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Abstract

This paper extends the applicability of the combined use of the virtual element method (VEM)
and the boundary element method (BEM), recently introduced to solve the coupling of linear
elliptic equations in divergence form with the Laplace equation, to the case of acoustic scattering
problems in 2D and 3D. As a model we consider a bounded obstacle with piecewise constant
refractive index, and a time harmonic incident wave, so that the scattered field, and hence the
total wave as well, satisfies the homogeneous Helmholtz equation in the unbounded exterior region.
The resulting coupled problem is complemented with suitable transmission conditions and the
Sommerfeld radiation condition at infinity. The usual primal formulation and the corresponding
VEM approach are then employed in the obstacle, which is combined, by means of either the
Costabel & Han approach or a modification of it, with the boundary integral equation method in
the exterior domain, thus yielding two possible VEM/BEM schemes. The first one of them, which
is valid only in 2D, considers the main variable and its normal derivative as unknowns, whereas
the second one, valid in 2D and 3D, adds the trace of the original unknown. In both procedures,
the above mentioned boundary unknowns are non-virtual, and hence they are approximated by
usual finite element subspaces. In addition, the discrete setting certainly requires virtual element
subspaces for the main unknowns, and suitable projection and interpolation operators that are
employed to define the corresponding discrete bilinear forms. The well-posedness of the continuous
and discrete formulations are established, and the key aspects of the associated analyses include
the fact that the boundary integral operators of the Helmholtz equation are compact perturbations
of those for the Laplacian, the use of the Fredholm alternative, and the introduction of Galerkin
projection-type operators. Finally, Cea-type estimates and consequent rates of convergence for the
solutions are also derived.

1 Introduction

In the recent paper [8] we introduced and analyzed, up to our knowledge for the first time, the
combined use of VEM and BEM for numerically solving transmission problems in 2D and 3D. An
elliptic equation in divergence form holding in a bounded region, coupled with the Laplace equation in
the corresponding unbounded exterior domain, in addition to transmission conditions on the interface
and a suitable radiation condition at infinity, were considered as the respective model. In turn, the
Costabel & Han approach and a suitable modification of it that was motivated by the 3D case, but
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not restricted to that dimension, were employed there to combine the primal VEM approach in the
interior domain with the boundary integral equation method in the exterior one. In this way, besides
the original variable of the model, its normal derivative in 2D, and both its normal derivative and
its trace in the 3D case, were introduced as non-virtual unknowns. A priori error estimates and
optimal rates of convergence for the solution as well as for a fully calculable projection of the virtual
component of it were provided in [8]. Additionally, several numerical examples in 2D illustrating the
performance of the VEM/BEM schemes, were also reported there. To some extent, one could argue
that, irrespective of the particular transmission problem studied in [8], the main contribution of this
work is, perhaps, having settled some fundamentals that would help to apply later on the coupling
of VEM and BEM to any other model of interest that has been previously solved by the coupling of
BEM with the classical finite element methods (or other Galerkin-type procedure). In this regard,
we stress that the advantages of using VEM, which are certainly transferred to its combination with
BEM, include the simplicity of the respective coding, and the fact that the elements of the meshes can
be chosen as nonoverlapping nonconvex regions of very general shape. For very detailed bibliographic
discussions on VEM and BEM, separately, we refer the interested reader to [8, Section 1] and the
references there in indicated.

In virtue of the above comments, and aiming to provide further results of interest regarding the
coupling of VEM and BEM, we now address its applicability to the numerical solution of acoustic
scattering problems in 2D and 3D. The rest of this work is organized as follows. In Section 2 we
describe the model problem and establish a corresponding uniqueness result. Then, the boundary
integral equation method for the Helmholtz equation, and the coupling procedures to be employed,
namely the Costabel & Han one and a suitable modification of it, are introduced in Section 3. Next, in
Section 4 we use the Fredholm alternative to prove the well-posedness of the continuous formulations
arising from both coupling methods. The 2D discrete VEM/BEM schemes for each one of the coupling
procedures from Section 4 are introduced and analyzed in Section 5. More precisely, this section is
split into four subsections dealing with some preliminary definitions and results on VEM, the explicit
definitions of the discrete schemes, the solvability analysis of each one of them, and the respective
a priori error estimates and consequent rates of convergence. In particular, the use of Galerkin
projection-type operators and compactness arguments play a key role in the derivation of the associated
discrete inf-sup conditions. Finally, in Section 6 we follow basically the same structure of Section 5 to
introduce and analyze our discrete VEM/BEM scheme in 3D, which uses the aforementioned modified
Costabel & Han coupling method.

We end this section with some notations to be employed throughout the rest of the paper. In
particular, given a real number r ≥ 0 and a polyhedron O ⊆ Rd, (d = 2, 3), we denote by 󰀂 · 󰀂r,O
and | · |r,O, respectively, the norm and seminorm of the usual Sobolev space Hr(O) (cf. [12]). Also,
we use the convention L2(O) := H0(O), and for all t ∈ (0, 1] we let H−t(∂O) be the dual of Ht(∂O)
with respect to the pivot space L2(∂O). In addition, we set P−1 = {0}, and for a nonnegative integer
m, Pm is the space of polynomials of degree ≤ m. Then, given a domain D ⊆ Rd, d ∈ {2, 3}, Pm(D)
stands for the restriction of Pm to D.

2 The model problem

Given d ∈ {2, 3}, let θ : Rd → C be a complex-valued function satisfying Re
󰀃
θ(x)

󰀄
> 0 and Im

󰀃
θ(x)

󰀄
≥

0 for all x ∈ Rd, and such that 1− θ(x) has a compact support in Rd. In addition, let κ > 0 be given
together with a function w satisfying the Helmholtz equation ∆w + κ2w = 0 in Rd. Then we seek
u : Rd → C satisfying

∆u+ κ2θ(x) u = 0 in Rd,

u = w + us in Rd,
(2.1)
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where us satisfies a homogeneous Helmholtz equation and the outgoing Sommerfeld radiation condition

∂us

∂r
− ıκus = o(r

1−d
2 ) , (2.2)

when r := |x| → ∞ uniformly for all directions x/|x|. The system (2.1)-(2.2) governs the propagation
of time harmonic acoustic waves of small amplitude in an inhomogeneous and (possibly) absorbing
medium. The wave motion is caused by a time harmonic incident field w of amplitude κ. A common
choice for w in the 2D case is the plane wave w(x) := exp(ıκν · x) where ν is a fixed unit vector.
The solution u of our problem is determined by the scattered field us that satisfies the Sommerfeld
radiation condition (2.2). We refer to [4, 11] for more information about the physical background of
the problem. For the sake of simplicity, we assume here that the obstacle is constituted of diverse
materials, each one of them having constant refractive index θ. In this way, we assume that there
exists a set of Lipschitz polygons {Ωi : i = 1, . . . , I} such that supp(1 − θ) = ∪I

i=1Ωi and θ|Ωi ∈ C,
∀i = 1, . . . , I. Concerning the solvability of (2.1)-(2.2), we first have the following result.

Theorem 2.1. A function u ∈ H1
loc(Rd) satisfying (2.1)-(2.2) with w = 0 should vanish identically

everywhere.

Proof. We restrict ourselves to d = 2, the case d = 3 being similar. Let a > 0 be such that the support
of 1 − θ(x) is contained in the disk B(0, a) of radius a centered at the origin. A straightforward
application of Green’s theorem in B(0, a) gives

󰁝

|x|=a
u
∂ū

∂n
dσ =

󰁝

|x|<a

󰀓
|∇u|2 − κ2θ̄(x)|u|2

󰀔
dx ,

from which, taking into account that Im[θ(x)] ≥ 0, we deduce that

Im

󰀣󰁝

|x|=a
u
∂ū

∂n
dσ

󰀤
= κ2

󰁝

|x|<a
Im[θ(x)]|u|2 dx ≥ 0 .

Hence, Rellich’s theorem (cf. [4, Theorem 2.12]) ensures that u(x) = 0 in Be(0, a) := R2 \ B̄(0, a).
In turn, we deduce from our hypothesis on θ that we can consider a set of Lipschitz and convex
subdomains {Ωp : p = 1, . . . , P} satisfying ∪P

p=1Ω̄p = B̄(0, a) and θp := θ|Ωp ∈ C for all 1 ≤ p ≤ P .
We pick a subdomain Ωp such that ∂Ωp ∩ ∂B(0, a) is a segment of positive measure. Let B(x0, b) be
a disk centered at a point x0 ∈ ∂Ωp ∩ ∂B(0, a) with a radius b such that B(x0, b) ⊆ Ω̄p ∪ B̄e(0, a).
Since u vanishes in Be(0, a), we have that

∆u+ κ2θpu = 0 in Ωp ∪Be(0, a). (2.3)

It follows from (2.3) and a classical regularity result for the Laplace operator that u ∈ H2(B(x0, b)).
Moreover, by virtue of the unique continuation principle (cf. [14, Lemma 4.15]), the fact that u
satisfies (2.3) and vanishes identically in a disk contained in B(x0, b) ∩ Be(0, a) imply that it should
be identically zero in B(x0, b). We notice now that, as Ωp is convex, we also have that u ∈ H2(Ωp)
and we can apply again the unique continuation result as above to prove that u vanishes identically in
Ωp. The same strategy shows that, if two subdomains Ωp and Ωq are such that Ω̄p ∩ Ω̄q is a Lipschitz
curve with a non–empty interior, then if u = 0 in Ωp implies that u is also identically equal to zero in
Ωq. This proves that u vanishes everywhere in R2.

3 The coupling procedures

In this section we describe the continuous version of the two coupling procedures that we plan to
utilize for the combination of VEM and BEM. In this regard, we remark in advance that the first
discrete scheme to be proposed will work only in 2D, whereas the second one will be valid for both
2D and 3D.
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3.1 The boundary integral equation method for Helmholtz

We first discuss the basic aspects of the boundary integral equation method for the Helmholtz equation.
To this end, we now introduce a polygonal/polyhedral boundary Γ containing in its interior the support
of 1 − θ. Then Γ separates Rd into a bounded polygonal/polyhedral domain Ω and the unbounded
region Ωe exterior to Γ. We denote by n the unit normal vector to Γ that is directed towards Ωe. The
scattered field us satisfies a homogeneous Helmholtz equation in Ωe and the radiation condition (2.2).

Then, denoting by H
(1)
0 the Hankel function of order 0 and first type, it can be proved that us admits

the integral representation

us(x) =

󰁝

Γ

∂Eκ(|x− y|)
∂ny

us(y) dσy −
󰁝

Γ
Eκ(|x− y|)∂u

s(y)

∂n
dσy ∀x ∈ Ωe , (3.1)

where

Eκ(r) :=

󰀻
󰁁󰀿

󰁁󰀽

ı

4
H

(1)
0 (κr) if d = 2

eıκr

4πr
if d = 3

is the radial outgoing fundamental solution of the Helmholtz equation with wave number κ. We denote
by γ and γn the trace and normal trace operators, respectively, on Γ, acting either from Ω or from

Ωe. Then, applying these operators to both sides of (3.1), denoting λ := γn(∇us) =
∂us

∂n
, and taking

into account the well-known jump properties of the boundary integral operators, we obtain

0 = (
id

2
−Kκ)γu

s + Vκλ , (3.2)

λ = −Wκγu
s + (

id

2
−Kt

κ)λ , (3.3)

where id is a generic identity operator, and Vκ, Kκ, K
t
κ, and Wκ are the boundary integral operators

representing the single, double, adjoint of the double, and hypersingular layer potentials, respectively.
The latter are formally defined at almost every point x ∈ Γ by

Vκλ(x) :=

󰁝

Γ
Eκ(|x− y|)λ(y) dsy, Kκϕ(x) :=

󰁝

Γ

∂Eκ(|x− y|)
∂ny

ϕ(y) dsy,

Kt
κλ(x) :=

󰁝

Γ

∂Eκ(|x− y|)
∂nx

λ(y) dsy, Wκϕ(x) := − ∂

∂nx

󰁝

Γ

∂Eκ(|x− y|)
∂ny

ϕ(y) dsy

(3.4)

for suitable functions λ and ϕ. More precisely, the main mapping properties of these operators are
collected in the following lemma.

Lemma 3.1. The operators

Vκ : H−1/2+σ(Γ) −→ H1/2+σ(Γ), Kκ : H1/2+σ(Γ) −→ H1/2+σ(Γ)

Kt
κ : H−1/2+σ(Γ) −→ H−1/2+σ(Γ), Wκ : H1/2+σ(Γ) −→ H−1/2+σ(Γ),

are continuous for all σ ∈ [−1/2, 1/2].

Proof. See [15].

In turn, the boundary integral operators V0, K0, K
t
0 and W0 defined as in (3.4) but in terms of the

fundamental solution E0(|x− y|) of the Laplacian, which is defined as

E0(|x− y|) :=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

− 1

2π
log |x− y| if d = 2

1

4π

1

|x− y| if d = 3 ,
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have the same continuity properties given in Lemma 3.1. Furthermore, in order to recall additional
results concerning the particular operators V0 and W0, and for additional use throughout the rest
of the paper, we now let

󰀍
·, ·

󰀎
be both the inner product in L2(Γ) and the duality pairing between

H−1/2(Γ) and H1/2(Γ) with respect to the pivot space L2(Γ), and introduce the subspaces

H
1/2
0 (Γ) := {ϕ ∈ H1/2(Γ) :

󰀍
1,ϕ

󰀎
= 0}

and
H

−1/2
0 (Γ) := {µ ∈ H−1/2(Γ) :

󰀍
µ, 1

󰀎
= 0} .

Then, we can state the following lemma.

Lemma 3.2. There exist positive constants αV , CV , and αW such that

󰀍
µ̄, V0µ

󰀎
≥ αV 󰀂µ󰀂2−1/2,Γ

󰀫
∀µ ∈ H

−1/2
0 (Γ), if d = 2 ,

∀µ ∈ H−1/2(Γ), if d = 3 ,
(3.5)

󰀍
µ̄, V0µ

󰀎
Γ
+

󰀏󰀏󰀍µ̄, 1
󰀎󰀏󰀏2 ≥ CV 󰀂µ󰀂2−1/2,Γ ∀µ ∈ H−1/2(Γ) if d = 2 , (3.6)

and 󰀍
W0ϕ, ϕ̄

󰀎
≥ αW 󰀂ϕ󰀂21/2,Γ ∀ϕ ∈ H

1/2
0 (Γ) . (3.7)

Proof. See [12, 15].

Finally, we stress that all the integral operators associated to the Helmholtz equation may be
regarded as compact perturbations of the corresponding Laplacian-based operators (see [15]). In fact,
we have the following result.

Lemma 3.3. The operators

Vκ − V0 : H−1/2(Γ) −→ H1/2(Γ), Kκ −K0 : H1/2(Γ) −→ H1/2(Γ)

Kt
κ −Kt

0 : H−1/2(Γ) −→ H−1/2(Γ), Wκ −W0 : H1/2(Γ) −→ H−1/2(Γ),

are compact.

3.2 The Costabel & Han coupling

Our first strategy taking advantage of the boundary integral equations (3.2)-(3.3) to reformulate
problem (2.1)-(2.2) in the bounded domain Ω is due to Costabel and Han (cf. [5] and [10]). It reads
as follows: Find u : Ω → C and λ : Γ → C such that

∆u+ κ2θ(x) u = 0 in Ω, (3.8)

γu = γus + γw on Γ, (3.9)

∂u

∂n
= λ+

∂w

∂n
on Γ, (3.10)

0 = (
id

2
−Kκ)γu

s + Vκλ (3.11)

λ = −Wκγu
s + (

id

2
−Kt

κ)λ. (3.12)

Once the Cauchy data γus and λ are known, the solution is computed in the exterior domain Ωe by
using the integral representation formula (3.1). It is straightforward to see, according to the analyses
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provided in [5] and [10], that the variational formulation of problem (3.8)-(3.12) consists in finding
(u,λ) ∈ X := H1(Ω)×H−1/2(Γ) such that

Aκ

󰀃
(u,λ), (v, µ)

󰀄
= F(v, µ) :=

󰀍∂w
∂n

+Wκγw, γv
󰀎
+

󰀍
µ, (

id

2
−Kκ)γw

󰀎
∀(v, µ) ∈ X , (3.13)

where
Aκ

󰀃
(z, ξ), (v, µ)

󰀄
:= aκ(z, v) +

󰀍
Wκγz, γv

󰀎
+

󰀍
µ, Vκξ

󰀎

+
󰀍
µ, (

id

2
−Kκ)γz

󰀎
−

󰀍
ξ, (

id

2
−Kκ)γv

󰀎 (3.14)

for all (z, ξ), (v, µ) ∈ X, with

aκ(z, v) :=

󰁝

Ω
∇z ·∇v − κ2

󰁝

Ω
θzv . (3.15)

3.3 The modified Costabel & Han coupling

We now appeal to the modified Costabel & Han approach introduced for the first time in [8, Section
4.2], which consists in considering not only the normal derivative λ but also the trace ψ := γus

as boundary unknowns in the formulation. This means that, instead of (3.1), the scattered field is
computed as

us(x) =

󰁝

Γ

∂Eκ(|x− y|)
∂ny

ψ(y) dσy −
󰁝

Γ
Eκ(|x− y|)∂u

s(y)

∂n
dσy ∀x ∈ Ωe , (3.16)

whence the corresponding identities (3.2) and (3.3) become

0 = (
id

2
−Kκ)ψ + Vκλ , (3.17)

λ = −Wκψ + (
id

2
−Kt

κ)λ . (3.18)

In this way, the reformulation of problem (2.1)-(2.2) in the bounded domain Ω now reads as follows:
Find u : Ω → C, ψ : Γ → C and λ : Γ → C such that

∆u+ κ2θ(x) u = 0 in Ω, (3.19)

γu = γus + γw on Γ, (3.20)

ψ = γus on Γ, (3.21)

∂u

∂n
= λ+

∂w

∂n
on Γ, (3.22)

0 = (
id

2
−Kκ)ψ + Vκλ (3.23)

λ = −Wκψ + (
id

2
−Kt

κ)λ . (3.24)

Then, proceeding analogously to [8, Section 4.2], that is integrating by parts (3.19), adding and

subtracting the expression 〈λ,ϕ〉 with arbitrary ϕ ∈ H
1/2
0 (Γ), imposing weakly the relation ψ = γus in

H1/2(Γ), and then suitably incorporating (3.22), (3.23), and (3.24) into the resulting terms, we arrive

at the variational formulation: Find (u,ψ,λ) ∈ 󰁨X := H1(Ω)×H
1/2
0 (Γ)×H−1/2(Γ) such that

󰁨Aκ

󰀃
(u,ψ,λ), (v,ϕ, µ)

󰀄
= 󰁨F(v,ϕ, µ) := 〈∂w

∂n
, γv〉 + 〈µ, γw〉 ∀ (v,ϕ, µ) ∈ 󰁨X , (3.25)
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where
󰁨Aκ

󰀃
(z,φ, ξ), (v,ϕ, µ)

󰀄
:= Aκ

󰀃
(z,φ, ξ), (v,ϕ, µ)

󰀄
+

󰀍
Wκφ,ϕ

󰀎

+
󰀍
µ, Vκξ

󰀎
+

󰀍
µ,

󰀃 id
2
−Kκ

󰀄
φ
󰀎
−

󰀍
ξ,
󰀃 id
2
−Kκ

󰀄
ϕ
󰀎 (3.26)

for all (z,φ, ξ), (v,ϕ, µ) ∈ 󰁨X, with

Aκ

󰀃
(z,φ, ξ), (v,ϕ, µ)

󰀄
:= aκ(z, v) −

󰀍
ξ, γv − ϕ

󰀎
+

󰀍
µ, γz − φ

󰀎
, (3.27)

and aκ given by (3.15).

4 Solvability analysis of the continuous formulations

We now address the solvability analysis of (3.13) and (3.25). For this purpose, we introduce the
bilinear forms

A0

󰀃
(z, ξ), (v, µ)

󰀄
:= a0(z, v) +

󰀕󰁝

Γ
z

󰀖󰀕󰁝

Γ
v

󰀖
+

󰀍
W0γz, γv

󰀎
+

󰀍
µ, V0ξ

󰀎

+
󰀍
ξ, 1

󰀎󰀍
µ, 1

󰀎
+

󰀍
µ, (

id

2
−K0)γz

󰀎
−
󰀍
ξ, (

id

2
−K0)γv

󰀎 (4.1)

for all (z, ξ), (v, µ) ∈ X, and

󰁨A0

󰀃
(z,φ, ξ), (v,ϕ, µ)

󰀄
= A0

󰀃
(z,φ, ξ), (v,ϕ, µ)

󰀄
+

󰀕󰁝

Γ
z

󰀖󰀕󰁝

Γ
v

󰀖
+

󰀍
W0φ,ϕ

󰀎

+
󰀍
µ, V0ξ

󰀎
+

󰀍
ξ, 1

󰀎󰀍
µ, 1

󰀎
+

󰀍
µ,

󰀃 id
2
−K0

󰀄
φ
󰀎
−

󰀍
ξ,
󰀃 id
2
−K0

󰀄
ϕ
󰀎 (4.2)

for all (z,φ, ξ), (v,ϕ, µ) ∈ 󰁨X, where

a0(z, v) :=

󰁝

Ω
∇z ·∇v , (4.3)

and
A0

󰀃
(z,φ, ξ), (v,ϕ, µ)

󰀄
:= a0(z, v) −

󰀍
ξ, γv − ϕ

󰀎
+

󰀍
µ, γz − φ

󰀎
. (4.4)

It follows from Lemma 3.1 that there exist positive constants 󰀂Aκ󰀂, 󰀂A0󰀂, 󰀂󰁨Aκ󰀂 and 󰀂󰁨A0󰀂 > 0 such
that for each ∗ ∈ {κ, 0} there hold

󰀏󰀏A∗
󰀃
(z, ξ), (v, µ)

󰀄󰀏󰀏 ≤ 󰀂A∗󰀂 󰀂(z, ξ)󰀂 󰀂(v, µ)󰀂 ∀ (z, ξ), (v, µ) ∈ X (4.5)

and 󰀏󰀏󰀏󰁨A∗
󰀃
(z,φ, ξ), (v,ϕ, µ)

󰀄󰀏󰀏󰀏 ≤ 󰀂󰁨A∗󰀂 󰀂(z,φ, ξ)󰀂 󰀂(v,ϕ, µ)󰀂 ∀ (z,φ, ξ), (v,ϕ, µ) ∈ 󰁨X . (4.6)

Hereafter, the product spaces X and 󰁨X are endowed with its Hilbertian norms

󰀂(v, µ)󰀂2 := 󰀂v󰀂21,Ω + 󰀂µ󰀂2−1/2,Γ ∀ (v, µ) ∈ X ,

and
󰀂(v,ϕ, µ)󰀂2 := 󰀂v󰀂21,Ω + 󰀂ϕ󰀂21/2,Γ + 󰀂µ󰀂2−1/2,Γ ∀ (v,ϕ, µ) ∈ 󰁨X ,

respectively. Then, by virtue of Lemma 3.2, there exist α0, 󰁨α0 > 0 such that

Re
󰀓
A0

󰀃
(v, µ), (v̄, µ̄)

󰀄󰀔
≥ α0 󰀂(v, µ)󰀂2 ∀(v, µ) ∈ X , (4.7)
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and
Re

󰀓
󰁨A0

󰀃
(v,ϕ, µ), (v̄, ϕ̄, µ̄)

󰀄󰀔
≥ 󰁨α0 󰀂(v,ϕ, µ)󰀂2 ∀(v,ϕ, µ) ∈ 󰁨X . (4.8)

Regarding the ellipticity of 󰁨A0 given by the foregoing equation, we remark here that, because of the
inequalities (3.5) and (3.6), the expression

󰀍
ξ, 1

󰀎󰀍
µ, 1

󰀎
is needed in the definition of 󰁨A0 (cf. (4.2)) only

for the 2D analysis, and hence it will omitted for the 3D one.

Next, we let X′ and 󰁨X′ be the duals of X and 󰁨X pivotal to L2(Ω)×L2(Γ) and L2(Ω)×L2(Γ)×L2(Γ),
respectively, which yields X ⊂ L2(Ω) × L2(Γ) ⊂ X′ and 󰁨X ⊂ L2(Ω) × L2(Γ) × L2(Γ) ⊂ 󰁨X′ with
dense inclusions. Thus, we denote by [ ·, · ] the corresponding duality pairings, and let Aκ : X → X′,
A0 : X → X′, 󰁨Aκ : 󰁨X → 󰁨X′, and 󰁨A0 : 󰁨X → 󰁨X′ be the linear operators induced by Aκ, A0, 󰁨Aκ, and 󰁨A0,
respectively, that is, for each ∗ ∈ {κ, 0}

󰀅
A∗(z, ξ), (v, µ)

󰀆
:= A∗

󰀃
(z, ξ), (v, µ)

󰀄

for all (z, ξ), (v, µ) ∈ X, and
󰀅 󰁨A∗(z,φ, ξ), (v,ϕ, µ)

󰀆
:= 󰁨A∗

󰀃
(z,φ, ξ), (v,ϕ, µ)

󰀄

for all (z,φ, ξ), (v,ϕ, µ) ∈ 󰁨X. It is clear from (4.5) and (4.6) that Aκ, A0, 󰁨Aκ, and 󰁨A0 are all
bounded. In addition, (4.7) and (4.8) guarantee that A0 and 󰁨A0 are isomorphisms. Furthermore, we
easily deduce from Lemma 3.3 and the compactness of the canonical injection from H1(Ω) into L2(Ω),
that Aκ − A0 : X 󰀁→ X′ and 󰁨Aκ − 󰁨A0 : 󰁨X 󰀁→ 󰁨X′ are compact, whence Aκ and 󰁨Aκ are Fredholm
operators of index zero.

We are now in position to establish the conditions under which problems (3.13) and (3.25) are
uniquely solvable.

Theorem 4.1. Assume that κ2 is not an eigenvalue of the Laplacian in Ω with a Dirichlet boundary
condition on Γ. Then, problems (3.13) and (3.25) are well posed.

Proof. The proof is adapted from [13, Theorem 3.2]. According to our previous analysis, the Fredholm
alternative is applicable and therefore the proof reduces to show uniqueness of solution for (3.13) and
(3.25). In what follows we restrict ourselves to (3.13), the proof for (3.25) being analogous. To this
end, given a solution (u0,λ0) ∈ H1(Ω)×H−1/2(Γ) of (3.13) with w = 0, we introduce the function

󰁨u(x) :=

󰀻
󰁁󰀿

󰁁󰀽

u0(x) ∀x ∈ Ω,

q(x) :=

󰁝

Γ

∂Eκ(|x− y|)
∂ny

us(y) dσy −
󰁝

Γ
Eκ(|x− y|)λ0 dσy ∀x ∈ Ωe .

It is easy to verify that u0 solves the equation

∆u0 + κ2θ(x) u0 = 0 in Ω , (4.9)

and that q is a radiating solution of the Helmholtz equation with wave number κ, that is

∆q + κ2q = 0 in Ωe, (4.10)

∂q

∂r
− ıκq = o(r

1−d
2 ) r := |x| → ∞. (4.11)

Furthermore, using the jump relations of the acoustic potential layers we obtain the identities

γq = (
id

2
+Kκ)γu0 − Vκλ0 on Γ , (4.12)

λ0 = −Wκγu0 + (
id

2
−Kt

κ)λ0 on Γ , (4.13)

8



from which, comparing in particular (3.2) and (4.12), we deduce that

γq = γu0. (4.14)

In turn, subtracting equations (3.3) and (4.13) yields

(
id

2
−Kt

κ)

󰀕
∂u0
∂n

− λ0

󰀖
= 0 , (4.15)

and using that, under our hypothesis on k, operator id
2 − Kt

κ is injective (cf. [4]), we deduce from
(4.15) the identity

∂q

∂n
=

∂u0
∂n

on Γ . (4.16)

Finally, equations (4.9), (4.10), (4.14) and (4.16) show that 󰁨u ∈ H1
loc(Rd) is a solution of (2.1)–(2.2)

with w = 0, and therefore Theorem 2.1 ensures that such a function 󰁨u should vanish identically in Rd,
which ends the proof.

As a consequence of Theorem 4.1, and certainly assuming its hypothesis, we conclude that the
operators Aκ : X → X′ and 󰁨Aκ : 󰁨X → 󰁨X′ are bijective.

5 The discrete VEM/BEM schemes in 2D

In this section we introduce and analyze the two-dimensional discrete VEM - BEM schemes for each
one of the coupling procedures described in Sections 3.2 and 3.3. Later on in Section 6, we provide
the main distinctive aspects of the application of the second scheme to the 3D case.

5.1 Preliminaries

Given a polygonal domain Ω ⊆ R2, we let {Th}h be a family of partitions of Ω constituted of connected
polygons E ∈ Th of diameter hE ≤ h, and assume that the meshes {Th}h are aligned with each Ωi,
i = 1, . . . , I. The boundary ∂E of each E ∈ Th is subdivided into straight segments e, which are called

edges, and we denote by Eh the set of those contained in Γ, that is Eh :=
󰁱
edges e of Th : e ⊆ Γ

󰁲
.

In addition, we assume that there exists a constant ρ ∈ (0, 1) with which the family {Th}h satisfies
the following conditions:

(A1) each E of {Th}h is star-shaped with respect to a disk DE of radius ρhE ,

(A2) for each E of {Th}h and for all edges e ⊆ ∂E it holds |e| ≥ ρhE .

Then, given an integer k ≥ 1, we introduce for each E of {Th}h the projection operator Π∇,E
k :

H1(E) → Pk(T ), which, given v ∈ H1(E), is uniquely characterized by (see [2])
󰁝

E
∇(Π∇,E

k v) ·∇p+

󰀕󰁝

∂E
Π∇,E

k v

󰀖󰀕󰁝

∂E
p

󰀖
=

󰁝

E
∇v ·∇p+

󰀕󰁝

∂E
v

󰀖󰀕󰁝

∂E
p

󰀖
, (5.1)

for all p ∈ Pk(T ). Moreover, for each integer k ≥ 0 we let ΠE
k be the L2(E)–orthogonal projection

onto Pk(E), and following [1] (see also [8]) we introduce, for k ≥ 1, the local virtual element space

Xk
h(E) :=

󰁱
v ∈ H1(E) : v|e ∈ Pk(e), ∀e ⊆ ∂E, ∆v ∈ Pk(E), ΠE

k v −Π∇,E
k v ∈ Pk−2(E)

󰁲
. (5.2)

It can be shown (see [1]) that the degrees of freedom of Xk
h(E) consist of:
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i) the values at the vertices of E, and additionally for k ≥ 2,

ii) the moments of order ≤ k − 2 on the edges of E, and

iii) the moments of order ≤ k − 2 on E.

We are then allowed to construct the global virtual element space by

Xk
h :=

󰁱
v ∈ H1(Ω) : v|E ∈ Xk

h(E) ∀E ∈ Th
󰁲
.

On the other hand, for any integer k ≥ 0, we denote by Pk(Th) the space of piecewise polynomials
of degree ≤ k with respect to Th, and let ΠT

k be the global L2(Ω)-orthogonal projection onto Pk(Th),
which is assembled cellwise, i.e.

(ΠT
k v)|E := ΠE

k (v|E) ∀E ∈ Th , ∀ v ∈ L2(Ω) . (5.3)

It is important to notice that for k ≥ 1 there holds Pk(E) ⊆ Xk
h(E), and that the projectors Π∇,E

k v
and ΠE

k v are computable for all v ∈ Xk
h(E).

Hereafter, given any positive functions Ah and Bh of the mesh parameter h, the notation Ah ≲ Bh

means that Ah ≤ CBh with C > 0 independent of h, whereas Ah ≃ Bh means that Ah ≲ Bh and
Bh ≲ Ah. Then, under the conditions on Th, and given in what follows an integer k ≥ 1, the technique
of averaged Taylor polynomials introduced in [6] permits to prove the following error estimates

󰀂v −ΠE
k v󰀂0,E + hE |v −ΠE

k v|1,E ≲ hℓ+1
E |v|ℓ+1,E ∀ ℓ ∈

󰀋
0, 1, ..., k

󰀌
, ∀ v ∈ Hℓ+1(E) , (5.4)

󰀂v −Π∇,E
k v󰀂0,E + hE󰀂v −Π∇,E

k v󰀂1,E ≲ hℓ+1
E |v|ℓ+1,E ∀ ℓ ∈

󰀋
1, 2, ..., k

󰀌
, ∀ v ∈ Hℓ+1(E) . (5.5)

In turn, the local interpolation operator IEk : H2(E) → Xk
h(E), which is uniquely defined for each

v ∈ H2(E) by imposing that v − IEk v has vanishing degrees of freedom, satisfies (cf. [3, Lemma 2.23])

󰀂v − IEk v󰀂0,E + hE
󰀏󰀏v − IEk v

󰀏󰀏
1,E

≲ hℓ+1
E |v|ℓ+1,E ∀ℓ ∈

󰀋
1, 2, ..., k

󰀌
, ∀ v ∈ Hℓ+1(E) . (5.6)

The corresponding global interpolation operator ITk : C(Ω) → Xk
h is defined locally as

(ITk v)|E = IEk (v|E) ∀E ∈ Th , ∀ v ∈ C(Ω) . (5.7)

On the other hand, in order to approximate the unknowns λ ∈ H−1/2(Γ) and ψ ∈ H
1/2
0 (Γ), we

introduce the non-virtual (but explicit) subspaces

Λk−1
h :=

󰁱
µ ∈ L2(Γ) : µ|e ∈ Pk−1(e), ∀e ∈ Eh

󰁲
, (5.8)

and
Ψk

h :=
󰁱
ϕh ∈ C0(Γ) : ϕh|e ∈ Pk(e) ∀ e ∈ Eh

󰁲
∩ H

1/2
0 (Γ) . (5.9)

Then, we let ΠE
k−1 : L2(Γ) → Λk−1

h and LE
k : C0(Γ) → Ψk

h be the L2(Γ)-orthogonal projection and
the corresponding global Lagrange interpolation operator of order k, respectively. In addition, we let󰀋
Γ1, ...,ΓJ

󰀌
be the set of segments constituting Γ, and for any t ≥ 0 we consider the broken Sobolev

space Ht
b(Γ) :=

󰁔J
j=1H

t(Γj) endowed with the graph norm

󰀂ϕ󰀂2t,b,Γ :=

J󰁛

j=1

󰀂ϕ󰀂2t,Γj
∀ϕ ∈ Ht

b(Γ) .

Next, we recall from [15] the approximation properties of the operators ΠE
k−1 and LE

k .
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Lemma 5.1. Assume that µ ∈ H−1/2(Γ) ∩ Hr
b(Γ) for some r ≥ 0. Then,

󰀂µ−ΠE
k−1µ󰀂−t,Γ ≲ hmin{r,k}+t 󰀂µ󰀂r,b,Γ ∀ t ∈ {0, 1/2} .

Proof. See [15, Theorem 4.3.20].

Lemma 5.2. Assume that ϕ ∈ H1/2(Γ) ∩ H
r+1/2
b (Γ) for some r > 1/2. Then

󰀂ϕ− LE
kϕ󰀂t,Γ ≲ hmin{r+1/2,k+1}−t 󰀂ϕ󰀂r+1/2,b,Γ ∀ t ∈ {0, 1/2} .

Proof. See [15, Proposition 4.1.50].

5.2 The VEM/BEM schemes

For all E ∈ Th, we let SE
h be the symmetric bilinear form defined on H1(E)×H1(E) by

SE
h (z, v) := h−1

E

󰁛

e⊆∂E

󰁝

e
πe
kz π

e
kv ∀ z, v ∈ H1(E) , (5.10)

where πe
k is the L2(e)-projection onto Pk(e). It is shown in [3, Lemma 3.2] that

SE
h (v, v̄) ≃ aE0 (v, v̄) ∀v ∈ Xk

h(E) such that Π∇,E
k v = 0, (5.11)

where aE0 is the local version of a0, that is

aE0 (z, v) :=

󰁝

E
∇z ·∇v ∀ z, v ∈ H1(E) . (5.12)

It is important to notice that SE
h is computable on Xk

h(E) × Xk
h(E), and that, by symmetry, there

holds
SE
h (z, v) ≤ SE

h (z, z)
1/2 SE

h (v, v)
1/2 ≲ aE0 (z, z)

1/2 aE0 (v, v)
1/2, (5.13)

for all z, v ∈ Xk
h(E) satisfying Π∇,E

k z = Π∇,E
k v = 0. Alternative options for SE

h restricted to Xk
h(E)×

Xk
h(E) are available in the literature, the simplest one being the inner product of the vectors containing

suitably scaled values of the degrees of freedom of the given discrete functions. For the theoretical
purposes of the present paper there is no particular reason for using one or other as long as they satisfy
the stability condition (5.11). In the forthcoming work [7] we plan to compare different choices of SE

h

from the point of view of their computational implementations and corresponding numerical results.
Next, for each E ∈ Th we introduce

aE0,h(z, v) := aE0 (Π
∇,E
k z,Π∇,E

k v) + SE
h (z −Π∇,E

k z, v −Π∇,E
k v) ∀ z, v ∈ Xk

h(E) , (5.14)

and

aEκ,h(z, v) := aE0,h(z, v)− κ2θE

󰁝

E
(ΠE

k−1z)(Π
E
k−1v) ∀ z, v ∈ Xk

h(E) , (5.15)

where θE = θ|E ∈ C. We also let a0,h and aκ,h be the corresponding global extensions of aE0,h and aEκ,h,
respectively, that is

a0,h(z, v) :=
󰁛

E∈Th

aE0,h(z, v) (5.16)

and
aκ,h(z, v) :=

󰁛

E∈Th

aEκ,h(z, v) ∀ z, v ∈ Xk
h . (5.17)

11



Alternatively, we could have proceeded as in [8, eq. (3.9), Section 3.2] and define, instead of (5.14),

aE0,h(z, v) :=

󰁝

E
ΠE

k−1∇z ·ΠE
k−1∇v + SE

h (z −Π∇,E
k z, v −Π∇,E

k v) ∀ z, v ∈ Xk
h(E) , (5.18)

where ΠE
k−1 : [L2(E)]2 → [Pk−1(E)]2 is the vectorial version of ΠE

k−1. In this regard, we stress in
advance that the results to be provided throughout the rest of the paper, for which we use (5.14),
would remain exactly the same if this discrete bilinear form is replaced by (5.18). In turn, since
the degrees of freedom associated with the local space Xk

h(E) (cf. (5.2)) also allow the explicit
computation of its L2(E)-orthogonal projection onto the space of polynomials of degree ≤ k, we stress
here that aEκ,h could be defined as well by using ΠE

k instead of ΠE
k−1 in its second term. However,

this modification would not improve neither affect the stability nor the rates of convergence of the
resulting discrete scheme, as we explain later on after the derivation of the key inequality (5.50), in
which the approximation property of ΠE

k−1 (cf. (5.4)) is employed.

Then, denoting Xk
h := Xk

h×Λk−1
h , the discrete version of problem (3.13) reduces to: Find (uh,λh) ∈

Xk
h such that

Aκ,h

󰀃
(uh,λh), (vh, µh)

󰀄
= F(vh, µh) ∀(vh, µh) ∈ Xk

h , (5.19)

where
Aκ,h

󰀃
(zh, ξh), (vh, µh)

󰀄
:= aκ,h(zh, vh) +

󰀍
Wκγzh, γvh

󰀎
+

󰀍
µh, Vκξh

󰀎

+
󰀍
µh, (

id

2
−Kκ)γzh

󰀎
−
󰀍
ξh, (

id

2
−Kκ)γvh

󰀎 (5.20)

for all (zh, ξh), (vh, µh) ∈ Xk
h. In turn, denoting 󰁨Xk

h := Xk
h ×Ψh

k×Λk−1
h , the discrete version of problem

(3.25) reduces to: Find (󰁨uh, 󰁨ψh, 󰁨λh) ∈ 󰁨Xk
h such that

󰁨Aκ,h

󰀃
(󰁨uh, 󰁨ψh, 󰁨λh), (vh,ϕh, µh)

󰀄
= 󰁨F(vh,ϕh, µh) ∀ (vh,ϕh, µh) ∈ 󰁨Xk

h , (5.21)

where

󰁨Aκ,h

󰀃
(zh,φh, ξh), (vh,ϕh, µh)

󰀄
:= Aκ,h

󰀃
(zh,φh, ξh), (vh,ϕh, µh)

󰀄
+

󰀍
Wκφh,ϕh

󰀎

+
󰀍
µh, Vκξh

󰀎
+

󰀍
µh,

󰀃 id
2
−Kκ

󰀄
φh

󰀎
−

󰀍
ξh,

󰀃 id
2
−Kκ

󰀄
ϕh

󰀎 (5.22)

for all (zh,φh, ξh), (vh,ϕh, µh) ∈ 󰁨Xk
h, with

Aκ,h

󰀃
(zh,φh, ξh), (vh,ϕh, µh)

󰀄
:= aκ,h(zh, vh) −

󰀍
ξh, γvh − ϕh

󰀎
+

󰀍
µh, γzh − φh

󰀎
. (5.23)

5.3 Solvability analysis

In order to analyze the solvability of (5.19) and (5.21), we now introduce the perturbations of the
bilinear forms Aκ,h and 󰁨Aκ,h given, respectively, by

A0,h

󰀃
(zh, ξh), (vh, µh)

󰀄
:= a0,h(zh, vh) +

󰀝󰁝

Γ
zh

󰀞󰀝󰁝

Γ
vh

󰀞
+

󰀍
W0γzh, γvh

󰀎

+
󰀍
µh, V0ξh

󰀎
+
󰀍
ξh, 1

󰀎󰀍
µh, 1

󰀎
+
󰀍
µh, (

id

2
−K0)γzh

󰀎
−

󰀍
ξh, (

id

2
−K0)γvh

󰀎 (5.24)

for all (zh, ξh), (vh, µh) ∈ Xk
h, and

󰁨A0,h

󰀃
(zh,φh, ξh), (vh,ϕh, µh)

󰀄
:= A0,h

󰀃
(zh,φh, ξh), (vh,ϕh, µh)

󰀄
+

󰀍
W0φh,ϕh

󰀎

+
󰀍
µh, V0ξh

󰀎
+

󰀍
ξh, 1

󰀎󰀍
µh, 1

󰀎
+

󰀍
µh,

󰀃 id
2
−K0

󰀄
φh

󰀎
−
󰀍
ξh,

󰀃 id
2
−K0

󰀄
ϕh

󰀎 (5.25)
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for all (zh,φh, ξh), (vh,ϕh, µh) ∈ 󰁨Xk
h, with

A0,h

󰀃
(zh,φh, ξh), (vh,ϕh, µh)

󰀄
:= a0,h(zh, vh) +

󰀝󰁝

Γ
zh

󰀞󰀝󰁝

Γ
vh

󰀞

−
󰀍
ξh, γvh − ϕh

󰀎
+

󰀍
µh, γzh − φh

󰀎
.

(5.26)

The boundedness and ellipticity properties of the above bilinear forms are provided by the following
two lemmas.

Lemma 5.3. There exist positive constants Mκ, M0, 󰁩Mκ and 󰁩M0, independent of h, such that for
each ∗ ∈ {κ, 0} there hold

|A∗,h
󰀃
(zh, ξh), (vh, µh)

󰀄
| ≤ M∗ 󰀂(zh, ξh)󰀂 󰀂(vh, µh)󰀂

for all (zh, ξh), (vh, µh) ∈ Xk
h, and

|󰁨A∗,h
󰀃
(zh,φh, ξh), (vh,ϕh, µh)

󰀄
| ≤ 󰁩M∗ 󰀂(zh,φh, ξh)󰀂 󰀂(vh,ϕh, µh)󰀂

for all (zh,φh, ξh), (vh,ϕh, µh) ∈ 󰁨Xk
h,

Proof. Starting from the corresponding definitions (cf. (5.20), (5.24), (5.22) and (5.25)), it suffices to
employ the mapping properties of the boundary integral operators (cf. Lemma 3.1), and then notice
from (5.12), (5.13) and [2], that for each E ∈ Th there holds

SE
h (zh −Π∇,E

k zh, vh −Π∇,E
k vh) ≲ |zh −Π∇,E

k zh|1,E |vh −Π∇,E
k vh|1,E ≲ |zh|1,E |vh|1,E (5.27)

for all zh, vh ∈ Xk
h(E). We omit further details.

Lemma 5.4. There exist positive constants β0 and 󰁨β0, independent of h, such that

Re
󰁱
A0,h

󰀃
(vh, µh), (v̄h, µ̄h)

󰀄󰁲
≥ β0 󰀂(vh, µh)󰀂2 ∀ (vh, µh) ∈ Xk

h , (5.28)

and

Re
󰁱
󰁨A0,h

󰀃
(vh,ϕh, µh), (v̄h, ϕ̄h, µ̄h)

󰀄󰁲
≥ 󰁨β0 󰀂(vh,ϕh, µh)󰀂2 ∀ (vh,ϕh, µh) ∈ 󰁨Xk

h . (5.29)

Proof. According now to the definitions (5.24) and (5.25), and proceeding as in the deduction of (4.7)
and (4.8), we first apply the positivity properties of the boundary integral operators (cf. Lemma 3.2).
Next, noticing from (5.14), (5.12) and (5.11) that for each E ∈ Th there holds

aE0,h(v, v̄) = |Π∇,E
k v|21,E + SE

h (v −Π∇,E
k v, v̄ −Π∇,E

k v̄)

≳ |Π∇,E
k v|21,E + |v −Π∇,E

k v|21,E ≳ |v|21,E ∀ v ∈ Xk
h(E) ,

(5.30)

we arrive at the required inequalities and conclude the proof.

At this point we remark that, if (5.18) is considered instead of (5.14), then (5.30) would follow
exactly as explained in [8, proof of Lemma 3.4]. Also, we stress that, thanks to (3.6), the term
〈ξh, 1〉 〈µh, 1〉 will not required for the ellipticity (and hence not for the definition) of 󰁨A0,h in the 3D
case to be analyzed later on in Section 6.
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Then, bearing in mind Lemmas 5.3 and 5.4, and the boundedness estimates (4.5) and (4.6), we can
apply the Lax-Milgram lemma to introduce the Galerkin projection-type operators Rh : X → Xk

h and
󰁨Rh : 󰁨X → 󰁨Xk

h, which, given (z, ξ) ∈ X and (z,φ, ξ) ∈ 󰁨X, are uniquely characterized by

A0,h

󰀃
Rh(z, ξ), (vh, µh)

󰀄
= A0

󰀃
(z, ξ), (vh, µh)

󰀄
∀ (vh, µh) ∈ Xk

h , (5.31)

and

󰁨A0,h

󰀃 󰁨Rh(z,φ, ξ), (vh,ϕh, µh)
󰀄
= 󰁨A0

󰀃
(z,φ, ξ), (vh,ϕh, µh)

󰀄
∀ (vh,ϕh, µh) ∈ 󰁨Xk

h , (5.32)

respectively. Moreover, it readily follows from the aforementioned classical lemma that Rh : X → Xk
h

and 󰁨Rh : 󰁨X → 󰁨Xk
h are uniformly bounded in h with 󰀂Rh󰀂 ≤ 󰀂A0󰀂/β0 and 󰀂 󰁨Rh󰀂 ≤ 󰀂󰁨A0󰀂/󰁨β0.

The approximation properties of Rh and 󰁨Rh are established next. As usual, given a finite dimen-
sional subspace Xh of a normed space X, we set for each x ∈ X, dist(x,Xh) := inf

xh∈Xh

󰀂x− xh󰀂.

Theorem 5.1. There exist positive constants C and 󰁨C, independent of h, such that

󰀂Rh(z, ξ)− (z, ξ)󰀂 ≤ C
󰁱
dist

󰀃
(z, ξ),Xk

h

󰀄
+

󰀓 󰁛

E∈Th

|z −Π∇,E
k z|21,E

󰀔1/2󰁲
(5.33)

for all (z, ξ) ∈ X, and

󰀂 󰁨Rh(z,φ, ξ)− (z,φ, ξ)󰀂 ≤ 󰁨C
󰁱
dist

󰀃
(z,φ, ξ), 󰁨Xk

h

󰀄
+

󰀓 󰁛

E∈Th

|z −Π∇,E
k z|21,E

󰀔1/2󰁲
(5.34)

for all (z,φ, ξ) ∈ 󰁨X.

Proof. Given (z, ξ) ∈ X and (zh, ξh) ∈ Xk
h, we first observe by triangle inequality that

󰀂Rh(z, ξ)− (z, ξ)󰀂 ≤ 󰀂(vh, µh)󰀂 + 󰀂(z, ξ)− (zh, ξh)󰀂 , (5.35)

with (vh, µh) := Rh(z, ξ) − (zh, ξh) ∈ Xk
h, so that in what follows we focus on estimating 󰀂(vh, µh)󰀂.

In fact, applying the ellipticity property (5.28), the identity (5.31), the boundedness of A0 (cf. (4.5)),
and the fact that the difference between A0 and A0,h (cf. (4.1), (5.24)) reduces to a0−a0,h, we obtain

β0 󰀂(vh, µh)󰀂2 ≤ Re
󰁱
A0,h

󰀃
(vh, µh), (v̄h, µ̄h)

󰀄󰁲

= Re
󰁱
A0

󰀃
(z, ξ), (v̄h, µ̄h)

󰀄
− A0,h

󰀃
(zh, ξh), (v̄h, µ̄h)

󰀄󰁲

≤
󰀏󰀏A0

󰀃
(z, ξ)− (zh, ξh), (v̄h, µ̄h)

󰀄󰀏󰀏+
󰀏󰀏A0

󰀃
(zh, ξh), (v̄h, µ̄h)

󰀄
− A0,h

󰀃
(zh, ξh), (v̄h, µ̄h)

󰀄󰀏󰀏

≤ 󰀂A0󰀂 󰀂(z, ξ)− (zh, ξh)󰀂 󰀂(vh, µh)󰀂 +
󰁛

E∈Th

󰀏󰀏aE0 (zh, v̄h)− aE0,h(zh, v̄h)
󰀏󰀏 .

(5.36)

Then, subtracting and adding Π∇,E
k z in the first component of the expression aE0,h(zh, v̄h), using that

aE0,h(Π
∇,E
k z, vh) = aE0 (Π

∇,E
k z,Π∇,E

k vh) = aE0 (Π
∇,E
k z, vh) (which follows from (5.14) and after taking

(v, p) = (vh, 1) and (v, p) = (vh,Π
∇,E
k z) in (5.1)), and employing the triangle inequality and the

boundedness of aE0 and aE0,h, the latter being consequence of (5.13), we find that

󰀏󰀏aE0 (zh, v̄h)− aE0,h(zh, v̄h)
󰀏󰀏 ≤

󰀏󰀏aE0 (zh −Π∇,E
k z, v̄h)

󰀏󰀏+
󰀏󰀏aE0,h(zh −Π∇,E

k z, v̄h)
󰀏󰀏

≲ |zh −Π∇,E
k z|1,E |vh|1,E ≲

󰁱
|zh − z|1,E + |z −Π∇,E

k z|1,E
󰁲
|vh|1,E .
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In this way, summing up over E ∈ Th, it follows that

󰁛

E∈Th

󰀏󰀏aE0 (zh, v̄h)− aE0,h(zh, v̄h)
󰀏󰀏 ≲

󰁱
|zh − z|1,Ω +

󰀓 󰁛

E∈Th

|z −Π∇,E
k z|21,E

󰀔1/2󰁲
|vh|1,Ω

≲
󰁱
󰀂(z, ξ)− (zh, ξh)󰀂 +

󰀓 󰁛

E∈Th

|z −Π∇,E
k z|21,E

󰀔1/2󰁲
󰀂(vh, µh)󰀂 ,

(5.37)

which, combined with (5.36), yields

󰀂(vh, µh)󰀂 ≲ 󰀂(z, ξ)− (zh, ξh)󰀂 +
󰀓 󰁛

E∈Th

|z −Π∇,E
k z|21,E

󰀔1/2
.

Hence, replacing the foregoing inequality back into (5.35) and taking infimum with respect to (zh, ξh) ∈
Xk
h, we arrive at (5.33). In turn, the derivation of (5.34) follows similarly to the previous analysis by

noting now that, given (z,φ, ξ) ∈ 󰁨X and (zh,φh, ξh) ∈ 󰁨Xk
h, there holds

󰀂 󰁨Rh(z,φ, ξ)− (z,φ, ξ)󰀂 ≤ 󰀂(vh,ϕh, µh)󰀂 + 󰀂(z,φ, ξ)− (zh,φh, ξh)󰀂 ,

with (vh,ϕh, µh) := 󰁨Rh(z,φ, ξ) − (zh,φh, ξh) ∈ 󰁨Xk
h. Hence, the rest of the proof reduces in this case

to apply the ellipticity property (5.29), the identity (5.32), the boundedness of 󰁨A0 (cf. (4.6)), and the
fact that, according to (4.2) and (5.25), we obtain

󰁨A0

󰀃
(zh,φh, ξh), (v̄h, ϕ̄h, µ̄h)

󰀄
− 󰁨A0,h

󰀃
(zh,φh, ξh), (v̄h, ϕ̄h, µ̄h)

󰀄

=
󰁛

E∈Th

󰁱
aE0 (zh, v̄h)− aE0,h(zh, v̄h)

󰁲
,

(5.38)

which is again estimated by (5.37). We omit further details.

As a consequence of Theorem 5.1, and employing classical density arguments together with the
aproximation properties provided by (5.5), (5.6), and Lemmas 5.1 and 5.2, and using the uniform
boundedness of Rh and 󰁨Rh, we deduce that

lim
h→0

󰀂Rh(z, ξ)− (z, ξ)󰀂 = 0 ∀ (z, ξ) ∈ X (5.39)

and
lim
h→0

󰀂 󰁨Rh(z,φ, ξ)− (z,φ, ξ)󰀂 = 0 ∀ (z,φ, ξ) ∈ 󰁨X . (5.40)

In other words, Rh and 󰁨Rh converge pointwise to the identity operators in X and 󰁨X, respectively.

The well-posedness of the VEM/BEM schemes (5.19) and (5.21), that is their unique solvabilities
and associated stability estimates, will follow from the discrete inf-sup conditions for Aκ,h and 󰁨Aκ,h,
respectively, which are established next. For later use, we now let 〈·, ·〉X and 〈·, ·〉󰁨X be the inner

products of X and 󰁨X, respectively.

Theorem 5.2. Assume that κ2 is not an eigenvalue of the Laplacian in Ω with a Dirichlet boundary
condition on Γ. Then, there exist positive constants h0, ακ, and 󰁨ακ, independent of h, such that for
each h ≤ h0 there hold

sup
(zh,ξh)∈Xk

h
(zh,ξh) ∕=0

󰀏󰀏Aκ,h

󰀃
(zh, ξh), (vh, µh)

󰀄󰀏󰀏
󰀂(zh, ξh)󰀂

≥ ακ 󰀂(vh, µh)󰀂 ∀ (vh, µh) ∈ Xk
h , (5.41)
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and

sup
(zh,φh,ξh)∈󰁨Xk

h
(zh,φh,ξh) ∕=0

󰀏󰀏󰀏󰁨Aκ,h

󰀃
(zh,φh, ξh), (vh,ϕh, µh)

󰀄󰀏󰀏󰀏
󰀂(zh,φh, ξh)󰀂

≥ 󰁨ακ 󰀂(vh,ϕh, µh)󰀂 ∀ (vh,ϕh, µh) ∈ 󰁨Xk
h . (5.42)

Proof. We begin with the introduction of some useful tools. In fact, thanks to the bijectivity of
Aκ : X → X′, we first deduce the existence of a bounded operator Θ : X → X such that, given
(z, ξ) ∈ X, Θ(z, ξ) ∈ X is uniquely characterized by the identity

Aκ

󰀃
Θ(z, ξ), (v, µ)

󰀄
= 〈(z, ξ), (v, µ)〉X ∀ (v, µ) ∈ X .

It follows, in particular, that

Aκ

󰀃
Θ(z, ξ), (z, ξ)

󰀄
= 󰀂(z, ξ)󰀂2 ∀ (z, ξ) ∈ X . (5.43)

Analogously, the bijectivity of 󰁨Aκ : 󰁨X → 󰁨X′ implies the existence of a bounded operator 󰁨Θ : 󰁨X → 󰁨X
for which there holds

󰁨Aκ

󰀃󰁨Θ(z,φ, ξ), (z,φ, ξ)
󰀄
= 󰀂(z,φ, ξ)󰀂2 ∀ (z,φ, ξ) ∈ 󰁨X . (5.44)

In addition, we define the compact operators C := Aκ−A0 : X → X′ and 󰁨C := 󰁨Aκ− 󰁨A0 : 󰁨X → 󰁨X′. Then,
in order to proceed with the proof of (5.41), we consider (vh, µh) ∈ Xk

h, set (z+h , ξ
+
h ) := RhΘ(vh, µh) ∈

Xk
h, and observe that certainly

sup
(zh,ξh)∈Xk

h
(zh,ξh) ∕=0

󰀏󰀏Aκ,h

󰀃
(zh, ξh), (vh, µh)

󰀄󰀏󰀏
󰀂(zh, ξh)󰀂

≥
󰀏󰀏Aκ,h

󰀃
(z+h , ξ

+
h ), (vh, µh)

󰀄󰀏󰀏

󰀂(z+h , ξ
+
h )󰀂

. (5.45)

In turn, adding and subtracting the bilinear forms Aκ, A0, and A0,h, so that

Aκ,h = A0,h + (Aκ − A0) + (A0 − A0,h) + (Aκ,h − Aκ) , (5.46)

and noticing from the definitions of Aκ, A0, Aκ,h, and A0,h (cf. (3.14), (4.1), (5.20), and (5.24)), that

󰀃
A0 − A0,h

󰀄󰀃
(z+h , ξ

+
h ), (vh, µh)

󰀄
=

󰁝

Ω
∇z+h ·∇vh − a0,h(z

+
h , vh) (5.47)

and
󰀃
Aκ,h − Aκ

󰀄󰀃
(z+h , ξ

+
h ), (vh, µh)

󰀄
= aκ,h(z

+
h , vh) − aκ(z

+
h , vh)

= a0,h(z
+
h , vh)−

󰁝

Ω
∇z+h ·∇vh + κ2

󰁛

E∈Th

θE

󰁝

E

󰁱
z+h vh −

󰀃
ΠE

k−1z
+
h

󰀄 󰀃
ΠE

k−1vh
󰀄󰁲

,
(5.48)

we readily arrive at

Aκ,h

󰀃
(z+h , ξ

+
h ), (vh, µh)

󰀄
= A0,h

󰀃
RhΘ(vh, µh), (vh, µh)

󰀄
+

󰀅
CRhΘ(vh, µh), (vh, µh)

󰀆

+κ2
󰁛

E∈Th

θE

󰁝

E

󰁱
z+h vh −

󰀃
ΠE

k−1z
+
h

󰀄 󰀃
ΠE

k−1vh
󰀄󰁲

.
(5.49)

In what follows, I stands for a generic identity operator and θM denotes the maximum value of |θE |,
E ∈ Th. Hence, starting from (5.49), and employing the characterization of Rh (cf. (5.31)), the
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orthogonality condition satisfied by ΠE
k−1, the identity (5.43), the approximation properties of ΠE

k−1

(cf. (5.4)), and the fact that Rh is uniformly bounded, we find that

Aκ,h

󰀃
(z+h , ξ

+
h ), (vh, µh)

󰀄
= A0

󰀃
Θ(vh, µh), (vh, µh)

󰀄
+

󰀅
CRhΘ(vh, µh), (vh, µh)

󰀆

+ κ2
󰁛

E∈Th

θE

󰁝

E

󰁱
z+h vh −

󰀃
ΠE

k−1z
+
h

󰀄 󰀃
ΠE

k−1vh
󰀄󰁲

= Aκ

󰀃
Θ(vh, µh), (vh, µh)

󰀄
+

󰀅
C
󰀃
Rh − I

󰀄
Θ(vh, µh), (vh, µh)

󰀆

+ κ2
󰁛

E∈Th

θE

󰁝

E

󰁱
z+h −ΠE

k−1z
+
h

󰁲󰁱
vh −ΠE

k−1vh

󰁲

≥
󰁱
1− 󰀂C

󰀃
Rh − I

󰀄
󰀂󰀂Θ󰀂

󰁲
󰀂(vh, µh)󰀂2

− κ2θM
󰁛

E∈Th

󰀐󰀐z+h −ΠE
k−1z

+
h

󰀐󰀐
0,E

󰀐󰀐vh −ΠE
k−1vh

󰀐󰀐
0,E

≥
󰁱
1− 󰀂C

󰀃
Rh − I

󰀄
󰀂󰀂Θ󰀂

󰁲
󰀂(vh, µh)󰀂2 − Ch2󰀂(z+h , ξ

+
h )󰀂 󰀂(vh, µh)󰀂

≥
󰁱
1− 󰀂C

󰀃
Rh − I

󰀄
󰀂󰀂Θ󰀂 − Ch2

󰁲
󰀂(z+h , ξ

+
h )󰀂 󰀂(vh, µh)󰀂 ,

(5.50)

where C is a positive constant depending on κ and θM , but independent of h, and the last inequality
uses that 󰀂(vh, µh)󰀂 ≳ 󰀂(z+h , ξ

+
h )󰀂. Finally, the compactness of C and the pointwise convergence of

Rh − I to zero (cf. (5.39)) guarantee that lim
h→0

󰀂C(Rh − I)󰀂 = 0, which, together with the foregoing

estimate and (5.45), yield (5.41) for a sufficiently small h0. We remark here that using ΠE
k instead

of ΠE
k−1 in the original definition of aEκ,h (cf. (5.15)), would not yield any change in the inequality

(5.50), and hence neither in the resulting discrete inf-sup condition (5.41). In fact, the local H1(E)-
regularity of z+h and vh only allows to apply the approximation property (5.4) for ℓ = 0, so that,
irrespective of using ΠE

k or ΠE
k−1, the power of h in the last part of (5.50) remains as 2. On the

other hand, the discrete inf-sup condition (5.42) is proved similarly to the previous analysis. In fact,
given (vh,ϕh, µh) ∈ 󰁨Xk

h, we now set (z+h ,φ
+
h , ξ

+
h ) := 󰁨Rh

󰁨Θ(vh,ϕh, µh) ∈ 󰁨Xk
h, and observe first that󰀃󰁨A0 − 󰁨A0,h

󰀄
((z+h ,φ

+
h , ξ

+
h ), (vh,ϕh, µh)

󰀄
and

󰀃󰁨Aκ,h − 󰁨Aκ

󰀄
((z+h ,φ

+
h , ξ

+
h ), (vh,ϕh, µh)

󰀄
are given exactly by

the right hand sides of (5.47) and (5.48), respectively. In this way, the analogue of (5.49) keeps the
same term at the end, and the reasoning follows almost verbatim to the steps in (5.50), but now using
the characterization of 󰁨Rh (cf. (5.32)), the orthogonality condition satisfied by ΠE

k−1, the identity

(5.44), the approximation properties of ΠE
k−1 (cf. (5.4)), the uniform boundedness of 󰁨Rh, and the fact

that 󰀂(vh,ϕh, µh)󰀂 ≳ 󰀂(z+h ,φ
+
h , ξ

+
h )󰀂. The compactness of 󰁨C and the pointwise convergence of 󰁨Rh − I

to zero (cf. (5.40)) complete the proof of (5.42).

Under the same assumptions of Theorem 5.2, and as a straightforward consequence of (5.41) and
(5.42) we deduce that, given F ∈ X′, 󰁨F ∈ 󰁨X′, and h ≤ h0, the VEM/BEM schemes (5.19) and (5.21)
have unique solutions (uh,λh) ∈ Xk

h and (󰁨uh, 󰁨ψh, 󰁨λh) ∈ 󰁨Xk
h, respectively. Thus, we can also define the

discrete analogues of Θ and 󰁨Θ (though with respect to the second component of the bilinear forms
involved), namely the operators Θh : Xk

h → Xk
h and 󰁨Θh : 󰁨Xk

h → 󰁨Xk
h, which, given (vh, µh) ∈ Xk

h and

(vh,ϕh, µh) ∈ 󰁨Xk
h, are uniquely characterized by the equations

Aκ,h

󰀃
(zh, ξh),Θh(vh, µh)

󰀄
= 〈(zh, ξh), (vh, µh)〉X ∀ (zh, ξh) ∈ Xk

h

and

󰁨Aκ,h

󰀃
(zh,φh, ξh), 󰁨Θh(vh,ϕh, µh)

󰀄
= 〈(zh,φh, ξh), (vh,ϕh, µh)〉󰁨X ∀ (zh,φh, ξh) ∈ 󰁨Xk

h ,
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which yield, in particular,

Aκ,h

󰀃
(vh, µh),Θh(vh, µh)

󰀄
= 󰀂(vh, µh)󰀂2 ∀ (vh, µh) ∈ Xk

h (5.51)

and
󰁨Aκ,h

󰀃
(vh,ϕh, µh), 󰁨Θh(vh,ϕh, µh)

󰀄
= 󰀂(vh,ϕh, µh)󰀂2 ∀ (vh,ϕh, µh) ∈ 󰁨Xk

h . (5.52)

In addition, it follows from the above characterizations ofΘh and 󰁨Θh and the discrete inf-sup conditions
(5.41) and (5.42), that

󰀂Θh󰀂 ≤ 1

ακ
and 󰀂󰁨Θh󰀂 ≤ 1

󰁨ακ
. (5.53)

5.4 Error analysis

We now aim to provide a priori error bounds and associated rates of convergence for the solutions of
the VEM/BEM schemes (5.19) and (5.21). We begin with the following Cea-type estimates, which
make use of ΠT

k−1 (cf. (5.3)), the global L2(Ω)-orthogonal projection onto Pk−1(Th).

Theorem 5.3. Assume that κ2 is not an eigenvalue of the Laplacian in Ω with a Dirichlet boundary
condition on Γ, and let h0 > 0 be the constant whose existence is guaranteed by Theorem 5.2. Then,
there exist constants C, 󰁨C > 0, independent of h, such that for each h ≤ h0 there hold

󰀂(u,λ)− (uh,λh)󰀂

≤ C

󰀻
󰀿

󰀽dist
󰀃
(u,λ),Xk

h

󰀄
+
󰀓 󰁛

E∈Th

󰀐󰀐u−Π∇,E
k u

󰀐󰀐2
1,E

󰀔1/2
+

󰀐󰀐u−ΠT
k−1u

󰀐󰀐
0,Ω

󰀼
󰁀

󰀾 ,
(5.54)

and

󰀂(u,ψ,λ)− (󰁨uh, 󰁨ψh, 󰁨λh)󰀂

≤ 󰁨C

󰀻
󰀿

󰀽dist
󰀃
(u,ψ,λ), 󰁨Xk

h

󰀄
+

󰀓 󰁛

E∈Th

󰀐󰀐u−Π∇,E
k u

󰀐󰀐2
1,E

󰀔1/2
+

󰀐󰀐u−ΠT
k−1u

󰀐󰀐
0,Ω

󰀼
󰁀

󰀾 .
(5.55)

Proof. We begin by observing, thanks to the triangle inequality, that

󰀂(u,λ)− (uh,λh)󰀂 ≤ 󰀂(u,λ)− (vh, µh)󰀂 + 󰀂(zh, ξh)󰀂 ∀ (vh, µh) ∈ Xk
h , (5.56)

where (zh, ξh) := (uh,λh) − (vh, µh). Then, setting (z+h , ξ
+
h ) := Θh(zh, ξh) ∈ Xk

h, employing the
identity (5.51) and the fact that Aκ

󰀃
(u,λ), ·

󰀄
and Aκ,h

󰀃
(uh,λh), ·

󰀄
coincide on Xk

h (which follows from
(3.13) and (5.19)), adding and subtracting (vh, µh) in the first component of Aκ, using the uniform
boundedness of Θh (cf. (5.53)) and the identity provided by the first row of (5.48), and then adding
and subtracting u in the first component of aκ, we obtain

󰀂(zh, ξh)󰀂2 = Aκ,h

󰀃
(uh,λh),Θh(zh, ξh)

󰀄
− Aκ,h

󰀃
(vh, µh),Θh(zh, ξh)

󰀄

= Aκ

󰀃
(u,λ)− (vh, µh),Θh(zh, ξh)

󰀄
+

󰀃
Aκ − Aκ,h

󰀄󰀃
(vh, µh), (z

+
h , ξ

+
h )

󰀄

≤ 󰀂Aκ󰀂α−1
κ 󰀂(u,λ)− (vh, µh)󰀂 󰀂(zh, ξh)󰀂 +

󰀏󰀏aκ(vh, z+h )− aκ,h(vh, z
+
h )

󰀏󰀏

≤
󰀓
󰀂Aκ󰀂+ 󰀂aκ󰀂

󰀔
α−1
κ 󰀂(u,λ)− (vh, µh)󰀂 󰀂(zh, ξh)󰀂 +

󰀏󰀏aκ(u, z+h )− aκ,h(vh, z
+
h )

󰀏󰀏 .

(5.57)
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In this way, we now focus on estimating the last term on the right hand side of the foregoing equation.
Indeed, according to the definitions of aκ and aκ,h (cf. (3.15) and (5.15) - (5.17)), we first obtain

󰀏󰀏aκ(u, z+h )− aκ,h(vh, z
+
h )

󰀏󰀏 ≤
󰁛

E∈Th

󰀏󰀏aEκ (u, z+h )− aEκ,h(vh, z
+
h )

󰀏󰀏

≤
󰁛

E∈Th

󰀏󰀏aE0 (u, z+h )− aE0,h(vh, z
+
h )

󰀏󰀏+ κ2
󰁛

E∈Th

|θE |
󰀏󰀏󰀏󰀏
󰁝

E

󰁱
uz+h −

󰀃
ΠE

k−1vh
󰀄󰀃
ΠE

k−1z
+
h

󰀄󰁲 󰀏󰀏󰀏󰀏 .
(5.58)

Next, adding and subtracting Π∇,E
k u in the first component of aE0 (u, z

+
h ), recalling that there holds

aE0 (Π
∇,E
k u, z+h ) = aE0,h(Π

∇,E
k u, z+h ) (cf. proof of Theorem 5.1), and thanks to the uniform boundedness

of aE0,h, we find that
󰀏󰀏aE0 (u, z+h )− aE0,h(vh, z

+
h )

󰀏󰀏 =
󰀏󰀏aE0 (u−Π∇,E

k u, z+h ) + aE0 (Π
∇,E
k u, z+h )− aE0,h(vh, z

+
h )

󰀏󰀏

=
󰀏󰀏aE0 (u−Π∇,E

k u, z+h ) + aE0,h(Π
∇,E
k u− vh, z

+
h )

󰀏󰀏

≲
󰁱󰀐󰀐u−Π∇,E

k u
󰀐󰀐
1,E

+
󰀐󰀐Π∇,E

k u− vh
󰀐󰀐
1,E

󰁲
󰀂z+h 󰀂1,E

≲
󰁱󰀐󰀐u−Π∇,E

k u
󰀐󰀐
1,E

+ 󰀂u− vh󰀂1,E
󰁲
󰀂z+h 󰀂1,E .

(5.59)

In turn, the orthogonality condition satisfied by ΠE
k−1 and the triangle inequality yield

󰀏󰀏󰀏󰀏
󰁝

E

󰁱
uz+h −

󰀃
ΠE

k−1vh
󰀄󰀃
ΠE

k−1z
+
h

󰀄󰁲 󰀏󰀏󰀏󰀏 =

󰀏󰀏󰀏󰀏
󰁝

E

󰁱
u−

󰀃
ΠE

k−1vh
󰀄󰁲

z+h

󰀏󰀏󰀏󰀏

≤
󰁱󰀐󰀐u− vh

󰀐󰀐
0,E

+
󰀐󰀐u−ΠE

k−1u
󰀐󰀐
0,E

󰁲
󰀂z+h 󰀂0,E .

(5.60)

Hence, plugging (5.59) and (5.60) in (5.58), and applying the Cauchy-Schwarz inequality, we deduce
the existence of a positive constant C1, depending on κ and θM , but independent of h, such that

󰀏󰀏aκ(u, z+h )− aκ,h(vh, z
+
h )

󰀏󰀏

≤ C1

󰀻
󰀿

󰀽

󰀓 󰁛

E∈Th

󰀐󰀐u−Π∇,E
k u

󰀐󰀐2
1,E

󰀔1/2
+

󰀐󰀐u− vh
󰀐󰀐
1,Ω

+
󰀐󰀐u−ΠT

k−1u
󰀐󰀐
0,Ω

󰀼
󰁀

󰀾 󰀂z+h 󰀂1,Ω .
(5.61)

Thus, replacing (5.61) back into (5.57), and bounding 󰀂z+h 󰀂1,Ω by α−1
κ 󰀂(zh, ξh)󰀂, we conclude that

󰀂(zh, ξh)󰀂 ≤ C2

󰀻
󰀿

󰀽
󰀐󰀐(u,λ)− (vh, µh)

󰀐󰀐+
󰀓 󰁛

E∈Th

󰀐󰀐u−Π∇,E
k u

󰀐󰀐2
1,E

󰀔1/2
+

󰀐󰀐u−ΠT
k−1u

󰀐󰀐
0,Ω

󰀼
󰁀

󰀾 , (5.62)

where C2 is a positive constant depending on 󰀂Aκ󰀂, 󰀂aκ󰀂, ακ, and C1, but independent of h. Finally,
combining (5.56) and (5.62), and then taking infimum over (vh, µh) ∈ Xk

h, we arrive at (5.54). On the
other hand, the proof of (5.55) follows almost verbatim. In fact, once stated the analogue of (5.56) with
an arbitrary (vh,ϕh, µh) ∈ 󰁨Xk

h and (zh,φh, ξh) := (󰁨uh, 󰁨ψh, 󰁨λh) − (vh,ϕh, µh), we set (z+h ,φ
+
h , ξ

+
h ) :=

󰁨Θh(zh,φh, vh) ∈ 󰁨Xk
h and proceed analogously to the derivation of (5.57). In this way, observing now

from (3.25) and (5.21) that 󰁨Aκ

󰀃
(u,ψ,λ), ·

󰀄
and 󰁨Aκ,h

󰀃
(󰁨uh, 󰁨ψh, 󰁨λh), ·

󰀄
coincide on 󰁨Xk

h, and noting from the

definitions of 󰁨Aκ and 󰁨Aκ,h (cf. (3.26) - (5.22)) that
󰀃󰁨Aκ− 󰁨Aκ,h

󰀄󰀃
(vh,ϕh, µh), (z

+
h ,φ

+
h , ξ

+
h )

󰀄
also reduces

to aκ(vh, z
+
h ) − aκ,h(vh, z

+
h ), we realize that it suffices to employ again the upper bound provided by

(5.61) to get

󰀂(zh,φh, ξh)󰀂

≤ C3

󰀻
󰀿

󰀽
󰀐󰀐(u,ψ,λ)− (vh,ϕh, µh)

󰀐󰀐+
󰀓 󰁛

E∈Th

󰀐󰀐u−Π∇,E
k u

󰀐󰀐2
1,E

󰀔1/2
+

󰀐󰀐u−ΠT
k−1u

󰀐󰀐
0,Ω

󰀼
󰁀

󰀾 ,
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where C3 is a positive constant, independent of h, having basically the same dependences of C2. The
foregoing inequality and the aforementioned analogue of (5.56) imply (5.55) and end the proof.

We are now in position to establish the announced rates of convergence. To this end, we recall from
(5.7) that ITk denotes the global virtual element interpolation operator. Then, we have the following
result.

Theorem 5.4. Assume that κ2 is not an eigenvalue of the Laplacian in Ω with a Dirichlet boundary
condition on Γ, and that both u and the datum w belong to H1(Ω) ∩

󰁔I
i=1H

k+1(Ωi). In addition, let
h0 > 0 be the constant whose existence is guaranteed by Theorem 5.2. Then, there exist constants
C0, 󰁨C0 > 0, independent of h, such that for each h ≤ h0 there hold

󰀂(u,λ)− (uh,λh)󰀂 ≤ C0 h
k

I󰁛

i=1

󰀂u󰀂k+1,Ωi
, (5.63)

and

󰀂(u,ψ,λ)− (󰁨uh, 󰁨ψh, 󰁨λh)󰀂 ≤ 󰁨C0 h
k

I󰁛

i=1

󰀂u󰀂k+1,Ωi
. (5.64)

Proof. We first notice that H1(Ω) ∩
󰁔I

i=1H
k+1(Ωi) ⊆ C0(Ω), which implies that ITk u is meaningful.

In addition, we have that ψ = γ(u− w) ∈ H1/2(Γ) ∩ H
k+1/2
b (Γ) ⊆ C0(Γ) and λ = γn

󰀃
∇(u− w)

󰀄
∈

H−1/2(Γ) ∩ H
k−1/2
b (Γ) ⊆ L2(Γ), whence LE

kψ and ΠE
k−1λ are meaningful as well. It follows that the

distances on the right han sides of (5.54) and (5.55) can be bounded as

dist
󰀃
(u,λ),Xk

h

󰀄
≤ 󰀂u− ITk u󰀂1,Ω + 󰀂λ−ΠE

k−1λ󰀂−1/2,Γ

and
dist

󰀃
(u,ψ,λ), 󰁨Xk

h

󰀄
≤ 󰀂u− ITk u󰀂1,Ω + 󰀂ψ − LE

kψ󰀂1/2,Γ + 󰀂λ−ΠE
k−1λ󰀂−1/2,Γ .

In this way, replacing the foregoing estimates back into (5.54) and (5.55), applying the approximation
properties of ITk (cf. (5.6)), ΠE

k−1 (cf. Lemma 5.1), LE
k (cf. Lemma 5.2), Π∇,E

k (cf. (5.5)), and ΠT
k−1

(cf. (5.4)), and employing the trace inequalities given by

󰀂ψ󰀂k+1/2,b,Γ ≲
I󰁛

i=1

󰀂u󰀂k+1,Ωi
and 󰀂λ󰀂k−1/2,b,Γ ≲

I󰁛

i=1

󰀂u󰀂k+1,Ωi
, (5.65)

we are led to (5.63) and (5.64), thus finishing the proof.

6 The discrete VEM/BEM scheme in 3D

In this section we follow the approach from [8, Section 4] to introduce and analyze a three-dimensional
VEM/BEM scheme for the modified Costabel & Han coupling procedure (cf. Section 3.3) as applied
to the present Helmholtz equation (cf. (3.25)). As explained in [8, Section 4.2], the original Costabel
& Han coupling (cf. Section 3.2) is not suitable for a VEM/BEM scheme in 3D since the trace of a
VEM function on the boundary of a given element is not a polynomial but a virtual function as well
(see (6.1) below).

20



6.1 Preliminaries

We now let {Th}h be a family of partitions of Ω into polyhedral elements E of diameter hE ≤ h, and
assume, as in Section 5.1, that the meshes {Th}h are aligned with each subdomain Ωi, i = 1, . . . , I.
The boundary ∂E of each E ∈ Th is then subdivided into planar faces denoted by F , so that, in
particular, we let Fh be the set of faces of Th that are contained in Γ. In addition, we assume that
there exists a constant ρ ∈ (0, 1) with which the family {Th}h satisfies the following conditions:

(B1) each E of {Th}h is star-shaped with respect to a ball BE of radius ρhE ,

(B2) for each E of {Th}h, the diameters hF of all its faces F ⊆ ∂E satify hF ≥ ρhE ,

(B3) the faces F of each E ∈ {Th}h, seen as 2-dimensional elements, satisfy the properties (A1) and
(A2) (cf. Section 5.1) with the same ρ.

Then, given an integer k ≥ 1 and E ∈ Th, we set

Xk
h(∂E) :=

󰁱
v ∈ C0(∂E) : v|F ∈ Xk

h(F ) ∀F ⊆ ∂E
󰁲
, (6.1)

with Xk
h(F ) defined by (5.2) (with F instead of E there), and introduce the local and global virtual

element spaces

W k
h (E) :=

󰁱
v ∈ H1(E) : v|∂E ∈ Xk

h(∂E), ∆v ∈ Pk(E), ΠE
k v −Π∇,E

k v ∈ Pk−2(E)
󰁲
, (6.2)

and
W k

h :=
󰁱
v ∈ X : v|E ∈ W k

h (E) ∀E ∈ Th
󰁲
, (6.3)

respectively, where ΠE
k is the L2(E)–orthogonal projection onto Pk(E), and Π∇,E

k : H1(E) → Pk(E)
is the operator given by (5.1). In addition, the degrees of freedom of W k

h (E) consist of:

i) the values at the vertices of E,

ii) the moments of order ≤ k − 2 on the edges e of E,

iii) the moments of order ≤ k − 2 on the faces F of E, and

iv) the moments of order ≤ k − 2 on E,

which uniquely define the corresponding local interpolation operator IEk : H2(E) → W k
h (E), whose

associated global operator is denoted ITk : H2(Ω) → W k
h . In turn, we let ΠT

k be the global version of

ΠE
k , that is the L

2(Ω)–orthogonal projection onto Pk(Th). The approximation properties of ΠE
k , Π

∇,E
k

and IEk are given again by (5.4), (5.5), and (5.6), respectively.

Furthermore, we need to introduce the simplicial submesh Fh of Γ obtained by subdividing each
face F ∈ Fh into the set of triangles T that arise after joining each vertex of F with the midpoint of
the disc with respect to which F is star-shaped. It readily follows, thanks to the conditions (A1) and
(A2) satisfied by the faces of the meshes, that the triangles of Fh have a shape ratio that is uniformly
bounded with respect to h. Hence, in order to approximate the non-virtual boundary unknowns λ
and ψ of the modified Costabel & Han coupling method, we now introduce the analogue spaces of
(5.8) and (5.9), that is

Λk−1
h :=

󰁱
µh ∈ L2(Γ) : µh|T ∈ Pk−1(T ) ∀T ∈ Fh

󰁲
(6.4)
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and
Ψk

h :=
󰁱
ϕh ∈ C0(Γ) : ϕh|T ∈ Pk(T ) ∀T ∈ Fh

󰁲
∩ H

1/2
0 (Γ) . (6.5)

In this way, we let ΠF
k−1 : L2(Γ) → Λk−1

h and LF
k : C0(Γ) → Ψk

h be the orthogonal projection and the

corresponding global Lagrange interpolation operator, respectively. Then, denoting by
󰀋
Γ1, ...,ΓJ

󰀌

the open polygons, contained in different hyperplanes of R3, such that Γ = ∪J
j=1Γ̄j , we recall from

[15] that the approximation properties of ΠF
k−1 and LF

k are exactly those stated in Lemmas 5.1 and

5.2 (certainly, with F instead of E). In addition, for each F ∈ Fh we let ΠF
k be the L2(F )-orthogonal

projection onto Pk(F ), and denote by ΠF
k its global extension to L2(Γ), which is assembled cellwise.

The approximation property of ΠF
k (and hence of ΠF

k ) is exactly that given by (5.4).

6.2 The VEM/BEM scheme

According to the finite dimensional subspaces given by (6.3), (6.4), and (6.5), we now redefine 󰁨Xk
h as

󰁨Xk
h := W k

h ×Ψk
h ×Λk−1

h , and consider, instead of (5.21), the following discrete formulation for the 3D

version of (3.25): Find (󰁨uh, 󰁨ψh, 󰁨λh) ∈ 󰁨Xk
h such that

󰁨Aκ,h

󰀃
(󰁨uh, 󰁨ψh, 󰁨λh), (vh,ϕh, µh)

󰀄
= 󰁨Fh(vh,ϕh, µh) ∀ (vh,ϕh, µh) ∈ 󰁨Xk

h , (6.6)

where

󰁨Aκ,h

󰀃
(zh,φh, ξh), (vh,ϕh, µh)

󰀄
:= Aκ,h

󰀃
(zh,φh, ξh), (vh,ϕh, µh)

󰀄
+

󰀍
Wκφh,ϕh

󰀎

+
󰀍
µh, Vκξh

󰀎
+

󰀍
µh,

󰀃 id
2
−Kκ

󰀄
φh

󰀎
−

󰀍
ξh,

󰀃 id
2
−Kκ

󰀄
ϕh

󰀎 (6.7)

for all (zh,φh, ξh), (vh,ϕh, µh) ∈ 󰁨Xk
h, with

Aκ,h

󰀃
(zh,φh, ξh), (vh,ϕh, µh)

󰀄
:= aκ,h(zh, vh) −

󰁝

Γ
ξhΠ

F
k−1

󰀃
γvh − ϕh

󰀄

+

󰁝

Γ
µhΠ

F
k−1

󰀃
γzh − φh

󰀄
,

(6.8)

and
󰁨Fh(vh,ϕh, µh) =

󰁝

Γ

∂w

∂n
ΠF

k−1γvh +

󰁝

Γ
ΠF

k−1µh γw ∀ (vh,ϕh, µh) ∈ 󰁨Xk
h . (6.9)

Note here that Aκ,h (and hence 󰁨Aκ,h) differs from the corresponding 2D definition (5.23) (resp. (5.22))
due to the need of replacing 〈ξh, γvh − ϕh〉 and 〈µh, γzh − φh〉 by the calculable expressions

󰁝

Γ
ξhΠ

F
k−1

󰀃
γvh − ϕh

󰀄
=

󰁛

F∈Fh

󰁝

F
ξhΠ

F
k−1

󰀃
γvh − ϕh

󰀄

and 󰁝

Γ
µhΠ

F
k−1

󰀃
γzh − φh

󰀄
=

󰁛

F∈Fh

󰁝

F
µhΠ

F
k−1

󰀃
γzh − φh

󰀄
,

respectively. Similarly, 󰁨F (cf. (3.25)) is replaced now by the approximate, but calculable, functional
󰁨Fh, for which we have assumed, for simplicity, that the normal derivative of the datum w lies in L2(Γ).
In addition, while the elements of the explicit finite element subspace Λk−1

h are certainly calculable,

in the definition of 󰁨Fh we have replaced µh by ΠF
k−1µh for technical reasons that will become clear

later on in the a priori error analysis of our scheme (see Theorem 6.3 in Section 6.4 for details). On
the other hand, we stress that, following [8, Section 4.3], the stabilizing bilinear form SE

h (cf. (5.10)),
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which gives rise to aE0,h (cf. (5.14)) and then to aEκ,h (cf. (5.15)) and aκ,h (cf. (5.17)), requires to
be slightly modified in this 3D case. Indeed, denoting by E(E) and F(E) the set of edges and faces,
respectively, of a given E ∈ Th, we define (cf. [8, eq.(4.16)])

SE
h (z, v) :=

󰁛

e∈E(E)

󰁝

e
πe
kz π

e
kv + h−1

E

󰁛

F∈F(E)

󰁝

F
ΠF

k−2zΠ
F
k−2v ∀ z, v ∈ W k

h (E) ,

where ΠF
k−2 is the L2(F )-orthogonal projector onto Pk−2(F ). In any case, the 3D version of (5.11)

holds true (cf. [3, Section 5.5]) and hence we have the corresponding three-dimensional counterparts
of (5.13), (5.27), and (5.30) as well. In addition, an analogue remark to the one provided right after
(5.13) is also valid here.

6.3 Solvability analysis

In this section we address the solvability analysis of the VEM/BEM scheme (6.6). In this regard, we
notice in advance that some of the proofs , being similar to those for the 2D case, are either simplified
or omitted, so that we refer to the preprint version of this work (cf. [9]) for all the corresponding
details. In what follows we consider, besides the continuous bilinear form 󰁨Aκ (cf. (3.26)), suitable
modifications of 󰁨A0 (cf. (4.2)) and 󰁨A0,h (cf. (5.25)). In particular, as already announced in Sections 4
and 5.3, the terms 〈ξ, 1〉 〈µ, 1〉 and 〈ξh, 1〉 〈µh, 1〉 can be dropped from their definitions in the present
3D case since they are not needed anymore. In addition, our fully calculable discrete bilinear form
󰁨Aκ,h (cf. (6.7) - (6.8)) induces corresponding changes in the definition of 󰁨A0,h. More precisely, we now

introduce, instead of (4.2) and (5.25), the following 3D versions of the bilinear forms 󰁨A0 and 󰁨A0,h

󰁨A0

󰀃
(z,φ, ξ), (v,ϕ, µ)

󰀄
= A0

󰀃
(z,φ, ξ), (v,ϕ, µ)

󰀄
+

󰀕󰁝

Γ
z

󰀖󰀕󰁝

Γ
v

󰀖
+

󰀍
W0φ,ϕ

󰀎

+
󰀍
µ, V0ξ

󰀎
+

󰀍
µ,

󰀃 id
2
−K0

󰀄
φ
󰀎
−

󰀍
ξ,
󰀃 id
2
−K0

󰀄
ϕ
󰀎 (6.10)

for all (z,φ, ξ), (v,ϕ, µ) ∈ 󰁨X, with (cf. (4.4))

A0

󰀃
(z,φ, ξ), (v,ϕ, µ)

󰀄
:= a0(z, v) −

󰀍
ξ, γv − ϕ

󰀎
+

󰀍
µ, γz − φ

󰀎
, (6.11)

and

󰁨A0,h

󰀃
(zh,φh, ξh), (vh,ϕh, µh)

󰀄
:= A0,h

󰀃
(zh,φh, ξh), (vh,ϕh, µh)

󰀄
+

󰀍
W0φh,ϕh

󰀎

+
󰀍
µh, V0ξh

󰀎
+

󰀍
µh,

󰀃 id
2
−K0

󰀄
φh

󰀎
−

󰀍
ξh,

󰀃 id
2
−K0

󰀄
ϕh

󰀎 (6.12)

for all (zh,φh, ξh), (vh,ϕh, µh) ∈ 󰁨Xk
h, with

A0,h

󰀃
(zh,φh, ξh), (vh,ϕh, µh)

󰀄
:= a0,h(zh, vh) +

󰀝󰁝

Γ
zh

󰀞󰀝󰁝

Γ
vh

󰀞

−
󰁝

Γ
ξhΠ

F
k−1

󰀃
γvh − ϕh

󰀄
+

󰁝

Γ
µhΠ

F
k−1

󰀃
γzh − φh

󰀄
,

(6.13)

where a0 and a0,h are defined by (4.3) and (5.16), respectively.

We begin the analysis by observing that the boundedness of 󰁨A0 (cf. (4.6)) and the ellipticity of 󰁨A0,h

(cf. (5.29), Lemma 5.4) remain unchanged with the above new definitions, and hence the operator
󰁨Rh : 󰁨X → 󰁨Xk

h, being characterized by (5.32), is still well-defined and uniformly bounded.

On the other hand, in order to establish the 3D version of (5.34) (cf. Theorem 5.1), we consider

the subspace of 󰁨X given by 󰁨X0 := H1(Ω)×H
1/2
0 (Γ)× L2(Γ). Then, we have the following result.
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Theorem 6.1. There exists a positive constant 󰁨C, independent of h, such that

󰀂 󰁨Rh(z,φ, ξ)− (z,φ, ξ)󰀂 ≤ 󰁨C
󰁱
dist

󰀃
(z,φ),W k

h ×Ψk
h

󰀄
+

󰀓 󰁛

E∈Th

|z −Π∇,E
k z|21,E

󰀔1/2

+ h−1/2 󰀂γz −ΠF
k−1γz󰀂0,Γ + h−1/2 󰀂φ−ΠF

k−1φ󰀂0,Γ

+ 󰀂ξ −ΠF
k−1ξ󰀂−1/2,Γ + 󰀂ξ −ΠF

k−1ξ󰀂−1/2,Γ

󰁲
(6.14)

for all (z,φ, ξ) ∈ 󰁨X0.

Proof. We proceed as in the second part of the proof of Theorem 5.1, except that, given (z,φ, ξ) ∈ 󰁨X0

and (zh,φh, ξh) ∈ 󰁨Xk
h, with ξh = ΠF

k−1ξ, we now get the bound

󰀂 󰁨Rh(z,φ, ξ)− (z,φ, ξ)󰀂 ≲ 󰀂(vh,ϕh, µh)󰀂 + 󰀂(z,φ)− (zh,φh)󰀂 + 󰀂ξ −ΠF
k−1ξ󰀂−1/2,Γ , (6.15)

with (vh,ϕh, µh) := 󰁨Rh(z,φ, ξ)−(zh,φh, ξh) ∈ 󰁨Xk
h. For further details we refer to [9, Theorem 6.1].

Hence, in spite of the factors h−1/2 appearing in (6.14), and similarly as we already did with
Theorem 5.1, we stress here that the present Theorem 6.1, together with classical density arguments
again, the aproximation properties provided by (5.4), (5.5), (5.6), and Lemmas 5.1 and 5.2, and the
uniform boundedness of 󰁨Rh, guarantee that

lim
h→0

󰀂 󰁨Rh(z,φ, ξ)− (z,φ, ξ)󰀂 = 0 ∀ (z,φ, ξ) ∈ 󰁨X . (6.16)

Now we are ready to establish the discrete inf-sup condition for 󰁨Aκ,h (cf. (6.7)). More precisely,
the 3D version of (5.42) (cf. Theorem 5.2) is stated as follows.

Theorem 6.2. Assume that κ2 is not an eigenvalue of the Laplacian in Ω with a Dirichlet boundary
condition on Γ. Then, there exist positive constants h0 and 󰁨ακ, independent of h, such that for each
h ≤ h0 there hold

sup
(zh,φh,ξh)∈󰁨Xk

h
(zh,φh,ξh) ∕=0

󰀏󰀏󰀏󰁨Aκ,h

󰀃
(zh,φh, ξh), (vh,ϕh, µh)

󰀄󰀏󰀏󰀏
󰀂(zh,φh, ξh)󰀂

≥ 󰁨ακ 󰀂(vh,ϕh, µh)󰀂 ∀ (vh,ϕh, µh) ∈ 󰁨Xk
h . (6.17)

Proof. We refer to [9, Theorem 6.2] for all the details.

Therefore, it follows directly from Theorem 6.2 that for each h ≤ h0, the VEM/BEM scheme (6.6)
has a unique solution (󰁨uh, 󰁨ψh, 󰁨λh) ∈ 󰁨Xk

h. In turn, we can define the operator 󰁨Θh : 󰁨Xk
h → 󰁨Xk

h, which,

given (vh,ϕh, µh) ∈ 󰁨Xk
h, is uniquely characterized by the equation

󰁨Aκ,h

󰀃
(zh,φh, ξh), 󰁨Θh(vh,ϕh, µh)

󰀄
= 〈(zh,φh, ξh), (vh,ϕh, µh)〉󰁨X ∀ (zh,φh, ξh) ∈ 󰁨Xk

h , (6.18)

which implies

󰁨Aκ,h

󰀃
(vh,ϕh, µh), 󰁨Θh(vh,ϕh, µh)

󰀄
= 󰀂(vh,ϕh, µh)󰀂2 ∀ (vh,ϕh, µh) ∈ 󰁨Xk

h . (6.19)

Moreover, it is clear from (6.18) and the discrete inf-sup condition (6.17) that 󰀂󰁨Θh󰀂 ≤ 1
󰁨ακ
.
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6.4 Error analysis

Similarly as in Section 5.4, we now establish a Cea-type estimate for the VEM/BEM scheme (6.6).

Theorem 6.3. Assume that κ2 is not an eigenvalue of the Laplacian in Ω with a Dirichlet boundary
condition on Γ, and that both ∂w

∂n and λ belong to L2(Γ). In addition, let h0 > 0 be the constant whose

existence is guaranteed by Theorem 6.2. Then, there exist a constant 󰁨C > 0, independent of h, such
that for each h ≤ h0 there holds

󰀂(u,ψ,λ)− (󰁨uh, 󰁨ψh, 󰁨λh)󰀂 ≤ 󰁨C
󰀝
dist

󰀃
(u,ψ),W k

h ×Ψk
h

󰀄
+

󰀐󰀐∂w
∂n

−ΠF
k−1

󰀓∂w
∂n

󰀔󰀐󰀐
−1/2,Γ

+
󰀓 󰁛

E∈Th

󰀐󰀐u−Π∇,E
k u

󰀐󰀐2
1,E

󰀔1/2
+

󰀐󰀐u−ΠT
k−1u

󰀐󰀐
0,Ω

+ 󰀂λ−ΠF
k−1λ󰀂−1/2,Γ + 󰀂λ−ΠF

k−1λ󰀂−1/2,Γ

󰀞
.

(6.20)

Proof. We omit details and refer to [9].

Having established (6.20), the rates of convergence for the solution (󰁨uh, 󰁨ψh, 󰁨λh) of the VEM/BEM
scheme (6.6) follow almost exactly as proved by Theorem 5.4 for the corresponding 2D case (cf. (5.64)).
Indeed, assuming that both u and the datum w belong to H1(Ω) ∩

󰁔I
i=1H

k+1(Ωi), and applying the

approximation properties of ITk (cf. (5.6)), LF
k (cf. Lemma 5.2), ΠF

k−1 (cf. Lemma 5.1), Π∇,E
k (cf.

(5.5)), ΠT
k−1 (cf. (5.4)), and ΠF

k−1 (cf. Lemma 5.1), and employing the 3D version of the trace

inequalities given by (5.65), we conclude the existence of a constant 󰁨C0 > 0, independent of h, such
that for each h ≤ h0 there holds

󰀂(u,ψ,λ)− (󰁨uh, 󰁨ψh, 󰁨λh)󰀂 ≤ 󰁨C0 h
k

I󰁛

i=1

󰁱
󰀂u󰀂k+1,Ωi

+ 󰀂w󰀂k+1,Ωi

󰁲
. (6.21)

We end this paper by commenting that fully calculable approximations of u for the 2D and 3D
schemes introduced and analyzed here, can be defined similarly as done in [8, Section 3.4]. In this
way, rates of convergence of exactly the same order as those established by Theorem 5.4 and (6.21),
can be obtained. We omit further details.
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