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Abstract: This paper introduces a method for the distribution of any and all population-based
metaheuristics. It improves on the naive approach, independent multiple runs, while adding
negligible overhead. Existing methods that coordinate instances across a cluster typically require
some compromise of more complex design, higher communication loads, and solution propagation
rate, requiring more work to develop and more resources to run. The aim of the new method is
not to achieve state-of-the-art results, but rather to provide a better baseline method than multiple
independent runs. The main concept of the method is that one of the instances receives updates
with the current best solution of all other instances. This work describes the general approach and
its particularization to both genetic algorithms and ant colony optimization for solving Traveling
Salesman Problems (TSPs). It also includes extensive tests on the TSPLIB benchmark problems of
resulting quality of the solutions and anytime performance (solution quality versus time to reach it).
These tests show that the new method yields better solutions for about two thirds of the problems and
equivalent solutions in the remaining third, and consistently exhibits better anytime performance.

Keywords: metaheuristics; genetic algorithm; ant colony optimization; distributed computing

1. Introduction

Metaheuristics encompass a wide range of algorithms for optimization. Originally applied to
heuristics or strategies that coordinate lower level search procedures, in time the concept extended to
include methods that employ ways of escaping local optima in complex search spaces, typically several
neighbourhood strategies or some extent of randomness. While these algorithms cannot compete with
strict optimization methods where they are applicable, such as solving linear programs, they excel at
attaining good enough solutions for problems that do not match the expression capabilities of strict
methods or that span a large search space that cannot be exhaustively searched by exact methods [1].

Given their diversity, there are many different classifications of metaheuristics, according to
different features. The classification most relevant to this work divides them into two classes:

1. Population-based, which at any time hold a number of solutions (the population) and create
new ones by combining or modifying them; some examples of this class are Genetic Algorithms,
Ant Colony Optimization, and Artificial Bee Colony.

2. Single-solution, which focus on iteratively improving just one solution; some examples of this
class are Variable Neighbourhood Search, Simulated Annealing, and Iterated Local Search.
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Population-based metaheuristics are more amenable to parallelization; at each step of the process,
the same operations are carried out on several individuals of the population: all of them, a subset,
or some pair-wise combination, depending on the method. Single-solution metaheuristics, on the
other hand, are by nature sequential. This does not mean that parallelization is not possible, but it is
tied to the particular algorithm, such as parallelizing the calculation or evaluation of neighbours for
Local Search variants, or even the particular problem, such as exploiting the properties of the fitness
function. This second parallelization approach can also benefit population-based metaheuristics, and it
is currently a vibrant field of research; but the common structure of population-based metaheuristics
allows for the design of high level methods that apply to all of them.

Recent trends in the evolution of computing power stress the importance of parallelization and
distribution for improving the performance and scalability of algorithms [2]. Moore’s Law states that
the number of transistors that can be fitted into a chip roughly doubles every 18 months. For a while,
this translated directly into raw power increase, and the same programs became faster just by running
on newer hardware.

More recently, as the development hit certain physical limits, increases in clock speed stalled and
timing constraints made it necessary to separate the processor into several cores in order to extract
all its potential. Single-thread programs no longer reap the rewards of increased computing power,
as they only make use of a fraction of the processor.

To be able to take advantage of the new advances, programs need to parallelize operations.
There are different ways to attain this, and they can be included in different layers of the design.

The paradigm for GPU acceleration follows Single Instruction Multiple Data (SIMD): the same
sequence of operations are executed on many data instances. Its main advantages come from vector-
or matrix-like calculations with very large numbers of items; actual GPU speeds are usually quite
a bit slower than CPU speeds, but they make up for it by performing hundreds or thousands of
simultaneous operations. This form of parallelization requires programming at very low level and
taking care of interleaving the computations with data transfers to and from the GPU. Because of
this, the use of GPU is very problem dependent and used in the innermost loops, such as fitness
function evaluation.

When using the CPU, a distinction is needed between parallelization and distribution. The former
merely implies that several operations can take place at the same time, whereas the latter also considers
that the separate execution threads do not share the same context, but need to explicitly communicate
with each other. In both cases, the instructions are independent for each instance, as opposed to the
case of the GPU.

Parallelization would then correspond to a multi-threading approach, where several threads are
run at the same time, while sharing the same memory space; likewise, distribution would correspond
to separate processes running in the same or even different CPUs, and all coordination is carried out
by means of inter-process communication (IPC) mechanisms, such as message passing, mutexes, etc.

Multi-threading is therefore useful for exploiting multiple cores in the same CPU, while distribution
can take advantage of multiple CPUs, in the same or different (networked) computers.

In the context of population-based metaheuristics, multi-threading is typically used to run the
operations on the individuals of the population at the same time, rather than one after another;
and distribution is typically used to run several populations across a cluster, either independently or
with some level of communication, usually in an Islands model, where each population transfers good
solutions to its neighbours. Here, neighbours in the sense of the network topology; the transference
only takes place between nodes that are directly connected to avoid high communication overhead.
The most common topology is a 2-dimensional mesh, where each node is connected to four other nodes.

The benefits of enabling a more efficient use of the available resources must be balanced against
the complexity involved, both in terms of building the algorithm (coding and maintaining) and the
communication required, which can in practice outweigh the gains. This paper addresses this balance
by focusing on performance improvement at the baseline end of the spectrum, while adding as little
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extra complexity and communication as possible, narrowing the gap between simple multiple parallel
runs and fully connected systems.

The method interprets metaheuristics as a form of stochastic predictors of the optimal solution.
They take a specific instance and calculate, through a combination of deterministic and random
operations, a value that tries to approximate the solution to the problem.

Thus, running several instances of a metaheuristic is equivalent to using a group of stochastic
predictors. Even if in the case of metaheuristics it is possible to know which of the instances yields
the best solution by comparing their fitness, it is possible to draw some ideas from the statistician’s
toolbox to extract more value from running several instances.

The group of methods, employed in statistics and machine learning, collectively known as
ensemble methods or ensemble learning deal with exactly this scenario. All of them combine multiple
models or predictors to obtain a better result than possible with any one of the models individually [3].

The overarching theme in all ensemble methods is that improvement can be obtained from the
aggregation of multiple (weak) models to build a better one.

The same concept is present in the very procedure of many metaheuristics: from the partial reuse
of solutions in Genetic Algorithms, to the preference for frequently traveled edges in Ant Colony
Optimization, to name a few.

Path Relinking showcases this behaviour better than any other metaheuristic: its concept itself
is exactly to combine good solutions to find better ones. Starting from a pool of solutions (generated
randomly and/or using some heuristic), it selects the best ones and builds paths between pairs of
them. Each step consists of a modification of the current point as in a local search, but always moving
towards the other solution (guiding solution). As new solutions are generated, they may become new
path sources or guiding solutions.

Taking all of this into account, this paper proposes a method that combines multiple instances of
any population-based metaheuristic to improve its efficiency, while introducing as little additional
overhead as possible. For easier reading, the method is referred to as the Multiverse method in
the remainder of the paper, as opposed to multiple independent runs, which is called Multistart.
The metaphor for the Multiverse being that each instance is a universe of its own, but within this
method they all form a single entity, hence the Multiverse.

In the Multiverse method, one of the multiple instances has special status: the collector. It receives
updates of the best solutions of the other instances. This is straightforward, as all population-based
metaheuristics already step through iterations (or generations), combine the solutions in their
populations to create new, improved ones, and possess mechanisms to work with multiple solutions
(the population). All other instances contribute their current best solution at each iteration to the
population of the collector; the same process that takes place normally, applied to this extended
population, is responsible for the mixing of solutions.

The added overhead is small: injection of external solutions into the population, and one-way
communication of a single solution from each instance. Furthermore, this communication scheme fits
a star-like topology, such as the one provided by a standard switch, rather than the more complex
and costly mesh favoured by other configurations, such as the Islands model, and more typical of
super-computers than of clusters built from commodity-grade computers.

John Holland introduced the concept of Genetic Algorithms (GAs) in [4]. The field has since
expanded well beyond the original idea, into a more general class of Evolutionary Algorithms that
share the underlying idea of simulating Darwinian evolution and natural selection through mutation
and recombination of individuals. Reeves [5] provides a comprehensive review of the history and
application of Genetic Algorithms.

Ant Colony Optimization (ACO) actually encompasses a number of similar algorithms for solving
discrete optimization problems and which are inspired by the behaviour of real ant colonies in nature.
The first ACO system, known as Ant System (AS), was introduced in [6]. Ant Colony Optimization as
such is described in [7]. And in time additional variants have surfaced, such as Ant Colony System
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(ACS) and MAX-MIN Ant System (MMAS). A broad and detailed overview of this developments is
available in [8].

Intensive research exists on the application of GPU to accelerate metaheuristics in general,
and GA or ACO in particular. A couple of examples suffice to understand that this approach
lacks the generality that this work aims at. The PhD thesis [9] addresses metaheuristics in general,
and describes in depth the complications of GPU use: multiple memory management, CPU and GPU
communication, partitioning the code into sequential and parallel chunks, etc. More specifically for
GAs, Krömmer et al. [10] implement GPU accelerated Genetic Algorithm and Differential Evolution
methods for task scheduling by offloading problem-specific computation to the GPU. For ACO
specifically, Delévacq et al. [11] review GPU implementations, but the more general among them still
apply only to a specific algorithm of the ACO family for a specific problem.

In the case of multiprocessing, the main approach is to partition the population, so that each
processor evolves a subpopulation. When there is no communication among processors, this is
equivalent to the general Multistart method described above. This is one of three possible migration
strategies, as introduced in [12]; when communication is allowed, the best solutions from each
subpopulation are transferred to other subpopulations, which is called migration. The other
two migration strategies are allowing communication among all nodes, which incurs severe
overhead, and allowing each processor communication only with a subset of all the processors,
typically exploiting neighbourhood in the network topology; this corresponds to the Islands model
mentioned before, and its main drawback is the limited propagation rate of good solutions.

This type of parallelization strategy improves on the sequential approach in the following
aspects [13]:

• The selection of individuals is local to the subpopulation, which requires less computation
compared to selecting from the whole population.

• Each subpopulation can progress asynchronously, reducing the synchronization overhead.
• The algorithm is more robust, as performance of each processor is independent from the others.

See [14] for further references and examples of applications of parallel Genetic Algorithms
following this scheme.

Others approach the parallel strategies for metaheuristics in general. For instance, Salto [15]
reviews multiple parallel metaheuristics applied to cutting, packing, and related problems, finding
two main classes: master-slave, where the master manages the population and the slaves perform
operations on the individuals or subpopulation assigned to them, such as fitness evaluation;
and structured population, a generalization of the use of independent subpopulations with varying
degrees of communication.

Likewise, Crainic [16] introduces a similar classification into three types, two of which match
the ones described above (parallelization of low level computation within an iteration, and multiple
subpopulations with varying degrees of granularity and communication); the third type involves
partitioning the solution space across the components of the solution variables, with each processor
working on a given subset, assuming all other components constant. This usually involves multiple
iterations for a suitable exploration of the solution space, and is reminiscent of co-evolution methods.
Similarly, Pedemonte et al. [17] present an ACO-specific classification of parallelization strategies,
which can be easily mapped to the categories above.

For the evaluation and comparison of parallel metaheuristics, Alba [18] analyzes meaningful
metrics and common pitfalls. The design of algorithm assessment methods in this work draws from this
analysis to ensure that the results are relevant. In particular, the comparison is based on a predefined
effort metric in order to compare solution quality, and it applies a statistical test on the distributions
of solutions rather than comparing an aggregated value, such as the mean or the median. Sections 3
and 4 detail the evaluation mechanism.
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For the rest of this paper, Section 2 details how to build Multiverse-enabled versions of a GA and
ACO for solving the Traveling Salesman Problem (TSP) as a practical demonstration of the method.
Both the GA and the ACO are used for experimentally evaluating its performance as compared to
Multistart in Section 3. Section 4 provides details on the methodology followed. Finally, Section 5
draws the main conclusions of the work and presents the future work.

2. General Method and Application to a Genetic Algorithm for TSP

Population based metaheuristics follow the common procedure:

1. Create an initial population
2. Evaluate the population
3. Select the individuals that contribute to the next generation
4. Generate the new population by combining and/or modifying the selected individuals
5. Stop or go back to step 2 (according to a stopping criterion)

repeating the loop until a certain condition is met: a number of iterations, a given fitness level,
some number of generations without improvement, etc.

Different algorithms define alternative strategies for each of the steps in the procedure, and may
in implementation blur the distinctions between them. GA and ACO are examples of the specialization
of the general procedure. They can be considered the archetypes for two broad classes of population
based metaheuristics: those which build solutions atomically from previous individuals (like GAs)
and those that construct new solutions by combining elements or components of previous solutions
one at a time (like ACOs). As such archetypes, they are the obvious choice to test the generality of the
Multiverse method.

The Multiverse method injects a new step just before closing the loop. In this step, every instance
of the metaheuristic sends its current best solution to the controlling node, and it relays them to the
collector instance, which adds them to its own population. Due to the very design of this type of
metaheuristics, everything else just needs to go on as usual, giving the new procedure:

1. Create an initial population
2. Evaluate the population
3. Select the individuals that contribute to the next generation
4. Generate the new population by combining and/or modifying the selected individuals
5. All but collector: send best solution so far. Collector: receive and add individuals to population
6. Stop or go back to step 2 (according to a stopping criterion)

Since such a generic algorithm is not amenable to testing, this work develops two specific instances
of it, a GA and an ACO, both solving a TSP, and compares their performance to that of a corresponding
Multistart variant with the same codebase, except for the communication of solutions to the collector.
As the aim of this paper is to assess the improvements brought by the Multiverse approach, the base
algorithms are far from state-of-the-art. Instead, the focus is on creating a level playing field for both
versions, with as little influence from external factors as possible. For this reason, the GA relies on
relatively simple crossover and mutation operators among those available in the literature and the
ACO uses the standard parametrization, and neither of them performs a local search step. Similarly,
there is no comparison between the results and the best known solutions in the literature; doing this
would require a much greater development effort in the design and programming of the algorithms,
but is irrelevant to the objective.

Listing 1 shows, in pseudocode, the operation of the Multiverse Genetic Algorithm for TSP,
which closely mirrors the procedure outlined above. The condition Collector is true for the collector
node in Multiverse mode; therefore, the code for Multistart is exactly the same, except for the two
lines under this condition, as it never happens. This pseudocode corresponds to the nodes that
run the GA instances; there is an additional node, the controller, that launches the execution of the



Mathematics 2020, 8, 1476 6 of 15

instances, keeps the synchronization between them, tracks and consolidates the best solutions, and in
the Multiverse case communicates the best solutions of the other instances to the collector.

Listing 1. Pseudocode for Multiverse and Multistart Genetic Algorithm for the Traveling Salesman
Problem (TSP).

1 Population = EmptyList
2 for i = 1 to PopSize:
3 Population← RadomPermutation(Cities)
4 Costs = EvaluateSolutions(Population)
5 BestSol, BestCost = min(Population, Costs)
6 SendToController(BestSol, BestCost)
7 while not TerminationCondition:
8 Parents = SelectParents(Population, Costs)
9 Offspring = EmptyList

10 Offspring← ApplyCrossover(Parents)
11 Offspring← ApplyMutation(Parents)
12 NewPopulation = EmptyList
13 NewPopulation← EliteSolutions(Population, Costs)
14 NewPopulation← Offspring
15 if Collector:
16 ReceiveFromController(MoreSolutions)
17 NewPopulation← MoreSolutions
18 Population = CutToPopSize(NewPopulation, Costs)
19 Costs = EvaluateSolutions(Population)
20 BestSolIter, BestCostIter = min(Population, Costs)
21 if BestCostIter < BestCost:
22 BestSol, BestCost = BestSolIter, BestCostIter
23 SendToController(BestSol, BestCost)

Lines 1–6 initialize the population with random tours and calculate the costs associated to them,
informing the controller. Inside the loop, lines 8–14 generate the new population by including directly
the elite individuals, selecting the ones that will act as parents, and applying the crossover and
mutation operators on them. Lines 15–17 add the solutions from other instances in the collector. Finally,
lines 18–23 trim the solutions down to the population size discarding the ones with worse fitness,
update the best solution if needed, and send the current best solution to the controller.

The SelectParents function selects a fraction of individuals from the population; this fraction
is given by the crossover probability parameter. The selection is random, but the probability for
each individual to be selected is inversely proportional to its cost. It deterministically includes
the best individual as an elitist strategy. The crossover operator is a variation of order crossover:
it randomly selects a subtour of one parent and places it in the same position in the offspring; the
rest of the tour is filled up with the remaining cities in the order that they appear in the other parent.
The ApplyCrossover function repeatedly draws two individuals from the parents group and generates
two offspring with them (inverting which is used as first parent). The selection at this stage is again
biased by the inverse of the cost, so that better solutions are selected more often. The mutation operator
switches the position of two randomly selected cities. The ApplyMutation function goes through all
the individuals selected as parents and applies the mutation operator with probability given by the
mutation probability parameter. Each time it does apply it, it adds a new individual to the population.
EliteSolutions includes the best individuals from the original population in the new one; the number
of individuals to transfer in this way is given by the elitism parameter.

Listing 2 shows the pseudocode for the Multiverse ACO for solving a TSP. The code is the same for
the Multistart version, as the only difference is the two lines under the condition Collector, which is
true only for the collector process in the Multiverse version. As in the case for GA, this pseudocode
corresponds to the nodes that run the ACO instances and there is an additional controller node.
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Listing 2. Pseudocode for Multiverse and Multistart Ant Colony Optimization (ACO) for TSP.

1 PheromMatrix← InitialValue
2 HeurMatrix← DistanceMatrix
3 Population = EmptyPopulation
4 while not TerminationCondition:
5 for i = 1 to NumAnts:
6 Solution← EmptySolution
7 while CitiesLeft:
8 Solution← GetNext(CitiesLeft, PheromMatrix, HeurMatrix)
9 Population← Solution

10 Costs = EvaluateSolutions(Population)
11 BestSolIter, BestCostIter = min(Population, Costs)
12 if BestCostIter < BestCost:
13 BestSol, BestCost = BestSolIter, BestCostIter
14 PheromMatrix← Evaporate(PheromMatrix)
15 PheromMatrix← PheromUpdate(BestSol, BestCost)
16 SendToController(BestSol, BestCost)
17 Population = EmptyPopulation
18 if Collector:
19 ReceiveFromController(MoreSolutions)
20 Population← MoreSolutions

Lines 1–3 initialize the algorithm by setting the initial pheromone value and creating the heuristic
matrix from the distances between nodes. The main loop, lines 4–20, runs until the stopping criterion
is met; each pass of the loop is one iteration in the algorithm, where it generates a new solution for
each ant (lines 5–10; the evaluation of solutions is actually performed at the time of construction),
updates the current best solution if needed (lines 11–13), updates the pheromone matrix (lines 14–15),
and resets the population (line 17). Lines 16, 19 and 20 manage communication with the control node.

In each iteration, each of the NumAnts ants builds a tour by iteratively selecting the next city to go
to. The function GetNext does this selection by assigning a probability to choose each of the cities not
yet visited calculated as:

Pr(c, c′) =
τα

cc′η
β
cc′

∑k∈C τα
ckη

β
ck

, (1)

where c is the current city in the tour, c′ is the candidate city for the next step, C is the set of all potential
candidate cities for the next step, including c′; τij is the pheromone level associated to including going
from city i to city j in the tour; ηij is the heuristic associated to including going from city i to city j in
the tour, namely the inverse of the distance from i to j; and α and β are algorithm parameters.

The update of the pheromone matrix consists of the evaporation step, calculated as τij = ρτij,
with the non-negative evaporation parameter ρ < 1, and the pheromone addition by the best ant along
the tour it built, T:

τij = τij +
1

∑i,j∈T dij
∀i, j ∈ T, (2)

where dij is the distance from i to j.

3. Experimental Results

The following analysis takes all 18 Asymmetric Traveling Salesman Problem instances in the
TSPLIB benchmark library, and runs both the Multiverse and Multistart variants of each GA and ACO
on them. Due to the probabilistic nature of the algorithms, it repeats each run 25 times, tracking running
time and the best solution found at each iteration. It also records the random seed generated in each
run so that the exact same results can be reproduced.

Tables 1 and 2 show the outcome of the analysis for the Genetic Algorithm and the Ant Colony
Optimization, respectively. The fields are:
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Instance The file containing the problem data.
∆ Avg The percent difference between the average across repetitions of final solution fitness for

Multistart and Multiverse.
∆ Min The percent difference between the best solution fitness across repetitions for Multistart

and Multiverse.
RTime The percent difference between the averages across repetitions of CPU time elapsed for

Multistart and Multiverse.
WTime The percent difference between the averages across repetitions of wall time elapsed for

Multistart and Multiverse.
∆ HV The percent difference between the averages across repetitions of the hypervolume

Multistart and Multiverse.

Table 1. Results from running Multistart and Multiverse Genetic Algorithm on TSPLIB instances.

Instance ∆ Avg ∆ Min RTime WTime ∆ HV

ftv33.atsp −4.66 −2.94 −12.3 −10.1 −3.75
rbg403.atsp −0.67 −0.844 +4.48 −5.54 −0.628
p43.atsp −0.173 −0.283 −10.9 −9.15 −0.207
rbg443.atsp −0.668 −0.184 +6.3 +6.19 −0.638
ftv47.atsp −1.49 +3.34 −10.7 −9.27 −1.95
ft70.atsp −0.723 −0.143 −7.69 −7.06 −1.16
br17.atsp −0.102 +0.0 −12.1 −8.51 −0.292
ftv170.atsp −0.563 −0.304 −3.96 −3.79 −0.593
rbg358.atsp −1.42 −1.51 +3.27 +3.27 −0.934
ftv44.atsp −0.988 +0.274 −9.76 −8.28 −1.57
ftv55.atsp −0.497 −4.71 −9.11 −8.04 −2.25
ftv38.atsp −3.88 −5.44 −10.9 −9.15 −3.12
ftv35.atsp −3.67 −3.54 −11.0 −8.68 −3.28
kro124p.atsp −1.01 −1.78 −5.91 −5.68 −0.969
ftv64.atsp −0.672 −2.53 −8.17 −7.48 −1.8
ftv70.atsp −0.399 −3.82 −8.35 −7.67 −0.11
ft53.atsp −0.733 −1.43 −10.3 −9.08 −1.69
ry48p.atsp −2.87 −5.96 −10.1 −8.81 −2.82
rbg323.atsp −1.02 −0.808 +3.14 +3.13 −0.671

Table 2. Results from running Multistart and Multiverse Ant Colony optimization on TSPLIB instances.

Instance ∆ Avg ∆ Min RTime WTime ∆ HV

ftv33.atsp +0.0 +0.0 −14.3 −5.92 −0.66
rbg403.atsp −0.0565 −0.121 +1.48 +1.46 −0.237
p43.atsp −0.037 −0.0178 −0.572 −0.252 −0.00103
rbg443.atsp −0.109 −0.183 −0.995 −0.954 −0.3
ftv47.atsp −0.156 +0.0 −0.649 −0.345 −0.119
ft70.atsp −0.211 −0.234 −2.48 −1.92 −0.0868
br17.atsp +0.0 +0.0 −1.42 −0.157 +0.00483
ftv170.atsp −0.932 −0.525 −2.71 −2.67 −0.394
rbg358.atsp −0.0201 −0.252 +0.596 +0.661 −0.309
ftv44.atsp −0.052 +0.0 −1.11 −0.564 −0.282
ftv55.atsp −0.354 +0.0 −1.88 −1.2 −0.447
ftv38.atsp −0.0366 +0.0 −0.558 −0.225 −0.0138
ftv35.atsp −0.0895 +0.0 −11.3 −4.89 −0.383
kro124p.atsp −0.373 −0.966 −2.0 −1.84 −0.244
ftv64.atsp −0.11 +0.0 −1.14 −0.821 −0.611
ftv70.atsp −0.364 −0.102 −4.9 −3.97 −0.367
ft53.atsp −0.642 −0.882 +1.8 +1.13 −0.0366
ry48p.atsp −0.255 −0.504 −5.56 −6.84 −0.306
rbg323.atsp +0.0237 −0.0742 −3.21 −3.24 −0.125
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All differences are calculated as the value for Multiverse minus value for Multistart; since all the
measured items are better the lower they become, this makes negative values favorable to Multiverse.
The base for the percentage is the value for Multistart for the instance.

Hypervolume is a measure used to compare solutions to multi-objective problems. In such
problems, the outcome is given as a Pareto front of non-dominated solutions, that is, solutions such
that there is no other solution that improves on one of the objectives without getting worse on another
objective. These solutions are also known as efficient solutions. Pérez Cáceres et al. [19] apply the
hypervolume measure to assess anytime performance of ACO algorithms, by considering the evolution
of best solution found so far at each iteration as a bi-objective problem which aims at minimizing both
the cost and the time to reach a given solution quality. This work includes the hypervolume in the
same way as a measure of anytime performance.

Tables 1 and 2 show that the final solution quality is better in average using Multiverse, and that
the best solution across runs for most of the instances also is attained by Multiverse. Elapsed times
(CPU time and wall time) alternate between positive and negative, which is consistent with negligible
overhead of Multiverse with respect to Multistart, as the random effect of synchronization is dominant;
otherwise the time differences should be positive if the additional communication had a significant
impact. Finally, hypervolume is in average also consistently better for Multiverse.

Instance br17 is rather small (17 cities) and always yielded the globally optimal solution except
in one run of Multistart. The analyses below do not include this instance, as it behaves as an outlier,
posing problems for normalization and application of statistical tests. At this size, there is no practical
difference between the two methods. For the ACO, instance ftv33 was also problematic for the same
reason in the analysis of solution quality, but had enough variability to be included in the analysis
of hypervolume.

Figure 1 shows a boxplot of the best costs achieved in the 25 runs of each instance for Multistart
and Multiverse GA, providing a deeper view of the ∆ Avg and ∆ Min columns in Table 1. Since the
values for each instance are very different from each other, the values are normalized as

xnorm =
x− x̄

x̄− xmin
, (3)

where xnorm is the normalized value for x, x̄ is the average value for Multistart, and xmin is the
minimum value for Multistart. This performs a translation and scaling of both the Multistart
and Multiverse values so that the resulting boxes are comparable and fit well in the graph,
while maintaining the relative shapes and positions unmodified within each instance. This figure
corroborates the typically improved performance of the Multiverse method (with labels ending in .mv)
over the Multistart method (with labels ending in .ms). There are some instances, such as ftv55 and
ftv64 where the high variability of solutions using Multiverse makes it difficult to reach a conclusion.
Running a directed Mann Whitney U test at α = 0.05 for each instance, supports the hypothesis that
there is a statistical significant difference in solution quality for 10 out of 17 instances in favor of
Multiverse, and no significant difference for the other 7. Table 3 shows which instances pass the test.

Figure 2 is the equivalent of Figure 1 for ACO. The findings are similar, with 11 out of 17
significantly improving according to the directed Mann Whitney U test, as shown in Table 4.

Table 3. Instances for which the Mann Whitney U test supports that there is a significant difference
between Multiverse and Multistart Genetic Algorithm in favor of Multiverse (MV) or no difference
(EQ). There is no instance so that there is a difference in favor of Multistart.

MV ftv33, rbg403, p43, rbg443, ftv47, ft70, rbg358,
ftv38, ftv35, ry48p

EQ ftv170, ftv44, ftv55, kro124p, ftv64, ftv70, ft53
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Table 4. Instances for which the Mann Whitney U test supports that there is a significant difference in
solution quality between Multiverse and Multistart Ant Colony Optimization in favor of Multiverse
(MV) or no difference (EQ). There is no instance so that there is a difference in favor of Multistart.

MV rbg403, p43, rbg443, ft70, ftv170, ftv44, ftv55,
ftv38, ftv70, ft53, ry48p

EQ ftv47, rbg358, ftv35, kro124p, ftv64, rbg323
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Figure 1. Boxplot of best cost achieved across the 25 runs for each instance problem using Multistart
and Multiverse Genetic Algorithm. Costs are normalized to the corresponding average using Multistart
so that they are comparable.
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Figure 2. Boxplot of best cost achieved across the 25 runs for each instance problem using Multistart
and Multiverse Ant Colony Optimization. Costs are normalized to the corresponding average using
Multistart so that they are comparable.
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Figures 3 and 4 are the equivalent of Figures 1 and 2, respectively, but for hypervolumes instead
of cost achieved. The analysis is similar, but for hypervolume the improvement obtained by Multiverse
is more evident. The application of a directed Mann Whitney U test at α = 0.05 for each instance,
supports the hypothesis that there is a statistical significant difference in solution quality for Genetic
Algorithm in 15 out of 17 instances in favor of Multiverse, and no significant difference for the other
two: ftv170 and ftv70. For Ant Colony Optimization, the advantage is found in 11 out of 18 instances
(see Table 5); larger instances benefit the most from the Multiverse approach.
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Figure 3. Boxplot of hypervolume across the 25 runs for each instance problem using Multistart and
Multiverse GEnetic Algorithm methods. Hypervolumes are normalized to the corresponding average
using Multistart so that they are comparable.
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Figure 4. Boxplot of hypervolume across the 25 runs for each instance problem using Multistart and
Multiverse Ant Colony Optimziation methods. Hypervolumes are normalized to the corresponding
average using Multistart so that they are comparable.
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Table 5. Instances for which the Mann Whitney U test supports that there is a significant difference
in hypervolume between Multiverse and Multistart Ant Colony Optimization in favor of Multiverse
(MV) or no difference (EQ). There is no instance so that there is a difference in favor of Multistart.

MV ftv33, rbg403, rbg443, ft70, ftv170, rbg358, ftv44,
ftv55, ftv64, ftv70, rbg323

EQ p43, ftv47, ftv38, ftv35, kro124p, ft53, ry48p

Figures 5 and 6 show the typical graph of best cost so far versus iteration number for GA and ACO,
respectively. The lines represent the average of best solution achieved in each run by the corresponding
iteration for Multiverse and Multistart respectively. The examples selected show a clear gap, and others
are similar with varying gap sizes.
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Figure 5. Typical evolution of best Genetic Algorithm solution versus iteration for Multistart and
Multiverse. Each line follows the average of the best solutions across the 25 runs at the corresponding
iteration for their respective method. The Y axis is shown in logarithmic scale.
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Figure 6. Typical evolution of best Ant Colony Optimization solution versus iteration for Multistart and
Multiverse. Each line follows the average of the best solutions across the 25 runs at the corresponding
iteration for their respective method. The Y axis is shown in logarithmic scale.
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4. Materials and Methods

The hardware setup for the tests described in Section 3 consisted of a cluster of 18 virtual machines
with 512 MB of RAM memory running Arch Linux on top of an Intel Xeon E5-2695 (Intel Corporation,
Santa Clara, CA, USA) at 2.40 GHz.

The logs containing all the information needed for the analysis are provided as Supplementary
Materials to this paper. The program for the tests was written in Python, using MPI for communication
across nodes, and is available in GitHub at the URL https://github.com/valthalion/endof. The repository
also included the code used to process the results and automatically generated the tables and charts used
in the paper.

The overall procedure started from the 18 instances of Asymmetric Traveling Salesman Problem
in the benchmark collection TSPLIB. For each of them, four sets of runs were executed: GA Multistart,
GA Multiverse, ACO Multistart, and ACO Multiverse. Each set consisted of 25 runs with random
seeds. Each run logged to a text file the running time, random seed, final solution, and best solution at
each iteration. The logs could be recreated by re-running the experiments using the recorded seeds.

The logs were parsed and loaded into a MySQL database for easier manipulation. The repository
contained the Python script for populating the database, as well as the SQL code to generate the
database schema. Another script processed the database to generate the aggregated values reported
in the tables across this paper, including generating LATEX code for some of them, the statistical tests
comparing corresponding Multistart and Multiverse instances, and the charts summarizing the results:
boxplots of best solution and hypervolume, and the graph of evolution of the objective function with
the iterations.

The algorithms used standard parameters, except for the termination condition which was
set to a number of iterations equal to 10 times the number of cities. For ACO, evaporation was
ρ = 0.95, three ants deposited pheromones out of 50 ants per iteration, a single elitist solution was
kept, and α = β = 1. For GA, a population of 50 solutions was used, without elitism, with 50% and 5%
crossover and mutation probabilities, respectively. The crossover operator selected a chunk of the first
parent given by two cut points, and placed it in the same position in the offspring; it then filled the
rest of the offspring with the remaining elements in the order they appear in the second parent. This
was done twice, changing the role of first and second parent, to generate two offspring. The mutation
operator randomly exchanged two cities in the loop.

5. Conclusions and Future Work

The evolution of hardware leads towards parallelization of algorithms in order to extract the full
performance of new systems and so tackle larger and more complex problems. This trend is already
evident in the literature, and multiple approaches exist with different trade-offs of solution quality,
algorithm complexity, communication overhead, and generalization capability: from problem-specific
GPU acceleration to multiple independent runs.

Multiple independent runs, or Multistart, sits at one end of the trade-off spectrum: fully generic,
with minimum complexity and overhead, and is typically considered the baseline against which to
compare other methods. This work introduces the Multiverse method as an alternative to multiple
independent runs. The Multiverse method is also fully generic, in the sense that it is directly applicable
to any population-based metaheuristic, and incurs negligible overhead both in terms of added
complexity and communication.

In order to test these claims, and to evaluate its performance in solution quality with respect
to Multistart, this paper describes concrete instantiations of the method for solving the Traveling
Salesman Problem using GA and ACO as representatives of the two broad classes of population-based
metaheuristics. The tests run on the asymmetric TSP instances in the benchmark library TSPLIB.
The Multiverse variant is often superior in solution quality and never worse, and consistently
outperforms the Multistart approach in anytime behaviour, reaching better solutions faster. The tests

https://github.com/valthalion/endof
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show statistical significance for these findings, and confirm that the added overhead is smaller than
the intrinsic variability in running time for the problems.

These results support the Multiverse method as a potential candidate to replace multiple
independent runs as the baseline for distributed algorithm comparison. To further consolidate this
outcome, the next step in its development is to test whether these benefits hold for a real-world
problem. In particular we will apply it to Ant Colony Optimization solving a line scheduling problem
in the steel industry, as described in [20].

Supplementary Materials: The logs of the tests used to generate the results and charts in this paper are available
online at http://www.mdpi.com/2227-7390/8/9/1476/s1.
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