropic Dirac semimetal
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We present a study of Hall transport in semi-Dirac critical phases. The construction is based on a covariant
formulation of relativistic systems with spatial anisotropy. Geometric data together with external electromagnetic
fields is used to devise an expansion procedure that leads to a low-energy effective action consistent with the
discrete PT symmetry that we impose. We use the action to discuss terms contributing to the Hall transport and
extract the coefficients. We also discuss the associated scaling symmetry.
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I. INTRODUCTION

Low-energy effective actions have become an important
tool to study topological responses of quantum phases of
matter [1]. The predictive power of effective actions comes
from the fact that they mainly rely on the symmetries of the
system in question, hiding our ignorance about the micro-
scopic details of the system in a set of parameters. Although
initially applied to phases with large symmetry groups such
as Galilean or Poincaré, in recent years effective theories
have been used to shed light on states with more exotic or
reduced symmetry groups. These symmetries can be realized
in various topological materials undergoing quantum phase
transitions from a conductor to a band insulator. They emerge
when topological defects occurring at isolated points in mo-
mentum space collide. Such defects are symmetry protected
points where valence and conduction bands touch.

An interesting class corresponds to the quantum critical
point connecting a band insulator and a graphenelike state1

(see Fig. 1). The critical phase, known as the semi-Dirac
phase, is semimetallic with electrons dispersing linearly in
one direction and quadratically in the other [2–10]. Exam-
ples of systems that exhibit such phases in two dimensions
include TiO2/VO2 heterostructures [11], (BEDT-TTF)2I3 or-
ganic salts under pressure [12], photonic metamaterials [13],
and certain non-Hermitian systems [14]. Semi-Dirac phases
reveal distinct features, for example, in transport phenomena
[15,16] or driven by light [17–19].

1At the critical point, the ±π Berry’s phase of each Dirac cone
annihilate.
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In [5] it has been shown numerically that when a magnetic
field is applied to these systems, the topological response of
such phases is governed by two independent nondissipative
viscosities, in contrast to isotropic phases where a single Hall
viscosity is present [20,21]. However, the method did not
provide an explanation for the vanishing of a possible third
viscosity, which is allowed by the continuous symmetries.

To shed light on the generic low-energy properties of such
quantum Hall states, we construct an effective action for sys-
tems with a semi-Dirac phase. Our construction contributes
to the quest of understanding Hall viscosities; nondissipative
transport coefficients that emerge in the context of topolog-
ical order [21–27], fluid dynamics [28–40], or active matter
[41–46]. Initially thought of as an elusive transport property,
Hall viscosity has been experimentally identified in both hard
[47] and soft [48] condensed matter experiments.

In this Rapid Communication we present a step-by-step
construction of the low-energy effective theory. First we study
the coupling of fermions to the background geometry and
gauge fields in a microscopic model. The coupling to the
curved background is not unique, unless extra geometric
constraints are invoked [49], but this ambiguity is hidden in
the coefficients of the effective action. In the following sec-
tion we present the main construction of the effective action
including symmetries, derivative counting, and contributing
terms up to the second order in the expansion. The main
properties of the effective action derive from the breaking of
the would-be 2 + 1 Lorentz group of a graphenelike phase
to a 1 + 1 Lorentz subgroup by a spatial vector that marks
the anisotropic direction, and by an unbroken discrete PT
symmetry. The technical details are relegated to the Sup-
plemental Material [50]. Finally, we present the topologi-
cal transport of the semi-Dirac states that follows from our
effective action. We show that a hitherto overlooked trans-
port coefficient, due to antisymmetric strains, is necessarily
present in such phases. We close with a discussion of the
results.
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FIG. 1. Spectrum of the Hamiltonian. � = 0 corresponds to the
semi-Dirac critical point.

II. THE SEMI-DIRAC SYSTEM

The low-energy Hamiltonian describing the anisotropic
semi-Dirac semimetal reads

H = d(p) · σ, (2.1)

where σ is a vector of Pauli matrices. d(p) = (px, 0,
p2

y

2m −
�) with m being a parameter with dimensions of mass. In
Fig. 1 we show the three phases captured by the Hamiltonian
equation (2.1), where the semi-Dirac phase is obtained when
� = 0.

When we study the coupling to background fields it is more
convenient to use the action formalism

S =
∫

d3x
[
iψ̄γ aPb

a∂bψ − ψ̄M(�, la∂a)ψ
]
, (2.2)

where γ a = (σ3,−iσ2, iσ1) are 2 + 1 Dirac matrices. One can
view the system as having an effective Dirac mass which
is momentum dependent, i.e., M(�, la∂a) = � − 1

2m (la∂a)2.
The form of the action naturally implies that transverse deriva-
tives must be of the same order as longitudinal derivatives
squared. We aim to have the theory in a covariant form, which
will facilitate putting the electrons on a curved space-time.
Therefore we have introduced the anisotropy vector la =
(0, 0, 1), and the transverse projector

Pb
a = δb

a − lalb, lala = 1. (2.3)

la breaks the SO(2, 1) Lorentz symmetry present for standard
relativistic fermions down to SO(1, 1) × C2, where SO(1, 1)
corresponds to boosts in the plane transverse to la and C2 180◦
rotations on the spacelike plane containing vector la. In fact,
such a discrete rotation is equivalent to the transformation
la → −la. The discrete symmetries can be understood from
the point of view of a graphenelike model as proposed in
[5]. Ignoring the spin microscopic degrees of freedom, it
consists of two species of fermions organized by valleys on
two hexagonal sublattices. Such fermions exhibit parity P
and time-reversal symmetry T . Anisotropy stems from the
mass deformation that breaks separate symmetries, however,
preserving the PT combination. In addition there is the
graphene’s inversion symmetry that we refer to as P∗ � C2

that acts by sending �x → −�x, and simultaneously interchang-
ing the sublattice atoms and valleys [51].

In the semi-Dirac phase � = 0 the action enjoys an addi-
tional anisotropic scaling symmetry

Pb
a xb → λ2Pb

a xb, laxa → λlaxa, ψ → λ−3/2ψ. (2.4)

The scaling dimensions deduced from the fermionic action for
the derivatives and gauge potentials are[

Pb
a∂b

] = [
Pb

a Ab
] = 2, [la∂a] = [laAa] = 1. (2.5)

Then, for la = (0, 0, 1) the field strengths scaling dimensions
are [Ey] = [B] = 3 and [Ex] = 4, while the energy has dimen-
sions [E ] = [∂t ] = 2. The scale invariance is reflected on the
dependence of the energy of Landau levels with the magnetic
field E ∼ B2/3 [2,52]. The derivative expansion we propose
below will contain terms ∂t/ωc ∼ �x

B∂x ∼ O(ε2) and �
y
B∂y ∼

O(ε), for ε ∼ (B/m2)−1/3 � 1. The cyclotron frequency and
magnetic lengths are defined (up to constant factors) as

ωc = 1

�x
B

=
(

B2

m

)1/3

∼ m

ε2
, �

y
B = 1

(mB)1/3
∼ ε

m
. (2.6)

III. COUPLING TO BACKGROUND FIELDS

As already pointed out, our goal is to construct the gen-
erating functional of the semi-Dirac system in the presence
of a magnetic field. To do so, it is necessary to couple the
fermionic action equation (2.2) to external U (1) gauge fields
and a curved background which will allow us to predict the
response of the n-point functions of the U (1) and the stress
energy tensor by functional differentiation.

First we will introduce a background metric gμν and an
orthonormal basis ea of tangent vectors, ea

μgμνeb
ν = ηab

(inverse vielbeins). In addition we have introduced a set of
dual cotangent one forms Ea (vielbeins), such that

〈Ea, eb〉 = δa
b . (3.1)

The metric can be determined by the vielbeins gμν =
ηabEa

μEb
ν . Then, the generalization of Eq. (2.2) to curved

space-time involves replacing the derivative, Dirac matrices,
and vector la in flat space by their pullbacks to the tangent
space ∂a = ea

μ∂μ, etc.
Actually, given the anisotropic nature of the system it

is convenient to split the vielbeins into their transverse and
longitudinal parts:

êa
μ = Pb

a eb
μ, Ê a

μ = Pa
b Eb

μ, (3.2)

lμ = laea
μ, lμ = laEa

μ. (3.3)

It is also convenient to decompose the 2 + 1 Poincaré
generators (Pa, Jab) in terms of the broken and unbroken ones,
therefore we introduce the following splitting:

K̂ = 1
2 ε̂abJab, ĵa = Jablb, (3.4)

π = Pala, p̂a = PbPb
a , (3.5)

where the transverse fully antisymmetric tensor is defined
as ε̂ab = εabclc2. π, pa generate longitudinal and transverse

2We define εabc as the fully antisymmetric symbol, therefore εμνρ =
εabcea

μeb
νec

ρ has components
√−gε012 = 1.
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translations, respectively, and K̂ is the SO(1, 1) boost genera-
tor. The broken generators have been collected in ĵa.

The standard way of minimally coupling relativistic
fermions to gauge fields and curved space-time relies on
replacing the partial derivative by a covariant one:

∂μ → Dμ ≡ ∂μ + ieAμ + 1
2ωab

μJab, (3.6)

where Aμ is the U (1) gauge field, Jab = 1
4 [γ a, γ b] the Lorentz

algebra generators, and ωab
μ the so-called Levi-Civita spin

connection, defined as

ωab
μ = −Ea

ν∇μebν, (3.7)

where we set the torsion to be vanishing and choose ∇μ to be a
covariant derivative constructed with the Christoffel symbols.
Notice that this definition is covariant under the full SO(2, 1)
group of local Lorentz transformations, while the system is
only invariant under the SO(1, 1) subgroup that keeps the
vector la fixed, so this is not the most general possible form
of the covariant derivative. To generalize it, it is convenient to
split the spin connection into its longitudinal and transverse
parts,

ωab
μ = ω̂με̂ab + 2θ̂ [a

μlb], (3.8)

where ω̂μ = 1
2 ε̂abω

ab
μ and θ̂a

μ = ωab
μlb, which after plug-

ging it into the covariant derivative produces

Dμ = ∂μ + ieAμ + ω̂μK̂ + θ̂a
μĵa. (3.9)

In particular, θ̂a
μ takes the form

θ̂a
μ = êaνTμν + lμêaνTν, (3.10)

where Tμν = ∂μlν − ∂ν lμ and Tμ = lνTνμ. Actually, when a
Lorentz transformation generated by K̂ is applied,

Ê a
μ → �(x)ε̂a

bÊ b
μ, lμ → lμ, (3.11)

the transverse part of the spin connection transforms as an
Abelian connection

ω̂μ → ω̂μ + ∂μ�, (3.12)

whereas θ̂a
μ transforms as a vector.

At this point we are ready to couple the fermionic field to
the background geometry, introducing a more general covari-
ant derivative which transforms properly under SO(1, 1) boost
and local U (1) gauge transformations,

Dμ = ∂μ − iAμ + 1
2ωμ

abJab + αθ̂μ
aĵa, (3.13)

where α is an unknown coupling constant, whose value could
be determined by finding an UV completion. However, from
our effective field theory perspective, its specific value is
irrelevant, because it would just be hidden in the particular
values of the coefficients appearing in the effective action.
With this covariant derivative we can write the gauge and
diffeomorphism invariant action

S =
∫ √−g

[
iψ̄γ aêa

μDμψ − �ψ̄ψ + 1

2m
lμlνDμψ̄Dνψ

]
.

(3.14)

The action is invariant under local gauge, diffeomorphism,
and boost transformations, that act on the external fields as
follows:

δAμ = LχAμ + ∂μ�, (3.15)

δlμ = Lχ lμ, (3.16)

δêa
μ = Lχ êa

μ + �ε̂a
bêb

μ, (3.17)

where Lχ is the Lie derivative along the vector χμ = ξ aêa
μ +

κlμ. Given the symmetry transformations it is possible to
construct the covariant tensors Fμν = 2∂[μAν], R̂μν = 2∂[μω̂ν],
Tμν = 2∂[μlν], which will be used as the building blocks of
the effective field theory we will discuss below. We will
collectively refer to them as Xμν . In addition, we also have
the Riemann tensor built from the metric, Rμ

νρλ.
In fact, we would like to emphasize that lμ can be inter-

preted as the source that couples to the momentum current
along the anisotropic direction. Therefore, the two form Tμν

corresponds to its field strength, in analogy with the electro-
magnetic field (Fμν) and the gauge field. Alternatively, Tμν

appears in the proposal of [49] as the torsion on a Newton-
Cartan-like space-time.

IV. THE EFFECTIVE ACTION

In a quantum Hall state the fermions are gapped by the
magnetic field and can be integrated out. The resulting ef-
fective action will be a local functional of the background
sources, that must be invariant under the local symmetry trans-
formations (3.15) and discrete symmetries of the fermionic
action, in particular PT . Local invariance can be made man-
ifest using covariant terms to construct the effective action.
Discrete symmetries are then used to determine which of these
terms are allowed. Once these are identified, the strategy will
be to organize them in a derivative expansion, assuming the
fields are slowly varying with respect to the characteristic
length and time scales of the problem. Given this, one can
write down all possible terms up to a required order in
the expansion and include the combinations that respect the
discrete symmetries. We present the technical details in the
Supplemental Material [50].

The derivative expansion is organized according to the
physics of Landau levels in the semi-Dirac semimetal. Con-
sistent with the anisotropic scaling of the fermionic action,
we assign different orders to transverse and longitudinal
derivatives Pb

a∂b ∼ O(ε2), la∂a ∼ O(ε), where ε � 1 is a
parameter we use to characterize the order. In general, the
terms we present can have contributions at different orders
in the expansion, so the order we assign always refers to the
contribution of lowest possible order.

The magnetic field determines the gap, therefore we assign
B ∼ O(ε0). Moreover, we expect the chemical potential to
be finite and nonzero, At ∼ O(ε0). Finally, in analogy with
the isotropic case, we assume that the electric field is small
compared to the magnetic field, Ex ∼ Ey ∼ O(ε). This implies
the following order in the expansion for the vector potentials
Ax ∼ By ∼ O(ε−1), Ay ∼ O(ε0). The metric and vielbeins
are always nonvanishing, even when the geometry is flat,
so Ea ∼ ea ∼ O(ε0). This implies that the components of
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the transverse spin connection will be higher order than the
electric fields ω̂μ ∼ O(ε2).

Now we use the fact that there is a vector lμ (with trans-
verse projector P ν

μ ).
For each field strength Xμν (X = F, R̂, T ) we can define

two vectors and a scalar:

Xμ = lαXαμ, X̃μ = PμαεανλXνλ, X⊥ = εμνλlμXνλ. (4.1)

Note that the norm of Fμ (or the dual version F̃μ) is ∼B, so
the order in the derivative expansion is O(ε0). With the norm
we can define an O(ε0) scalar B2

y = FμFμ ∼ l2
y B2. Moreover,

one can construct a second O(ε0) scalar using F⊥: B2
0 = F 2

⊥ ∼
l2
0 B2. We will refer to them collectively as BA.

Armed with the above formalism we are in a position to
write down the effective action. To the lowest order O(ε0)
there are just two possible terms in the action

L0 = −E (BA) + ν

4π
εμνλAμ∂νAλ. (4.2)

The first term is an arbitrary function of BA. This can be
thought of as energy density of the quantum Hall state. The
second term is the topological Chern-Simons term. At the
next level in the expansion [O(ε)] the terms that respect PT
symmetry are

L1 =
6∑

i=1

cPT
i (BA)SPT

i , (4.3)

where

SPT = {S1, S2, F⊥S3, F⊥S4, S5, S6},
cPT (BA) = {c1, c2, c̄3, c̄4, c5, c6},

(4.4)

and we define

S1 = lμ∂μBy, S2 = lμ∂μB0, S3 = FμTμ, S4 = F̃μTμ,

S5 = εμνλFμ∂νFλ, S6 = εμνλFμ∂νF̃λ.

(4.5)

The anisotropy leads to a plethora of new terms at O(ε2),
which we list in [50]. However, given our interest in topo-
logical transport we note that out of all these terms the
one associated with the so-called Euler current ∼AμJμ

E (u) is
of particular importance because it gives rise to topological
transport [53,54]. The current is defined using the Riemann
tensor and unit norm vectors uμ, uμuμ = σ , where σ = ±1,

Jμ
E (u) = 1

8π
εμνλεαβγ uα

(
∇νuβ∇λuγ + σ

2
Rνλβγ

)
. (4.6)

From all the possible terms there are only three independent
ones corresponding to uμ ∝ lμ, Fμ, F̃μ, and only the last
one contributes to PT preserving topological transport with
a coefficient κ . Another O(ε2) term that will be relevant
is T⊥, which is of the form of a torsional Hall viscosity
involving only the longitudinal projection of the vielbeins.3

An analogous term was discussed in [49].

3Even though the torsion field T a
μν = −2(∂[μE a

ν] − ωa
b[νEb

μ] )
vanishes by construction, the anisotropy allows one to introduce the
Lorentz invariant one form lμ = laEa

μ with field strength Tμν.

Having an effective action we can now proceed to study
the responses of an anisotropic quantum Hall state to external
perturbations.

V. HALL TRANSPORT

We apply the formalism developed so far to study DC
responses to electric field, strain, and vorticity. Among these
responses are topological responses whose importance stems
from the fact that they often provide us with universal char-
acteristics of quantum states. Such universal features are
indispensable for a better understanding of strongly coupled
fractional Hall states.

We define the transverse and longitudinal components of
the stress tensor from the variation of the effective action with
respect to vielbeins and gauge fields:

δS = −
∫

d3x
√−g (τμ

aδea
μ + jμδAμ). (5.1)

The simplest of these responses is the Hall conductivity. It
follows from the Chern-Simons term and it is given by

σxy = ν

2π
, (5.2)

which is the same as in the isotropic case. We will next
focus on the response of the stress tensor to applied strains.
In our geometric formulation it will correspond to the metric
fluctuations. Such fluctuations can be easily embedded in our
construction as independent variations of vielbeins. A second
variation of the action with respect to vielbeins gives the
stress-stress two-point functions from which the transport co-
efficients can be extracted via Kubo formulas for the viscosity
tensor through appropriate projections [55]

η
μ ν

a b = lim
ω→0

i

ω

〈
τμ

aτ
ν
b

〉
. (5.3)

Below we show that anisotropic states preserving PT sym-
metry can have two independent Hall contributions to the
viscosity tensor corresponding to such responses. The vielbein
variations naturally include nonisotropic and nonsymmetric
viscous responses. Therefore our formulation is analogous to
related frameworks that introduce a nonzero torsion [49,56–
61]. Before extracting the coefficients we note that the time-
reversal odd viscosity tensor in a PT -invariant theory can be
decomposed as follows:

ηi jkl = 8ηisoPi jkl
iso + 8ηnemPi jkl

nem + 8ηvorPi jkl
vor , (5.4)

where the projection tensors4 are defined as

Pi jkl
iso = − 1

16 [εikδ jl + (i ↔ j) + (k ↔ l ) + (ik ↔ jl )],

Pi jkl
nem = 1

8 l (i l̃ j)δlk − (i j ↔ kl ),

Pi jkl
vor = 1

8 l [i l̃ j]δlk − (i j ↔ kl ), (5.5)

4The tensors are orthogonal to each other and the parity-even part
of the viscosity tensor with respect to the all-index contraction;
however, they do not satisfy the P2 = P condition, usually implied
by the name projector.
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where l̃ i = εi j l j . Using the above formulas we can extract
Hall responses in the semi-Dirac phase [50]. The first coef-
ficient is a modification of the isotropic contribution

ηiso = κ

4π
B − 1

2
c5B2 − 1

2
f11. (5.6)

In addition there is another Hall viscosity encoding responses
of symmetric strains, present due to the anisotropy. These
properties are characteristic for the nematic phase so we refer
to it as nematic [62].

ηnem = 1
2 c5B2 + 1

2 f11. (5.7)

We do not find any other anisotropic contribution to the
symmetric part of the viscosity tensor in the semi-Dirac phase,
although arguments based on a continuous symmetry group
do not forbid a third coefficient. Finally we identify a hitherto
neglected response to vorticity that appears in the semi-Dirac
phase:

ηvor = 1
2 c5B2 − 1

2 f11; (5.8)

however, notice that this term is also responsible for a re-
sponse in the antisymmetric stress tensor due to symmetric
strain.

In general, the coefficients are arbitrary functions of the B
field and �. For � � B the dependence will be fixed by the
scaling symmetry of the semi-Dirac point, up to corrections
suppressed by �/B. The Chern-Simons and Euler current
terms have dimensionless coefficients, while

c5 ∼ B−1, f11 ∼ B. (5.9)

Therefore, at the semi-Dirac point both odd viscosities have a
similar dependence with the magnetic field ηT ∼ ηI ∼ B, but
deviations are expected for � �= 0.

VI. DISCUSSION

Recent interest in odd responses is stimulated by exper-
iments with fluids that break parity. Such fluids emerge in
the context of electron hydrodynamics as well as biological
setups that can be modeled by fluid membranes. Anisotropy
can naturally appear for such flows and could modify flow
solutions and physical outcome.

Motivated by quantum Hall physics of semi-Dirac critical
phases we have developed a formalism that allows one to
write down effective actions for such systems. A key ingre-
dient in the construction is a covariant prescription allowing
a coupling to geometry. The anisotropy is generated by a
spatial vector that we treat as an independent field. Equipped
with this construction we proposed an expansion scheme that
allowed us to write down an effective action for the semi-
Dirac phase. As an application of the formalism we calculated
odd responses for this system showing independent contri-
butions to the viscosity tensor. We noted that PT symmetry
restricts the components to two independent coefficients. Fi-
nally, we showed that semi-Dirac materials are natural hosts
for torsional-like responses.

The couplings in the effective action can depend on the
microscopic physics of the system, in particular on the band
topology. As long as the topological bands do not spoil the
semi-Dirac symmetries, our construction will be robust. In
general all the coefficients in the effective action (except
the filling fraction and κ) can vary continuously with the
ratio |�/B2/3|, as long as both quantities are nonzero. For
|�/B2/3| � 1 (in units of m) we expect a universal depen-
dence of the coefficients with the magnetic field, with powers
that are fixed by the scaling symmetry of the semi-Dirac
phase. In the opposite limit one abandons the regime of
the semi-Dirac phase, so the derivative expansion we have
introduced is not expected to remain valid.

Semi-Dirac phases can also be found in 3+1 dimensions.
In principle, this method can be used to systematically con-
struct the effective theory for such systems as well. This pro-
gram has already been initiated to describe anomaly-induced
transport [49,63].
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