
Received June 11, 2020, accepted July 12, 2020, date of publication July 28, 2020, date of current version August 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3012503

Midgar: Creation of a Graphic Domain-Specific
Language to Generate Smart Objects for Internet
of Things Scenarios Using Model-Driven
Engineering
CRISTIAN GONZÁLEZ GARCÍA 1, DANIEL MEANA-LLORIÁN 1, VICENTE GARCÍA-DÍAZ 1,
ANDRÉS CAMILO JIMÉNEZ2, AND JOHN PETEARSON ANZOLA 2
1Department of Computer Science, Sciences Building, University of Oviedo, 33007 Oviedo, Spain
2Department of Electronics and Systems, Fundación Universitaria Los Libertadores, Bogotá 111221, Colombia

Corresponding author: John Petearson Anzola (jpanzolaa@libertadores.edu.co)

This work was supported in part by the Ingeniería Dirigida por Modelos MDERG Research Group, University of Oviedo, the Research
Project Ingeniería Dirigida Por Modelos MDERG financed by P.R., Proyecto Plan Regional, under Contract FC-15-GRUPIN14-084,
in part by the Severo Ochoa Program financed by Asturias Government, under Contract PA-17-PF-BP16074, and in part by the
International Collaboration from the Department of Electronics and Systems of the Fundación Universitaria Los Libertadores, under
Project ING-009-19.

ABSTRACT Currently, we have around us many Smart Objects. With the use of these objects, we can obtain
benefits in our daily lives, as well as recommendations and help when we travel. Alternatively, we may
increase and improve our industrial processes through the automation of certain tasks. Notwithstanding,
we need to use specific software or to develop our own applications. Nevertheless, the main problem arises
when we need to develop our own application because we need to save money, or in other cases, the existing
applications are not adapted to us. In this case, it is possible that we need to learn new things, the money will
then be spent, and such a process is likely to involve problems related to the Software Crisis. So, the main
motivation is to create an environment which can reuse the previous knowledge and help people without
knowledge about programming to create Smart Objects. Then, the research question of this paper is the
following: Could we enable the creation of Smart Objects in an easy and efficient way for people who do not
have programming skills? As a possible solution, we have developed a graphic Domain-Specific Language
using the Midgar platform. In order to validate our proposal, we make an evaluation split into different
phases; the first one consisted in measuring data obtained from participants when they were performing a
specific task, and the second one consisted of a survey to collect their opinions about our proposal. Moreover,
we also did a comparison of the measured data between two graphical editors and two different participant
profiles according to their knowledge about Smart Objects.

INDEX TERMS Internet of Things, smart objects, model-driven engineering, domain-specific language.

I. INTRODUCTION
The Internet of Things (IoT) is the interconnection of hetero-
geneous and ubiquitous objects between themselves [1]–[4].
People’s daily life has a lot of objects with Internet con-
nection like smartphones [5], tablets, Smart TVs, micro-
controllers [6], [7], Smart Tags [3], computers, laptops,
cars, or cheaper sensors, with improved wireless connections
[8], and other things to make IoT interconnections between

The associate editor coordinating the review of this manuscript and

approving it for publication was Shancang Li .

different objects in their homes. With these things, people
have heterogeneous objects because these are of different
types and people have ubiquitous objects because objects are
installed in different places and some of them can be moved
around the world. If we think about this, we could already
think that we have the Internet of Things.

With the IoT, we can create an enormous network to inter-
connect objects and facilitate our daily life. Some examples:
to improve the tracking of deliveries and objects situation,
to improve the factory production, or the security in the
industry [9]–[11]; to prevent natural disasters, to automate

141872 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-8810-6023
https://orcid.org/0000-0003-1870-6733
https://orcid.org/0000-0003-2037-8548
https://orcid.org/0000-0001-8503-5410
https://orcid.org/0000-0001-5663-7420


C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

actions in farms, or to obtain data about the ecosystem in
order to protect the fauna and flora according to certain
situations, which is known as Smart Earth [12]–[14]; the
improvement of Smart Cities to help citizens in their daily
life, for instance, to park, to avoid traffic jams, to automate
traffic lights, to change the public transport in real-time or
so on [15]–[17]; to improve people’s life with Smart Homes
with the use of a Smart Fridge to help ill people or facilitating
the garden maintenance [18]–[20] or to save money with the
heating [21]. However, people need to create an application
or buy it. The ideal world would be one in which each person
could put their objects in the IoT with no problems, with only
a minimum knowledge about the IoT and the object that they
use. Thus, we could have a lot of sensors and data to create a
huge IoT network for our City or our World.

Nevertheless, people depend on important and big compa-
nies, which are developing new IoT systems. The products of
one company depend on the object, thus maybe you must use
specific software and hardware. For example, LG, Samsung,
Telefónica, and other companies offer packs for creating an
IoT network in your own home. Nonetheless, these solutions
usually only allow interconnecting objects with other objects
of the same brand. For instance, in almost all cases, if you
use an object of a particular company, you only can use
the mobile application that this company provides to interact
with its objects. Another example is when you use a server
and you only can interconnect with these server objects of
the same server brand. This breaks the heterogeneity of the
Internet of Things because the objects of one company do
not use the same language or message system to talk to each
other. In other cases, companies use their IoT products in
their own language. This problem obliges us to use only the
same product brand to create an ecosystem. In this case, it is
possible that people cannot use the better sensor of another
brand to create an IoT system for his company or house
because then, people should need to change all the system or
they should use both systems at the same time instead of only
have one. Maybe, they should use both because, for example,
each system has the better sensor in different areas. This
problem impedes the evolution of the IoT because it limits
the evolution according to the progress of companies. In this
case, if companies improve their systems, their sensors, their
IoT servers, their products, thereafter the IoT will evolve.
However, currently, all the evolution depends on the software
and hardware that companies provide to us. Notwithstanding,
some open initiatives, like Arduino, or a cheap system like
Raspberry Pi, allow us to create our IoT things but in these
cases, we have to program all the logic, which requires pro-
gramming skills.

Therefore, our hypotheses are the next:
• It is possible to use Model-Driven Engineering to create
a Domain-Specific Language (DSL) that enables people
without experience in the development of applications
for Smart Objects to create Smart Objects although they
have not programming skills.

• Our proposal is more efficient than other alternatives
according to the time, the clicks, and the movement of
the mouse required creating Smart Objects.

To solve our two hypotheses, a possible solution is to allow
creating and interconnecting different objects between them-
selves.We proposed a solution based on a graphic DSL called
Midgar Object Interconnection Specific Language (MOISL)
to solve the interconnection problem amongst heterogeneous
and ubiquitous objects in [22], using theMidgar IoT platform.
With this solution, people without development knowledge
can interconnect the objects of an IoT network. However, this
is only a partial solution to the problem that we have presented
because it does not solve the problem of generating applica-
tions. In our first proposal, people needed to have a registered
application in the IoT platform, which has to interpret specific
messages. In this article, we propose a possible solution to
create the necessary software for the objects. We propose a
graphic DSL called Midgar Object Creation Specific Lan-
guage (MOCSL). In this proposal, we want to offer a graphic
DSL to facilitate the object creation to people without devel-
opment knowledge. Then, the users of this proposal can be
people without knowledge about programming but with the
knowledge or attitude to learn about the IoT or in the ‘‘Do
it yourself’’ (DIY) movement, or a skilled technical team
which needs to develop and create the needed software for an
IoT network, maybe from a company or government. In this
way, people need a smartphone and know their smartphone
brand and/or an Arduino and know how to connect sensors
and actuators to their Arduino. In the Arduino case, people
do not need to know how to create the source code to use
the temperature sensor, the flame sensor, or the servomotor.
People only need to be able to connect sensors and actuators
in the Arduino. In both cases, they will have an IoT server to
upload the data. It can be public or private.

Thus, we have researched to offer this abstraction in order
to facilitate the interconnection between the real world and
the virtual world with no developed source code. With this
proposal, we want to allow a quicker and easier way for the
object creation to improve the implementation of the IoT
in our daily life, in our industry, our home, our education,
our security, or in many other situations. Then, the aim of
this proposal is to allowed people with knowledge about this
domain and a little knowledge about computing to create
applications for the IoT easily. So, the contribution is to
create a tool to allow people to create Smart Objects and
demonstrate that it is possible to reuse specific parts of the
software to solve it.

The remainder of this paper is structured as follows: In
section II we explain the state of the art where we discuss
the Internet of Things, Smart Objects, Model-Driven Engi-
neering, Domain-Specific Languages, the more important
current IoT platforms, and the related work on applications
that generate the software that the objects need. In section III
we explain the proposal. We present the idea about the gen-
eration of objects for the Internet of Things platform and

VOLUME 8, 2020 141873



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

its architecture. Section IV contains the evaluation of our
proposal and the discussion of the obtained results. Section V
has our conclusions about this research. Finally, in section VI,
we describe some possible options as the future work of this
proposal.

II. STATE OF THE ART
In the Internet of Things, we have different objects, which
can be smart or not [23]. In both cases, these objects are
very heterogeneous and different. Then, the creation of the
software that an object needs is a hard task: people need to
know how to program that object and people need time.

A possible solution to create an easier system to be man-
aged and the software that these objects need is applying
Model-Driven Engineering to create a Domain-Specific Lan-
guage. Nevertheless, firstly, we need to know how the IoT
platforms are at this moment and how other and similar
applications allow doing this task.

A. THE INTERNET OF THINGS
In recent years, we could see the growth of the interaction
amongst heterogeneous and ubiquitous objects with each
other. It is known as the Internet of Things (IoT) [1], [3], [20],
[22], [24], [25]. This was announced by the National Intelli-
gence Council of the United States in [26] and by the United
Nations [1]. The origin was the necessity of supply chains
and the identification of objects [27], people, and animals
through the use of RFID intelligent tags [1], [4], [28]. Then,
with the IoT, we can identify the different objects of the world
to interact the real world with the virtual world. It offers to us
a lot of possibilities as we can see in many types of research
about Smart Earth [16], Smart Home [2], [21], [29], [30],
Smart Cities [16], and Smart Towns [31], [32]. All of them
facilitate the life of humans with different automation and
notifications. Nevertheless, the Internet of Things requires
integrated intelligence, connectivity, and interaction [3]. This
is why we have different Internet of Things platforms to
interconnect our objects.

However, we have a problem when we work with the
IoT: We must develop the software to make Smart Objects
function, and this can require some hours and knowledge
about software development. After that, we have to do the
interconnection of the different objects between themselves.
However, this second part was solved previously in [22].

B. SMART OBJECTS
Smart Objects, also known as Intelligent Products, are physi-
cal elements with different properties, which are identifiable
during their useful life, interacting with the environment and
other objects, and acting intelligently according to different
conditions, as we can see in [23]. They can obtain differ-
ent environmental data like humidity, location, temperature,
gravity, acceleration, and so on. Besides, they have various
actuators to do different things when they obtain a certain
datum from another object, the environment, or through an
intelligent network like an IoT platform. For example, they

could vibrate, show a notification, make a call, or send mes-
sages if it is a smartphone, tablets or similar. Other pos-
sibilities are when they could turn on/turn off the sound,
accelerate/decelerate an engine or a fan, and anything that you
can create with a microcontroller like an Arduino.

Nevertheless, users must create the software to obtain
the object data, create the interconnection amongst differ-
ent Smart Objects, or use a specific software with specific
hardware although in this case, users lose the possibility of
interconnecting heterogeneous objects.

C. MODEL-DRIVEN ENGINEERING
Software engineering continually offers new methods and
tools to improve the software development process. Although
the use of modelling standards such as the Unified Modeling
Language (UML) [33] is a commonly accepted practice,
in recent years it is gaining strength the use of a relatively new
approach for the development called Model-Driven Engi-
neering (MDE) [34], based entirely on the use of models as
first-class artefacts for development. With that, models like
those provided by the UML standard are gaining importance.
Thus, the Model-Driven Architecture (MDA) [35] standard
has appeared as a standardized way of conducting MDE
from UML models and metamodels. The use of models, with
common underlying technologies, allows an increase of the
portability, reusability, and interoperability of all software
that is built. Thus, technologies such as those included in
the Eclipse Modeling Project [36] have arisen offering a
complete toolset for working with models to build any type
of software.

For this proposal, we used MDE to study the prob-
lem and obtain an abstraction of it. With this abstraction,
we have obtained a Metamodel and a complete view about
the problem. Based on this metamodel, we can create a
Domain-Specific Language to solve our hypotheses and cre-
ate automatically any definition using this DSL.

D. DOMAIN-SPECIFIC LANGUAGES
From the use of standardized models as a basis for the devel-
opment of software, the Domain-Specific Languages (DSLs)
[37] have also gained in popularity. Thus, very powerful tools
such as Xtext [38] are currently been widely used. Xtext,
for example, is a framework that focuses on the creation
of DSLs using models as the core technology. The main
idea is to define small programming languages tailored to a
specific domain of knowledge, avoiding technological con-
cepts and focusing on keywords and constructs related to
the specific domain being dealt with [39]. Thus, common
General-Purpose Languages (GPLs) such as C++, Java, C#,
Objective-C, or Swift use many keywords (e.g., static, pro-
tected, double, import, etc.) that have nothing to do with
the final purpose of the applications that are being defined
[40]. A DSLs can be designed to only use specific domain
concepts, allowing that experts in a field can use it to create
solutions, even without the high technical knowledge that
GPLs require [41]. DSLs can be interpreted or compiled like

141874 VOLUME 8, 2020



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

any other language, but most often, the code is benefited from
the reuse of model-based technologies and with standard-
ized tools based on a common root metamodel (Meta-Object
FacilityTM (MOF) [42] / Ecore) [43]. Thus, programs are
translated into well-established languages to be interpreted
by their virtual machines and compilers.

Then, we have created a graphic DSL (MOCSL) in order
to allow the object creation for people without development
knowledge or people who need to create objects in an easy
and fast way. We have designed MOCSL using Ecore [44]
as a Meta-metamodel and we have created the DSL using
JavaScript.

E. SMART OBJECTS
Wehave different Internet of Things platforms to interconnect
our objects. We can classify the IoT platforms into four
groups [24]:

• Business platforms: Xively [45] (now it is a part of Cloud
IoT), Exosite [46], SensorCloud [47], Etherios [48],
ThingWorx [49], Altair SmartWorks (previously Car-
riots) [50], Azure IoT Suit [51], Amazon Web Services
[52], and IBM Internet of Things [53].

• Research platforms: Midgar [22], [54], [55], Paraimpu
[6], [56], [57], QuadraSpace [58], SenseWeb [59]–[61],
and SIoT [62].

• Platforms in beta state: Sensorpedia [63], [64], Evrythng
[65], and Open.Sen.se [66].

• Open Source platforms: ThingSpeak [67], Nimbits [68],
and Kaa [69].

All these IoT platforms are great and all have different
important qualities to improve the IoT. Nonetheless, these IoT
platforms require a minimum of knowledge about develop-
ment because all of them need that users create the object
software, the interconnection between the object and the
platform, or both. Sometimes, the IoT platforms help users
with anApplication Programming Interface (API) to facilitate
the interconnection with the IoT platform and/or to read
sensor data in different Smart Object or microcontrollers like
Android smartphones, Arduino microcontrollers, Raspberry
Pi microcomputers, and so on. In this case, the IoT platforms
reduce the time and the users’ effort to develop applications
but users still need knowledge about software development
and still need to develop the program.

One problem in the IoT is the necessity of developing
applications to interconnect Smart Objects between them-
selves. Some IoT platforms help to interconnect Smart
Objects through a DSL or forms. According to this problem,
we have proposed a possible solution withMOISL to improve
this problem in [22] and proposed the idea in [24].

Another problem is when users want to use a Smart Object
or a microcontroller, but users do not have knowledge on how
to develop an application. Then, users have some possibili-
ties. They could learn to program, but, in this case, they need
a lot of time or they could buy a specific application for their
own Smart Object. For this problem, a possible solution is

to use similar software used for the previous problem but the
IoT platforms do not have this option. However, the Arduino
community offers software to facilitate this task but with
some restrictions. We will explain more about this in the next
section. This is why we propose a new DSL for the Midgar
Platform to facilitate the generation of Smart Objects and
microcontroller for IoT scenarios in this article.

F. RELATED WORK: APPLICATIONS THAT GENERATE
SOFTWARE TO MANAGE OBJECTS
One important issue with the Internet of Things is the need
to know how to develop applications to interconnect dif-
ferent objects. Typically, such objects are based on the use
of different types of smartphones or microcontrollers. Thus,
we need to develop a different kind of applications using
different programming languages, libraries, and platforms.
Then, to interconnect heterogeneous objects we need to know
how to develop applications with a large number of technolo-
gies. One of the main difficulties is the software development
phase because it is a complex, difficult and error-prone task
[70]. However, we can find some solutions to facilitate this
task for people without development knowledge. They even
include the possibility of working with data through the
flow modification inside each of the objects. In our work,
we did not include this functionality because we have already
included this functionality in MOISL [22] and our aim now
is the object creation for the Internet of Things. In this
section, we are going to mention some of the most important
solutions.

1) SOLUTIONS FOR SMARTPHONES
We have focused on various graphic editors to create appli-
cations for Android since it is the most extended mobile
operating system by far. Thus, there exist important tools that
could be used like AppsGeyser [71], iBuildApp [72], and
Andromo [73]. However, there are also editors that include
support for other additional platforms such as AppsBuilder
[74] and Infinite Monkeys [75] for iOS and HTML, Appypie
[76], which has bought Infinite Monkeys, for Blackberry
and Windows Phone, Como (currently called Swiftic) [77]
for iOS, or AppMachine [78] for Windows Phone and with
Web Services (eXtensible Markup Language (XML) and
JavaScript Object Notation (JSON)) in the pro plan and only
to download the data and interpret them.

All these graphic web editors share with our proposal
different features and allow to create solutions with a drag
& drop system using different blocks to add the necessary
functionalities. Others even provide the use of default tem-
plates with a minimum set of features to make the creation of
applications easier.

2) SOLUTIONS FOR MICROCONTROLLERS
MiniBloq [79] is one of the most representative graphic edi-
tors for Multiplot and Arduino platforms. It is an open-source
tool based on a desktop application generator that proposes a
jigsaw puzzle type system to design the application life cycle.

VOLUME 8, 2020 141875



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

In addition, it generates the source code in real-time to be
uploaded to the microcontroller, although it does not allow
modifying it.

However, with MiniBloq, blocks/pieces movements may
be confusing. For example, if we want to add a piece to
improve another more basic piece, we need to add this piece
from the piece menu instead of the general menu. However,
if we want to start the next instruction, we must use the
general menu. There is also the opposite case and it is possible
to find the same functionality under different pieces with a
different icon.MiniBloq provides less freedom to use the pins
because these depend on the piece type. It also includes by
default the header files ‘‘mbq.h’’ and ‘‘PingIRReceiver.h’’,
even if we do not need their modules. In addition, to repeat
a task we need to insert a loop because all the source code
that the editor generates is in the ‘‘setup method’’ instead of
the ‘‘loop method’’, according to the normal use of language,
which is based onWiring [80]. This may be incorrect because
in Arduino the ‘‘setup method’’ is for establishing the differ-
ent variables and pins and the ‘‘loop method’’ is for creating
our repetitive task or main task.

Besides, this graphic editor has a special piece to insert
source code, pieces to create variables, and pieces that have
math operations. Notwithstanding, it lacks pieces for creating
a flow like ‘‘if’’ or ‘‘while’’ or logic pieces like ‘‘true’’ or
‘‘false’’, or conditions in an easy way.

Thus, Minibloq clearly facilitates the generation of appli-
cations, but if we need a critical application for the industrial
area, we could have some difficulties for designing it.

There are other graphic editors to generate applications for
microcontrollers. For example, ArduBlock [81], is a plugin
for the default Arduino development environment. It allows
building generic applications by just dragging and dropping
blocks. Some other alternatives with a similar set of features
include Scratch for Arduino [82], [83], Modkit [84], Atmel
Studio [85] which is very similar to Visual Studio and you
have to know how to program, or XOD [86], that is a powerful
environment in its early stages which proposes a language to
design applications not only for the Arduino platform but for
other microcontrollers.

3) ARCHITECTURAL MODELS
Internet of Things Architecture (IoT-A) was a proposal about
an architectural model and a definition of a set of building
blocks for the IoT [87]. The reason for this project was
to improve the interoperability and creating standards and
guidelines to protocols, algorithms, and interfaces for IoT
systems. Besides, it assesses existing IoT protocols and devel-
ops modelling tools and a description language for inter-
actions between devices in the IoT. However, the project
finished on November 30th, 2013. In the official webpage,
they do not have results, and the project website is down.

On the other hand, this paper tries to solve the creation
of Smart Objects to a specific IoT network, in our case
Midgar, using MDE and the creation of a DSL to facilitates
the development.

III. CASE STUDY: MIDGAR
Midgar is an Internet of Things platform developed to
research the different problems of the IoT. Currently, Midgar
offers support to create the interconnection between hetero-
geneous and ubiquitous objects using the DSL called MOISL
[22], [55] in a secure way [54]. MOISL is a DSL to facilitate
the creation of the interconnection between Smart Objects in
IoT scenarios. Then,MOISL allows users to specify how each
object interacts with each other. For instance, if the Midgar
platform has a Smartphone and Arduino microcontroller reg-
istered, using MOISL, a user can specify the conditions and
actions which they want to do with those objects. For exam-
ple, when the smartphone sends a message with the location
and the Midgar platform detects that the smartphone is very
close to the house, it can send a message to the Arduino to
turn on the heating or the air conditioning according to the
temperature of the house. However, in that first iteration, the
logic of the objects had to be developed by users.

In this paper, we try to find a solution for the object gen-
eration in order to facilitate the creation of Smart Objects for
almost any people without the knowledge of programming.
Then, with this new DSL, called MOCSL, we facilitate the
creation of the objects and their interaction with an IoT
platform because users only have to select the sensor and
actuators that they want to use. After that, using MOISL;
they can create the interaction between their objects. In this
section, we will describe the Midgar Platform architecture,
which includes the new graphic DSL MOCSL.

A. GENERATION OF APPLICATIONS FOR SMART OBJECTS
With Midgar Object Creation Specific Language (MOCSL),
users can create the necessary logic for their objects with-
out writing source code using a drag & drop system. Users
only need to choose the sensors and actuators that they
want to use on their smartphone or Arduino using the DSL
MOCSL, which has been developed using HTML5. After
it, MOCSL generates a native application with everything
that has been defined by the user and that objects need to
be a Smart Object. This native application can be the source
code for their smartphone or all the C and Java code for
their Arduino. On the one hand, users only need to select
the sensors and actuators of their smartphones that they want
to use and permit other devices to use. On the other hand,
users need to assemble the required sensors and actuators on
their real microcontroller and define in MOCSL the sensors
and actuators that they have assembled and they want to use.
Afterwards, they obtain the native application to connect the
microcontroller to the computer USB port. This application
has two parts: The Java application of the PC and the C appli-
cation to the Arduino. The C application has to be uploaded
to the Arduino using the Arduino Integrated Development
Environment (IDE). Besides, it is running constantly in the
Arduino to do the task which had been defined by the user:
read sensors and/or run the actuators. It contains all the source
code with the functionality that the users have defined and
that is necessary to run the sensors and actuators that they

141876 VOLUME 8, 2020



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

have selected, including the needed libraries. This application
is sending the data constantly to the USB port. Then, the Java
application, which is running in the PC, is reading the USB
port to obtain or send data from/to the Arduino. Furthermore,
the Java application is sending the data to the IoT Midgar
server. The main purpose of the Java application is to be an
intermediary between the Arduino and the server. Then, with
this intermediary, we can improve the capacity of the Java
application to use Big Data or manage the data with more
potential in the PC. In case you want to avoid this part, you
would need to buy and insert a Global System for Mobile
communications (GSM) or Ethernet shield to the Arduino.
In the case of smartphones, they obtain a native application
that can send the information to the IoT platform and the
libraries and source code that needs to parse the messages and
access to the sensors and actuators that the user had defined.
Both applications support the Midgar functionality to send
to this IoT platform the messages with all the information
about sensors and actuators through the Internet using the
web services of the platform. These web services have been
developed using a Representational State Transfer (REST)
architecture. All the data from and to Smart Objects are sent
using the REST service of Midgar, which is working on the
HTTP protocol which we have improved with cryptography
security in the previous work [54], a protocol using XML)
files: From registering a new Smart Object to send and receive
data from the IoT server. Source Code 1 shows an XML sent
from an Android Smartphone to register it as a Smart Object
in Midgar, as well as its services.

Source Code 1. Registration XML example

Source Code 2 shows an example XML which has been
sent from an Android smartphone to the server. In this mes-
sage, we can see a datum about the accelerometer, and another

one to activate for 30 seconds duration time of the vibration,
and the proprietary in the service tag.

Source Code 2. Data XML example

Source Code 3 shows an example XML which has been
sent from the server to the Smartphone as a response. This
contains a petition to make the actions 0 of that Smart Object
and 1000 as a parameter. In this case, this means a vibration
for 1 second. If the server would have more actions to this
object, then, this XML will have more ‘‘answer’’ tags, one
per answer.

Source Code 3. Response XML example

Besides, this REST web server offers CRUD operations:
create, remove, update, and delete information about the
Smart Objects. In addition, using the REST web server it is
possible to see the objects, their ID, and the services that are
registered in the platform.

After that, Midgar decides, according to the interconnec-
tion which can be defined using MOISL, if it has to send
a message to another Smart Object or only keep that infor-
mation [22]. For this reason, if users want to interconnect
objects, they need to register the Smart Objects in the IoT
platform and create the interconnection using MOISL as we
have described in [22] because MOISL is the DSL which
allows creating the interconnection among objects. While in
this paper, we introduce MOCSL, which is the DSL that
creates all the necessary software, and that the objects need
to use and interact with an IoT platform.

B. MIDGAR ARCHITECTURE FOR MOCSL
Wehave included a new part inMidgar platform to implement
the new graphic DSL for the creation of software for objects,
called MOCSL. Then, we have extended Midgar with a new
DSL because the platform has been developing the principles
of Model-Driven Engineering (MDE). This is why the plat-
form was developed to be easy to reuse the existing layers
and it is easy to modify to change different details. In this
paper, we have added a new end-point which the final user

VOLUME 8, 2020 141877



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

has to use, using now MOCSL instead MOISL to define the
Smart Objects. However, MOISL is still in use when final
users want to define the interconnection among those objects.
The other parts that have to be added were the processor and
the generation of programs.

The system architecture has three layers, as can be seen in
Fig. 1: Process Definition, Object Generation, and Objects.
Each one is a process within the global set of the infrastruc-
ture. First of all, the Process Definition includes the user’s
process. In this layer, users (Fig. 1(1)) must define their
application using MOCSL, which we have developed as an
HTML5 application. When the user finishes the definition of
their application (Fig. 1(2)), the model that the user-created
with MOCSL is serialized in an XML file.

FIGURE 1. Architecture of the Midgar Platform using MOCSL.

The serialized model contains all the information about the
user’s application: the IoT network that he chose, the appli-
cation name, the selected device, and the exact device type.
Afterwards, the second layer,Object Generation, receives the
serialized model and processes it in the Processor (Fig. 1(3)).
Then, the Processor processes the information and creates
and compiles the Generated Program (Fig. 1(4)). The Gen-
erated Program has all the functionality that the user had
defined using MOCSL and the necessary logic to intercon-
nect the objects with Midgar. When the user has the Gener-
ated Program, he only needs to upload the program to his
device because the Generated Program has all the software
and logic that that device needs to be a Smart Object and
interconnect with an IoT platform (Fig. 1(5)).

C. IMPLEMENTATION
In this subsection, we are going to describe the new compo-
nents and layers of the Midgar platform and the interaction
between each one, the created DSL, MOCSL, how Midgar

processed the serialized model which is created by users
using MOCSL when they create an application, and how the
processor parses it. Afterwards, we are going to talk about
Android and Arduino applications.

1) MIDGAR OBJECT CREATION SPECIFIC LANGUAGE
(MOCSL)
We have developed MOCSL using the HTML5 canvas ele-
ment, showing all the configurable options to users. MOCSL
can be divided into four different areas as we can see in
Fig.2. The first area (Fig. 2(A)) contains the application data
about the IoT network to be used, the application name,
the device type to choose between different devices like a
smartphone or an Arduino, and the exact device type such
as a Nexus 4 or a Motorola MB525 in the case that you have
chosen a smartphone or different Arduino types in the other
case. Depending on the ‘‘device type’’, the next combo box
can contain only smartphones or onlymicrocontrollers. Then,
when a user selects the ‘‘exactly type’’ in this combo box, the
canvas shows the exact selected element. In our example, the
Arduino Uno. Fig. 2(B) the user can select the analogue pins,
while Fig. 2(C) contains the digital pins. On the right, the user
has the serialized model which represents the object that the
user-defined (Fig. 2(D)).

When a user selects a pin, he receives a popup with dif-
ferent sensors and actuators as we can see in Fig. 3. In this
popup, the user can select a sensor or an actuator for the pin
that he selected previously. If the user selects ‘‘Cancel’’ then,
the pin will return to its default state. To include more sensors
and actuators is necessary to develop or include the code of
that exact object. However, it is only necessary to add the code
one time because the next time this code will be reused.

In Fig. 4, we show an example of a smartphone, exactly, a
Nexus 4. The user sees the sensors of the Nexus 4 (a green
tick or a red cross). and the sensors with no support by their
version or sensors which do not have in their smartphone (a
red dash). The user only needs to click on the sensor that he
wants to change the state between a green tick, if he wants it,
or to a red cross, which is the default state, if he does not want
it.

Fig. 5 shows the actions in the example of the Android
smartphone. This part functions exactly as the sensors part.

2) SERIALIZED MODEL
MOCSL creates a serialized model using XML syntax.
We have respected in the serialization model the same nodes
that we have in the graphic concrete syntax and the abstract
syntax (Fig. 6), which we made with Ecore. Fig. 6 shows
the metamodel and the abstract syntax which is the base of
the concrete syntax and the semantic one, which are repre-
sented in theDSL (MOCSL). Besides, this avoids ambiguities
because they are based on Ecore that is an implementation of
MOF, which is the standard of used for this type of applica-
tions.

We have five main nodes: ‘‘Application’’, ‘‘Network’’,
‘‘Smart Object’’, ‘‘Sensor’’, and ‘‘Actuator’’. ‘‘Application’’

141878 VOLUME 8, 2020



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

FIGURE 2. MOCSL for the object creation of the Midgar platform for Arduino.

is the parent node and it contains the name of the applications
which will be deployed in the different devices: ‘‘Smart-
phone’’, ‘‘Arduino’’, or ‘‘Raspberry Pi’’. The ‘‘application’’
has a ‘‘network’’ which has its IP and its name because this is
where the network in which the application will be working.
The ‘‘network’’ can have different objects (Smart or not): a
‘‘Smart Object’’ which is composed of other Smart Object or
by Sensors and/or Actuators.

In addition, the Smart Object abstract class has two param-
eters which contain the type of the device (Smartphone,
Arduino, or Raspberry Pi) and the exact type of that device
(Smartphone: Nexus 4, Moto G5S Plus,. . .; Arduino: Uno,
Mega,. . .; Raspberry Pi: 1A, 1B, 1B+, 2B,. . .). Besides,
the Smart Object can be a smartphone, an Arduino, or a
Raspberry Pi. On the one hand, we have the first not-
Smart Object, the ‘‘Sensor’’. We have created three abstract
classes which can include the most used sensor in one of
these ones: ‘‘SensorNeedAction’’, ‘‘SensorOneValue’’, and
‘‘SensorMoreThanOneValue’’. The first one includes sensors
which need an action to work, like ultrasonic sensors which
need the time in which you want to throw the ultrasonic
sound. The second one is the abstract class for sensors which

return only one value like temperature or humidity sensor.
The last one is for sensors which need to return more than
one value like Accelerometer (three axes), and DHT11 and
DHT 22 (both have temperature and humidity together).
On the other hand, we have the ‘‘Actuator’’. This abstract
class has three abstract classes that could include almost any
type of actuator: ‘‘ActuatorNoParameters’’, ‘‘ActuatorNee-
dOneValue’’, and ‘‘ActuatorSpecialised’’. The first one is for
actuators which do not need anything, and only can turn on or
turn off like a LED. The second one is for actuators that need
a value, this is why we have the float parameter value. For
instance, motors need the speed or the direction or the value
to open or close a relay.

The last one is for the actuators that are specialized in one
thing like the speaker, which needs two lists for the melody
and the duration of each note. In both cases, ‘‘Sensor’’ and
‘‘Actuator’’, have four parameters to keep the data or the
sensor of actuator that they have, for instance: the name, the
pin, the type, and the source code if people want to introduce
their own source code.

We show an example in Source Code 4 where we show
the serialized model of an Android smartphone, exactly the

VOLUME 8, 2020 141879



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

FIGURE 3. Arduino sensors and actions in the MOCSL selector.

FIGURE 4. MOCSL for the object creation of the Midgar platform for
Android smartphones: selecting sensors.

Nexus 4, which has an accelerometer and proximity sensors
and the action ‘‘Toast’’.

The nodes ‘‘sensor’’ and ‘‘action’’ are similar but with a
different name because they have semantic meaning to the
processor. They can have the attribute ‘‘pin’’ when the device
type is a microcontroller. In this attribute, we store the pin of
that sensor or action. In Source Code 5, we show an Arduino
Uno with a photoresistor sensor in the pin ‘‘A0’’ and three
actions: a led in the pin 13, a DC motor in the pin 7, and a
servo in the pin 2.

FIGURE 5. MOCSL for the object creation of the Midgar platform for
Android smartphones: selecting actions.

Source Code 4. Serialized model of an Android smartphone example

Source Code 5. Serialised model of an Arduino example

3) OBJECT GENERATION
As Fig. 7 shows, the second layer is composed of one
process. The second layer receives the Serialised Model in
XML format. Then, the processor parses the nodes and node
attributes in order to obtain the necessary information about
the application, which was defined by the user. With this
information, the processor replaces in the templates the string
tokens with the necessary information about Midgar, and the
sensors and actions that were defined by the user. Clearly,
the processor takes the corresponding template depending on
the attribute ‘‘deviceType’’ and ‘‘exactlyDevice’’. When the
processor finishes, the parsing creates the files and obtains
the Generated Application. The Generated Application is the
application that the user needs to deploy in their smartphone
or microcontroller. This application has all the logic that that
device needs to work properly, to interconnect with an IoT

141880 VOLUME 8, 2020



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

FIGURE 6. Metamodel and abstract syntax.

FIGURE 7. Internal working of the object generation.

platform, all the logic to manage the sensors and actuators
of that device. Then, in an automated way, this application
has all the requirements to communicate with the Midgar IoT
server without programming this part.

For instance, in the case of an Arduino, the processor
creates the Arduino application and imports the necessary
libraries for the corresponding sensor and actuators that were
created before, the native libraries, or different libraries in
C++, if the defined application needs someone to manage
the sensors and actuators. On the other hand, the Generated
Application for Android devices has all the logic in Java
for Android, all the necessary import of different libraries,
the logic to access to the sensors of that smartphone, and the
logic to manage the different actions and actuators like the
vibration, the flash, and so on.

FIGURE 8. Some of the used Android smartphones.

4) ANDROID
We have developed an Android application that supports
from the older Android version that is used, which is Froyo
2.2, to the newest Android version, which is Oreo 10. Thus,
we have sought to ensure compatibility with all the sup-
ported and used versions in our current daily life. In Fig. 8,
we can see three of the used Android smartphones. The
application can work with each sensor between both ver-
sions. This Android application shows a list of the device
sensors, the sensor values, and it supports the communi-
cation with Midgar: registering the application in Midgar
and starting/stopping the data sending to Midgar. Based on
this application, we created our template. This is why we
change every part which MOCSL could modify with string
tokens.

VOLUME 8, 2020 141881



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

FIGURE 9. Arduino picture during a testing with the DHT11 and flame
sensors.

5) ARDUINO
To solve the Arduino microcontroller part, we use an Arduino
that uses the USB connection with our Personal Computer
(PC) (Fig. 9). Then, we have used a Java application as an
intermediary that reads and sends data through the USB to the
Arduino and interconnects the Arduino and Midgar through
the Internet. Using this intermediary, we could implement
more tasks in it like saving all data in our PC for other
intentions, for instance, to apply Big Data to improve our
industrial processes. Thus, we have two applications: The
Java intermediary and the Arduino source code in C or C++,
it depends on the sensor that we use. Afterwards, to check
some sensor and their possibilities with the Arduino, we cre-
ated the template. We changed all the parts that MOCSL
couldmodify with string tokens. Besides, we have in different
files the source code of each sensor. Then, when we work
with the Arduino template, we need to include code in the
two parts: The Java application and the Arduino application
but we process the template as only one application.

D. USED SOFTWARE AND HARDWARE
To develop this research work, different software types were
required:

1) The Midgar server is based on Ruby 2.5.1p57 and it
uses the Rails framework 5.2.1.

2) Thin web server 1.7.2
3) MariaDB 10.1.29-MariaDB-6
4) The graphic DSL,MOCSL,was developed by using the

element HTML5 canvas and JavaScript without the use
of any external library and using the current standards.

5) The application generator module was developed using
Java 10 and work from Java 6.

6) Minibloq 0.83
7) Libraries used in the generated applications:
8) Arduino: RXTXcomm.jar for Arduino and Java, and

HTTPComponents of Apache Software Foundation.
9) Android: HTTPComponents of Apache Software

Foundation.

For the evaluation of the proposal, we used the next hardware
components:

1) One Raspberry Pi 2 Model B as a dedicated
server with Raspbian 8 (Jessie) and with the Kernel
Version 4.9.75-v7+.

2) Five Android smartphones: A Moto G5S Plus running
version 8.1, a Nexus 5GS Plus running version 7.1,
a Nexus 4 running version 5.1.1, a Motorola with ver-
sion 2.2.2, and a Samsung Galaxy Mini S5570 with
version 2.3.6.

3) One Android emulator with Android 8.1
4) One Arduino Uno SMD microcontroller board based

on the ATmega328.
5) During the various tests we used: the temperature sen-

sor TMP36, a speaker, a servomotor, a DC motor, sev-
eral LEDs, two buttons, a photoresistor, a temperature,
and humidity sensor DHT11, and a flame sensor.

IV. EVALUATION AND DISCUSSION
In this section, we are going to explain in detail a related work
comparison and the process of the evaluation that we used.
Afterwards, we are going to show the results that we obtained
during the evaluation. Firstly, we are going to talk about the
methodology that we used to perform the evaluation. After
that, we are going to show the obtained results and discuss
them.

A. RELATED WORK COMPARISON
Compared with our proposal, current alternatives for smart-
phones and microcontrollers present three main drawbacks;
1) They do not allow incorporating the use of the complete
sensor set like accelerometer, pressure, proximity, ambient
light, etc. in their application. The only sensor that they
usually include is GPS. This is a problem when users want
to create an application for the IoT to interconnect their
smartphones; 2) Editors are usually very generic with many
functionalities that do not apply to the context of IoT applica-
tions and that make the creation of applicationsmore complex
and tedious for non-experts; and 3) Current solutions are
not based on the facto standard of the industry for DSL
development, in which a metamodel based on MOF/Ecore is
created allowing portability, reusability, and interoperability
with other applications and tools [43]. That makes current
solutions very specific and not open to be adapted to other
alternative scenarios.

We have designed a graphic DSL which supports the
application creation for the IoT as a possible solution to the
main drawbacks identified above. Thus, our proposal is a
more abstract graphic DSL, based on standards, to simplify
the application creation, and generating only the necessary
source code for the application that is being designed.

Table 1 shows a comparison between the different existing
approaches and this paper (MOCSL). We have evaluated
the different characteristics that we propose in this paper to
improve the IoT. From left to right:

141882 VOLUME 8, 2020



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

TABLE 1. Comparison of the different proposals.

1) Development skill?: Do People need to develop or
have knowledge about development to create the
application?

a. Partial: Ardublock, Scratch, and XOD need that
people know what a variable, a loop, the setup
method, and different basic knowledge are.

2) Arduino? Does this application create software to
Arduino?

3) Smartphones? Does this application create software for
smartphones?

4) Sensors?: Does this application work with the sensor of
the device (Arduino or Smartphone)?

5) Web Services?: Does this application sends to and
receives from external web services (information, data,
messages,. . .)?

a. Partial: AppMachine allows downloading XML
and JSON data to process them in the Smart-
phone, but not send data to a Web Service.
Besides, you have to create the parser for that
data.

6) Personalization level?: restrictions according to its
domain (Arduino/Smartphone) and without counting
the characteristic of the other columns of this table

a. Medium: they have different templates with
default images and sizes, and the users can change
some parameters like the background, hyperlink,
titles, index, lists, add more item in a list, etc.

b. High: it allows creating an application without
too many restrictions according to its domain and
allows including more things than others.

i. AppMachine: databases from excel and devel-
oper access.

ii. Ardublock: operations (copy, glue) on the
serial, write and read from the I2C, and stor-
age.

iii. MOCSL: work with IoT servers. Besides, you
do not need to know how the sensor works,
you only have to select the pin and the sensor.

7) Modify code?: Do the users modify the source code
generated by this application?

VOLUME 8, 2020 141883



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

8) Other important notes:

a. N/D: now, the webpage of Modkit is not working
correctly and the project seems to be abandoned.
Then, it is impossible to verify this exact charac-
teristic.

b. Atmel Studio: This is an IDE like Visual Stu-
dio. Then, you can create anything, but you need
high program knowledge. This is why has four
columns with the partial value, you can create
more or less ‘‘anything’’ but you need a lot of
knowledge to do it.

B. METHODOLOGY
The main aim of the evaluation process is to validate if our
solution is useful to enable users without programming skills
to create Smart Objects, and moreover, if our solution is more
efficient than other alternatives according to the time, the
clicks, and the movement of the mouse required to perform
a task. For this purpose, we split the evaluation process into
two different phases.

1) Phase 1: In this first phase, users with two different
profiles had to create a basic Arduino application using
MOCSL and another graphic editor, whereas we were
measuring the time, the clicks, and the movement of
the mouse that they needed to complete the task. The
two profiles are formed by people who are aware
of Smart Objects and people who are not aware of
Smart Objects. In this phase, we have chosenMiniBloq
because this is the one which represents better the
different alternatives for Arduino. We have not chosen
any other from the smartphone alternatives because
they only allow using templates and they do not have
support for sensors.

2) Phase 2: In this phase, the participants who had done
the first phase made a survey based on the 5-points
Likert scale [88] where they gave their opinion about
some declarations. These declarations are based on
phase 1 and they are about how our research could
improve some aspects of the IoT.

We tried to obtain a complete evaluation to verify in the
best way our hypotheses using two different evaluations: a
quantitative evaluation for phase 1 and another qualitative
evaluation for phase 2.

1) PHASE 1
As we have already said, in this phase, participants from
both profiles had to create a basic Arduino application using
MOCSL and another graphic editor. We chose MiniBloq as
the other graphic editor because it is a graphic editor for
Arduino programming. Whereas participants were perform-
ing an assigned task on each platform, we measured the
next parameters: time in seconds to complete the task, the
centimeters that the participants moved the mouse, the clicks
in the right mouse button, and the clicks in the left mouse
button. To obtain these data we used the Mousotron tool [89].

Later, in the results subsection, we will handle all clicks
together by summing them.

Firstly, we defined a basic task for participants to emulate
a real scenario, but we had to be cautious with the sensors and
actuators of each platform because some types could not be
supported.

The assigned task was to create an object with one sensor
and two actuators. We chose a photoresistor sensor, and a led
and a servomotor actuator. The task was to create an object
that simulates a motor capable of renovating the air when
a photoresistor receives light. Moreover, when the motor is
running, a status LED must be lighting.

Here, we chose an easy and trivial task because the major-
ity of the IoT applications are to manage and watch basic
parameters like the temperature, humidity, open/close a win-
dow, and so on. However, to develop this simple task, people
need to spend hours developing an application, in the case
that they have the necessary knowledge to program. Besides,
if people would want to add their own source code, they could
do it using the Java Code tag.

2) PHASE 2
After finishing the first phase, wewanted to obtain the partici-
pants’ opinion about our proposal. Therefore, the participants
had to complete an anonymous survey based on the 5-points
Likert scale because it is the most used in the design of scales.
The given options were the following: 1 as strongly disagree,
2 as disagree, 3 as neutral, 4 as agree, and 5 as strongly agree.

Furthermore, we decided to use this method because it is
a very used one in the software engineering field to obtain
information that effectively supports decision-making [90].
This is exactly our case because we can measure neither the
efficiency of object creation through a DSL nor its potential.
Hence, we have used the survey to obtain more information
that could help us to check our hypotheses.

The survey is composed of a set of twelve declarations that
are shown in Table 1.

C. RESULTS
In this section, we are going to show and discuss the obtained
results in each phase. In the first subsection, we are going
to show the results of the first phase. After that, we are
going to show the results of the second phase. These results
are going to be analyzed by an inter-subject study because
of the existence of two different groups, people who have
knowledge about Objects (10 users) and people who are not
aware of Smart Objects (9 users).

1) PHASE 1
In this first phase, we measured for each participant the time
in seconds to do the task, the clicks in the primary mouse
button, the clicks in the secondary mouse button, and the
centimeters that each participant moved the mouse to finish
the task.

We divided the analysis of the results in three parts.
Firstly, we are going to compare the results collected from

141884 VOLUME 8, 2020



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

FIGURE 10. Differences between time, distance, and clicks needed to complete the task with both editors.

both editors, MOCSL and MiniBloq, to look for significant
differences in order to check if our proposal produces an
improvement of the measures. Secondly, we are going to
compare the results from both profiles using MOCSL to look
for significant differences in order to check if our proposal is
useful for everybody to the same extent. Finally, we are going
to analyze the measured data relative to the time, the clicks,
and the movement of the mouse that each participant required
to complete the assigned task.

a: COMPARISON BETWEEN EDITORS
In the first part of the analysis of the results, we are going to
perform statistical tests to compare MOCSL and MiniBloq.
Before performing a statistical test that compares the editors,
we must determine if the sample data follow a normal distri-
bution and perform a homoscedasticity test. In the following
enumeration, we are going to check the normality and the
homoscedasticity, and we are going to check if there are sig-
nificant differences between each variable from both editors.

• Time: The data from MiniBloq (Shapiro-Wilk test
→p=0.0179) do not follow a normal distribu-
tion whereas the data from MOCSL (Shapiro-Wilk
test→p=0.0944) follow a normal distribution. More-
over, the variances are not homogeneous (Levene’s
test→p=0.0085). After applying a Wilcoxon test for a
paired sample, we obtained that there ARE significant
differences (p=3.815×10−6) between the time spent to
complete the task with both editors.

• Distance: The data from MiniBloq (Shapiro-Wilk
test→p=0.014) do not follow a normal distribu-
tion whereas the data from MOCSL (Shapiro-Wilk
test→p=0.6878) follow a normal distribution. More-
over, the variances are not homogeneous (Levene’s
test→p=0.0025). After applying a Wilcoxon test for
a paired sample, we obtained that there are significant
differences (p=3.815× 10−6) between the distances of
the mouse needed to complete the task with both editors.

• Clicks: The data from MiniBloq (Shapiro-Wilk
test→p=0.001) and MOCSL (Shapiro-Wilk test
→p=0.0003) do not follow a normal distribution.More-
over, the variances are not homogeneous (Levene’s test

→p=0.0136). After applying a Wilcoxon test for a
paired sample, we obtained that there ARE significant
differences (p=0.0002) between the clicks needed to
complete the task with both editors.

Finally, we obtained that there are significant differences
between the data from MiniBloq and the data from MOCSL
as Fig.10 Figure 10 shows. Moreover, Fig.10 also shows that
the values obtained from MOCSL are lower than the data
fromMiniBloq. We can interpret these results as our proposal
provides different and more efficient results than MiniBloq.
Thus, we have validated a part of our hypotheses, our pro-
posal is more efficient than the other alternatives according to
the time, the clicks, and the movement of the mouse required
to create the Smart Objects software.

b: COMPARISON BETWEEN PROFILES
In the second part of the analysis of the results, we are going
to perform statistical tests to compare the results from the
two different profiles, people who are aware of Smart Objects
(Smart Objects Aware), and people who are not aware of
Smart Objects (Not Smart Objects Aware), using MOCSL.
Before performing a statistical test that compares the results
from both profiles, we must determine if the sample data
follow a normal distribution and perform a homoscedasticity
test. In the following enumeration, we are going to check
the normality and the homoscedasticity, and we are going
to check if there are significant differences between each
variable from both profiles.

• Time: The data from Smart Objects Aware
(Shapiro-Wilk test→p=0.3145) and Not Smart Objects
Aware (Shapiro-Wilk test→p=0.3631) follow a nor-
mal distribution. Moreover, the variances are homo-
geneous (F test→p=0.0751). After applying a T-test,
we obtained that there are NOT significant differences
(p=0.5974) between the time spent to complete the task
by both profiles.

• Distance: The data from Smart Objects Aware
(Shapiro-Wilk test→p=0.8759) and Not Smart Objects
Aware (Shapiro-Wilk test→p=0.173) follow a nor-
mal distribution. However, the variances are not
homogeneous (F test→p=0.0408). After applying a

VOLUME 8, 2020 141885



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

FIGURE 11. Differences between time, distance, and clicks needed to complete the task by both profiles.

FIGURE 12. Seconds needed by participants to complete the task with each editor.

Mann-Whitney U, we obtained that there are NOT sig-
nificant differences (p=0.9025) between the distances of
the mouse needed to complete the task by both profiles.

• Clicks: The data from Smart Objects Aware
(Shapiro-Wilk test→p=0.0232) do not follow a normal
distribution whereas the data from Not Smart Objects
Aware (Shapiro-Wilk test→p=0.0581) follow a nor-
mal distribution. Moreover, the variances are homo-
geneous (Levene’s test→p=0.1342). After applying a
Mann-Whitney U test, we obtained that there are NOT
significant differences (p=0.3849) between the clicks
needed to complete the task by both profiles.

Finally, we obtained that there are NOT significant differ-
ences between the data from users who are aware of Smart
Objects and the data from users who are not aware of Smart
Objects as Fig. 11 shows. Differences between time, distance,
and clicks needed to complete the task by both profiles.
We can interpret these results as our proposal (MOCSL)
is valid for both profiles, so users do not need experience
with Smart Objects to benefit from MOCSL. Thus, we have

validated a part of our hypotheses: it is possible to create
a DSL that enables people without experience in the devel-
opment of applications for Smart Objects to create Smart
Objects.

c: ANALYSIS OF THE MEASURED DATA
As we have already said, the third part of the analysis of
results is the analysis of the measured data. In the follow-
ing lines, we are going to present the data about the time,
the clicks, and the movement of the mouse that participants
needed to complete the assigned task. Fig. 12 shows the time
that each participant needed to make the same task on each
platform.

Analysing this chart, we can suggest the following
interpretations:

• The faster participant in each platform needed
125 seconds in MiniBloq and 23 seconds in MOCSL.
Then MOCSL is the quickest platform based on the best
results.

141886 VOLUME 8, 2020



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

FIGURE 13. Clicks needed by participants to complete the task with each editor.

• The slower participant in each platform needed
556 seconds in MiniBloq and 85 seconds in MOCSL.
Then MOCSL is the quickest platform based on the
worst results.

• The best result using MiniBloq was of 125 seconds,
meanwhile, the worst result using MOCSL was 125.
Only if we compare the best time in MiniBloq and the
worst time in MOCSL, we obtain the same time.

• The average time for the nine participants were
258 seconds for MiniBloq and 64 for MOCSL. The
participants inMOCSL only need 24.8% of the time than
MiniBloq to make the same application.

• MiniBloq is the slowest in every case and MOCSL is
faster than the MiniBloq to create objects in all cases.
This indicates that MOCSL offers more efficiency to
solve the object creation.

Fig. 13 shows the total clicks (the addition of primary clicks
and secondary clicks) needed by each participant to complete
the given task with each editor. However, in the case of
MOCSL, it avoids the use of the secondary button to reduce
the complexity and it means that MOCSL only needs the
primary button. In the case ofMiniBloq, the secondary button
has shortcuts and the delete option.

If we analyse this chart we can interpret:

• The biggest number of mouse clicks in each platform
was 114 clicks in MiniBloq and 32 in MOCSL. Basing
on this, MOCSL needs fewer clicks than the other plat-
form in the worst case.

• The lowest number of mouse clicks in each platform
was 24 in MiniBloq and 11 in MOCSL. According to
the best participants, MOCSL needs fewer clicks.

• The average of clicks in each platform was 43.36 in
MiniBloq and 15.26 in MOCSL. Again, MOCSL needs

almost a third part of clicks than MiniBloq to create an
object.

• MOCSL is always the platform with fewer clicks. This
indicates that MOCSL is the most useful platform.

We show in Fig. 14 the distance in centimetres that each
participant needed in each platform.

If we analyze this last chart, we can suggest the next
interpretations:

• The biggest distance in each platform was 1,240 cen-
timeters in MiniBloq and 360 inMOCSL. This indicates
that in the worst-case MOCSL only needs almost a
fourth part of clicks than MiniBloq.

• The lowest distance in each platform was 437 centime-
ters in MiniBloq and 91 in MOCSL, which indicates
that in the best case, MOCSL needs four times less than
MiniBloq.

• The average distance in each platform was 651.15 cen-
timeters in MiniBloq and 242.47 in MOCSL. Then, Bit-
Bloq is the platform that requiresmoremousemovement
to make the task and MOCSL is the platform which
needs less distance to solve the object creation problem,
exactly, almost three times less.

• The worst distance in MOCSL, 360 centimeters, is less
than the best distance in MiniBloq, 437 centimeters.
Then, MOCSL is always the platform which needs less
distance to solve the task.

2) PHASE 2
In the second phase, participants had to fill a 5-point Likert
Scale [88] survey. As we explained before, the options of the
survey were: Strongly Disagree, Disagree, Neutral, Agree,
and StronglyAgree. Tomake it easier to analyze, we associate

VOLUME 8, 2020 141887



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

FIGURE 14. Mouse movement in centimeters needed by participants to complete the task with each editor.

TABLE 2. Survey given to participants.

numeric values to each option from 1 to 5 according to the
worst and the best opinion

Table 2 shows the responses of each participant in an
anonymous way by indicating the profile of each participant,
the numeric value of each answer, and the total score of each
participant.

From the data collected, we want to conclude if the rela-
tionship between having experience with Smart Objects and
the opinions, expressed via the Likert survey, is significant.
In this way, we calculated a total score per participant,
although it is important to mention that the total score is
an ordinal value because different scores in an answer in
Likert Survey represent different grades of opinion but not
in an equidistant way. Thus, a greater score represents a
better opinion, but it cannot represent how much better that
opinion is. Therefore, we cannot perform statistical analyses
that compare the averages to validate our hypotheses, conse-
quently, we will use a non-parametric test even though the
data would fit a normal distribution.

We checked the homogeneity of variances with the F test
because the data from both profiles follow a normal distri-
bution (Shapiro-Wilk test→p=0.3687, p=0.4483), and we
applied a Mann-Whitney U test because of the homogeneity
of variances (p=0.9311) and the ordinal nature of the values.
Finally, we obtained that there are NOT significant differ-
ences (p=0.7119) between the opinions of users from both
profiles as Fig. 15 also shows.

At this point, we can assume that being aware of Smart
Objects, does not influence the participant’s opinions given
via the Likert survey. Therefore, we can analyse the results
of the Likert survey globally, without discriminating both
profiles.

Table 3 shows the descriptive statistics of the survey. This
table is composed of the itemisation of each declaration: the
minimum, the first quartile, the median or second quartile,
the third quartile, the maximum, the range between quartiles,
and the mode. We can see in Fig. 16 the same data but in a
Box and Whiskers plot diagram.

We can suggest the next interpretations by analysing
Table 3 and Fig. 16:

141888 VOLUME 8, 2020



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

FIGURE 15. Box and whiskers plot for the total score in Likert survey per
profile.

• D2, D3, D4, and D10 have the highest minimum, 4
out of 5. This means that all participants agree with
these declarations, so in this case, they at least agree.
On the other hand, with the lowest minimum is the D11.
This indicates that D11 is the question with the highest
difference of opinions between the participants.

• D1, D2, D3, D4, D5, D6, D7, D9, D11, and D12 have
the highest median, exactly, 5 out of 5. From this data,
we can interpret that most of the participants strongly
agree with these declarations. Another question is Q10
with a median of 4, then, all participants are minimum
agree.

• D2 and D4 are questions with a range of 1. This demon-
strates that almost all the participants have a very close

TABLE 3. Participants’ responses to each question.

opinion on these declarations. In our case, the par-
ticipants’ opinion in these questions is ‘‘Agree’’ and

FIGURE 16. Overall response distribution.

VOLUME 8, 2020 141889



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

FIGURE 17. Box and whiskers plot for each question.

TABLE 4. Table with the general descriptive statistics.

‘‘Strongly Agree’’. On the contrary, D11 has a range
of 4. This expresses a high difference between partici-
pants’ opinion about this question.

• Regarding the mode, all questions have a mode
of 5 which indicates that the most chosen answer was
‘‘Strongly agree’’.

• If we study the maximum, we can see that all questions
have a 5 out of 5. This indicates that in all questions,
somebody chose ‘‘Strongly agree’’.

• About the Interquartile range, D2, D4, and D12 have a
0. This indicates that the participants had a very close
decision between themselves.

Table 4 shows the different frequencies for each question
based on the participants’ answers. In this table, we have a
breakdown of each question to show the number of votes
for each decision and the corresponding percentage for them.
In Fig. 17, we show the same data but using a graph bar with
the frequency of the answers.

TABLE 5. Frequency table for the general responses.

Based on these, we can suggest the following
interpretations:

• D2 has 89% of the votes in ‘‘Strongly Agree’’. This
indicates that almost all participants strongly agree with
this sentence, except 1 person.

• With 89% of votes, we have the D4. This is an amount
of 17 votes for ‘‘Strongly Agree’’ and two votes for
‘‘Agree’’.

• D3 and D10 have a minimum of 37% of the votes in
‘‘Agree’’. This indicates that all participants agree with
these sentences.

141890 VOLUME 8, 2020



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

• D1, D5, D6, D7, D8, D9, and D12 have a minimum of
58% of votes in ‘‘Strongly Agree’’. These are 11 votes.
Meanwhile, D8 is the declaration with more votes in
‘‘Neutral’’ with 5. This indicates that the majority of
people agree with these sentences but there is a minority
with some doubt.

• D8 has a 47% of votes for ‘‘Strongly Agree’’ and 26%
of votes for ‘‘Agree’’ and ‘‘Neutral’’. These numbers
correspond with 9, 5, and 5, respectively. This indicates
that the majority of participants agree but there is an
important percentage indecisive or who do not believe
in this declaration.

• D11 is the only declaration with the five options cho-
sen: 47% of the votes in ‘‘Strongly Agree’’, 32% in
‘‘Agree’’, 5% in ‘‘Neutral’’, 5% in ‘‘Disagree’’, and 11%
in ‘‘Strongly Disagree’’. In numbers, this means 9, 6, 1,
1, and 2, respectively. This indicates that the participants
were indecisive about this question or maybe we had
formulated it in a wrong way.

V. CONCLUSION
In this paper, we improve the Midgar platform with a novel
proposal about a new graphic DSL called MOCSL, which
provides a solution to create Smart Objects and all the logic
that they need to interconnect them through Midgar using
MDE. This verifies our first hypothesis. Normally, the cre-
ation of Smart Objects is very complex because this process
needs that people create an application to recollect the object
data, process it, and send it to another object or an IoT plat-
form. Therefore, this process requires complex programming
skills because of the different available technologies, APIs,
and types of sensors and actuators.

Until now, Midgar had a partial solution: It had enabled
interconnecting different registered objects using MOISL.
But now, Midgar also enables the creation of the software
that these objects need to obtain the data, work with their
actuators, and the ability to interconnect with the platform.
We have created a solution using a graphic DSL to obtain
an abstraction to facilitate this task for any people without
development knowledge, called MOCSL. In our case, people
only need knowledge about the domain, which is the IoT and
their smartphone or Arduino microcontroller, what they want
to do, and how their objects are. These people can be workers
of a company specialized in the IoT or a similar system,
a government team to improve the city or the buildings,
or maybe people who like the DIY.

In order to validate the effectiveness of our proposal,
we compared MOCSL with other graphic editors that offer
a similar solution. First of all, in the state of the art, we can
see that Minibloq and other tools have difficulties for the
industrial area because they are very generic with function-
alities outside the IoT, other ones do not incorporate the use
of sensors, which are crucial in IoT scenarios, and these
solutions are not based on any standard. After, we made an
evaluation to check exhaustively our proposal comparing it
with MiniBloq for Arduino microcontrollers. This evaluation

was composed of two different phases in which we did a
comparison of data that we had measured while participants
were performing a specific task with two different editors,
MOCSL and MiniBloq. We also did a comparison of data
from two different participant profiles according to their past
experiences with Smart Objects, and we collected partici-
pants’ opinion through a Likert survey.

The quantitative evaluation demonstrated that MOCSL
is the fastest editor because the participants only needed
an average of 64 seconds to do the task. In comparison
with the other platform, this supposed 24.8% of the time
than MiniBloq to create the same application. Furthermore,
MOCSL only needed almost a third part of clicks than
MiniBloq. AlthoughMOCSL avoids the use of themouse sec-
ondary button andMiniBloq uses this button to delete or offer
other shortcuts. This demonstrates that MOCSL reduces the
complexity in the control without incrementing the number
of clicks. Besides, MOCSL is the platform, which needed
less distance to create the same task, exactly an average of
242.47 centimeters versus 651.15 centimeters in MiniBloq.
These last two data suppose thatMOCSL is more usable. This
verifies our second hypothesis as true. Furthermore, if people
do not use these types of programs, they will need hours
and knowledge about software development to create one
application.

Respecting the qualitative evaluation, we could interpret
that the participants chose ‘‘Strongly Agree’’ in 69% of the
declarations and they chose ‘‘Agree’’ on 22% of occasions.
Thus, 91% of the declarations have a positive or very positive
assessment. In this way, the participants think that MOCSL
accomplishes with its functionality to facilitate the object
creation in an easy way without the necessity of writing
source code. In addition, they believe that MOCSL could
offer benefits for the Internet of Things and Smart Objects.

Noteworthy that some participants chose in 8% of
responses as ‘‘Neutral’’ and in 1% as ‘‘Strongly Disagree’’.
The meaning in the first one is that we can improve some
aspects like usability and include new elements to offer more
options. In the case of the ‘‘Strongly Disagree’’ answers,
we can see that these correspond with D11. The reason is that
MOCSL allows creating a great number of applications for
different devices, but it is impossible to allow modelling any
imaginable application. In future extensions, we will give a
special emphasis on new modelling elements to allow new
extensions and possibilities for application development like
the inclusion of fuzzy logic, artificial intelligence, other pro-
tocols, and other complex tasks. Nevertheless, when making
these extensions, we must respect the domain of MOCSL to
avoid the inclusion of functionalities with undue complexity.

Thus, taking into consideration these results, we can say
that MOCSL can be very useful to facilitate object creation
and that it reduces the time and the complexity of creating
this type of applications. Then, MOCSL is a DSL which
complements the Midgar platform and helps people without
development knowledge to create objects for the Internet
of Things in an easy and fast way. So, we have answer

VOLUME 8, 2020 141891



C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

positive the research question and the contribution of this
research.

Communication amongst Smart Objects through the Inter-
net is one of the goals of the Internet of Things. Nonethe-
less, not all people have the necessary knowledge or time to
develop the necessary application. This is why we need to
bring certain facilities to the industry and daily life. This is the
purpose of Midgar, exactly, with this last research, MOCSL.

VI. FUTURE WORK
The Internet of Things has many improvements to do and
researches to investigate. As it was mentioned before, there
are still many problems to solve. In the next points, we explain
some lines, which could be solved by this investigation.
• Merging of MOISL and MOCSL: Merging MOISL and
MOCSL for allowing the object creation with some
internal restriction or to have only one DSL to create all
the process in one-step.

• Incorporate inside the Smart Objects Artificial Intelli-
gence using a DSL: Create a graphic DSL to allow incor-
porating and defining the required Artificial Intelligence
by people in an easier and quicker way.

• Security and privacy in IoT: Investigating secure meth-
ods to register objects in the IoT platforms and networks
to prevent the steal and modification of transferred data
when an object needs to register in the platform and
generate secure unique identifiers for objects.

• Scalability of IoT platforms: Studying and testing dif-
ferent implementations in the IoT platforms to obtain
a correct way of supporting the maximum number of
Smart Objects.

• The performance of Smart Objects: Researching possi-
ble improvements in an application like protocols, mes-
sages, and others, to improve the object’s performance
when the object processes data and sends data to save
battery and resources.

• Adding a system to upload libraries: This will be very
interesting because this system could allow people to
create their own libraries to any sensor and actuator and
share them in the platform with the rest of the world.

• Include an ontology: Including one allows us to structure
the information in a better way and to make possible
a new communication way which is smarter between
them.

REFERENCES
[1] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things:

A survey,’’ Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010,
doi: 10.1016/j.comnet.2010.05.010.

[2] K. A. Hribernik, Z. Ghrairi, C. Hans, and K. Thoben, ‘‘Co-creating
the Internet of Things—First experiences in the participatory design of
intelligent products with Arduino,’’ in Proc. 17th Int. Conf. Concurrent
Enterprising, Aachen, Germany, Jun. 2011, pp. 1–9.

[3] L. Tan andN.Wang, ‘‘Future Internet: The Internet of Things,’’ inProc. 3rd
Int. Conf. Adv. Comput. Theory Eng. (ICACTE), Chengdu, China, vol. 5,
Aug. 2010, pp. V5-376–V5-380.

[4] K. Gama, L. Touseau, and D. Donsez, ‘‘Combining heterogeneous ser-
vice technologies for building an Internet of Things middleware,’’ Com-
put. Commun., vol. 35, no. 4, pp. 405–417, Feb. 2012, doi: 10.1016/
j.comcom.2011.11.003.

[5] La Sociedad de la Información en España 2016, Fundación-Telefónica,
Barcelona, Spain, 2016.

[6] A. Piras, D. Carboni, and A. Pintus, ‘‘A platform to collect, manage and
share heterogeneous sensor data,’’ in Proc. 9th Int. Conf. Netw. Sens.
(INSS), Antwerp, Belgium, Jun. 2012, pp. 1–2.

[7] T. Yamanoue, K. Oda, and K. Shimozono, ‘‘AM2M system using Arduino,
Android and Wiki software,’’ in Proc. IIAI Int. Conf. Adv. Appl. Informat.,
Fukuoka, Japan, Sep. 2012, pp. 123–128.

[8] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, ‘‘A survey
on sensor networks,’’ IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002, doi: 10.1109/MCOM.2002.1024422.

[9] G. G. Meyer, K. Främling, and J. Holmström, ‘‘Intelligent products:
A survey,’’ Comput. Ind., vol. 60, pp. 137–148, Apr. 2009, doi: 10.1016/j.
compind.2008.12.005.

[10] C. Perera, C. H. Liu, and S. Jayawardena, ‘‘The emerging Internet of
Things marketplace from an industrial perspective: A survey,’’ IEEE Trans.
Emerg. Topics Comput., vol. 3, no. 4, pp. 585–598, Dec. 2016, doi: 10.
1109/TETC.2015.2390034.

[11] C. Perera, C. H. Liu, S. Jayawardena, and M. Chen, ‘‘A survey on Inter-
net of Things from industrial market perspective,’’ IEEE Access, vol. 2,
pp. 1660–1679, 2014, doi: 10.1109/ACCESS.2015.2389854.

[12] K. Aberer, ‘‘Smart Earth: From pervasive observation to trusted informa-
tion,’’ in Proc. Int. Conf. Mobile Data Manage., Mannheim, Germany,
May 2007, pp. 3–7.

[13] S.Wang, ‘‘Spatial data mining under smart Earth,’’ inProc. IEEE Int. Conf.
Granular Comput., Kaohsiung, Taiwan, Nov. 2011, pp. 717–722.

[14] G. C. González and J. P. Espada, ‘‘MUSPEL: Generation of applications
to interconnect heterogeneous objects using model-driven engineering,’’ in
Handbook of Research on Innovations in Systems and Software Engineer-
ing, V. G. Díaz, J.M. C. Lovelle, and B. C. P. García-Bustelo, Eds. Hershey,
PA, USA: IGI Global, 2015, pp. 365–385.

[15] A. Martinez-Balleste, P. Perez-martinez, and A. Solanas, ‘‘The pursuit of
citizens’ privacy: A privacy-aware smart city is possible,’’ IEEE Com-
mun. Mag., vol. 51, no. 6, pp. 136–141, Jun. 2013, doi: 10.1109/MCOM.
2013.6525606.

[16] L. Hao, X. Lei, Z. Yan, and Y. ChunLi, ‘‘The application and implemen-
tation research of smart city in China,’’ in Proc. Int. Conf. Syst. Sci. Eng.
(ICSSE), Dalian, China, Jun./Jul. 2012, pp. 288–292.

[17] M. C. Falvo, R. Lamedica, and A. Ruvio, ‘‘An environmental sustainable
transport system: A trolley-buses line for Cosenza city,’’ in Proc. Int. Symp.
Power Electron. Power Electron., Electr. Drives, Autom.Motion, Jun. 2012,
pp. 1479–1485.

[18] D. Ding, R. A. Cooper, P. F. Pasquina, and L. Fici-Pasquina, ‘‘Sensor
technology for smart homes,’’ Maturitas, vol. 69, no. 2, pp. 131–136,
Jun. 2011, doi: 10.1016/j.maturitas.2011.03.016.

[19] M. Rothensee, ‘‘A high-fidelity simulation of the smart fridge enabling
product-based services,’’ in Proc. 3rd IET Int. Conf. Intell. Environ. (IE),
2007, pp. 529–532.

[20] G. M. Lee and J. Y. Kim, ‘‘Ubiquitous networking application: Energy
saving using smart objects in a home,’’ in Proc. Int. Conf. ICT Converg.
(ICTC), Jeju Island, South Korea, Oct. 2012, pp. 299–300.

[21] D. Meana-Llorián, C. G. García, B. C. P. G-Bustelo, J. M. C. Lovelle,
and N. Garcia-Fernandez, ‘‘IoFClime: The fuzzy logic and the Internet
of Things to control indoor temperature regarding the outdoor ambient
conditions,’’FutureGener. Comput. Syst., vol. 76, pp. 275–284, Nov. 2017,
doi: 10.1016/j.future.2016.11.020.

[22] C. G. García, B. C. P. G-Bustelo, J. P. Espada, and G. Cueva-Fernandez,
‘‘Midgar: Generation of heterogeneous objects interconnecting appli-
cations. A domain specific language proposal for Internet of Things
scenarios,’’ Comput. Netw., vol. 64, pp. 143–158, May 2014, doi: 10.
1016/j.comnet.2014.02.010.

[23] G. C. González, D. Meana-Llorián, B. C. P. G-Bustelo, and
J. M. C. Lovelle, ‘‘A review about smart objects, sensors, and actuators,’’
Int. J. Interact. Multimedia Artif. Intell., vol. 4, no. 3, pp. 7–10, 2017,
doi: 10.9781/ijimai.2017.431.

[24] C. G. Garcia, J. P. Espada, E. R. N. Valdez, and V. G. Diaz, ‘‘Midgar:
Domain-specific language to generate smart objects for an Internet of
Things platform,’’ in Proc. 8th Int. Conf. Innov. Mobile Internet Services
Ubiquitous Comput., Birmingham, U.K., Jul. 2014, pp. 352–357.

[25] S. Luo, H. Xia, Y. Gao, J. S. Jin, and R. Athauda, ‘‘Smart fridges with mul-
timedia capability for better nutrition and health,’’ inProc. Int. Symp. Ubiq-
uitousMultimedia Comput., Hobart, ACT, Australia, Oct. 2008, pp. 39–44.

[26] Six Technologies With Potential Impacts on US Interests out to 2025, U.S.
Nat. Intell. Council, Washington, DC, USA, 2008.

141892 VOLUME 8, 2020

http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comcom.2011.11.003
http://dx.doi.org/10.1016/j.comcom.2011.11.003
http://dx.doi.org/10.1109/MCOM.2002.1024422
http://dx.doi.org/10.1016/j.compind.2008.12.005
http://dx.doi.org/10.1016/j.compind.2008.12.005
http://dx.doi.org/10.1109/TETC.2015.2390034
http://dx.doi.org/10.1109/TETC.2015.2390034
http://dx.doi.org/10.1109/ACCESS.2015.2389854
http://dx.doi.org/10.1109/MCOM.2013.6525606
http://dx.doi.org/10.1109/MCOM.2013.6525606
http://dx.doi.org/10.1016/j.maturitas.2011.03.016
http://dx.doi.org/10.1016/j.future.2016.11.020
http://dx.doi.org/10.1016/j.comnet.2014.02.010
http://dx.doi.org/10.1016/j.comnet.2014.02.010
http://dx.doi.org/10.9781/ijimai.2017.431


C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

[27] K. Ashton, ‘‘That ‘Internet of Things’ thing,’’ RFiD J., vol. 22, no. 7,
pp. 97–114, 2009.

[28] G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton, ‘‘Smart objects
as building blocks for the Internet of Things,’’ IEEE Internet Comput.,
vol. 14, no. 1, pp. 44–51, Jan. 2010, doi: 10.1109/MIC.2009.143.

[29] H. Gu andD.Wang, ‘‘A content-aware fridge based on RFID in smart home
for home-healthcare,’’ in Proc. 11th Int. Conf. Adv. Commun. Technol.,
Phoenix Park, South Korea, Feb. 2009, pp. 987–990.

[30] C. Han, J. M. Jornet, E. Fadel, and I. F. Akyildiz, ‘‘A cross-layer commu-
nication module for the Internet of Things,’’ Comput. Netw., vol. 57, no. 3,
pp. 622–633, Feb. 2013, doi: 10.1016/j.comnet.2012.10.003.

[31] Y. Sun, Y. Xia, H. Song, and R. Bie, ‘‘Internet of Things services for small
towns,’’ inProc. Int. Conf. Identificat., Inf. Knowl. Internet Things, Beijing,
China, Oct. 2014, pp. 92–95.

[32] A. J. Jara, Y. Sun, H. Song, R. Bie, D. Genooud, and Y. Bocchi, ‘‘Internet
of Things for cultural heritage of smart cities and smart regions,’’ in
Proc. IEEE 29th Int. Conf. Adv. Inf. Netw. Appl. Workshops, Gwangiu,
South Korea, Mar. 2015, pp. 668–675.

[33] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language
Reference Manual, 2nd ed. London, U.K.: Pearson Higher Education,
2004.

[34] S. Kent, ‘‘Model driven engineering,’’ in Proc. Int. Conf. Integr. Formal
Methods, vol. 2335, 2002, pp. 286–298.

[35] A. G. Kleppe, J. Warmer, andW. Bast,MDA Explained: The Model Driven
Architecture: Practice and Promise. Reading,MA, USA: Addison-Wesley,
2003.

[36] R. C. Gronback, Eclipse Modeling Project: A Domain-Specific Lan-
guage (DSL) Toolkit. Reading, MA, USA: Addison-Wesley, 2009.

[37] M. Fowler, Domain Specific Languages. Reading, MA, USA:
Addison-Wesley, 2010.

[38] M. Eysholdt and H. Behrens, ‘‘Xtext: Implement your language faster than
the quick and dirty way,’’ in Proc. ACM Int. Conf. Companion Object
Oriented Program. Syst. Lang. Appl. Companion (SPLASH), New York,
NY, USA, 2010, pp. 307–309.

[39] M. Mernik, J. Heering, and A. M. Sloane, ‘‘When and how to
develop domain-specific languages,’’ ACM Comput. Surv., vol. 37, no. 4,
pp. 316–344, Dec. 2005, doi: 10.1145/1118890.1118892.

[40] G. C. González, J. P. Espada, B. C. P. G-Bustelo, and J. M. C. Lovelle,
‘‘Swift vs. Objective-C: A new programming language,’’ Int. J. Interact.
Multimed. Artif. Intell., vol. 3, no. 3, pp. 74–81, 2015, doi: 10.9781/ijimai.
2015.3310.

[41] T. Stahl, M. Voelter, and K. Czarnecki, Model-Driven Software Develop-
ment: Technology, Engineering, Management. Hoboken, NJ, USA: Wiley,
2006.

[42] MDA Guide Rev. 2.0., Object Management Group Inc., Needham, MA,
USA, 2014.

[43] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, and E. Weiss,
‘‘Graphical definition of in-place transformations in the Eclipse modeling
framework,’’ in Model Driven Engineering Languages and Systems (Lec-
ture Notes in Computer Science), vol. 4199, O. Nierstrasz, J. Whittle, D.
Harel, and G. Reggio, Eds. Berlin, Germany: Springer, 2006, pp. 425–439.

[44] Eclipse. (2010). Ecore. Accessed: Nov. 1, 2019. [Online]. Available:
http://wiki.eclipse.org/Ecore

[45] LogMeIn. (2013). Xively. Accessed: Nov. 1, 2019. [Online]. Available:
https://xively.com/

[46] Exosite. (2013). Exchange IoT Marketplace. Accessed: Nov. 1, 2019.
[Online]. Available: http://exosite.com/

[47] Parker Hannifin Corp. (2020). Sensor Cloud. Accessed: Nov. 2, 2019.
[Online]. Available: http://www.sensorcloud.com/

[48] Digi International Inc. (2008). Etherios & Google Project, The Data Sens-
ing Lab,Wins Postscapes Internet of Things (IoT) Award. Accessed: Nov. 2,
2019. [Online]. Available: https://www.digi.com/news/press-releases/905

[49] PTC. (2020). ThingWorx. Accessed: Nov. 2, 2019. [Online]. Available:
http://www.thingworx.com/

[50] I. Altair Engineering. (2020). Carriots. Accessed: Nov. 2, 2019. [Online].
Available: https://www.carriots.com/

[51] Microsoft. (2015). Azure IoT Suit. Accessed: Nov. 3, 2019. [Online].
Available: https://azure.microsoft.com/en-us/free/iot/

[52] AmazonWeb Services. (2020).AWS IoT. Accessed: Nov. 3, 2019. [Online].
Available: https://aws.amazon.com/es/iot-core/features/

[53] IBM. (2015). IBM Internet of Things. Accessed: Nov. 3, 2019. [Online].
Available: https://www.ibm.com/es-es/internet-of-things

[54] G. Sánchez-Arias, C. G. García, and B. C. P. G-Bustelo, ‘‘Midgar: Study
of communications security among smart objects using a platform of
heterogeneous devices for the Internet of Things,’’ Future Gener. Comput.
Syst., vol. 74, pp. 444–466, Sep. 2017, doi: 10.1016/j.future.2017.01.033.

[55] C. G. García, D. Meana-Llorián, B. C. P. G-Bustelo, J. M. C. Lovelle,
and N. Garcia-Fernandez, ‘‘Midgar: Detection of people through computer
vision in the Internet of Things scenarios to improve the security in
smart cities, smart towns, and smart homes,’’ Future Gener. Comput. Syst.,
vol. 76, pp. 301–313, Nov. 2017, doi: 10.1016/j.future.2016.12.033.

[56] Paraimpu. [Online]. Available: http://www.paraimpu.com/
[57] A. Pintus, D. Carboni, and A. Piras, ‘‘Paraimpu: A platform for a

social Web of things,’’ in Proc. 21st Int. Conf. Companion World
Wide Web (WWW Companion). New York, NY, USA: ACM, 2012,
pp. 401–404.

[58] QuadraSpace. (2010). Open Sensor Network Services. Accessed: Aug. 7,
2017. [Online]. Available: http://www.quadraspace.org/

[59] Microsoft. (2020). SenseWeb. Accessed: Mar. 3, 2020. [Online]. Available:
http://research.microsoft.com/en-us/projects/senseweb/

[60] A. Kansal, S. Nath, J. Liu, and F. Zhao, ‘‘SenseWeb: An infrastructure
for shared sensing,’’ IEEE Multimedia Mag., vol. 14, no. 4, pp. 8–13,
Oct. 2007, doi: 10.1109/MMUL.2007.82.

[61] D. Guinard and V. Trifa, ‘‘Towards the Web of things: Web mashups for
embedded devices,’’ in Proc. 2ndWorkshopMashups, Enterprise Mashups
Lightweight Composition Web, Madrid, Spain, 2009, p. 8.

[62] Department of Electrical and Electronic Engineering (University of
Cagliari). (2012). SIoT. Accessed: Feb. 5, 2018. [Online]. Available:
http://platform.social-iot.org/

[63] Oak Ridge National Laboratory. (2009). Sensorpedia. Accessed: Feb. 5,
2018. [Online]. Available: http://www.sensorpedia.com/

[64] B. L. Gorman, D. R. Resseguie, and C. Tomkins-Tinch, ‘‘Sensorpedia:
Information sharing across incompatible sensor systems,’’ in Proc. Int.
Symp. Collaborative Technol. Syst., May 2009, pp. 448–454, doi: 10.
1109/CTS.2009.5067513.

[65] Evrythng. (2012). The EVRYTHNG Product CloudTM for Your
Industry. Accessed: Mar. 7, 2018. [Online]. Available: https://www.
evrythng.com/

[66] OpenSense. (2015). A Participatory Open Sensor Data Platform.
Accessed: Mar. 7, 2018. [Online]. Available: https://opensense.network/

[67] The MathWorks Inc. (2020). ThingSpeak for IoT Projects. Accessed:
Mar. 3, 2020. [Online]. Available: https://www.mathworks.com/
products/thingspeak.html

[68] Nimbits Inc. (2015). Process Control and Automation and Evolved
Into An IoT API. Accessed: Jan. 20, 2019. [Online]. Available:
https://github.com/bsautner/com.nimbits

[69] KaaIoTTechnologies LLC. (2014).KAA. Accessed: Feb. 2, 2018. [Online].
Available: http://www.kaaproject.org

[70] B. Kaucic and T. Asic, ‘‘Improving introductory programming with
Scratch?’’ in Proc. 34th Int. Conv. MIPRO, Opatija, Croatia, May 2011,
pp. 1095–1100.

[71] Besttoolbars. (2020). Free and Simple Tool to Create, Download, Dis-
tribute and Monetize Your App. Accessed: Mar. 3, 2020. [Online]. Avail-
able: http://www.appsgeyser.com

[72] iBuildApp Inc. (2020). Crear Aplicaciones Para Android y iPhone.
Accessed: Mar. 3, 2020. [Online]. Available: http://ibuildapp.com/

[73] Andromo. (2016). Create the App You Want. Accessed: Mar. 7, 2020.
[Online]. Available: https://www.andromo.com/

[74] Paperlit S.R.L. (2015). AppsBuilder. Accessed: Mar. 7, 2020. [Online].
Available: http://www.apps-builder.com/

[75] Infinite Monkeys. (2016). App Builder to Make Your App
Without Coding. Accessed: Feb. 4, 2018. [Online]. Available:
http://www.infinitemonkeys.mobi

[76] Appy Pie. (2013). No-Code Platform for Building Digital Products.
Accessed: Mar. 7, 2020. [Online]. Available: https://www.appypie.com/

[77] Swiftic. (2020). Create a Mobile App in 3 Easy Steps. Accessed: Feb. 1,
2018. [Online]. Available: http://my.como.com

[78] AppMachine. (2020). Create Your Own App Or Become a Reseller and
Build Apps for Others. Accessed: Feb. 1, 2018. [Online]. Available:
https://www.appmachine.com/

[79] MiniBloq. (2016). miniBloq is an Open Source Graphical Pro-
gramming Environment for Multiplo, Arduino, Physical Computing
Devices and Robots. Accessed: Oct. 27, 2016. [Online]. Available:
http://blog.minibloq.org/

[80] Arduino. (2020). Arduino/Processing Language Comparison.
Accessed: Feb. 1, 2020. [Online]. Available: https://www.arduino.cc/
en/Reference/Comparison

[81] Ardublock. (2020). A Graphical Programming Language for Arduino.
Accessed: Feb. 1, 2020. [Online]. Available: http://blog.ardublock.com/

VOLUME 8, 2020 141893

http://dx.doi.org/10.1109/MIC.2009.143
http://dx.doi.org/10.1016/j.comnet.2012.10.003
http://dx.doi.org/10.1145/1118890.1118892
http://dx.doi.org/10.9781/ijimai.2015.3310
http://dx.doi.org/10.9781/ijimai.2015.3310
http://dx.doi.org/10.1016/j.future.2017.01.033
http://dx.doi.org/10.1016/j.future.2016.12.033
http://dx.doi.org/10.1109/MMUL.2007.82
http://dx.doi.org/10.1109/CTS.2009.5067513
http://dx.doi.org/10.1109/CTS.2009.5067513


C. González García et al.: Midgar: Creation of a Graphic DSL to Generate Smart Objects for IoT Scenarios Using MDE

[82] Citilab. (2020). EduLab—Scratch for Arduino. Accessed: Feb. 1, 2018.
[Online]. Available: https://www.citilab.eu/

[83] Citilab. (2020). S4A. Accessed: Feb. 1, 2020. [Online]. Available:
http://s4a.cat/

[84] Modkit LLC. (2020). Program Your World: Drag & Drop Program-
ming You Can Touch. Accessed: Nov. 4, 2019. [Online]. Available:
http://modkit.com/

[85] Microchip Technology Inc. (2020). Atmel Studio 7. Accessed:
Feb. 1, 2020. [Online]. Available: https://www.microchip.com/mplab/
avr-support/atmel-studio-7

[86] XOD Inc. (2017). A Visual Programming Language for Microcontrollers.
Accessed: Nov. 4, 2019. [Online]. Available: https://xod.io/

[87] J. S. A. S. M. Bauer, M. Boussard, N. Bui, F. Carrez, C. Jardak, J. Loof,
C. Magerkurth, S. Meissner, A. Nettsträter, A. Olivereau, M. Thoma, and
J. Walewski, ‘‘Deliverable D1.5—Final architectural reference model for
the IoT v3.0,’’ Eur. Union, Brussels, Belgium, Tech. Rep., 2013.

[88] R. Likert, ‘‘A technique for the measurement of attitudes,’’ Arch. Psychol.,
vol. 22, no. 40, pp. 5–55, Jun. 1932.

[89] Blacksun Software. (2016). Mousotron?: Mouse and Keyboard
Activity Monitor. Accessed: Nov. 9, 2019. [Online]. Available:
http://www.blacksunsoftware.com/mousotron.html

[90] M. Kasunic, ‘‘Designing an effective survey,’’ Softw. Eng. Inst., Carnegie
Mellon Univ., Pittsburgh, PA, USA, Tech. Rep., 2005.

CRISTIAN GONZÁLEZ GARCÍA received the
M.Sc. degree in Web engineering and the Ph.D.
degree in computers science. He is currently an
Assistant Professor with the Department of Com-
puter Science, University of Oviedo, Spain. He is
also a Technical Engineer in computer systems.
He has been a visiting Ph.D. student with the Uni-
versity of Manchester. Besides, he has been with
the University of South Florida, as a Visiting Pro-
fessor. His research interests include the Internet

of Things, Web engineering, mobile devices, artificial intelligence, big data,
and modeling software with DSL and MDE.

DANIEL MEANA-LLORIÁN received the Engi-
neering degree in computer systems and the
M.S. degree in Web engineering from the School
of Computer Engineering, University of Oviedo,
Oviedo, Spain, in 2014 and 2016, respectively.
He is currently pursuing the Ph.D. degree in com-
puter science.

VICENTE GARCÍA-DÍAZ received the Ph.D.
degree in computer engineering from the Uni-
versity of Oviedo. He is currently an Asso-
ciate Professor with the Computer Science
Department, University of Oviedo. His research
interests include domain-specific languages,
model-driven engineering, business process man-
agement, machine learning, the Internet of Things,
and eLearning.

ANDRÉS CAMILO JIMÉNEZ received the Ph.D.
degree in engineering from the University Fran-
cisco Jose de Caldas. He is currently an Asso-
ciate Professor with the Electronics and Systems
Department, University Foundation Los Liberta-
dores. His research areas are related to image pro-
cessing, digital systems, and cooperative robotic.

JOHN PETEARSON ANZOLA received theM.Sc.
degree in information sciences and communi-
cations from the University Francisco Jose de
Caldas. He is currently an Associate Professor
with the Electronics and Systems Department,
University Foundation Los Libertadores. His
research interests include ad-hoc networks, image
processing, machine learning, and the Internet
of Things.

141894 VOLUME 8, 2020


