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1 Introduction

Black-hole thermodynamics1 is probably one of the most active fields of research in The-

oretical Physics. It interconnects seemingly disparate areas of Physics such as Gravity,

Quantum Field Theory and Information Theory providing deep insights in all of them.

Black-hole thermodynamics originates in the analogy between the behaviour of the

area of the event horizon A and the second law obeyed by the thermodynamic entropy S

noticed by Bekenstein [2, 3] in the results obtained by Christodoulou and Hawking [4–7].

Shortly afterwards, in ref. [8] Bardeen, Carter and Hawking extended this analogy by

proving another three laws of black hole mechanics similar to the other three laws of

thermodynamics involving the event horizon’s surface gravity κ and angular velocity Ω and

the black hole’s mass M . However, the analogy was only taken seriously after Hawking’s

discovery that black holes radiate as black bodies with a temperature T = κ/2π [9], which

implied the relation S = A/4, both in c = GN = ~ = k = 1 units.

Ever since the formulation of these four laws, it has been tried to extend their domain of

application and validity with the inclusion of matter fields and terms of higher-order in the

curvature, for instance. In refs. [10–12] Wald and collaborators developed a new approach

to demonstrate the first law of black hole mechanics in general diffeomorphism-invariant

theories, beyond General Relativity. Since the surface gravity relation to the Hawking

temperature only depends on generic properties of the event horizon, the quantity whose

variation it multiplies in the first law is naturally associated to the Bekenstein-Hawking

1For a recent review on black-hole thermodynamics with many references see, e.g. [1].
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entropy S. This quantity, often called Wald entropy, is just A/4 in General Relativity

but, in more general theories, there can be additional terms which can be understood, for

instance, as α′ corrections in Superstring Theories [13–18].

In the presence of matter fields, Wald’s proof of the first law of black-hole mechanics

had to be re-examined because one of the main assumptions refs. [11, 12] is that all matter

fields behave as tensors and, simply put, there are no tensor fields apart form the metric and

scalar fields (if any); all of them have some sort of gauge freedom and their transformations

under diffeomorphisms are always coupled to gauge transformations. Indeed, as is well-

known, fermionic fields coupled to gravity transform under a local Lorentz group as spinors

and bosonic fields must transform under some gauge group if unwanted, typically negative-

energy, states are to be eliminated. The only scalar in the Standard Model, the Higgs field,

is, in fact, a SU(2) doublet.

The simplest matter field that, coupled to gravity, allows for black-hole solutions is

the Maxwell field [19, 20]. The presence of the field introduces an additional term of the

form ΦdQ in the first law which takes into account the changes in the mass of the black

hole when its charge Q changes. In this term Φ is the electric potential on the horizon and

a generalized zeroth law states that it takes a constant value over the horizon. The value

of Φ is customarily taken to be kµAµ, where kµ is the Killing vector for which the event

horizon is its associated Killing horizon and where it is assumed that the electromagnetic

field is in a gauge in which Φ is, indeed, constant.

This definition of Φ is clearly not gauge-invariant. This is a problem of principle,2

which, as we are going to show, is related to the more fundamental problem we were

discussing: the fact that Wald’s proof of the first law does not deal properly with fields

which have some kind of gauge freedom. In Wald’s proof, one considers diffeomorphisms

which are symmetries of all the dynamical fields, but the naive definition of invariance of

fields with gauge freedom under diffeomorphsisms through the standard Lie derivative is

not gauge invariant. This problem affects the gravitational field itself when it is described

in terms of the Vielbein instead of the metric.

A solution for this particular case was provided in ref. [22] by defining the variation of

the Vielbein under diffeomorphisms through the Lie-Lorentz derivative refs. [23–27] which

can be understood as a generalization of the Lie derivative which transforms covariantly

under local Lorentz transformations. If the Vielbein is annihilated by the Lie-Lorentz

derivative with respect to some vector field in some gauge it will be annihilated in any gauge

and, as a matter of fact, the vector field will be a Killing vector field of the metric. The

Lie-Lorentz derivative can be defined on all fields with Lorentz (spinor or vector) indices,

a fact that has been used to extend the proof of the first law of black hole mechanics to

supergravity in ref. [28].

A more general mathematically rigorous approach was proposed in [29]3 using the

formalism of principal gauge bundles which encompasses Yang-Mills and Lorentz fields

2There are other problems as well: in Wald’s approach, the Noether charge, which contains a term in

which Φ occurs, is evaluated over the bifurcation surface, but the Maxwell field of the Reissner-Nordström

black hole turns out to be singular there in the traditional gauge [21].
3See also ref. [30] for a different take on this problem.
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but, unfortunately, not the Kalb-Ramond field or higher-rank form fields of string theory.4

Perhaps the most interesting result in that paper is the realization that all the zeroth-

laws (the constancy of the surface gravity, electric potential etc.), on the horizon fit into

a common pattern. In this paper we are going to recover and reformulate this result in

terms of the momentum map, using gauge-covariant derivatives in which this object plays

a crucial rôle.5

Although gauge-covariant Lie derivatives are, perhaps, not the most mathematically

rigorous tool one can use, they can be generalized to frameworks other than principal gauge

bundles.6 Our goal in this paper is to show they can be consistently used in a simpler

context (the Einstein-Maxwell theory described in terms of Vielbeins) and the objects to

which the generalized zeroth law applies (here the surface temperature and the electric

potential) are the gauge-invariant momentum maps associated to each gauge symmetry

(Lorentz and U(1)) evaluated over the horizon.

The emergence of the momentum map in this context may seem a bit strange; for

instance, there is no mention of it in ref. [22] in spite of their use of the (gauge-covariant)

Lie-Lorentz derivative. However, as we will show, the momentum map is indeed present

in the Lie-Lorentz derivative and plays the same role of the momentum map we will in-

troduce for the Maxwell case. As a matter of fact, gauge-covariant derivatives and the

momentum map arise most naturally in the study of superalgebras of symmetry, when all

the dynamical fields of a supergravity theory are left invariant by a set of supersymme-

try and bosonic transformations that combine diffeomorphisms, gauge, local-Lorentz and

local-supersymmetry transformations [35–38]. This object also plays a very interesting ge-

ometrical rôle in symmetric Riemannian spaces and in certain spaces of special holonomy

when they admit Killing vectors that preserve their geometrical structures. When one

wants to gauge the corresponding symmetries in theories with σ-models of that kind (typ-

ically supergravity theories) the momentum map plays an essential role in the definition of

the gauge-covariant derivative [39].

This paper is organized as follows: in section 2 we introduce the gauge-covariant deriva-

tives that we are going to use: Lie-Maxwell in section 2.1 and Lie-Lorentz in section 2.2. We

also discuss the zeroth laws the respective momentum maps obey. This last section is essen-

tially a review of the literature on the subject where we re-derive the formulae we are going

to use in the main body of the paper using our conventions (those of ref. [38]). In section 3

we describe the Einstein-Maxwell theory in d dimensions (action and equations of motion)

in differential-form language and the d-dimensional Reissner-Nordström-Tangherlini black

hole solutions. In section 4 we compute the Wald-Noether charge for this theory using the

4The first law has been proved for theories including one scalar and one p-form field in [31], although

the gauge-invariance problem has not been discussed in it.
5In refs. [32, 33], which covers some of the topics studied here this object emerges as an “improved gauge

transformation”.
6In this paper we will not consider those more complicated cases involving higher-rank p-form fields with

Chern-Simons terms which typically arise in Superstring/Supergravity theories. We will consider the case

of the Kalb-Ramond field with Yang-Mills and Lorentz Chern-Simons terms in its field strength in ref. [34],

where we will show how the gauge-covariant derivative approach with momentum maps that we introduce

here provides a gauge-covariant, unambiguous results for the Wald-Noether charge.
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transformations based on the gauge-covariant Lie derivatives defined in section 2. Then,

in section 5 we prove the first law for this system, identifying the Wald entropy, which

we compute for the Reissner-Nordström-Tangherlini black hole solutions. In section 6 we

briefly discuss our results and future directions of research.

2 Covariant Lie derivatives and momentum maps

One of the main ingredients in the proofs of the first law of black hole mechanics using

Wald’s formalism [11, 12] is the use of infinitesimal diffeomorphisms that leave invariant

all the dynamical fields.

If we use the metric gµν as dynamical field, since the metric is just a tensor, its

transformation under infinitesimal diffeomorphisms δξx
µ = ξµ(x) is given by (minus) the

standard Lie derivative

δξgµν = −£ξgµν = −2∇(µξν) , (2.1)

which vanishes when ξµ is a Killing vector of gµν . We will distinguish Killing vectors from

generic vectors ξµ denoting them by kµ.

If, as we want to do here, we use as dynamical field the Vielbein eaµ instead of gµν ,

in order to define its symmetries, we face the well-known problem of the gauge freedom of

eaµ, which in this context has been treated in refs. [22, 29]. The same happens with the

electromagnetic potential Aµ, which also has been treated in this context in ref. [29].

One way to deal with this problem is to define a gauge-covariant notion of Lie deriva-

tive. The Lie derivative in the corresponding principal bundle, used in ref. [29] provides the

most rigorous definition of such a derivative. Here we will introduce a less sophisticated

version that makes use of the so-called momentum map and which can be defined for more

general fields such as the Kalb-Ramond 2-form of the Heterotic Superstring, which can-

not be described in the framework of a principal bundle [34]. Gauge-covariant derivatives

arise naturally in the commutator of two local supersymmetry transformations and in the

construction of Lie superalgebras of supersymmetric backgrounds [35–38].

Due to its simplicity, we start with the Maxwell field.

2.1 Lie-Maxwell derivatives

The electromagnetic field Aµ is a field with gauge freedom: we must consider physically

equivalent two configurations that are related by the gauge transformation

δχAµ = ∂µχ , (2.2)

and, furthermore, as a general rule, it is not possible to give a globally regular expression of

the electromagnetic field in a single gauge.7 However, the standard Lie derivative does not

commute with these gauge transformations and gives different results in different gauges.

This is why a gauge-covariant notion of Lie derivative is needed in this case.

In the subsequent discussion it is convenient to use differential-form language. In

terms of the electromagnetic 1-form potential A ≡ Aµdx
µ, we define the electromagnetic

7The main example of this situation is the magnetic monopole [40].
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field strength 2-form by F = dA so that it satisfies the Bianchi identity dF = 0. In

components we have

F ≡ 1

2
Fµνdx

µ ∧ dxν , Fµν = 2∂[µAν] . (2.3)

The field strength is invariant under the gauge transformations δχA = dχ and we can

treat it as a standard 2-form whose transformation under infinitesimal diffeomorphisms

generated by ξµ is given by (minus) the standard Lie derivative which, on p-forms, acts as

£ξ = ıξd+ dıξ.
8

Using the Bianchi identity we find that

δξF = −dıξF . (2.4)

If ξ is a symmetry of all the dynamical fields, in which case we will denote it by k, we

have that δkF = 0 and the above equation implies that, locally, there is a gauge-invariant

function Pk called momentum map such that9

ıkF = −dPk . (2.5)

Pk is defined by this equation up to an additive constant that we will discuss later.

Let us now consider the variation of A under infinitesimal diffeomorphisms, which, ac-

cording to general arguments (see e.g. refs. [29, 38]) has to be given locally by a combination

of (minus) the Lie derivative and a “compensating” gauge transformation generated by a

ξ-dependent parameter χξ which is to be determined by demanding that δkA = 0 when

δkF = 0:

δξA = −£ξA+ dχξ = −ıξF + d (χξ − ıξA) . (2.6)

Then, taking into account eq. (2.5), we conclude that

χξ = ıξA− Pξ , (2.7)

where Pξ is a function of ξ which satisfies eq. (2.5) when ξ = k and generates a symmetry

of all the dynamical fields.

It is natural to identify the above transformation δξA with (minus) a gauge-covariant

Lie derivative of A that we can call Lie-Maxwell derivative

δξA = −LξA , LξA ≡ ıξF + dPξ . (2.8)

While this derivative does not enjoy the most important property of Lie derivatives

[£ξ,£η] = £[ξ,η] for generic vector fields ξ, η, it is clear that it does for those that generate

symmetries of A and F and annihilates them. This is certainly enough for us.

For stationary asymptotically-flat black holes, when the Killing vector k is the one

normal to the event horizon, the momentum map can be understood as the electric potential

8In our conventions, for a p-form ω(p) with components ω(p)
µ1···µp , ıξω

(p) is the (p − 1)-form with

components (ıξω
(p))µ1·µp−1 = ξνω(p)

νµ1·µp−1 .
9The sign of Pk is purely conventional.
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Φ which, evaluated on the horizon ΦH, appears in the first law.10 In the early literature (see

e.g. section 6.3.5 of ref. [42]) it was assumed from the start that there is a gauge in which

£kA = ıkdA+ d(ıkA) = 0 . (2.9)

Then, the electric potential Φ was identified with ıkA because, according to the above

equation, dΦ = −ıkF , which can be defined as the electric field for an observer associated

to the time direction defined by k.

It is clear that Pk can be identified with Φ (both satisfy the same equation). However,

in a general gauge, it will not be given by just ıkA and we will have to compute it.

Nevertheless, the main property of Φ, namely the fact that it is constant over the horizon

(sometimes called generalized zeroth law) still holds because it is, actually, a property

of −ıkF based on the properties of k, the Einstein equations and the assumption that

the energy-momentum tensor of the electromagnetic field satisfies the dominant energy

condition.

2.2 Lie-Lorentz derivatives

The original motivation for the definition of a derivative covariant under local Lorentz

transformations, often called the Lie-Lorentz derivative, was its need for the proper treat-

ment of spinorial fields in curved spaces in such a way that the flat-space results were

correctly recovered.

In Minkowski spacetime, fermionic fields transform in spinorial representations of the

Lorentz group, which leaves invariant the spacetime metric (ηab) = diag(+− · · ·−). Since

generic spacetime metrics gµν do not have any isometries, the Lorentz group will not be

realized as a group of general coordinate transformations (g.c.t.s) leaving invariant the

spacetime metric. Weyl realized that, if one introduces an orthonormal base in cotangent

space at a given point in spacetime

{ea = eaµdx
µ} , eaµe

b
νg
µν = ηab , (2.10)

the Lorentz group arises naturally as the group of linear transformations of the base

ea ′ = Λabe
b ∼ (ηab + σab)e

b , (2.11)

(σab are the infinitesimal transformations) that preserves orthonormality.

ΛacΛ
b
dη
cd = ηab , ⇒ σ(a

cη
b)c = σ(ab) = 0 . (2.12)

In ref. [43],11 Weyl proposed to define fermionic fields ψ as fields transforming in the

spinorial representation of the Lorentz group that acts in the tangent and cotangent space,

that is

δσψ ≡
1

2
σabΓs(Mab)ψ , (2.13)

10See, for instance ref. [41] for a proof of the first law in the context of 5-dimensional supergravity and

the role that Φ plays in it.
11Translated in ref. [44].
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where Γr(Mab) stands for the matrices that represent the generators of the Lorentz group

{Mab} in the representation r. As is well-known, the generators in the spinorial repre-

sentation can be constructed taking antisymmetrized products of the gamma matrices γa,

γab ≡ γ[aγb]

Γs(Mab) =
1

2
γab , ⇒ δσψ ≡

1

4
σabγabψ . (2.14)

Since these transformations can be different at each point, the Lorentz parameters

σab take different values at different points of the spacetime and become functions σab(x)

which will be smooth if the bases of the tangent and cotangent space are assumed to vary

smoothly so that they are smooth vector and 1-form fields.

Theories containing fermionic fields in curved spacetimes are required to be invari-

ant under these local Lorentz transformations. Their construction demands the intro-

duction of a gauge field, the so-called spin connection 1-form, conventionally denoted by

ωab = ωµ
abdxµ. The spin connection enters the Lorentz-covariant derivatives of any field T

(indices not shown) transforming in the representation r of the Lorentz group as follows:

DT (r) ≡
[
d− 1

2
ωabΓr(Mab)

]
T (r) . (2.15)

The transformation properties of T (r) are preserved by the covariant derivative if, under

infinitesimal local Lorentz transformations,

δσω
ab = Dσab =

[
d− 1

2
ωcdΓAdj(Mcd)

]
σab = dσab − 2ω[a

cσ
|c|b] . (2.16)

From now on∇µ will denote the full (affine plus Lorentz) covariant derivative satisfying

the first Vielbein postulate

0 = ∇µeaν ≡ ∂µeaν − ωµabebν − Γµν
ρeaρ . (2.17)

On pure Lorentz tensors ∇ = D.

Now, how do spinors and general Lorentz tensors transform under infinitesimal g.c.t.s

generated by an vector field ξ?

Customarily, these fields are treated as scalars, so that, if £ξ stands for the standard

Lie derivative,

δξT = −£ξT = −ıξdT . (2.18)

There are many reasons why this has to be wrong. For starters, if we consider the

particular case of a vector field ξ generating a global Lorentz transformation in Minkowski

spacetime ξµ = σµνx
ν + aµ, the transformation in eq. (2.18) is completely different from

the transformation of a Lorentz tensor

δσT =
1

2
σabΓr(Mab)T . (2.19)

However, it should reduce to this if the Fermionic fields introduced in curved space-

times via Weyl’s prescription have anything to do with the standard special-relativistic

Fermionic fields.

– 7 –
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Furthermore, it is clear that the effect of the g.c.t. eq. (2.18) on T depends on the

gauge, or, equivalently, on the choice of tangent space basis. In other words the expression

for δξ in eq. (2.18) is not covariant under local Lorentz transformations.

Indeed, Lorentz tensors are not scalar nor tensor fields under g.c.t.s. They are sections

of some bundle or, at a more pedestrian level, they are fields that, under g.c.t.s, transform

as world tensors up to a local Lorentz transformation whose parameter depends on the

field and on the generator of the g.c.t. σabξ .

Then, instead of eq. (2.18) we must write

δξT = −£ξT + δσξT , (2.20)

where σξ
ab makes δξT covariant under further local Lorentz transformations.

The parameter of the compensating local Lorentz transformation that renders δξT

covariant turns out to be given by12

σξ
ab = ıξω

ab −∇[aξb] , (2.21)

and it should be compared with the parameter of the compensating U(1) gauge transforma-

tion χξ in eq. (2.7). By analogy we can define the Lorentz-algebra-valued momentum map

Pξ
ab ≡ ∇[aξb] . (2.22)

We will see that this object satisfies a generalization of the equation that defines the mo-

mentum map in the Maxwell case eq. (2.5).

It is natural to define the Lorentz-covariant Lie derivative (or Lie-Lorentz derivative)

of any tensor T with Lorentz and world indices with respect to a vector field ξ as (minus)

this transformation:13

LξT ≡ −δξT = £ξT − δσξT . (2.23)

The properties of the Lie-Lorentz derivative on spinors are reviewed in refs. [27, 38].

Here we are mainly interested in the Lie-Lorentz derivatives of the Vielbein and the spin

connection, specially with respect to Killing vectors. According to the general definition,

and after trivial manipulations, we find that the Lie-Lorentz derivative of the Vielbein is

proportional to the Killing equation

Lξeaµ =
1

2
(∇µξa +∇aξµ) =

1

2
ea ν (∇µξν +∇νξµ) , (2.24)

and, therefore, it vanishes when ξ is a Killing vector field, independent of the basis chosen,

as we should have expected.

12After ref. [22], this parameter is often written in the equivalent, but less transparent, form

σξ
ab = −£ξe

[a
µe
b]µ .

13The Lie-Lorentz derivative was originally introduced for spinor fields in refs. [23–26] and its definition

was later extended to more general Lorentz tensors T transforming in an arbitrary representation r [27].

– 8 –



J
H
E
P
0
9
(
2
0
2
0
)
0
2
6

We will use this equivalent differential-form expression for the above equation:

Lξea = Dξa + Pξ
a
be
b . (2.25)

Let us now consider the Lie-Lorentz derivative of the spin connection ωab. Taking into

account the inhomogeneous form of the compensating Lorentz transformation for the spin

connection eq. (2.16) we get14

Lξωab = £ξω
ab −Dσξab , (2.26)

where σξ
ab is with the same parameter eq. (2.21). After some massaging, we can rewrite

it in a much more suggestive form

Lξωab = ıξR
ab +DPξab , (2.27)

where the Lorentz curvature 2-form Rab ≡ 1
2Rµν

abdxµ ∧ dxν is defined as

Rab = dωab − ωac ∧ ωcb , (2.28)

and where we have replaced ∇[aξb] by Pξ
ab, according to the definition of eq. (2.22).

The left-hand side of eq. (2.27) can be shown to vanish identically when ξ is a Killing

vector field, because of the identity

ξνRνµ
ab +∇µ(∇[aξb]) = ∇[a

(
∇b]ξµ +∇µξb]

)
. (2.29)

As desired, for Killing vectors k we have Lkea = 0 and Lkωab = 0 and both statements are

Lorentz-invariant.15

For Killing vectors, eq. (2.29) can also be written in the form

ıkR
ab = −DPkab , (2.30)

which is the generalization of eq. (2.5) and justifies our definition of momentum map

eq. (2.22) for Killing vectors. The main difference with the Lie-Maxwell case is that here

we have an explicit expression for Pξ
ab for any ξ.

In the context of asymptotically-flat stationary black holes, it is known that, when

evaluated on the bifurcation sphere BH

Pk
ab = ∇[akb]

BH
= κnab , (2.31)

where κ is the surface gravity and nab is the binormal, normalized to satisfy nabnab = −2.

The constant16 κ is related to the Lorentz momentum map just as the electric potential on

the horizon was shown to be related to the Maxwell momentum map in section 2.1. This

parallelism between zeroth laws was observed in [29].

14The same expression can be found if one considers the variation of the Levi-Civita spin connection as

a function of the variation of the Vielbein, given by (minus) the Lie-Lorentz derivative in eq. (2.24).
15Observe that Lξωab transforms as a Lorentz tensor even though ωab is not (it is a connection).
16See ref. [45] for a proof of the constancy of κ over the horizon (the standard zeroth law of black hole

mechanics [8]) that makes use of the Einstein equations and the dominant energy condition and ref. [46]

for a proof that does not, relaying only on the assumption of geodesic completeness of the null generators

of the event horizon.
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3 The Einstein-Maxwell action and the RNT solutions

In this section we present the d-dimensional Einstein theory and the d-dimensional Reissner-

Nordström-Tangherlini (RNT) solutions we are going to study, in order to fix the conven-

tions. We will first give the action and equations of motion in the standard tensorial

form, and will then rewrite them in the differential-language form that we will use in the

following section.

3.1 Action and equations of motion

Setting G
(d)
N = 1 for simplicity, and choosing as basic dynamical fields the Vielbein eaµ and

the Maxwell field Aµ, the action of the Einstein-Maxwell theory in d spacetime dimensions

S[eaµ, Aµ] =
1

16π

∫
ddx e

[
R(ω, e)− 1

4
F 2

]
, (3.1)

where e ≡ det(eaµ), R(ω, e) is the Ricci scalar, defined in terms of the Levi-Civita spin

connection ωµ
ab,17 that is

R(ω, e) = ea
µeb

νRµν
ab(ω) , (3.2)

where Rµν
ab(ω) is the curvature 2-form of the Levi-Civita spin connection, defined in

eq. (2.28). The Levi-Civita spin connection (metric compatible and torsion-free, that is

Dea = 0) is given by

ωabc = ea
µωµ ba = −Ωabc + Ωbca − Ωcab , Ωabc = ea

µeb
ν∂[µ|ec |ν] . (3.3)

Finally, F 2 = FabF
ab, Fab = ea

µeb
νFµν and Fµν is defined in eq. (2.3).

The equations of motion are

Ea
µ ≡ δS

δeaµ
= − e

8π

(
Ga

µ − 1

2
T aµ

)
, (3.4a)

Eµ ≡ δS

δAµ
=

1

16π
∂ν (eF νµ) , (3.4b)

where

Ta
µ = FabF

µb − 1

4
ea
µF 2 , (3.5)

is the electromagnetic field’s energy-momentum tensor.

In differential-form language, the action eq. (3.1) is usually written in this form

S[ea, A] =
(−1)d−1

16π

∫ [
1

(d− 2)!
Ra1a2 ∧ ea3 ∧ · · · ∧ eadεa1···ad −

1

2
F ∧ ?F

]
≡
∫

L , (3.6)

although it is more convenient to rewrite the first (Einstein-Hilbert) term as

1

(d− 2)!
Ra1a2 ∧ ea3 ∧ · · · ∧ eadεa1···ad = ?(ea ∧ eb) ∧Rab . (3.7)

17We are using the second-order formalism.
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The (d− 1)-form equations of motion (which we write in boldface) are given by

Ea =
1

16π

{
ıa ? (ec ∧ ed) ∧Rcd +

1

2
(ıaF ∧ ?F − F ∧ ıa ? F )

}
, (3.8a)

E = − 1

16π
d ? F , (3.8b)

where ıc stands for iec , where ec = ec
µ∂µ.

3.2 The Reissner-Nordström-Tangherlini solutions

The d-dimensional RNT solutions with rationalized mass M and electric charge q are

described by the following metric and electromagnetic fields [19, 20, 47]:

ds2 = λdt2 − dr2

λ
− r2dΩ2

(d−2) , Ftr =
16π

ω(d−2)

q

rd−2
, (3.9)

where dΩ2
(d−2) is the metric of the round (d − 2)-sphere of unit radius, ω(d−2) is its

volume and

λ =
(rd−3 − rd−3

+ )(rd−3 − rd−3
− )

r2(d−3)
, (3.10a)

rd−3
± =

8π

(d− 2)ω(d−2)
M ± rd−3

0 , (3.10b)

rd−3
0 =

8π

(d− 2)ω(d−2)

√
M2 − 2(d− 2)

(d− 3)
q2 . (3.10c)

The origin of the annoying normalization factors lies in the standard normalization factor

(16π)−1 of the action, which should be replaced by [2(d − 2)ω(d−2)]
−1. Instead, we can

just define

M≡ 8π

(d− 2)ω(d−2)
M , Q ≡ 16π

ω(d−2)
q , (3.11)

getting somewhat simpler expressions

Ftr =
Q
rd−2

, (3.12a)

rd−3
± =M± rd−3

0 , (3.12b)

rd−3
0 =

√
M2 − Q2

2(d− 2)(d− 3)
. (3.12c)

The event horizon of these solutions exists when M ≥ [2(d − 2)(d − 3)]−1/2|Q| and

then it is located at r = r+ and its surface gravity is given by

κ = (d− 3)rd−3
0 /rd−2

+ . (3.13)

The surface gravity vanishes in the extremal limit r0 = 0, which is reached when M =

[2(d− 2)(d− 3)]−1/2|Q|. We will always assume that κ 6= 0.

– 11 –
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The timelike Killing vector that becomes null on the horizon is k = ∂t in these co-

ordinates, but they do not cover the bifurcate sphere because this expression for k never

vanishes. In the region covered by these coordinates we find that

Pk
µν = ∇[µkν] = −∂rλgµνrt

H
= κnµν , (3.14)

where the binormal takes the value

nµν = −2gµνrt , ⇒ nµνnµν = −2 . (3.15)

On the other hand, ıkF = Ftrdr and

Pk =
Q/(d− 3)

rd−3

H
=
Q/(d− 3)

rd−3
+

= Φ . (3.16)

In order to reach the bifurcation sphere we need to use Kruskal-Szekeres coordinates.

For d = 4 the change from r, t to Kruskal-Szekeres’s U, V is known and given explicitly,

for instance, in ref. [48]. To work in arbitrary d we will just work near the event horizon:

expanding the solution in eq. (3.9) around r = r+ and ignoring terms of second or higher

order in r − r+ we get

ds2 = 2κ(r−r+)dt2− dr2

2κ(r−r+)
−r2

+ [1+2(r−r+)/r+]dΩ2
(d−2)+O(r−r+)2 , (3.17a)

Ftr =
Q
rd−2

+

[1−(d−2)(r−r+)/r+]+O(r−r+)2 . (3.17b)

The tortoise coordinate r∗ is

r∗ =
1

2κ
log

(
r − r+

r+

)
+ C +O(r − r+)2 , (3.18)

where C is an integration constant that we set to zero for the sake of convenience. Defining

v ≡ t+ r∗ , u ≡ t− r∗ , (3.19)

the solution takes the form

ds2 = 2κr+e
κ(v−u)dudv − r2

+

[
1 + 2eκ(v−u)

]
dΩ2

(d−2) +O(r − r+)2 , (3.20a)

Fuv = κ
Q
rd−3

+

eκ(v−u) +O(r − r+)2 . (3.20b)

Finally, we define the coordinates U, V

V ≡
√
r+/κ e

κv , U ≡ −
√
r+/κ e

−κu , (3.21)

in terms of which the solution takes the form

ds2 = −2dUdV − r2
+ [1− 2κUV/r+] dΩ2

(d−2) +O(UV )2 , (3.22a)

FUV = − Q
rd−2

+

+O(UV )2 . (3.22b)

– 12 –
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The Killing vector k = ∂t becomes, in these coordinates

k = κ (V ∂V − U∂U ) +O(UV )2 , k̂ ≡ kµdxµ = κ (V dU − UdV ) +O(UV )2 . (3.23)

In these coordinates, the hypersurface U = 0 is the past event horizon H−, generated

by k|H− = κV ∂V = ∂v. The hypersurface V = 0 is the future event horizon H+ generated

by k|H+ = −κU∂U = ∂u. They cross at the bifurcation sphere, which is defined by

U = V = 0 and can also be characterized as the spatial cross section of the horizon at

which k = 0.

On the other hand,

Pk µνdx
µ ∧ dxν = dk̂ = 2κdV ∧ dU +O(UV )2 = 2κgV U,µνdx

µ ∧ dxν +O(UV )2 ,

⇒ nµν = −2gUV, µν .
(3.24)

On the other hand,

ıkF = κ
Q
rd−2

+

(V dU + UdV ) +O(UV )2 ,

⇒ Pk = C + κ
Q
rd−2

+

UV +O(UV )2 .

(3.25)

The constant C clearly has to be identified with the electric potential over the horizon

Φ in eq. (3.16). As observed in ref. [21], if we use the simplest choice of electromagnetic

potential

A =
Q/(d− 3)

rd−3
dt , (3.26)

we obtain,

A =
Q

2(d− 3)κrd−3
+

[
1 + (d− 3)κUV/r+ +O(UV )2

](dV
V
− dU

U

)
, (3.27)

which is singular at the horizon.

4 Wald-Noether charge for the E-M theory

The general variation of the action of the Einstein-Maxwell theory eq. (3.6) is

δS =

∫
{Ea ∧ δea + E ∧ δA+ dΘ(e,A, δe, δA)} , (4.1)

where Ea and E are, respectively, the (d − 1)-form Einstein (3.8a) and Maxwell (3.4b)

equations multiplied by the volume form ddx and

Θ(e,A, δe, δA) ≡ − 1

16π

[
?(ea ∧ eb) ∧ δωab − ?F ∧ δA

]
, (4.2)

is the presymplectic (d − 1)-form defined in ref. [10] and ? stands for the Hodge dual.

For the transformations given by (minus) the covariant Lie derivatives in eqs. (2.8), (2.25)

and (2.27)

δξS =

∫ {
−Ea ∧ (Dξa + Pξ

a
be
b)−E ∧ (ıξF + dPξ) + dΘ(e,A, δξe, δξA)

}
, (4.3)
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with

Θ(e,A, δξe, δξA) =
1

16π

[
?(ea ∧ eb) ∧

(
ıξR

ab +DPξab
)
− ?F ∧ (ıξF + dPξ)

]
. (4.4)

Let us consider the first term. It is not difficult to see that Ea ∧ ebPξab = 0 because

the tensor contracted with the Lorentz momentum map give the Einstein equations, which

are symmetric in the indices a and b. The rest can be integrated by parts,

−Ea ∧ Dξa = −(−1)d−1d (Eaξ
a) + (−1)d−1ξaDEa . (4.5)

Using the Bianchi identity DRab = 0,

ξaDEa =
1

32π
ξaD (ıaF ∧ ?F − F ∧ ıa ? F )

=
1

32π
ξa [∇ıaF ∧ ?F − ıaF ∧∇ ? F −∇F ∧ ıa ? F − F ∧∇ıa ? F ] ,

(4.6)

where we have replaced D by ∇ is the exterior total covariant derivative operator which

satisfies the first Vielbein postulate. Then, using the property

∇ıaω = −ıadω +∇aω , (4.7)

and replacing ∇ by the exterior derivative when it acts on differential forms with no indices,

as well as using the Bianchi identity dF = 0, we get

ξaDEa =
1

32π
ξa [∇aF ∧ ?F − ıaF ∧ d ? F + F ∧ ıad ? F − F ∧∇a ? F ] . (4.8)

Since ∇a commutes with the Hodge dual and F ∧ ?G is symmetric in F and G for any

2-forms F,G, the two terms with ∇a cancel each other. Furthermore,

F ∧ ıad ? F = ıa(F ∧ d ? F )− ıaF ∧ d ? F , (4.9)

and

ξaıaω = ıξω , (4.10)

for any p-form, we arrive at

(−1)d−1ξaDEa = − 1

16π
d ? F ∧ ıξF . (4.11)

The second term in eq. (4.3) gives

−E ∧ (ıξF + dPξ) =
1

16π
d ? F ∧ ıξF − (−1)d−1d (EPξ) , (4.12)

and, collecting the partial results, we get

δSξ =

∫
dΘ′(e,A, δξe, δξA) , (4.13)

– 14 –



J
H
E
P
0
9
(
2
0
2
0
)
0
2
6

where

Θ′(e,A, δξe, δξA) ≡ Θ(e,A, δξe, δξA) + (−1)d (Eaξ
a + EPξ)

=
1

16π

[
? (ea ∧ eb) ∧ (ıξRab +DPξ ab)− ?F ∧ (ıξF + dPξ)

+ (−1)dıξ ? (ea ∧ eb) ∧Rab +
(−1)d

2
(ıξF ∧ ?F − F ∧ ıξ ? F )

+(−1)d−1d ? FPξ

]
= −ıξL +

(−1)d−1

16π
d
[
?FPξ − ?(ea ∧ eb)Pξ ab

]
.

(4.14)

The action of the Einstein-Maxwell theory eq. (3.6) is exactly invariant under local

Lorentz and electromagnetic gauge transformations and it is invariant up to a total deriva-

tive under diffeomorphisms. Therefore, under the combined transformations δξ ≡ −Lξ
with the covariant Lie derivatives defined in eqs. (2.8), (2.25) and (2.27),

δξS = −
∫
dıξL . (4.15)

Taking into account the result in eq. (4.13), the arbitrariness of the domain of integration,

of the parameter ξ, and the fact that we have not used the equations of motion, we conclude

that, if we define the (d− 1)-form

J ≡ Θ′(e,A, δξe, δξA) + ıξL , (4.16)

it satisfies

dJ = 0 , (4.17)

identically, off-shell. This, in its turn, implies the existence of a (d − 2)-form Q[ξ] (the

Wald-Noether charge) such that

J = dQ[ξ] . (4.18)

The last line of eq. (4.14) gives the following expression for the Wald-Noether charge:

Q[ξ] =
(−1)d−1

16π

[
?FPξ − ?(ea ∧ eb)Pξ ab

]
. (4.19)

5 The first law of black hole mechanics in the E-M theory

Following ref. [10] we define the pre-symplectic (d− 1)-form

ω(φ, δ1φ, δ2φ) ≡ δ1Θ(φ, δ2φ)− δ2Θ(φ, δ1φ) , (5.1)

where φ stands for the Vielbein and Maxwell fields, and the symplectic form relative to

the Cauchy surface Σ

Ω(φ, δ1φ, δ2φ) ≡
∫

Σ
ω(φ, δ1φ, δ2φ) . (5.2)
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Following now ref. [12], when φ solves the equations of motion Eφ = 0, for any variation

of the fields δ1φ = δφ and the variations under diffeomorphisms δ2φ = δξφ

ω(φ, δφ, δξφ) = δJ + dıξΘ
′ = δdQ[ξ] + dıξΘ

′ , (5.3)

where, in our case, J is given by eq. (4.18), Θ′ is given in eq. (4.14) and we observe that,

on-shell, Θ = Θ′. Then, if δφ satisfies the linearized equations of motion, δdQ = dδQ.

Furthermore, if the parameter ξ = k generates a transformation that leaves invariant all

the fields of the theory, δkφ = 0, ω(φ, δφ, δkφ) = 0, and we arrive at

d
(
δQ[k] + ıkΘ

′) = 0 , (5.4)

which, when integrated over a hypersurface Σ with boundary δΣ, gives∫
δΣ

(
δQ[k] + ıkΘ

′) = 0 . (5.5)

In our case, we are dealing with asymptotically flat, static black holes. k is the timelike

Killing vector whose Killing horizon coincides with the event horizon and the hypersurface

Σ is the space between infinity and the bifurcation sphere (BH) on which k = 0. Infinity

and the bifurcate horizon are the two disconnected components of δΣ and taking into

account that k = 0 on the bifurcation sphere, we obtain

δ

∫
BH

Q[k] =

∫
∞

(
δQ[k] + ıkΘ

′) . (5.6)

As explained in ref. [12], the right-hand side can be identified with δM , where M is

the total mass of the black-hole spacetime. Using eq. (4.19), we find

δ

∫
BH

Q[k] =
(−1)d−1

16π
δ

∫
BH

?FPk +
(−1)d

16π
δ

∫
BH

?(ea ∧ eb)Pk ab . (5.7)

According to the discussion at the end of section 2.1, Pk can be identified with the electric

potential Φ and it is constant over the horizon. The electric charge contained inside the

horizon is given by

Q ≡ (−1)d−1

16π

∫
BH

?F , (5.8)

and the first term just gives +ΦδQ, which implies that we get a first-law-like relation if

the second term gives TδS. Let us study that term. Using eq. (2.31) we get

(−1)d

16π
δ

∫
BH

?(ea ∧ eb)Pk ab =
(−1)dκ

16π
δ

∫
BH

?(ea ∧ eb)nab

= − κ

16π
δ

∫
BH

dd−2S nabn
ab

= TδA/4 ,

(5.9)

where we have used the normalization of the binormal nabn
ab = −2, A is the area of the

horizon and T = κ/2π is the Hawking temperature.

Thus, we recover the first law of black hole mechanics if we identify the black hole

entropy with one quarter of the area of the horizon.
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6 Discussion

In this paper we have shown how to define gauge-covariant Lie derivatives with the mo-

mentum map and how to use these derivatives in the proof of the first law of black-hole

mechanics in the simple case of the Einstein-Maxwell theory with the Vielbein as the grav-

itational field. We have also shown that the momentum maps we have introduced in this

case satisfy (well known) zeroth laws.

While the formulation of the first law of black-hole mechanics in the Einstein-Maxwell

theory is certainly not new, our proposal for dealing with fields with gauge freedoms is

a first step towards a generalization of the first law to more complex cases involving p-

form fields with Chern-Simons terms such as those occurring in the Heterotic Superstring

effective action. Work in this direction is in progress [34].
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