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Abstract 23 
The aim of this study is to examine the diet, using bone stable isotope analysis (δ13C and 24 

δ15N), of a Late Roman population (4th–7th centuries CE) from the Roman villa of 25 

Mondragones (Granada, Spain). This archaeological site presents an exceptionally high 26 

number (n = 121) of well-preserved skeletal remains (adults and non-adults), giving the 27 

opportunity to study for the first time the nutritional and health conditions of a Late Roman 28 

population by the analysis of stable isotopes and pathologies in the context of the south-29 

eastern Iberian Peninsula. Stable isotopes ratios of carbon (δ13C) and nitrogen (δ15N) 30 

were analysed in 46 individuals (21 adults and 25 non-adults) as well as in 7 faunal 31 

samples (2 cows/ox, 2 goats/sheep, and 3 large mammals). Frequencies of cariogenic 32 

lesions, dental calculus, dental enamel hypoplasia, porotic hyperostosis, and cribra 33 

orbitalia were also explored. The anthropological study revealed a high presence of 34 

dental caries and calculus in adults, which are related to a diet rich in starch and 35 

carbohydrates, and non-specific stress markers in non-adults, probably pointing to the 36 

weaning process or childhood diseases. Collagen isotope ratios suggested that the 37 

population of Mondragones had a diet rich in C3 plants, with some meat intake from 38 

terrestrial herbivores. There were significant differences between non-adults and adults, 39 

but no differences were detected by sex. The youngest non-adults (aged 1 year ± 4 40 

months) showed the δ15N mean value almost 4‰ above the adult female one, which 41 

could reflect the breastfeeding period.  42 
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1. Introduction 44 

The study of stable isotopes in skeletal remains has gained importance in recent years 45 

in the context of the Iberian Peninsula. While there are a lot of paleodietary data in Spain 46 

from prehistoric (Salazar García, 2011; Fontanals-Coll et al., 2016; Villalba-Mouco et al., 47 

2018) and medieval sites (Inskip et al., 2019; Guede et al., 2017; Jiménez-Bobreil et al., 48 

2020), there is a deep gap for the Roman and Late Roman period, except for some works 49 

such as López-Costas (2012). There is a lack of studies in Spain for this specific period 50 

in comparison with near geographical areas as Italy (Rutgers et al., 2009; Tafuri et al., 51 

2018; Milella et al., 2019), maybe because it is usually very difficult to find many skeletal 52 

remains from the Late Roman period with good conservation conditions in the Iberian 53 

Peninsula as a result of cremation practices and taphonomic processes (Polo Cerdá and 54 

Garcia-Prosper, 2005; Heras Martínez et al., 2011; López-Costas, 2012; Diéguez 55 

Ramírez, 2015). This paleodiet study is focused on a sample of the Late Roman and 56 

Late Antiquity population (5th to 7th century CE [Common Era]) buried at the Roman villa 57 

of Mondragones, located in south-eastern Spain. Therefore, it represents a great 58 

opportunity to know more about the nutritional conditions of this period on the Iberian 59 

Peninsula. 60 

The study of stable isotopes in humans provides good quality data for the reconstruction 61 

of ancient populations’ diets (Reitsema, 2013; Ma et al., 2016). Specifically, with this 62 

analytical technique it is possible to assess the type of vegetables that were consumed, 63 

as well as the sources of the dietary proteins (animal or vegetal). This knowledge 64 

provides direct information on aspects that otherwise could only be inferred by indirect 65 

evidence, such as food preparation utensils, storage vessels, or wall and vase paintings 66 

(Keenleyside et al., 2009). The stable isotope technique is based on the principle that 67 

the isotopic composition of tissues in both humans and animals is determined by the diet. 68 

Therefore, analysis of δ13C and δ15N can provide information about the diet of past 69 

populations (Budd et al., 2013; Müldner and Richards, 2007).  70 

In C3 plants, the δ13C value ranges between -20‰ and -35‰, while in C4 plants the 71 

values vary between -7‰ and -17‰ (Pate, 2001). Consequently, carbon isotope values 72 

can be used to distinguish between C3 and C4 plants. These differences in carbon isotope 73 

values are transferred along the food chain to animals and humans, making it possible 74 

to determine the kind of plant ingested (Van der Merve and Vogel, 1978). Furthermore, 75 

carbon isotope composition in the atmosphere reaches an average δ13C value of -7‰, 76 

while in the sea, dissolved carbonates display a value of 0‰ (Rullkötter, 2006). 77 
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Therefore, carbon isotope values can differentiate the consumption of marine and 78 

terrestrial food sources (Craig et al., 2009; Reitsema et al., 2010).  79 

Nitrogen isotope in bone collagen provides information about trophic level (increase by 80 

3–5‰ with increasing trophic level), distinguishing among herbivores, omnivores, and 81 

carnivores (Hedges and Reynard, 2007; Keenleyside et al., 2009). Moreover, an 82 

increase in δ15N bone collagen values is observed for individuals with significant 83 

ingestion of marine products, either direct or indirect (i.e., sea spray) (Schoeninger and 84 

DeNiro, 1984; Schoeninger, 1995). Indeed, atmospheric N2 dissolved in water is 85 

converted into 15N-enriched nitrates and ammonia, leading to generally more positive 86 

δ15N values in the marine food web compared to terrestrial vertebrates (Pate, 1994). The 87 

nitrogen isotope ratios can also be used to estimate the duration of breastfeeding and 88 

the timing of the weaning process (Fuller et al., 2006), which are very important because 89 

these processes have an impact on the health condition of a population and on its 90 

demography. The relation between nitrogen isotope ratios and the 91 

breastfeeding/weaning period has been analysed in many studies (Dupras et al., 2001; 92 

Turner et al., 2007; Prowse et al., 2008; Keenleyside et al., 2009; Bourbou et al., 2013), 93 

but it has limitations associated with the cross-sectional method applied. These studies 94 

are based on sampling non-survivors, which may not be representative for inferring 95 

population norms, and they do not consider the population and individual variation 96 

(Kendall, 2016), so such studies require caution. 97 

In addition, combining the stable isotope ratios with an osteological analysis of skeletal 98 

remains can provide information on health conditions and complement the dietary 99 

patterns (Toso et al., 2019). Pathological conditions caused by interruptions in growth 100 

are especially interesting in the paleodiet context, because they could suggest periods 101 

of malnutrition or lack of specific essential nutrients (Katzenberg, 2012). Caries, dental 102 

calculus, and non-specific stress markers (such as cribra orbitalia, porotic hyperostosis, 103 

and dental enamel hypoplasia) are frequently considered in paleodiet studies (Buzon et 104 

al., 2012; Laffranchi et al., 2019), as well as in this research.  105 

Dental caries is considered one of the most important tools to reconstruct the diet of past 106 

populations, because its aetiology is related to fermentable carbohydrates from the diet 107 

(Hillson, 2001; Svyatko, 2014). It is an oral pathology characterized by demineralization 108 

and progressive destruction of calcified dental tissues by bacterial fermentation of 109 

carbohydrates (Hillson, 2019), although it is also affected by other factors such as 110 

salivary glycoproteins, dental plaque, or deficient oral hygiene (Lopez et al., 2012). 111 

Dental calculus is produced from the accumulation of plaque that, if not removed, 112 

becomes mineralized (Scott and Poulson, 2012). Plaque accumulates faster in an 113 

alkaline oral environment, which occurs when the diet is rich in proteins and/or 114 
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carbohydrates (Roberts and Manchester, 2010). Calculus is also influenced by salivary 115 

flow, genetic factors, and dental care (Hardy et al., 2009). 116 

Cribra orbitalia and porotic hyperostosis are non-specific stress markers identified 117 

macroscopically as porous lesions of the orbital roof and cranial vault, respectively 118 

(Suby, 2014). While iron-deficiency anaemia is the most accepted aetiological factor for 119 

these pathologies (Oxenham and Cavill, 2010; Rivera and Mirazón, 2017), other studies 120 

suggest that cribra orbitalia and porotic hyperostosis could be linked to megaloblastic 121 

anaemias, which are associated with deficiencies of vitamin B12 and vitamin B9 (Walker 122 

et al., 2009). However, they are also related to multiple aetiologies like inflammatory, 123 

haemorrhagic, or tumoral processes (Ortner, 2003). Finally, dental enamel hypoplasia is 124 

another non-specific stress marker characterized by the formation of lines, pits, or 125 

grooves on the enamel surface (Roberts and Manchester, 2010). It can be related to 126 

dietary deficiencies, childhood fevers, and infectious diseases (Hillson, 2019), and it can 127 

provide information about lifestyle and living conditions (Goodman and Rose, 1991; 128 

Laffranchi et al., 2019). These defects are formed only during enamel development, so 129 

they can record the stress periods of childhood (Mays, 1998). 130 

The analysis of stable isotopes and the paleopathological variables from this particularly 131 

well-preserved Late Roman population from southern Spain provides the opportunity to 132 

assess the nutritional conditions of this little-known period and to compare it with 133 

chronologically contemporary populations. 134 

2. Material and methods 135 

2.1 Archaeological site 136 

The Roman villa of Mondragones is located in the city of Granada (Fig. 1), Andalusian 137 

region, Spain (37°11'26.46"N; 3°36'41.16"W), and it was first discovered and 138 

investigated in 2013 by Rodríguez Aguilera et al. (2014). This villa was built in the middle 139 

of the 1st century CE, and the period of occupation was documented until the 7th century 140 

CE. It was a periurban villa, located 1.7 km from the urban nucleus of the Municipium 141 

Florentinum Iliberritanum, which is the Roman name of Granada. It showed the typical 142 

roman structures of agrarian villas, which have a productive function: the pars rustica, 143 

the pars frumentaria, and the pars urbana (Fornell-Muñoz, 1999). These villas were 144 

owned by the dominus, who lived in the pars urbana with his family and the service, while 145 

the labour force lived in the pars rustica, where the stables were also located (Joly, 2003). 146 

The pars frumentaria was the centre of the agricultural production, and in Mondragones 147 

it was formed by an oil mill. It seems that Mondragones belonged to a group of villas 148 

dedicated to the agricultural exploitation of the fertile plain of Granada, mainly centred 149 

on agriculture, whose objective was to supply the area and probably export the excess 150 

production (Sánchez López, 2013). From the 5th century CE, the villa was restructured 151 
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with successive modifications, such as the reduction of space for oil production. In the 152 

second half of the 6th century CE, a religious building and a cemetery were built. A total 153 

of 85 graves have been uncovered: 23 belong to the Imperial Roman time (1st century 154 

CE) and 62 belong to the Late Roman and Late Antiquity time. These 62 graves are 155 

divided into 2 phases: [1] 23 graves dated from the 4th to 5th century CE, and [2] 39 156 

graves dated from the 5th to 7th century CE (Fig. 2). Most individuals were inhumed in a 157 

decubitus supinus position with an East–West orientation (Rodríguez Aguilera et al., 158 

2014). 159 

 160 

Fig. 1. Map showing the location of Mondragones (Google Earth V 7.3.2.5776 (64-bit) (May 17, 161 

2018). Andalusian region, Granada, Spain. 37°11'26.46"N; 3°36'41.16"W, eye alt 247.03 km. 162 

Google 2018). 163 
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 164 

Fig. 2. Plan of the Late Roman cemetery of Mondragones (adapted from Rodríguez Aguilera et 165 

al., 2014). 166 

2.2 Archaeological samples 167 

Although the site was used from the 1st to the 7th century CE, only Late Roman and Late 168 

Antiquity (4th to 7th century CE) individuals were selected to reduce cultural variability. 169 

The collagen turnover rate of sampled bones is an important key in the interpretation of 170 

paleodiet (Hedges et al., 2007). Ribs and femurs are usually chosen for this kind of study 171 

owing to their faster turnover rates, which reflects diet from a recent period prior to death 172 

(Fahy et al., 2017). As many samples as possible were selected to make a representative 173 

analysis. Ribs from 46 individuals buried in Mondragones were sampled, including 21 174 

adults (9 females, 3 males, 9 undetermined) and 25 non-adults (7 from 1 to 3 years old, 175 

11 from 4 to 8 years old, and 6 from 10 to 18 years old). None of the selected ribs showed 176 

any signs of pathology or fractures. Of these 46 samples, 20 belong to phase 1 and 26 177 

to phase 2. 178 

Seven samples of faunal remains recovered from the site were analysed for the baseline. 179 

Zooarchaeological characterization identified 2 different species: 2 samples of cow/ox 180 

(Bos taurus) and 2 samples of goat/sheep (Capra hircus/Ovis aries). The other remains 181 

(all ribs) were classified as large mammals (perhaps cattle).  182 

2.3 Anthropological and paleopathological methods 183 
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Human sex and age estimations were carried out using various standard methods based 184 

on cranium, mandible, and hip bones to increase the determination accuracy. Age 185 

estimation methods in adults included the morphology of the pubic symphysis (Todd, 186 

1920, in White et al., 2012) and the alterations of the auricular surface of the ilium 187 

(Schwartz, 1995). In non-adults, age estimation methods included dental development 188 

(Ubelaker, 1978, in Scheuer and Black, 2000) and long bone length (Maresh, 1970, in 189 

Scheuer and Black, 2000). Biological sex was determined only in adults using the 190 

morphology of the pelvis and different cranial and mandible features, including the nuchal 191 

crest, mastoid process, supraorbital margin, prominence of the glabella, and mental 192 

eminence (Buikstra and Ubelaker, 1994). Stature was estimated using the formulae 193 

developed by De Mendonça (2000) in a Portuguese adult population. This method 194 

measures the maximum and physiological length of the humeri and femora to determine 195 

stature in centimetres (cm). 196 

To consider all variables that could affect the dietary interpretation, a paleopathological 197 

study of the individuals was carried out. Pathological conditions were analysed 198 

macroscopically using multiple descriptions. For this study, mainly pathologies related to 199 

diet were considered, such as dental (cariogenic lesions and dental calculus) and non-200 

specific stress markers (cribra orbitalia, porotic hyperostosis, and dental enamel 201 

hypoplasia). Dental caries was analysed using the system of Moore and Corbett (1971), 202 

modified by Buikstra and Ubelaker (1994). Dental calculus was measured according to 203 

Brothwell’s (1981) description. As for cribra orbitalia, porotic hyperostosis, and dental 204 

enamel hypoplasia, only the presence or absence of pathology was measured, with the 205 

limitation of not having radiographic data. Aufderheide and Rodríguez-Martín (1998), 206 

Baxarias and Herrerin (2008), and Roberts and Manchester (2010) were followed in the 207 

description of these non-specific stress markers. 208 

2.4 Bone collagen extraction 209 

Collagen was extracted using a modification of the method originally developed by 210 

Longin (1971) (Britton et al., 2008; Knipper et al., 2013; Salesse et al., 2014; Saragoça 211 

et al., 2016). In brief, around 0.5 g of human and faunal bone samples were collected 212 

and cleaned with a Dremel Rotary Tool. Bone samples were demineralized in 10 mL 0.5 213 

M HCl at 4 °C for 14 days, with regular vortex and changing the acid after 1 week. To 214 

oxidize fulvic and humic acids, samples were rinsed to neutrality with Milli-Q water and 215 

soaked in 0.125 M NaOH for 20 h at room temperature. Samples were rinsed again to 216 

neutrality with Milli-Q water and gelatinized in 0.01 M HCl at 70 °C for 48 h, with regular 217 

vortex. The liquid fraction containing solubilized collagen was filtered using Ezee-Filter 218 

separators (Elkay Laboratory Products), frozen with liquid nitrogen, lyophilized for 48 h, 219 
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and analysed. Collagen extraction was performed in the HERCULES Laboratory (Évora, 220 

Portugal). 221 

2.5 Stable isotope analysis 222 

The carbon and nitrogen isotope composition (13C/12C and 15N/14N, respectively) of the 223 

collagen samples were determined by elemental analysis/isotope ratio mass 224 

spectrometry (EA/IRMS). The EA/IRMS system consisted of a Flash 2000 HT elemental 225 

analyser (Thermo Scientific, Bremen, Germany) with 2 reactors: i) combustion (C, N, and 226 

S) and ii) pyrolysis (H and O). The elemental analyser was coupled with a ConFlo IV 227 

(Thermo Scientific) continuous flow open split interface to a Delta V Advantage isotope 228 

ratio mass spectrometer (Thermo Scientific).  229 

Carbon and nitrogen isotope analysis used a helium carrier gas at a flow rate of 95 230 

mL/min. Aliquots of collagen samples (between 0.5 and 0.6 mg) together with the 231 

calibration standards (approx. 0.6 mg) were weighed in tin cups (IVA Analysentechnik 232 

GmbH & Co. KG, Meerbusch, Germany). The cups were closed, folded, pressed to a 233 

small size, and loaded in a MAS 200R (Thermo Scientific).  234 

The stable isotope standard for carbon is Vienna Pee Dee Belemnite limestone (VPDB), 235 

and it is Vienna air (V-Air) for nitrogen. The standards used (IAEA 600, IAEA CH6, and 236 

IAEA N2) are recognized by the International Atomic Energy Agency (IAEA) (Valkiers et 237 

al., 2007). The standard deviations of bulk δ13C and δ15N were ± 0.1‰ and 0.2‰, 238 

respectively. Carbon and nitrogen isotope composition was measured in duplicate for 239 

each sample.  240 

2.6 Statistical analysis 241 

Statistical analysis was performed using SPSS v.24.0 for Windows and Microsoft Excel 242 

for Windows. Stable isotope results were compared by age, sex, phase, population, and 243 

pathological condition using a non-parametric Mann–Whitney U test because the data 244 

do not follow a normal distribution. 245 

3. Results and discussion 246 

3.1 Anthropological and paleopathological results 247 

A total of 21 adults (9 females, 3 males, and 9 undetermined) aged between 18.5 years 248 

and 41.5 years were analysed (Table 1). Stature was estimated for 8 individuals whose 249 

sex determination was possible, using the physiological length of the femur. The male 250 

average was 164.44 ± 6.90 cm (n = 3), while the female average was 154.16 ± 5.92 cm 251 

(n = 5). Furthermore, stature was also estimated in females using the maximum length 252 

of the humerus, because this measure could be taken in more individuals of this sex (n 253 

= 7), obtaining an average of 154.96 ± 7.70 cm. These values are consistent with the 254 
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results of other populations of the same timeline that used the De Mendonça (2000) 255 

method (López-Costas, 2012; Saragoça et al., 2016).  256 

Nine adults (out of 21) showed cariogenic lesions, and 12 displayed dental calculus 257 

(Table 1). Four individuals presented non-specific stress markers. Specifically, one 258 

(MON-045A) shows cribra orbitalia, two (MON-059A and MON-059B) present dental 259 

enamel hypoplasia, and one (MON-051A) shows both enamel hypoplasia and porotic 260 

hyperostosis. 261 

Among the 25 non-adults analysed, 5 presented cariogenic lesions and 3 showed dental 262 

calculus. Seven non-adults displayed cribra orbitalia, and one non-adult showed porotic 263 

hyperostosis. Furthermore, 2 cases of dental enamel hypoplasia were detected.  264 

All these pathologies have been observed in similar contemporary populations from 265 

Iberian and Italian Peninsulas (i.e., Ortega Pérez and De Miguel Ibáñez, 1997; Facchini 266 

et al., 2004; Belcastro et al., 2007; Cardona López, 2009). 267 

Table 1. Anthropological (age-at-death, sex, and stature) and paleopathological data of the 268 

individuals from Mondragones. n.d.: not determined; n.a.: not assessable; -: feature absent; LR: 269 

Late Roman; LA: Late Antiquity. 270 

Sample Age Sex 
Stature 
(cm) 

Period 
Pathologies 

MO-041A 1 year ± 4 months n.d. n.a. LA n.a. 
MO-043B 1 year ± 4 months n.d. n.a. LA n.a. 
MO-056B 1 year ± 4 months n.d. n.a. LR Cribra orbitalia 
MO-086B 1 year ± 4 months n.d. n.a. LR Cribra orbitalia 
MO-093A 1 year ± 4 months n.d. n.a. LA Cribra orbitalia 
MO-081A 2 years ± 8 months n.d. n.a. LA - 
MO-095A 2 years ± 8 months n.d. n.a. LA Cribra orbitalia 
MO-047A 4 years ± 12 months n.d. n.a. LA - 
MO-050A 4 years ± 12 months n.d. n.a. LA Dental calculus 
MO-062A 4 years ± 12 months n.d. n.a. LR Cribra orbitalia 
MO-072A 4 years ± 12 months n.d. n.a. LR Cariogenic lesions 
MO-088A 4 years ± 12 months n.d. n.a. LA - 
MO-033B 6 years ± 24 months n.d. n.a. LA Dental enamel hypoplasia, cariogenic lesions 
MO-056A 6 years ± 24 months n.d. n.a. LR Cribra orbitalia, cariogenic lesions, porotic hyperostosis 
MO-057A 6 years ± 24 months n.d. n.a. LR Cariogenic lesions 
MO-060A 6 years ± 24 months n.d. n.a. LR - 
MO-086A 6 years ± 24 months n.d. n.a. LR - 
MO-091A 8 years ± 24 months n.d. n.a. LA Cribra orbitalia 
MO-039A 10 years ± 30 months n.d. n.a. LA Dental enamel hypoplasia, cariogenic lesions 
MO-054A <12 years n.d. n.a. LR n.a. 
MO-042A 12 years ± 30 months n.d. n.a. LA Dental calculus 
MO-037A 15 years ± 30 months n.d. n.a. LA n.a. 
MO-053A 15 years ± 30 months n.d. n.a. LR Dental calculus 
MO-074A 15 years ± 30 months n.d. n.a. LR - 
MO-047B <18 n.d. n.a. LA n.a. 
MO-044A 17–20 years n.d. n.a. LA Dental calculus 

MO-045A 17–25 years n.d. n.a. 
LA 

Cariogenic lesions, dental calculus,  
cribra orbitalia 

MO-059B 20–21 years Female 168.6 LR Dental calculus, dental enamel hypoplasia 
MO-084B 20–21 years Female 150.9 LA Cariogenic lesions, dental calculus 
MO-063A 25–29 years Female 150.6 LR Cariogenic lesions, dental calculus 
MO-064A 30–34 years Female 147.7 LR n.a. 
MO-071A 30–34 years Female n.a. LR Cariogenic lesions, dental calculus 

MO-051A 35–39 years Male 154.9 
LA 

Cariogenic lesions, dental calculus,  
dental enamel hypoplasia, porotic hyperostosis 

MO-078A 35–39 years Female 162.2 LA Cariogenic lesions, dental calculus 

MO-059A 39–44 years Female 155.7 
LR 

Dental enamel hypoplasia, cariogenic lesions,  
dental calculus, periodontal disease 

MO-029A 40–44 years Male 169.4 LA Cariogenic lesions, dental calculus 
MO-069A 40–44 years Female n.a. LR n.a. 
MO-031A >18 Male 166.2 LA Cariogenic lesions, dental calculus 
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MO-032 >18 n.d. n.a. LA n.a. 
MO-035 >18 n.d. n.a. LA n.a. 
MO-040A >18 n.d. n.a. LA n.a. 
MO-046 >18 n.d. n.a. LR n.a. 
MO-048 >18 n.d. n.a. LA n.a. 
MO-058A >18 Female 154.5 LR Dental calculus 
MO-068A >18 n.d. n.a. LR n.a. 
MO-083 >18 n.d. n.a. LA n.a. 

3.2 Collagen quality 271 

According to well established criteria, collagen extraction was successful for human and 272 

faunal bone samples: collagen yields >1%, (van Klinken, 1999); carbon content between 273 

15.3% and 47.0% (Ambrose, 1990); nitrogen content between 5.5% and 17.3% 274 

(Ambrose, 1990); and C/N ratios between 2.9 and 3.6 (DeNiro, 1985). All samples 275 

displayed collagen content ranging from 5% to 15%. The carbon and nitrogen content in 276 

the bone collagen showed ranges between 37.1% and 43.8%, and between 13.6% and 277 

16.1%, respectively. The atomic C/N ratios of bone collagen ranged between 3.0 and 278 

3.3. Consequently, all the samples analysed in this study were considered well preserved 279 

(Table 2).  280 

Table 2. Carbon and nitrogen stable isotope results and collagen quality indicators for human 281 

and faunal samples. 282 

Individual category Sample δ15N  
(‰, V-Air) 

δ13C  
(‰, VPDB) 

N (%) C (%) C/N Collagen yield (%) 

Non-adults MO-033B 9.6 -18.9 15.6 43.1 3.2 11.2 

MO-037A 8.8 -19.0 15.6 42.9 3.2 11.3 

MO-039A 9.4 -19.1 15.7 43.0 3.2 13.3 

MO-041A 12.8 -17.4 15.2 41.5 3.2 9.1 

MO-042A 8.9 -19.2 15.5 42.3 3.2 8.5 

MO-043B 13.5 -17.4 15.4 42.2 3.2 8.8 

MO-047A 10.8 -18.4 14.1 37.1 3.1 3.8 

MO-047B 9.7 -19.3 15.4 42.7 3.2 9.4 

MO-050A 10.4 -17.6 14.5 39.7 3.2 3.3 

MO-053A 10.0 -18.5 15.8 41.1 3.0 11.9 

MO-054A 10.0 -18.6 15.3 42.1 3.2 9.1 

MO-056A 10.7 -18.8 15.3 41.6 3.2 10.3 

MO-056B 14.6 -18.4 15.8 43.2 3.2 11.4 

MO-057A 9.9 -18.9 14.9 41.3 3.2 6.1 

MO-060A 9.4 -18.9 15.1 40.9 3.1 5.9 

MO-062A 10.5 -18.1 16.0 43.4 3.2 10.8 

MO-072A 9.7 -18.6 16.1 42.0 3.1 9.2 

MO-074A 9.5 -18.7 15.9 42.3 3.1 8.1 

MO-081A 10.0 -18.5 14.8 40.6 3.2 8.8 

MO-086A 10.0 -19.0 15.5 42.3 3.2 11.4 

MO-086B 13.2 -17.5 16.0 43.3 3.2 13.6 

MO-088A 10.6 -18.5 16.0 42.0 3.1 5.9 

MO-091A 9.8 -18.5 14.6 39.7 3.2 5.1 

MO-093A 14.6 -17.6 15.7 43.0 3.2 9.7 

MO-095A 10.8 -18.5 16.0 43.2 3.1 10.0 

Male Adults MO-029A 10.2 -18.6 15.4 41.8 3.2 4.5 
 MO-031A 9.9 -19.1 14.2 39.6 3.2 7.0 
 MO-051A 9.7 -18.6 14.2 39.0 3.2 3.7 

Female Adults MO-058A 9.5 -18.7 15.0 40.8 3.2 8.1  
MO-059A 10.2 -18.7 15.3 41.8 3.2 10.4  
MO-059B 10.4 -18.6 15.7 41.5 3.1 3.1  
MO-063A 9.4 -19.2 16.1 43.8 3.2 7.5  
MO-064A 9.8 -18.8 16.0 41.9 3.1 6.4  
MO-069A 9.3 -19.2 13.9 38.2 3.2 5.5  
MO-071A 10.6 -18.7 15.3 41.2 3.1 12.6 
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MO-078A 9.2 -19.4 13.5 37.4 3.2 3.9  
MO-084B 10.8 -18.5 16.0 43.6 3.2 17.7 

Adults (n.d.) MO-032 10.2 -18.7 15.0 40.8 3.2 5.5  
MO-035 9.5 -18.4 16.0 41.9 3.0 11.3  
MO-040A 8.6 -18.7 14.5 37.3 3.0 5.0  
MO-044A 9.6 -18.9 15.1 39.8 3.1 4.9  
MO-045A 9.7 -18.4 14.9 38.6 3.0 7.7  
MO-046 10.4 -19.0 14.5 39.9 3.2 8.2  
MO-048 10.3 -18.7 15.4 42.1 3.2 5.9  
MO-068A 9.1 -18.4 14.4 40.0 3.3 5.8  
MO-083 11.2 -18.0 14.5 39.3 3.2 5.7 

Bos taurus MO-UE1194A 7.5 -20.4 15.6 42.5 3.2 8.2  
MO-UE1194B 7.1 -20.4 15.7 42.1 3.1 7.4 

Capra hircus/ 
Ovis aries 

MO-UE651 6.4 -19.7 15.5 42.9 3.2 10.5 

 
MO-UE1272 6.4 -21.0 15.0 40.8 3.2 6.8 

Large mammal MO-UE6093 7.8 -19.7 15.8 42.8 3.2 9.4 
 MO-UE6098 8.1 -20.7 15.9 42.8 3.1 14.7 
 MO-UE750 8.6 -19.0 15.5 41.5 3.1 7.9 

3.3 Dietary patterns 283 

The isotopic composition (δ13C and δ15N) of human and faunal samples are listed in 284 

Table 2 and represented in Fig. 3. 285 

δ13C data from animal samples ranged from -21.0‰ to -19.1‰ and thus related to a diet 286 

based predominantly on C3 plants. Most of the faunal samples displayed more depleted 287 

δ13C values (δ13Caverage = -20.1 ± 0.7‰) than the human ones (δ13Caverage = -18.6 ± 0.5‰), 288 

reflecting a δ13C increase for one trophic level. However, there was one outlier (UE-750, 289 

a large mammal) with a δ13C value of -19.0‰ (Fig. 3). The δ13C value of this sample may 290 

be due either to the consumption of C4 plants, such as millet, or to the type of plant tissue 291 

consumed, because there are organs more enriched with δ13C than others (Dungait et 292 

al., 2011). Another possibility may be that this sample was incorrectly classified as a 293 

large mammal when it could belong to a species like domestic pig, which is normally 294 

clustered with human data (Ren et al., 2017). According to evidence from the literature, 295 

these animals had a conspicuous importance in the Roman economy and diet (Prowse 296 

et al., 2004). Although the identification of this rib was not possible, the presence of pigs 297 

in the Iberian Peninsula has been recorded for the Roman period (Grau-Sologestoa, 298 

2015), so this may support the idea that in Mondragones there were domesticated pigs. 299 

Concerning the 15N composition, the values recorded in the collagen of the faunal 300 

samples ranged from 6.4‰ to 8.6‰ (δ15Naverage = 7.4 ± 0.8‰), where the highest δ15N 301 

values belonged to large mammals (7.8–8.6‰). If it is assumed that these faunae were 302 

cattle, these results may be linked to the manuring practices. The application of animal 303 

dung to fields where domesticated animals were kept would generate a δ15N enrichment 304 

in the soil and plants (Bogaard et al., 2007) as well as in the bone of animals and human 305 

consumers (van Klinken et al., 2002; Bogaard et al., 2007). However, the highest 306 

nitrogen value of these large mammals belonged to the outlier UE-750 (8.6‰), so these 307 
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results must be interpreted cautiously, as species determination for these samples was 308 

not possible.  309 

A diachronically isotopic study was realized to establish whether there were differences 310 

among individuals from the 2 chronological phases. The U test showed that there were 311 

no significant differences between Late Roman and Late Antiquity individuals (Pcarbon = 312 

0.367, Pnitrogen = 0.929), so both phases were analysed together. The lack of significant 313 

differences between phases could be related to continuities of dietary and/or farming 314 

practices since the population of Mondragones lived mainly from their agriculture 315 

production. 316 

The δ13C values of non-adults ranged from -19.3‰ to -17.4‰ (δ13Caverage = -18.5 ± 0.6‰), 317 

while their δ15N values ranged from 8.8‰ to 14.6‰ (δ15Naverage = 10.7 ± 1.7‰). The 318 

averages of carbon and nitrogen isotope composition, respectively, in non-adults by age 319 

groups were: [1] -17.9 ± 0.5‰ and 12.8 ± 1.8‰ for non-adults from 0 to 3 years (n = 7), 320 

[2] -18.6 ± 0.4‰ and 10.1 ± 0.5‰ for non-adults from 4 to 8 years (n = 11), and [3] -18.9 321 

± 0.3‰ and 9.4 ± 0.5‰ for non-adults from 9 to 18 years (n = 6). The δ13C values for 322 

adults (males and females) ranged from -19.4‰ to -18.0‰ (δ13Caverage = -18.7 ± 0.3‰), 323 

and their δ15N values ranged from 8.6‰ to 11.2‰ (δ15Naverage = 9.9 ± 0.6‰) (Table 3).  324 

The δ13C and δ15N values were significantly different between adults and non-adults 325 

between 0 and 3 years (Pcarbon = 0.000; Pnitrogen = 0.000), but there were no differences 326 

between adults and the other groups of non-adults (P > 0.05). These results show that 327 

as the age of the non-adults increases, the results become more similar to those 328 

obtained in adults. Furthermore, the δ13C and δ15N values of human samples showed no 329 

significant differences in the diets of different sex (Pcarbon = 0.482, Pnitrogen = 0.864).  330 

Table 3. Average stable carbon and nitrogen isotope values by age group and sex. 331 

  N δ15N (‰, V-Air) δ13C (‰, VPDB) 

Non-adults  24 10.7 ± 1.7 -18.5 ± 0.6 

 Group 1 (0–3 years) 7 12.8 ± 1.8 -17.9 ± 0.5 

 Group 2 (4–8 years) 11 10.1 ± 0.5 -18.6 ± 0.4 

 Group 3 (9–18 years) 6 9.4 ± 0.5 -18.9 ± 0.3 

Adults  21 9.9 ± 0.6 -18.7 ± 0.3 

 Males 3 9.9 ± 0.2 18.8 ± 0.3 

 Females 9 9.9 ± 0.6 -18.9 ± 0.3 

Human samples displayed relatively higher δ13C and δ15N values in comparison to the 332 

fauna (Pcarbon = 0.000; Pnitrogen = 0.000), approximately 1.4‰ and 2.5‰ for C and N, 333 

respectively (Fig. 3). This is indicative of an increase of one trophic level between fauna 334 

and humans (Katzenberg, 2008), which suggests that animal meat may be a prominent 335 

protein resource in the diet of the population of Mondragones. In Roman culture, 336 

domesticated animals were kept not only for food provision but also as important beasts 337 
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of burden, for example in the case of cattle (Cool, 2006). The meat component of the 338 

diet in this period came primarily from pigs, with a minor component of sheep and goats 339 

(approximately 25% to 35%), whose main function was to produce wool, milk, and 340 

cheese (Prowse et al., 2004). However, in the Iberian Peninsula, there is a good degree 341 

of variability that suggests that a local pattern persisted (King, 1999). This pattern, in 342 

most of the studied sites, consisted in a relatively low pig percentage (20% or less) and 343 

a higher percentage of sheep/goat and ox (King, 1999). In any case, the meat influence 344 

on the Roman diet is well documented (Alcock, 2006; Cool, 2006; Faas, 2013) and 345 

illustrated by the stable isotopic composition of the population from Mondragones. 346 

The collagen average δ13C values of individuals with a diet based on C3 plants are 347 

around -20‰, while for individuals who consume a diet rich in C4 plants this average is 348 

around -10‰ (Keenleyside et al., 2009). Taking this into account, the δ13C values in adult 349 

humans (δ13Caverage = -18.7 ± 0.3‰) could be indicative of C3 consumption with some 350 

contribution of C4 plants, possibly millet. Although there is no archaeobotanical evidence 351 

of millet cultivation in Mondragones, there is evidence of its cultivation in the south-352 

eastern Iberian Peninsula during the Bronze Age in locations close to Mondragones 353 

(Moreno-Larrazabal et al., 2015). Moreover, its presence is widely documented in most 354 

of the archaeological sites from the Bronze Age in Mediterranean geography (Peña-355 

Chocarro, 1999; Rovira Buendía, 2007; Buxó and Piqué, 2008). Nevertheless, in 356 

Mondragones an increase in δ13C values was observed along with the δ15N values (see 357 

Fig. 3). C4 consumption increases the collagen δ13C values, while δ15N values should not 358 

be affected, so this allows distinguishing between the consumption of C4 plants and 359 

aquatic resources, which are usually also enriched with 15N (Schoeninger and DeNiro, 360 

1984; López-Costas et al., 2015). The pattern observed in Mondragones, of concomitant 361 

and significant increase in human bone δ13C and δ15N values (R2 = 0.2801, P = 0.0005), 362 

can be due to fish consumption, which is consistent with its proximity to the 363 

Mediterranean Sea. The inclusion of other isotopes (e.g. sulphur, δ34S) could clarify the 364 

effective presence of a marine contribution in the diet of this population (Nehlich et al., 365 

2010, Curto et al., 2019). 366 
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 367 

Fig. 3. Carbon and nitrogen isotope data from humans and faunal remains recovered at 368 

Mondragones. 369 

Most of the human collagen δ13C and δ15N values were closely clustered, with the 370 

exception of 5 outliers (MO-041A, MO-043B, MO-056B, MO-086B, and MO-093A) 371 

associated with an enriched δ15N value (Fig. 3). All of them were non-adults (1 year ± 4 372 

months), whose average δ15N value of 13.7 ± 0.8‰ was almost 4‰ above the average 373 

δ15N value for the adult female population of Mondragones (9.9 ± 0.6‰) (P = 0.000). 374 

This high average δ15N is probably indicating the period of breastfeeding. Values for δ15N 375 

have been used to study breastfeeding and weaning patterns, because when infants are 376 

at breastfeeding age, their trophic level is one unit above their mothers. This is due to 377 

they are basically consuming their mother’s tissue by the breast milk (Fuller et al., 2006). 378 

But the association between isotope data and the breastfeeding/weaning process 379 

involves the assumption that the bone collagen isotopes are representative of diet at 380 

approximately the time of death and that non-adults who died are representative of their 381 

age group (Beaumont et al., 2015). This is not considering the “Osteological Paradox” 382 

(Wood et al., 1992), which suggests that non-adults who have died may not be 383 

representative of the health conditions of the whole population. Increased nitrogen ratio 384 

could also reflect other conditions than the period of breastfeeding, such as a metabolic 385 

disorders or maternal stress episodes during pregnancy (Siebke et al., 2019). Moreover, 386 

a negative nitrogen balance could also produce an increase in δ15N values (Laffranchi et 387 

al., 2018). It is caused by an imbalance between nitrogen intake and excretion (more 388 

catabolic than anabolic processes), which could be related to starvation, protein 389 

malnutrition or disease (Long et al., 1979; Fuller et al., 2005). An individual with some of 390 

these stress conditions loses tissue due to an excessive catabolic activity to maintain 391 

protein synthesis in other parts of the body, which could lead to increased δ15N ratios 392 
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(D’Ortenzio et al., 2015). Henceforth, although an increase in nitrogen levels is generally 393 

observed in non-adults between 0 and 1 years of age, and it subsequently drops to the 394 

adult average, the observed increase does not allow us to conclude definitively that it is 395 

due to the breastfeeding period. Other techniques are recommended to complement the 396 

information obtained by analysing stable isotope ratios from bone, such as the 397 

application of incremental dentine micro-samples from teeth (Burt, 2015) and the 398 

investigation of other stable isotopes ratios e.g. oxygen (Reynard and Tuross, 2015; 399 

Britton et al. 2015). 400 

On the other hand, there is another outlier (MO-050A) that displays a similar δ13C value 401 

to non-adults and a similar δ15N value to adults (-17.6‰ and 10.4‰, respectively) (Fig. 402 

3). This individual was 4 years ± 12 months in age, and its δ13C value could be due to 403 

the weaning process, assuming the limitations explained above. Its nitrogen and carbon 404 

isotope values were intermediate between non-adults and adults. This could be related 405 

to, in some cases, the transition to an adult diet, which goes through the introduction of 406 

supplementary foods enriched in 13C (Dupras et al., 2001). This is consonant with the 407 

description of weaning practices of the Roman Era realized by Soranus and Galen 408 

(Greek and Roman physicians, respectively). They described it as a gradual process 409 

based on the introduction of supplementary foods (such as boiled honey or a mixture of 410 

honey and goat’s milk) from 6 months of age to 3 years of age, when the weaning was 411 

completed (Dupras et al., 2001; Fuller et al., 2006; Saragoça et al., 2016). 412 

Furthermore, a comparison of Mondragones dietary patterns with other Roman and Late 413 

Roman sites from the Iberian and Italian Peninsulas was also realized (Table 4). The 414 

adult results have been compared with the sites of Joan Planells (Ibiza, Spain) (Alaica 415 

et al., 2019), Tossal de les Basses (Valencia, Spain) (Salazar-García et al., 2016), Monte 416 

da Cegonha (Alentejo region, in southern Portugal) (Saragoça et al., 2016), and Port of 417 

Velia (Velia, Italy) (Craig et al., 2009). For the comparison of non-adult results, the sites 418 

of Isola Sacra (on the coast near Rome) (Prowse et al., 2008) and Monte da Cegonha 419 

(Saragoça et al., 2016) were selected. Dietary patterns from these populations are based 420 

predominantly on C3 plants, with variable meat or dairy consumption. There are also 421 

differences in the consumption of C4 plants and marine resources. In addition, the 422 

population from Port of Velia can be divided into 2 groups: [I] with a diet rich in cereals 423 

and relatively poor in meat and marine resources and [II] with much more meat and fish 424 

intake, and a consequent δ15N increase. These populations have similar faunal isotope 425 

values to those obtained in this study, which enables a comparison of the human values. 426 

Even though there are significant differences between the δ15N and δ13C values in most 427 

adult populations (P < 0.05), the variation is more pronounced in nitrogen values (Fig. 428 

4), especially in coastal populations. This variation appears to be associated with the 429 
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availability of marine resources, because the only population that does not show 430 

significant differences is Monte da Cegonha, which is also located inland. Related to this, 431 

there are significant differences between nitrogen values of non-adults from 432 

Mondragones and non-adults from Isola Sacra (P = 0.000) (Table 4), who present higher 433 

values of δ15N. However, there are no differences between carbon values, so the 434 

nitrogen increase is probably due to seafood intake detected in their mothers (Prowse et 435 

al., 2008). 436 

Table 4. Comparison of stable isotope results in different European sites.  437 

  N δ15N (‰, V-Air) P δ13C (‰, VPDB) P 

Adults Mondragones 21 9.9 ± 0.6  -18.7 ± 0.3  

 Joan Planells (Alaica et al., 2019) 36 11.2 ± 1.5 0.000 -18.7 ± 0.5 0.768 

 Monte da Cegonha (Saragoça et al., 2016) 18 10.3 ± 0.6 0.083 -18.4 ± 0.3 0.000 

 Port of Velia I (Craig et al., 2009) 100 8.2 ± 0.7 0.000 -19.5 ± 0.2 0.000 

 Port of Velia II (Craig et al., 2009) 17 11.2 ± 1.3 0.000 -19.3 ± 0.3 0.000 

 Tossal de les Basses (Salazar-García et al., 2016) 23 10.8 ± 0.9 0.000 -18.2 ± 0.3 0.000 

Non-
adults 

Mondragones 25 10.7 ± 1.7  -18.5 ± 0.6  

 Isola Sacra (Prowse et al., 2008) 37 12.5 ± 1.9 0.000 -18.7 ± 0.5 0.741 

 Monte da Cegonha (Saragoça et al., 2016) 5 11.0 ± 1.3 0.300 -18.2 ± 0.6 0.416 

 438 
Fig. 4. Plot of δ15N versus δ13C values of the adult human (and faunal) samples from 439 

Mondragones compared with the mean values from other published Roman populations. 440 

3.4 Pathological conditions and diet 441 

An attempt to establish a relationship between the different pathologies detected and 442 

dietary patterns at the population level was realized. It was possible to infer the influence 443 

of diet in some pathologies attending to the detected cases (Table 5). However, a 444 

limitation of these analysis is that not all individuals had a complete skeleton, so only 445 

individuals with good skeletal representation (mainly cranium and teeth well-preserved) 446 
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were considered. Therefore, these results are only an approximation of the relation 447 

between diet and pathological conditions.  448 

Cariogenic lesions, dental calculus, dental enamel hypoplasia, and cribra orbitalia were 449 

analysed. Porotic hyperostosis could not be included in the statistical study because it 450 

was observed macroscopically in only 2 individuals and this result was not be confirmed 451 

by a further radiographical analysis. Caries was observed in at least 14 individuals (5 452 

non-adults, 5 females, 3 males, and 1 undetermined), as well as dental calculus, which 453 

was observed in 12 individuals (3 non-adults, 7 females, 3 males, and 2 undetermined) 454 

(Table 5). Significant differences in carbon ratios between individuals with and without 455 

caries were observed (P = 0.018). Even though with this result and the dental calculus 456 

(P > 0.05) it was not possible to assume a relation between diet and this kind of dental 457 

lesions, the presence of caries and dental calculus in several individuals was indicative 458 

of starchy food and/or carbohydrate consumption (Lieverse, 1999; Featherstone, 2000).  459 

Regarding non-specific stress markers, these conditions were found more frequently in 460 

non-adults (7 non-adults and 1 undetermined) (Table 5). Significant differences in terms 461 

of cribra orbitalia were observed (Pcarbon = 0.001; Pnitrogen = 0.006). In this case, individuals 462 

affected show higher nitrogen and less negative carbon averages than individuals 463 

without cribra, which may be related to the fact that most individuals affected by this 464 

condition are non-adults (all aged: 1 year ± 4 months). Cribra orbitalia and porotic 465 

hyperostosis have been traditionally related to anaemic conditions (Ortner, 2003), 466 

among others also, and the high prevalence of these pathologies in non-adults could be 467 

related to the Infant weaning transition described by Roman authors as Galen and 468 

Soranus, who suggest the introduction in the diet of infants of a mixture of goat's milk 469 

and honey (Fairgrieve and Molto, 2000). Goat’s milk has a lower content of folate than 470 

human milk (Chanarin, 1990), which has a direct impact on iron absorption and may lead 471 

to megaloblastic anaemia (Dupras et al., 2001). Dental enamel hypoplasia was observed 472 

in only 5 individuals (2 non-adults, 2 females, and 1 male). However, the relation between 473 

diet and presence/absence of dental enamel hypoplasia did not show significant 474 

differences (P > 0.05). None of these 5 individuals showed signs of cribra orbitalia or 475 

porotic hyperostosis, so this condition may be related to other dietary deficiencies or 476 

childhood diseases (Roberts and Manchester, 2010). In fact, enamel hypoplasia has also 477 

been linked to trauma to the developing tooth, genetic conditions, and specific 478 

environmental factors (Towle and Irish, 2020), so all these issues should be considered.  479 

Table 5. Association between δ13C and δ15N values and pathologies. 480 
  Non-adults Adults δ13C δ15N 
   ♀ ♂ nd ±SD P ±SD P 

Caries 
Absence 15 2 0 1 -18.5 ± 0.5 

0.018 
10.7 ± 1.7 

0.220 
Presence 5 5 3 1 -18.8 ± 0.3 9.9 ± 0.5 

Dental calculus Absence 17 0 0 0 -18.5 ± 0.4 0.216 10.8 ± 1.7 0.165 
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Presence 3 7 3 2 -18.7 ± 0.4 9.9 ± 0.5 

Dental enamel hypoplasia 
Absence 18 5 2 2 -18.6 ± 0.5 

0.285 
10.5 ± 1.4 

0.361 
Presence 2 2 1 0 -18.8 ± 0.2 9.9 ± 0.4 

Cribra orbitalia 
Absence 2 7 2 1 -18.7 ± 0.4 

0.001 
9.9 ± 0.5 

0.006 
Presence 7 0 0 1 -18.2 ± 0.5 11.7 ± 2.1 

4. Conclusions 481 
This study provided the first paleodietary information on a Late Roman population from 482 

the south-eastern of the Iberian Peninsula. The results indicated a diet rich in C3 plants 483 

supplemented with meat from terrestrial herbivores, although it is possible that this 484 

population had minimum C4 plant or fish intake.  485 

Dietary differences were not observed according to sex, but these differences were 486 

observed in age where the youngest non-adults in the breastfeeding period formed a 487 

well-defined group and showed significant differences with adults.  488 

The palaeopathological study revealed the presence of diet-related diseases and non-489 

specific stress markers. The high presence of caries and dental calculus are indicative 490 

of a diet rich in starch and carbohydrates, while cribra orbitalia, porotic hyperostosis, and 491 

dental enamel hypoplasia seem to be more related to dietary deficiencies (e.g. effect of 492 

supplementary food during the weaning period, malnutrition, diarrhea…). 493 

Finally, considering the dietary variation and the geographical location of different Roman 494 

populations, although it is possible to establish similarities among all of them (for 495 

example, C3 plants are common to all), it seems that the diet depended more on the 496 

environment and the local availability of food than on cultural habits.  497 
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