
catalysts

Review

Gold-Catalyzed Addition of Carboxylic Acids to
Alkynes and Allenes: Valuable Tools for
Organic Synthesis

Victorio Cadierno
Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química
Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain;
vcm@uniovi.es; Tel.: +34-985-103453

Received: 29 September 2020; Accepted: 16 October 2020; Published: 18 October 2020
����������
�������

Abstract: In this contribution, the application of gold-based catalysts in the hydrofunctionalization
reactions of alkynes and allenes with carboxylic acids is comprehensively reviewed. Both intra- and
intermolecular processes, leading respectively to lactones and linear unsaturated esters, are covered.
In addition, cascade transformations involving the initial cycloisomerization of an alkynoic acid are
also discussed.
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1. Introduction

The catalytic hydrofunctionalization of alkynes provides convenient routes of access to a wide
variety of functionalized olefins that address the current need for atom-economic, green and sustainable
processes [1–7]. In this regard, countless catalytic systems capable of promoting the addition of different
heteroatom- (e.g., O, N, S, P, B, Se, Si, P or halogens) and carbon-hydrogen bonds to alkyne molecules,
with high levels of efficiency and selectivity, can be found in the literature. A relevant example of
this type of transformation is the hydro-oxycarbonylation of alkynes with carboxylic acids [2–4,8–13].
Thus, as shown in Scheme 1, the intramolecular version of the process, i.e., the cycloisomerization
of alkynoic acids, allows the rapid assembly of unsaturated lactone rings which are structural units
present in a huge number of biologically active molecules and natural products [14–16]. Of interest
also, are the intermolecular additions of carboxylic acids to alkynes, since the resulting enol ester
products are relevant intermediates for synthetic chemistry and polymerization reactions [8,13,17].
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1. Introduction 

The catalytic hydrofunctionalization of alkynes provides convenient routes of access to a wide 
variety of functionalized olefins that address the current need for atom-economic, green and 
sustainable processes [1–7]. In this regard, countless catalytic systems capable of promoting the 
addition of different heteroatom- (e.g., O, N, S, P, B, Se, Si, P or halogens) and carbon-hydrogen bonds 
to alkyne molecules, with high levels of efficiency and selectivity, can be found in the literature. A 
relevant example of this type of transformation is the hydro-oxycarbonylation of alkynes with 
carboxylic acids [2–4,8–13]. Thus, as shown in Scheme 1, the intramolecular version of the process, 
i.e., the cycloisomerization of alkynoic acids, allows the rapid assembly of unsaturated lactone rings 
which are structural units present in a huge number of biologically active molecules and natural 
products [14–16]. Of interest also, are the intermolecular additions of carboxylic acids to alkynes, 
since the resulting enol ester products are relevant intermediates for synthetic chemistry and 
polymerization reactions [8,13,17]. 

 
Scheme 1. The intra- and intermolecular additions of carboxylic acids to alkynes. Scheme 1. The intra- and intermolecular additions of carboxylic acids to alkynes.

Several transition metals have been employed to promote the hydrofunctionalization of alkynes,
among which gold has gained prominence, given its outstanding effectiveness for the π-electrophilic

Catalysts 2020, 10, 1206; doi:10.3390/catal10101206 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
https://orcid.org/0000-0001-6334-2815
http://dx.doi.org/10.3390/catal10101206
http://www.mdpi.com/journal/catalysts
https://www.mdpi.com/2073-4344/10/10/1206?type=check_update&version=2


Catalysts 2020, 10, 1206 2 of 36

activation of unsaturated carbon-carbon bonds towards nucleophiles [18–25]. In addition, the fact
that the properties of both Au(I) and Au(III) complexes can be easily modulated by the surrounding
ligands has been extensively exploited for the fine tuning of the activity and/or selectivity of the
catalytic processes in which gold is involved [26]. Regarding the addition reactions of carboxylic acids
to alkynes, the use of gold catalysts has made it possible to overcome some of the limitations found
with other metals—for example, the hydro-oxycarbonylation of internal alkynes for which ruthenium,
one of the most frequently employed metals, is ineffective. The marked preference of π-alkyne-gold
complexes to undergo the addition of nucleophiles in an anti fashion is also beneficial in these reactions,
since it limits the number of isomers that can be formed.

To a lesser extent, gold-based catalysts have also been applied in recent years in the
hydrofunctionalization of allenes, molecules of special relevance because their axial chirality can be
exploited in asymmetric synthesis. Intramolecular hydroamination and hydroalkoxylation processes
are by far the most documented [20,23,27,28], but some examples of both intra- and intermolecular
hydro-oxycarbonylation reactions of allenes catalyzed by gold complexes are also known. In addition
to the classical chemoselectivity, regioselectivity and stereoselectivity issues, positional selectivity is an
extra problem associated to the nucleophilic additions to allenes [29]. In general, the regioselectivity of
the addition process, i.e., attack of the heteroatom on the sp or the sp2 carbons, is strongly dependent on
the substitution pattern of the substrates, and in the case of intramolecular processes, also on the length
of the tether connecting the allenic unit and the nucleophile. In that regard, the exquisite selectivity
found in all the gold-catalyzed hydro-oxycarbonylation reactions described to date in the literature
is noteworthy.

The aim of the present review article is to provide a comprehensive overview of the developments
achieved in this particular research area.

2. Additions of Carboxylic Acids to Alkynes

2.1. Cycloisomerization of Alkynoic Acids

The utility of gold catalysts in the cyclization of acetylenic acids was evidenced for the first time
by Michelet and co-workers in 2006 [30]. As shown in Scheme 2, they found that in the presence of
catalytic amounts of AuCl (5 mol%), a large variety of terminal γ-alkynoic acids 1 are rapidly converted
into the corresponding 5-alkylidene-butyrolactones 2, in high yields and in a complete regioselective
manner, by performing the reactions in acetonitrile at room temperature. The process was also
operative with γ-alkynoic acids containing internal alkyne units, such as the aromatic derivatives 3 or
the aliphatic one 5 [30,31]. In the case of 3, regardless of the electronic properties of the aryl substituent,
a selective 5-exo-dig cyclization was again observed. In addition, the corresponding five-membered
ring enol-lactones 4 featured in all the cases (Z) stereochemistry for the exocyclic C=C bond. This last
point implies that the reactions proceed through the intramolecular anti-addition of the carboxylic
acid to the Au(I)-coordinated alkyne moiety (see the mechanistic proposal in Scheme 3). The same
stereochemistry was found in the butyrolactone 6 generated from the ethyl-substituted γ-alkynoic acid
5, although in this case the major reaction product was the 6-membered ring lactone 7 resulting from a
6-endo-dig cyclization.

Almost simultaneously with Michelet’s work, Pale and co-workers reported the AuCl-catalyzed
cyclization of different γ, δ and ε-alkynoic acids lacking substituents in α-position with respect to the
carboxylic acid group (Scheme 4) [32]. Unlike the previous examples, this type of substrate does not
benefit from the Thorpe–Ingold effect and the reactions required of a higher metal loading (10 mol%)
and the assistance of a base (K2CO3) to facilitate the generation of the nucleophilic carboxylate anion.
Regardless of the length of the hydrocarbon chain and the nature of the alkyne terminus, the selective
formation of the exo-dig cyclization products was observed, with generally high yields (≥ 60%), except
for the case of hept-6-ynoic acid—which delivered the corresponding 7-membered ring enol-lactone
in only 25% yield after 48 h of stirring in acetonitrile at r.t. (the rest of examples required only two
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hours of reaction). For those substrates featuring an internal C≡C bond, the anti-addition products
were again exclusively generated, although in some cases the (Z) isomers initially formed partially
isomerized in solution into the corresponding (E) ones [32,33]. Of note is the fact that the process was
completely inoperative when silyl-protected alkynes were employed as substrates due to the strong
withdrawing effect of the SiR3 group, which drastically reduces the electron density of the C≡C bond,
thereby making its coordination to the gold center less favorable [32,33].Catalysts 2020, 10, x FOR PEER REVIEW 3 of 37 
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Applying Pale´s conditions, i.e., using the AuCl/K2CO3 combination, van de Weghe and co-
workers studied the cycloisomerization of the 2-alkynyl-substituted phenylacetic acids 10, thereby 
observing the formation of reaction mixtures containing the respective 1-alkylidene-isochroman-3-
one 11 (6-exo-dig cyclization) and benzo[d]oxepin-2(1H)-one 12 (7-endo-dig cyclization), with the 
former being the major component in almost all the cases (except for R = nPr; see Scheme 6) [34]. 

Scheme 4. Base-assisted AuCl-catalyzed cycloisomerization of alkynoic acids.

Pale´s group also explored the catalytic behavior of AuCl3 in these cycloisomerization processes,
observing for the three model alkynoic acids tested the unexpected formation of the dimeric
methylene-lactone derivatives 8 (Scheme 5) [33]. These species were generated in a stereoselective
manner as the corresponding (E,E) isomers, and were isolated in low yields. A reaction pathway
involving the homocoupling of the organogold intermediates A generated during the exo cyclization of
the substrates was proposed by the authors to explain the formation of compounds 8. The reductive
elimination of the resulting diorganogold species B would give dimers 8 with liberation of Au(I). This
last point could be responsible for the low yields observed, since half of the catalyst is consumed. The
involvement of the diynyldiacids 9, which could potentially be generated in the reaction medium
through a Glaser-type homocoupling, was totally ruled out, since the gold-catalyzed cyclization of
these species leads to the formation of the compounds 8 with an opposite stereochemistry on the two
C=C bonds, i.e., as (Z,Z) isomers (see Scheme 5).
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Applying Pale´s conditions, i.e., using the AuCl/K2CO3 combination, van de Weghe and co-workers
studied the cycloisomerization of the 2-alkynyl-substituted phenylacetic acids 10, thereby observing the
formation of reaction mixtures containing the respective 1-alkylidene-isochroman-3-one 11 (6-exo-dig
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cyclization) and benzo[d]oxepin-2(1H)-one 12 (7-endo-dig cyclization), with the former being the major
component in almost all the cases (except for R = nPr; see Scheme 6) [34]. Related reactions employing
as substrates 2-alkynyl-substituted benzoic acids 13 also afforded mixtures of the regioisomers 14 and
15; the exo-dig mode of cyclization predominated again [34,35].
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Much more selective transformations were described by Estévez and co-workers, starting from the
related 2-[(2-nitrophenyl)ethynyl]phenylacetic acids 16, since lactones 17, resulting from a regiospecific
6-exo-dig cyclization, were exclusively obtained (Scheme 7) [36]. According to the authors, the strong
resonance effect of the nitro group was probably behind the exquisite selectivity observed with these
particular substrates.
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Scheme 7. AuCl-catalyzed cycloisomerization of 2-[(2-nitrophenyl)ethynyl]phenylacetic acids 16.

Employing the AuCl/K2CO3 combination too, Testero and co-workers reported the regioselective
and stereoselective conversion of the amino acid-derived alkynoic acids 18 into the respective
enol-lactones 19 (Scheme 8) [37]. Remarkably, secondary products derived from the addition of the
N–H unit to the C≡C bond were in no case observed, despite them easily occurring when the CO2H
group was replaced by the ester one CO2Me.

On the other hand, Perumal and co-workers described the synthesis of several
pyrano[3,4-b]indol-1(9H)-ones 21 by 6-endo-dig cyclization of the 3-alkynyl-indole-2-carboxylic acids
20, using in this case gold(III) chloride as the catalyst (Scheme 9) [38]. The reactions proceeded in
high yields and short times in the absence of base, but harsher temperature conditions were needed
(refluxing acetonitrile). The excellent regioselectivity observed in these reactions was explained by
the authors on the basis of the greater strain associated with the formation of two fused 5-membered
rings in the potential 5-exo-dig cyclization products. Noteworthily, compounds 21 displayed cytotoxic
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activity against human cervix adenocarcinoma (HeLa) cell lines, comparable in some cases to that
shown by the standard cis-platin drug.
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Scheme 9. AuCl3-catalyzed synthesis of pyrano[3,4-b]indol-1(9H)-ones.

The same protocol was additionally employed for the preparation of the related
pyrano[4,3-b]indol-1(5H)-one derivatives 23, which also featured inhibitory activity against HeLa cells,
from the corresponding 2-alkynyl-indole-3-carboxylic acids 22 (Scheme 10) [39]. It should be mentioned
at this point that the present cyclization process seems to be restricted to substrates containing an
internal alkyne unit (R2 , H), since a control experiment with a terminal one led, under identical
reaction conditions, to the recovery of the starting material—mostly unchanged after 3 h of heating.
AuCl3-catalyzed 6-exo-dig cyclizations of N-propargylpyrrole and indole-2-carboxylic acids have also
been described [40].
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Scheme 10. AuCl3-catalyzed synthesis of pyrano[4,3-b]indol-1(5H)-ones.

In addition to the chloride salts AuCl and AuCl3, several molecular gold complexes are known to
promote cycloisomerization reactions of alkynoic acids. For example, Hammond, Xu and co-workers
reported the use of [AuCl(JohnPhos)] [41,42], and an analogous gold(I)-chloride complex containing
the more sterically demanding o-biphenyl phosphine 24 (see Figure 1) [43], as catalysts for the exo
cyclization of the model substrates pent-4-ynoic acid and hex-5-ynoic acid. Both showed remarkable
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activity leading to the corresponding alkylidene-lactones in a quantitative manner, and short times
(from 5 min to 1 h), while employing metal loadings of only 0.01–0.3 mol%. However, it should be
noted that the presence of a chloride abstractor (AgOTf or AgSbF6) was needed to activate the catalysts
and generate the required vacant coordination site on the metal for alkyne binding. More elaborated
examples include platinum-based nanospheres functionalized with a phosphine-gold(I)-chloride
complex [44] and AuCl linked to a resorcinarene cavitand phosphine ligand [45]. These supramolecular
systems proved to be active in the of cyclization of linear γ-alkynoic acids, showing differences in
reactivity compared to the standard gold(I) chloride salt (lower selectivity towards the exo cyclization
in the former case or reaction rates strongly dependent on the sizes of the substituents present in the
substrates in the latter).
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Figure 1. Structure of the o-biphenyl phosphine ligands JohnPhos and 24.

The gold(I) complexes [AuCl(PPh3)] and [AuCl{P(O-2,4-C6H3
tBu2)3}], in combination with

AgSbF6, were used by Porcel and co-workers to promote the cyclization of a series of alkynoic acids 25
derived from salicylic acid, reactions that proceeded efficiently in 1,2-dichloroethane at r.t. or 50 ◦C
with catalyst loadings of 5 mol% (Figure 2) [46]. The regioselective formation of the corresponding
seven-membered ring lactones 26 was observed for those substrates containing a terminal alkyne unit,
while the cycloisomerization of their non-terminal counterparts was not always regioselective, leading
to mixtures of the respective exo- and endocyclic enol-lactones 26 (major products) and 27 (minor
products). In addition, certain non-terminal alkynoic acids led to the preferential formation of the
2H-chromenes 28, products coming from the hydroarylation of the alkyne group. In a later work, the
same group studied the arylative cyclization of compounds 25 with arenediazonium salts employing
a stoichiometric amount of [AuCl(SMe2)] and two equivalents of Li2CO3 as the promoters [47].
Regardless of the terminal or internal nature of the alkynes, mixtures of the corresponding lactones
26 and 27 arylated on the C=C bond were systematically generated, thereby revealing a difference in
regioselectivity compared to that found in the cycloisomerization reactions just mentioned.

Cyclizations of alkynoic acids with gold complexes containing N-heterocyclic carbene (NHC)
ligands can also be found in the literature. In this context, the first example was reported by Spenger and
Friksdahl with the cycloisomerization of the bispropargylic carboxylic acid 29 employing [AuCl(IMes)]
(IMes = 1,3-dimesitylimidazole-2-ylidene) as the catalyst (Scheme 11) [48]. In the presence of K2CO3,
[AuCl(IMes)] was able to convert selectively 29 into the 5-exo-dig cyclization product 30, while mixtures
of 30, the tetrahydropyranone 31 (6-endo-dig cyclization) and the bicyclic species 32 (resulting from the
cyclization of 31) were obtained when the K2CO3 co-catalyst was replaced by silver(I) salts (AgSbF6,
AgOTf, AgNTf2 or AgBPh4). Similar observations were made when [AuCl(PEt3)] was employed as the
gold source, although the yields were in general lower.
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[AuCl(IMes)].

The dinuclear hydroxo-brigded gold(I) complex [{Au(IPr)}2(µ-OH)][BF4] (33; IPr =

N,N´-bis(2,6-di-iso-propylphenyl)imidazole-2-ylidene) synthesized by Nolan´s group was particularly
effective in the cyclization of linear γ and δ-alkynoic acids of general composition
RC≡C(CH2)nCHR´CO2H (n = 1, 2; R = H, Me, Br or aryl group; R´ = H, CO2Me), allowing to
perform the reactions at r.t. with remarkably low catalyst loadings (25 ppm-0.1 mol%) [49]. The
outstanding activity of 33 is related to its ability to dissociate in solution into the two mononuclear
species [Au(IPr)][BF4] and [Au(OH)(IPr)], the former acting as a Lewis acid for the activation of the
alkyne bond, and the latter as a Brønsted base capable of generating the more nucleophilic carboxylate
anions by deprotonation of the carboxylic acid. An exquisite regioselectivity for the exo cyclization was
in all the cases observed, except with internal alkynes bearing a methyl substituent, for which mixtures
of the exo and endo addition products were obtained. Of note is the fact that [{Au(IPr)}2(µ-OH)][BF4]
(33) proved to be also effective in the more challenging cyclization of ε-acetylenic acids, although
higher temperatures and catalyst loadings were needed (see Scheme 12).

On the other hand, an interesting approach to challenging oxepin-2-one derivatives 35
was developed by Aguilar and co-workers through the cycloisomerization of the corresponding
alkynylcyclopropane carboxylic acids 34 promoted by the in situ generated cation [Au(IPr)]+

(Scheme 13) [50]. The process, which requires strictly anhydrous conditions, involves the regioselective
6-endo-dig nucleophilic addition of the carboxylic acid unit to the activated C≡C bond. According to the
authors, the 6-endo-dig cyclization is favored over the 5-exo-dig one by the simultaneous coordination of
the C≡C and OMe groups to the gold atom (intermediate C). The subsequent cyclopropane ring-opening
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in the bicycle D thus generated would lead to the seven-membered ring intermediate E, which evolves
into the final oxepinone product by protodemetalation.
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Scheme 13. Gold(I)-catalyzed synthesis of oxepinones by cycloisomerization of the alkynoic acids 34.

It is important to note that the presence of the donor OMe substituent in the cyclopropane ring is
decisive for the formation of the oxepinones to take place. Thus, when the non-substituted derivative
36 was subjected to the action of [AuCl(IPr)]/AgOTs, under identical experimental conditions, a mixture
of compounds 37 and 38, still bearing the cyclopropane ring, was formed in low yield (Scheme 14) [50].
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Scheme 14. Gold-catalyzed cyclization of the alkynylcyclopropane carboxylic acid 36.

In marked contrast with the behavior of compounds 34, the cycloisomerization of the related
alkynylcyclobutane carboxylic acid 39 catalyzed in this case by the gold(I)-phosphine complex
[Au(JohnPhos)(NCMe)][SbF6] was not accompanied by the cyclobutane ring-opening, and the
cyclobutane-fused heterocycles 40 and 41 were obtained in a very high combined yield (Scheme 15) [51].
Moreover, the major product 40 resulted in this case from a 5-exo-dig cyclization, thereby pointing out
that the ring size plays an important role in the regioselectivity of the cycloisomerization reactions of
this particular class of cycloalkane-based alkynoic acids. As shown in Scheme 15, when 39 was treated
with the same gold catalyst in the presence of N-iodosuccinimide (NIS), the iodinated molecules 42 and
43 could be generated in excellent yield, with the 5-exo-dig cyclization product being again the major
component of the mixture (an inverted regioselectivity to that observed when the iodocyclization of 39
was performed, employing directly elemental iodine [51]).
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The groups of Michelet, Cadierno and Conejero reported the preparation of two families of Au(I)
and Au(III) complexes containing zwitterionic NHC ligands functionalized with 3-sulfonatopropyl
and protonated 2-pyridyl, 2-pycolyl or 2-pyridylethyl groups, i.e., compounds 44 and 45, capable of
catalyzing the cycloisomerization of γ-alkynoic acids under biphasic toluene/water conditions [52,53].
As illustrated with the examples depicted in Scheme 16, the reactions proceeded in air at r.t. and in
the absence of silver additives, with all the complexes showing comparable efficiency and selectivity.
Regarding this last point, 5-membered ring enol-lactones were exclusively obtained when substrates
featuring terminal C≡C bonds were employed, while mixtures of the corresponding 5 and 6-membered
ring lactones were formed starting from internal alkynes (an increase in the catalyst loading from 0.1
to 2.5 mol% was also required in these cases). It is noteworthy that in no case was the competitive
hydration of the alkyne units observed, even in cases of diynic substrates. Another interesting aspect
of these NHC-gold complexes is that their high solubility in water enabled their recycling by simple
separation of the organic phase containing the lactone products (up to ten consecutive runs; cumulative
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turnover number (TON) = 400). In this regard, the recyclability of the gold(III) derivatives 45 proved
to be much more effective due to their higher stability in the aqueous reaction medium (the Au(I)
complexes 44 decompose into catalytically inactive Au(0) nanoparticles much faster than 45).Catalysts 2020, 10, x FOR PEER REVIEW 11 of 37 
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Scheme 16. Cyclosiomerization of different γ-alkynoic acids in a biphasic medium catalyzed by the
water-soluble NHC-gold complexes 44–45.

Compounds 46 and 47a–f are additional examples of recyclable NHC-Au(I) complexes able
to promote the cycloisomerization of γ-alkynoic acids in aqueous environments under silver-free
conditions (Figure 3). As in the examples just discussed, the silica-supported one, 46, proved to be
active at room temperature in a toluene/water biphasic mixture (up to six consecutive runs; cumulative
TON = 178), showing an excellent regioselectivity towards the 5-exo-dig cyclization products in the case
of substrates bearing a terminal C≡C bond [54]. However, similarly to the case of 44–45, mixtures of the
corresponding 5- and 6-membered ring lactones were obtained starting from internal γ-alkynoic acids.
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Concerning the ammonium salt-tagged Au(I)-NHC complexes 47a–f, they catalyzed efficiently
the 5-exo-dig cyclization of different γ-alkynoic acids containing both terminal and internal alkyne
units at room temperature (up to 5 consecutive runs; cumulative TON = 198) [55]. The reactions were
performed employing pure water or an aqueous triethylammonium buffer solution as the solvent,
with yields in general higher in the latter medium since in pure water partial decomposition of the
gold complexes takes place. For some particularly hydrophobic substrates, the addition of an organic
co-solvent (THF) was needed. This was the case, for example, for the chiral alkynoic acid 48, whose
cycloisomerization into the enol lactone 49 catalyzed by 47b allowed the authors to develop a synthetic
route to 2-epi-clausemarine A (Scheme 17), an epimer of the naturally occurring furanocoumarin
clausemarine A isolated from Clausena lansium. The selective 5-exo-dig cyclization of pent-4-ynoic acid
in water was additionally described by Krause and co-workers employing a series of water-soluble
β-cyclodextrin-tagged NHC-gold(I) complexes [56].
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The iminophosphorane-based gold(I)-chloride complex 50 proved to be an active and selective
catalyst for the 5-exo-dig cyclization of γ-alkynoic acids in water (Figure 4) [57]. However, it was
much more effective when using the eutectic mixture 1ChCl/2Urea (ChCl = choline chloride) as the
solvent. Thus, by employing a metal loading of 1 mol%, several 5-membered ring enol lactones
could be synthesized in high yields and short times (from 15 min to 3 h) at room temperature, under
aerobic conditions and in the absence of co-catalysts, starting from terminal γ-alkynoic acids. In
addition, the recyclability of 50 in this alternative and biorenewable reaction medium could also be
demonstrated (up to four consecutive runs; cumulative TON = 374). The cyclization of the model
substrates HC≡CCH2CR2CO2H (R = H, Me) into the corresponding 5-membered ring lactones in
aqueous solution (buffered at pH 6.0) was additionally studied by employing the phosphine-gold(I)
complex [AuCl(tcep)] (tcep = tris(2-carboxyethyl)phosphine) confined in a protein nanoreactor [58].
Interestingly, some of the intermediates involved in the catalytic cycle could be detected by monitoring
the changes in the ionic current flow through the protein pores when the reactions were performed
under stoichiometric conditions.

Very recently, the 5-exo-dig cyclization of several γ-alkynoic acids containing terminal C≡C
units in a biphasic water/toluene system was successfully achieved by employing water-soluble gold
nanoparticles (NPs) stabilized by the PEG-tagged imidazolium salts 51 and 52 (PEG = polyethylene
glycol; see Figure 4) [59]. In terms of both activity and recyclability (up to six consecutive runs;
cumulative TON = 560), the PEG-tagged tris-imidazolium bromide 52 provided the best results due to
the higher solubility of the Au NPs in the aqueous phase. At this point it should also be mentioned that
catalytic systems consisting of Au NPs supported on zeolites [60–62], ultra-small mesoporous silica
nanoparticles [63] and thiol-functionalized siliceous mesocellular foams [64] stabilized in interfacially
cross-linked reverse micelles (ICRMs) [65] active in organic solvents, have also been described. Most
of them showed a superior reactivity to Au2O3, which is the simplest gold-based heterogeneous
catalyst for the 5-exo-dig cyclization of γ-alkynoic acids reported to date in the literature (typically
operating at r.t. with a loading of 2.5 mol%) [66]. In this regard, the Au@ICRM systems (see Figure 5)
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deserve to be highlighted, since they enabled a drastic reduction of the catalyst loading (up to 100
times lower) [65]. A possible explanation for this enhanced activity is that the ICRM pulls the substrate
from the environment towards the catalytic metal, and once converted, the lactone product is rapidly
ejected since it prefers the less polar environment rather than the charged ICRM core. An additional
heterogeneous catalyst for the cyclization of γ-alkynoic acids in organic media, generated by supporting
[Au(PPh3)][BF4] on the mesoporous silica SBA-15, can also be found in the literature [67].
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Gold NPs supported on beta zeolite proved to be active in the cycloisomerization of terminal
γ-alkynoic acids when employing a range of ionic liquids (ILs) as the reaction media [62]. However, in
most cases, the lactone products could not be separated from the ILs at the end of the process. Only
[C6mim][Cl] (C6mim = 1-hexyl-3-methylimidazolium) was found to separate effectively from Et2O,
and the cycloisomerized products could be selectively extracted with this solvent and isolated in pure
form. In the same work, the ability of gold(III) chloride-based ionic liquids of type [Cnmim][AuCl4]
(n = 2, 4, 6, 18) to promote the process was also demonstrated. In particular, using 2.5 mol% of
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[C6mim][AuCl4] and [C6mim][Cl] as the solvent, the selective 5-exo-dig cyclization of several hindered
and unhindered γ-alkynoic acids was successfully achieved in the absence of base (Scheme 18). The
lactone products could be isolated in high yields after extraction with Et2O and the IL-catalyst recycled
three times without loss of activity (cumulative TON = 120). Although no detailed data were provided
by the authors, they indicated that [C2mim][AuCl4], [C4mim][AuCl4] and [C18mim][AuCl4] show
reactivity and recyclability similar to that of [C6mim][AuCl4].Catalysts 2020, 10, x FOR PEER REVIEW 14 of 37 
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2.2. Cascade Processes Involving the Cycloisomerization of Alkynoic Acids

Taking advantage of the intrinsic reactivity of lactones, a number of cascade processes involving
the initial gold-catalyzed cyclization of an alkynoic acid have been developed. The first one was
described by Dixon and co-workers in 2007 with the coupling of different linear γ- and δ-alkynoic
acids with 2-(2-pyrrolyl)ethylamine or tryptamine to generate fused polycyclic pyrroles and indoles
(Scheme 19) [68]. The reactions were catalyzed by the in situ generated cation [Au(PPh3)]+ and required
prolonged heating in toluene or xylene to obtain the products in high yields.
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As exemplified with the coupling of pent-4-ynoic acid and tryptamine, the initial step of the
process is the generation of the corresponding enol-lactone, which rapidly evolves into the linear
keto-amides F by aminolysis of the C–O bond (Scheme 20). In a subsequent step, the key one, an
N-acyliminium ion G is formed through an intramolecular reaction probably facilitated by the gold
catalyst. The final attack of the nucleophilic C-2 carbon of the indolic unit on the iminium carbon leads
to the polycyclic product.
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Following this pioneering work, related Au-catalyzed coupling reactions of alkynoic acids with
indole- and pyrrole-containing amines were subsequently described in the literature, allowing the rapid
construction of a wide variety of nitrogen-containing polycyclic compounds [69–72]. Moreover, the
synthetic utility of these cascade processes was fully demonstrated with the use of other functionalized
amines [71,72]. For example, starting from 2-aminobenzyl alcohols and different γ- and δ-alkynoic
acids, an efficient and general synthesis of pyrrolo- (n = 1) and pyrido[2,1-b]benzo[d][1,3]oxazin-1-ones
(n = 2) was described by Liu and co-workers while employing [Au(JohnPhos)(NCMe)][SbF6] as the
catalyst (Scheme 21) [73]. The formation of compounds 53 involves the intramolecular nucleophilic
attack of the OH group to the corresponding N-acyliminium ion.
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Pyrrolo/pyrido[2,1-a][1,3]benzoxazinone 54 [74], pyrrolo/pyrido[2,1-a]quinazolinone 55 [74],
benzo[4,5]imidazo[1,2-c]pyrrolo/pyrido[1,2-a]quinazolinone 56 [75], benzo[e]indolo[1,2-a]
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pyrrolo/pyrido[2,1-c][1,4]-diazepine-3,9-dione 57 [76] and pyrrolo[1,2-a:2´,1´-c]-/pyrido[2,1-c]
pyrrolo[1,2-a]quinoxalinone 58 [77] derivatives were also accessed by the same group by
employing 2-aminobenzoic acids, 2-aminobenzamides, 2-(1H-benzo[d]imidazol-2-yl)anilines,
(2-aminophenyl)(1H-indol-1-yl)methanones and 2-(1H-pyrrol-1-yl)anilines, respectively, as the
coupling partners (Figure 6). Complex [Au(JohnPhos) (NCMe)][SbF6] (2–10 mol%) was in all cases
used to promote the reactions, which required temperatures in the range 80–120 ◦C. However, it should
be mentioned at this point that, to obtain compounds 56–58 in high yields, the addition of a Brønsted
or Lewis acid co-catalyst was needed to facilitate the intramolecular attack of the corresponding
nucleophile to the N-acyliminium intermediate. On the other hand, it is also worth noting that, in the
case of the pyrrolo[1,2-a:2´,1´-c]-/pyrido[2,1-c]pyrrolo[1,2-a]quinoxalinones 58, the reactions could be
conveniently carried out in water.
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Related coupling processes employing benzene-1,2-diamines and 2-(aminomethyl)benzenamines
as the nucleophiles were reported by Patil and co-workers using the [AuCl(PPh3)]/AgOTf combination
as the catalyst [78]. The reactions allowed the regioselective preparation of broad series of fused
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dihydrobenzimidazoles 59 and tetrahydroquinazolines 60 starting from both terminal and internal γ-
and δ-alkynoic acids (Scheme 22). Interestingly, in the case of α-substituted γ-alkynoic acids (i.e., n = 0
and X = CHR3 or CR4R5), the corresponding products were obtained in high diastereoselectivities as a
consequence of the steric interaction between the substituents in this position with the CH2R1 unit.
By applying the same reaction conditions, the efficient access to different pyrrolo- and indolo-fused
quinazolinones, some of them featuring anticancer activities, was possible by reacting γ- and δ-alkynoic
acids with 2-aminobenzohydrazides [79]. In addition, Patil´s group also demonstrated the utility
of these Au-catalyzed coupling processes for the preparation of a huge variety of multifunctional
polyheterocyclic scaffolds, starting from selected alkynoic acids and functionalized amines through the
so-called “relay catalytic branching cascade” (RCBC) technique [80]. Cascade reactions involving the
cycloaromatization of 2,4-dien-6-yne carboxylic acids [81] and the assembly of fused indeno-pyranones
from enediynic carboxylic acids [82] have also been described.
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Additional studies by Dixon and co-workers in the field revealed that the coupling of enol-lactones
with tryptamine derivatives, via the N-acyliminium cyclization cascades just mentioned, can be
promoted in an enantioselective manner by chiral Brønsted acids, processes that are compatible with
the in situ generation of the enol-lactone through a gold-catalyzed cycloisomerization reaction, as
illustrated in Scheme 23 [83].

Within the field of asymmetric synthesis, the work described by García-Álvarez, González-Sabín
and co-workers is also noteworthy; they developed a highly enantioselective synthesis of the chiral
γ-hydroxy amides 62 starting from pent-4-ynoic acid and secondary aromatic amines through the
sequential action of KAuCl4 and a ketoreductase (KRED) enzyme (Scheme 24) [84]. Thus, the
initial gold-catalyzed cyclization of the alkynoic acid leads to the corresponding enol-lactone which
immediately undergoes aminolysis to generate the linear γ-keto amides 61. The subsequent addition
of the KRED, along with the cofactor NADP+ (nicotinamide adenine dinucleotide phosphate) and the
hydrogen source iPrOH, to the medium, enables the bioreduction of the keto group of 61. The chiral
γ-hydroxy amides 62 were obtained in all cases in almost quantitative yields, and by selecting the
appropriate KRED, both enantiomers were accessible with ee values ≥ 99%. Similarly, the synthesis of
enantiopure (R)- and (S)-γ-hydroxyvaleric acid could also be achieved in a quantitative manner by
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replacing the amine with water, since, at 50 ◦C, the initially formed enol-lactone is transformed into
levulinic acid by hydrolysis.Catalysts 2020, 10, x FOR PEER REVIEW 18 of 37 
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On the other hand, a synthetically useful approach to butenolide derivatives 63 and 64 was
developed by Ji and co-workers through a three-component coupling of terminal alkynes, secondary
amines and glyoxylic acid (Scheme 25) [85].

The process, which proceeds under mild conditions in the presence of catalytic amounts of AuBr3,
involves the selective 5-endo-dig cyclization of the in situ formed α-N-substituted β-alkynoic acids 65
(see Scheme 26). These intermediate species are generated through the initial condensation between
the amines and glyoxylic acid, and subsequent addition of alkyne to the resulting iminium cation via
the corresponding gold-acetylide. Depending on the nature of the alkyne, compounds 63 and 64 were
selectively obtained by electrophilic trapping of the metallated intermediate H with a proton (aliphatic
alkynes) or the iminium cation (aromatic alkynes) along with a 1,2-hydride shift.



Catalysts 2020, 10, 1206 19 of 36
Catalysts 2020, 10, x FOR PEER REVIEW 19 of 37 

 

 
Scheme 25. Access to butenolide derivatives though a three-component tandem process. 

The process, which proceeds under mild conditions in the presence of catalytic amounts of 
AuBr3, involves the selective 5-endo-dig cyclization of the in situ formed α-N-substituted β-alkynoic 
acids 65 (see Scheme 26). These intermediate species are generated through the initial condensation 
between the amines and glyoxylic acid, and subsequent addition of alkyne to the resulting iminium 
cation via the corresponding gold-acetylide. Depending on the nature of the alkyne, compounds 63 
and 64 were selectively obtained by electrophilic trapping of the metallated intermediate H with a 
proton (aliphatic alkynes) or the iminium cation (aromatic alkynes) along with a 1,2-hydride shift. 

 
Scheme 26. Proposed mechanism for the formation of butenolides 63 and 64. 

2.3. Intermolecular Addition of Carboxylic Acids to Alkynes 

Compared to the cycloisomerization reactions of alkynoic acids, intermolecular additions of 
carboxylic acids to alkynes have been much less studied with gold-based catalysts. In this context, 
the first example, reported by Schmidbaur and co-workers in 2004, involved the addition of glacial 
acetic acid to hex-3-yne catalyzed by the carboxylate-gold(I) complex [Au{OC(O)C2F5}(PPh3)] (0.134 
mol%) in the presence of BF3·Et2O as a co-catalyst (5.25 mol%) [86]. However, after heating the 
mixture in THF at 60 °C for 1 h, the desired enol ester hex-3-en-3-yl acetate was generated in only 6% 
yield together with hexan-3-one (12% yield), resulting from the hydration of the alkyne. A few years 
later, Chary and Kim reported an efficient and general protocol employing the gold(I) cation 
[Au(PPh3)]+ (generated in situ from [AuCl(PPh3)] and AgPF6) as a catalyst (Scheme 27) [87]. 

Scheme 25. Access to butenolide derivatives though a three-component tandem process.

Catalysts 2020, 10, x FOR PEER REVIEW 19 of 37 

 

 
Scheme 25. Access to butenolide derivatives though a three-component tandem process. 

The process, which proceeds under mild conditions in the presence of catalytic amounts of 
AuBr3, involves the selective 5-endo-dig cyclization of the in situ formed α-N-substituted β-alkynoic 
acids 65 (see Scheme 26). These intermediate species are generated through the initial condensation 
between the amines and glyoxylic acid, and subsequent addition of alkyne to the resulting iminium 
cation via the corresponding gold-acetylide. Depending on the nature of the alkyne, compounds 63 
and 64 were selectively obtained by electrophilic trapping of the metallated intermediate H with a 
proton (aliphatic alkynes) or the iminium cation (aromatic alkynes) along with a 1,2-hydride shift. 

 
Scheme 26. Proposed mechanism for the formation of butenolides 63 and 64. 

2.3. Intermolecular Addition of Carboxylic Acids to Alkynes 

Compared to the cycloisomerization reactions of alkynoic acids, intermolecular additions of 
carboxylic acids to alkynes have been much less studied with gold-based catalysts. In this context, 
the first example, reported by Schmidbaur and co-workers in 2004, involved the addition of glacial 
acetic acid to hex-3-yne catalyzed by the carboxylate-gold(I) complex [Au{OC(O)C2F5}(PPh3)] (0.134 
mol%) in the presence of BF3·Et2O as a co-catalyst (5.25 mol%) [86]. However, after heating the 
mixture in THF at 60 °C for 1 h, the desired enol ester hex-3-en-3-yl acetate was generated in only 6% 
yield together with hexan-3-one (12% yield), resulting from the hydration of the alkyne. A few years 
later, Chary and Kim reported an efficient and general protocol employing the gold(I) cation 
[Au(PPh3)]+ (generated in situ from [AuCl(PPh3)] and AgPF6) as a catalyst (Scheme 27) [87]. 

Scheme 26. Proposed mechanism for the formation of butenolides 63 and 64.

2.3. Intermolecular Addition of Carboxylic Acids to Alkynes

Compared to the cycloisomerization reactions of alkynoic acids, intermolecular additions of
carboxylic acids to alkynes have been much less studied with gold-based catalysts. In this context,
the first example, reported by Schmidbaur and co-workers in 2004, involved the addition of glacial
acetic acid to hex-3-yne catalyzed by the carboxylate-gold(I) complex [Au{OC(O)C2F5}(PPh3)] (0.134
mol%) in the presence of BF3·Et2O as a co-catalyst (5.25 mol%) [86]. However, after heating the mixture
in THF at 60 ◦C for 1 h, the desired enol ester hex-3-en-3-yl acetate was generated in only 6% yield
together with hexan-3-one (12% yield), resulting from the hydration of the alkyne. A few years later,
Chary and Kim reported an efficient and general protocol employing the gold(I) cation [Au(PPh3)]+

(generated in situ from [AuCl(PPh3)] and AgPF6) as a catalyst (Scheme 27) [87].
The addition process was operative for both terminal and internal alkynes working in toluene

at 60–110 ◦C with metal loadings of 5 mol%. Starting from terminal alkynes, the corresponding
Markovnikov addition products were selectively obtained, and in the case of the internal ones
the reactions proceeded with a complete (Z) stereoselectivity (anti-addition). Moreover, an
exquisite regioselectivity was observed when the non-symmetrically substituted internal alkynes
1-propynylbenzene and ethyl 3-phenylpropiolate were employed as substrates. In the same study,
Chary and Kim found that enol esters of type RCH2C(O2CR´)=CH2 easily isomerize into the
thermodynamically more stable species RCH=C(O2CR´)CH3, compounds that can be directly accessed
by performing the corresponding [Au(PPh3)]+-catalyzed addition reactions using AgOTf instead of
AgPF6.

Complex [AuCl(PPh3)], in combination with AgOTf, was subsequently employed by Schreiber
and co-workers for the preparation of several substituted α-pyrone derivatives by coupling propiolic
acids with terminal alkynes (Scheme 28) [88]. The process involves the initial formation of vinyl
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propiolate intermediates I, resulting from the Au(I)-catalyzed Markovnikov addition of the propiolic
acids to the terminal alkynes, which readily evolve into the cyclic oxocarbenium species J through a
6-endo cyclization (also promoted by the [Au(PPh3)]+ cation). The α-pyrone products 66 are finally
generated from J through a deprotonation/protodemetalation sequence.Catalysts 2020, 10, x FOR PEER REVIEW 20 of 37 

 

 
Scheme 27. Intermolecular addition of carboxylic acids to alkynes catalyzed by [Au(PPh3)]+. 

The addition process was operative for both terminal and internal alkynes working in toluene 
at 60–110 °C with metal loadings of 5 mol%. Starting from terminal alkynes, the corresponding 
Markovnikov addition products were selectively obtained, and in the case of the internal ones the 
reactions proceeded with a complete (Z) stereoselectivity (anti-addition). Moreover, an exquisite 
regioselectivity was observed when the non-symmetrically substituted internal alkynes 1-
propynylbenzene and ethyl 3-phenylpropiolate were employed as substrates. In the same study, 
Chary and Kim found that enol esters of type RCH2C(O2CR´)=CH2 easily isomerize into the 
thermodynamically more stable species RCH=C(O2CR´)CH3, compounds that can be directly 
accessed by performing the corresponding [Au(PPh3)]+-catalyzed addition reactions using AgOTf 
instead of AgPF6. 

Complex [AuCl(PPh3)], in combination with AgOTf, was subsequently employed by Schreiber 
and co-workers for the preparation of several substituted α-pyrone derivatives by coupling propiolic 
acids with terminal alkynes (Scheme 28) [88]. The process involves the initial formation of vinyl 
propiolate intermediates I, resulting from the Au(I)-catalyzed Markovnikov addition of the propiolic 
acids to the terminal alkynes, which readily evolve into the cyclic oxocarbenium species J through a 
6-endo cyclization (also promoted by the [Au(PPh3)]+ cation). The α-pyrone products 66 are finally 
generated from J through a deprotonation/protodemetalation sequence. 

 
Scheme 28. Au(I)-catalyzed synthesis of α-pyrones from propiolic acids and terminal alkynes. 

Scheme 27. Intermolecular addition of carboxylic acids to alkynes catalyzed by [Au(PPh3)]+.

Catalysts 2020, 10, x FOR PEER REVIEW 20 of 37 

 

 
Scheme 27. Intermolecular addition of carboxylic acids to alkynes catalyzed by [Au(PPh3)]+. 

The addition process was operative for both terminal and internal alkynes working in toluene 
at 60–110 °C with metal loadings of 5 mol%. Starting from terminal alkynes, the corresponding 
Markovnikov addition products were selectively obtained, and in the case of the internal ones the 
reactions proceeded with a complete (Z) stereoselectivity (anti-addition). Moreover, an exquisite 
regioselectivity was observed when the non-symmetrically substituted internal alkynes 1-
propynylbenzene and ethyl 3-phenylpropiolate were employed as substrates. In the same study, 
Chary and Kim found that enol esters of type RCH2C(O2CR´)=CH2 easily isomerize into the 
thermodynamically more stable species RCH=C(O2CR´)CH3, compounds that can be directly 
accessed by performing the corresponding [Au(PPh3)]+-catalyzed addition reactions using AgOTf 
instead of AgPF6. 

Complex [AuCl(PPh3)], in combination with AgOTf, was subsequently employed by Schreiber 
and co-workers for the preparation of several substituted α-pyrone derivatives by coupling propiolic 
acids with terminal alkynes (Scheme 28) [88]. The process involves the initial formation of vinyl 
propiolate intermediates I, resulting from the Au(I)-catalyzed Markovnikov addition of the propiolic 
acids to the terminal alkynes, which readily evolve into the cyclic oxocarbenium species J through a 
6-endo cyclization (also promoted by the [Au(PPh3)]+ cation). The α-pyrone products 66 are finally 
generated from J through a deprotonation/protodemetalation sequence. 

 
Scheme 28. Au(I)-catalyzed synthesis of α-pyrones from propiolic acids and terminal alkynes. Scheme 28. Au(I)-catalyzed synthesis of α-pyrones from propiolic acids and terminal alkynes.

As shown in Scheme 29 with a couple of representative examples, when the propiolic acids were
subjected to the action of [Au(PPh3)]+ in the absence of the terminal alkyne partner, they dimerized
into the 4-hydroxy α-pyrones 67 [88]. The formation of 67 involves the intermolecular addition of the
CO2H unit of one of the propiolic acid molecules to the C≡C bond of the second one and the generation
of the corresponding oxocarbenium intermediate, which then evolves into the final products by acyl
group migration.
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Employing the catalytic [AuCl(PPh3)]/AgPF6 system, a general procedure for the preparation
of (Z)-β-iodoenol esters 68 by the addition of carboxylic acids to iodoalkynes was developed by
Cadierno and co-workers (Scheme 30) [89,90]. The reactions proceeded with high yields, under mild
conditions (toluene/r.t.), and in a complete regio- and stereoselective manner (selective anti-addition of
the carboxylate group to the more electrophilic C-2 carbon of the π-activated iodoalkyne). In addition,
the process featured a wide scope and tolerated the presence of different functional groups in both
the alkyne and acid partners. It should also be remarked at this point that the (Z)-β-iodoenol esters
68 are very useful compounds from a synthetic point of view, as they can participate in Pd-catalyzed
Suzuki–Miyaura [89,91] and Sonogashira [90] cross-couplings, and in Ni-catalyzed homocoupling
processes [92,93], thereby allowing access to a wide range of stereochemically defined β-aryl-vinyl
esters 69, enynyl esters 70 and buta-1,3-diene-1,4-diyl diesters 71, respectively.
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Scheme 30. Au(I)-catalyzed synthesis of (Z)-β-iodoenol esters and their derived C–C coupling products.

Based on the [AuCl(PPh3)]/AgPF6-catalyzed addition of β-aryl acrylic acids to iodoalkynes, a
synthetic route to (E)-3-(arylidene)-5-substituted-2(3H)-furanones 73 was subsequently reported by
subjecting the resulting (Z)-β-iodoenol esters 72 to a palladium-catalyzed Mizoroki–Heck reaction
(Scheme 31) [94]. Although the process was routinely performed in two separate steps, the authors
demonstrated with a couple of examples the possibility of carrying out both transformations in a
one-pot manner, i.e., without the need to isolate the intermediate species 72, just by replacing the
solvent and adding the palladium catalyst and the KOAc base after the initial Au-catalyzed reaction.

Very recently, the catalytic addition of indole-2-carboxylic acid to hex-1-yne was explored with
different ruthenium and gold catalysts [95]. As shown in Scheme 32, by employing catalytic amounts of
[AuCl(PPh3)]/AgPF6 in toluene at 100 ◦C, the reaction led to the enol ester 74, which resulted from the
addition of both the acid and NH groups of the indole derivative to hex-1-yne molecules. In the case of
ruthenium, the expected monoaddition product of the acid to the alkyne was preferentially formed.
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On the other hand, it is also noteworthy that complex [AuCl(PPh3)], associated now with AgOAc,
was successfully employed to promote the intermolecular addition of carboxylic acids to non-activated
internal alkynes in water, allowing the synthesis of a wide variety of trisubstituted enol esters (37
examples) in moderate to high yields and with complete (Z) stereoselectivity (anti-addition) [96]. The
lower reactivity of the alkyl- and aryl-substituted alkynes employed in this study in comparison to
that of the terminal or iodo-substituted ones required the reactions to be carried out in this case at 60
◦C instead of room temperature. Related addition reactions in water were more recently described by
employing as catalysts the gold(I) chloride complexes 75, containing hydrophilic ferrocenylphosphino
sulfonate ligands (see Figure 7), which allowed the authors to reduce the metal loadings from 5 to 2
mol% [97]. As observed with [AuCl(PPh3)], mixtures of regioisomers were in most cases obtained
when non-symmetrically substituted alkynes were used as substrates.
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Additional examples of gold-based catalysts able to promote the intermolecular addition of
carboxylic acids to alkynes are the dinuclear hydroxo-brigded NHC complex [{Au(IPr)}2(µ-OH)][BF4]
(33 in Scheme 12) [98] and the mononuclear derivative 76 containing an amide-functionalized
biphenylphosphine ligand (see Figure 8) [99]. Thus, 33 proved to be highly efficient in the
hydrocarboxylation of internal alkynes under solvent-free and silver-free conditions, leading to
the enol-ester products in high yields and with complete (Z) stereoselectivity by performing the
reactions at 80 ◦C with a catalyst loading of 0.5 mol%. In addition, very good regioselectivity was
observed with non-symmetrically substituted alkynes (three representative examples are shown in
Scheme 33). Concerning the mononuclear complex 76, it was employed to promote, in combination
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with AgNTf2, the addition of a broad range of aromatic and aliphatic carboxylic acids to both terminal
and internal alkynes. Excellent results in terms of activity were achieved while working at 80 ◦C in
fluorobenzene, conditions that allowed them to generate the corresponding anti-addition products in
excellent yields with remarkably low metal loadings (in the range of 25-150 ppm in most of the cases).
The outstanding effectiveness of this catalyst, with which TON values of up to 34,400 were reached,
was reasoned in terms of the cooperative effect exerted by the basic amide group present in the ligand.
This group would interact with the carboxylic acid, enhancing in this way its nucleophilicity.
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3. Addition of Carboxylic Acids to Allenes

3.1. Cycloisomerization of Allenoic Acids

The first example of this type of cyclization processes catalyzed by gold was described by Toste and
co-workers in 2007 [100]. As shown in Scheme 34, they studied the enantioselective cycloisomerization
of the trisubstituted γ-allenoic acid 77 with dinuclear Au(I) complexes of general composition
[(AuCl)2(µ-L)], containing optically pure (R)/(S)-BINAP or bis(diphenylphosphino)methane (dppm)
as bridging L ligands, in combination with a silver(I) salt featuring an achiral or an optically active
counteranion (p-nitribenzoate or the binaphthol-based phosphate (R)-TRIP, respectively). In all cases,
the regioselective formation of the five-membered ring lactone 78 was observed, with yields in the
range 80–91% after 24 h of stirring in benzene at room temperature. Concerning the enantioselectivity
of the process, a maximum enantiomeric excess of 82% was reached when the (S)-BINAP diphosphine
and the chiral counteranion (R)-TRIP made part of the catalytic system.
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The same group also successfully accomplished the enantioselective bromocyclization of 77 and
one of its congeners, through the use of a related dinuclar Au(I) complex associated with Ag-(S)-TRIP
and a N-bromolactam, the latter acting as an electrophilic bromine source able to promote the
halodeauration of the corresponding vinylgold intermediate K (see Scheme 35) [101].
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The high yield synthesis of lactone 78 in racemic form by cyclization of 77 was later reported by
Hashmi and co-workers, who employed the achiral mono- and dinuclear gold(I)-phosphine complexes
79–81 depicted in Figure 9 [102,103]. All of them were able to promote the process at room temperature
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in C6D6 with metal loadings of 0.05–0.5 mol% in the case of 79–80 and 2.5 mol% in the case of 81, the
latter requiring the presence of a silver(I) salt as co-catalyst [103].Catalysts 2020, 10, x FOR PEER REVIEW 25 of 37 
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The group of Lipshutz described the asymmetric cycloisomerization of different γ-allenoic
acids in an aqueous micellar medium while employing the ionic dinuclear Au(I) complex 82,
containing (R)-MeO-BIPHEP as bridging ligand and the (R)-TRIP counteranion, and the surfactant
TPGS-750-M (Scheme 36) [104]. The reactions gave high yields under mild conditions (r.t.),
leading to the vinyl-lactones with good to excellent ee´s (72-96%). The recyclability of the aqueous
solution containing 82 was possible after extraction of the lactone products with an ether/hexane
mixture—the yields and ee´s remained constant throughout six successive reactions. It should be
mentioned at this point that Toste and co-workers also developed a recyclable catalytic system
for the enantioselective conversion of γ- and δ-allenoic acids into chiral 5- and 6-membered ring
vinyl-lactones (ee´s in the 81–93% range) by supporting the dinuclear gold(I) complex [Au2(µ-L)][BF4]2

(L = (R)-(+)-2,2’-bis[di(3,5-xylyl)phosphino]-6,6’-dimethoxy-1,1’-biphenyl) on the mesoporous silica
SBA-15 [67]. In this case, the heterogeneous catalyst was easily recovered from the solution by
centrifugation and could be reused for 11 consecutive cycles with no decrease in the activity
and enantioselectivity (cumulative TON = 507). In addition, for all the substrates studied, the
enantioselectivity reached with the supported catalyst was superior to that obtained with complex
[Au2(µ-L)][BF4]2 under homogeneous conditions. The same authors also explored the catalytic behavior
of silica-supported Au NPs coated with chiral NHC ligands in the lactonization of two model γ-allenoic
acids [105]. Although good results in terms of activity and recyclability (up to five consecutive runs;
cumulative TON = 227) were obtained, the enantiomeric excesses did not exceed 16%.

In a subsequent study, Lipshutz and co-workers reported the racemic version of the cyclization
reactions depicted in Scheme 36; they employed ppm levels of [AuCl(HandaPhos)]/AgSbF6 (1000
and 2000 ppm, respectively) in an aqueous micellar medium generated with the surfactant Nok (see
Figure 10) [106].

On the other hand, Ohfume and co-workers studied the cycloisomerization of different β-allenoic
acids containing a silyl group attached to the allenic terminus—for example, the chiral allenylglycine
derivatives 83, employing different Pd, Pt, Hg, Ag and Au-based catalysts. Among them, best results
were obtained with the cationic oxo-bridged trinuclear gold(I) complex [{(Ph3P)Au}3(µ-O)][BF4],
which allowed the regioselective access to the corresponding 2-amino-4-silylmethylene-substituted
γ-butyrolactones 84 resulting from the addition of the carboxylate to the central sp-carbon of the
allene (Scheme 37) [107]. Regarding the stereoselectivity of the process, it was found to be strongly
dependent on the substitution pattern at the C-2 position of the substrates. Thus, while in the case
of R = H the product was obtained in an almost diastereomerically pure manner, those substrates
featuring a quaternary carbon center (R = Me, Bn) led to the respective γ-butyrolactones 84 as mixtures
of diastereoisomers.
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Taking advantage of this initial work, the total synthesis of the natural product (-)-funebrine,
in which the two γ-butyrolactone units of the molecule were generated by cycloisomerization
of the related allenylsilane 85 into 86, could be developed (Scheme 38) [108]. Although the use
of the dimethylphenylsilyl group instead of the tert-butyldimethylsilyl (TBS) one reduced the
diasteroselectivity of the cyclization process (diastereomeric ratio d.r. = 10:1 vs. > 20:1), said
group was chosen by the authors, since its subsequent removal proceeds under milder conditions,
thereby avoiding epimerization at the C-3 carbon. Of note is the fact that, by adding 20 mol% of
iPr2NEt to the reaction medium, the catalyst loading could be reduced from 3 to 1 mol%.Catalysts 2020, 10, x FOR PEER REVIEW 28 of 37 
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It is also worth noting that the regioselectivity of the cyclization reactions to provide
γ-butyrolactones collected in Schemes 37 and 38 seems to be governed by the presence of the
silyl group. In fact, when it was replaced by a tBu one, such as in compound 87, hydroamination at the
terminal carbon of the allenic unit preferentially occurred to give the pyrrolidine 88 (Scheme 39) [107].
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After screening of different gold(I) complexes with phosphine and NHC type ligands, Ma and
co-workers identified [AuCl(LB-Phos)] (89) as a suitable catalyst for the highly regio- and stereoselective
cyclization of optically pure 1,3-disubstituted γ-allenoic acids 90 (Scheme 40) [109]. Thus, using this
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complex in combination with AgOTf, the access to a broad range of chiral γ-vinylic γ-butyrolactones
91 could be achieved with an excellent axial-to-central chirality transfer (ee´s in the range 85–99%).
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Moreover, they developed a Pd/C-based C–O bond cleavage-free procedure for the hydrogenation
of lactones 91, through which some biologically active molecules of natural origin such as
(R)/(S)-4-tetradecalactone, (R)-γ-palmitolactone or (R)-4-decalactone could be synthesized (see
Figure 11) [109].

Catalysts 2020, 10, x FOR PEER REVIEW 29 of 37 

 

Moreover, they developed a Pd/C-based C–O bond cleavage-free procedure for the 
hydrogenation of lactones 91, through which some biologically active molecules of natural origin 
such as (R)/(S)-4-tetradecalactone, (R)-γ-palmitolactone or (R)-4-decalactone could be synthesized 
(see Figure 11) [109]. 

 
Figure 11. Structure of some naturally occurring γ-alkyl-substituted γ-butyrolactones. 

In the same work, the naturally occurring γ-vinyl-substituted γ-butyrolactones xestospongiene 
F, G, H and E were also conveniently prepared by cycloisomerization of the appropriate stereoisomer 
of the chiral γ-allenoic acid 92 (Scheme 41) [109]. 

 

Scheme 41. Gold-catalyzed synthesis of some natural xestospongienes. 

In additional studies, Ma's group accomplished the total synthesis of the natural products (R)-
traumatic lactone, (S)-traumatic lactone and (S)-rhizobialide through strategies in which the chiral 
five-membered ring lactone units of these compounds were generated by means of the [AuCl(LB-
Phos)]/AgOTf-catalyzed cyclization of the corresponding enantiomer of the allenoic acid 93 (Scheme 
42) [110,111]. 

Figure 11. Structure of some naturally occurring γ-alkyl-substituted γ-butyrolactones.

In the same work, the naturally occurring γ-vinyl-substituted γ-butyrolactones xestospongiene F,
G, H and E were also conveniently prepared by cycloisomerization of the appropriate stereoisomer of
the chiral γ-allenoic acid 92 (Scheme 41) [109].

In additional studies, Ma’s group accomplished the total synthesis of the natural products
(R)-traumatic lactone, (S)-traumatic lactone and (S)-rhizobialide through strategies in which the
chiral five-membered ring lactone units of these compounds were generated by means of the
[AuCl(LB-Phos)]/AgOTf-catalyzed cyclization of the corresponding enantiomer of the allenoic acid 93
(Scheme 42) [110,111].

On the other hand, the behavior of different mononuclear gold(I)-chloride complexes
containing phosphine, phosphite and NHC-type ligands, such as [AuCl(PPh3)], [AuCl(JohnPhos)],
[AuCl{P(OPh)3}], [AuCl(IMes)] or [AuCl(H2IMes)], in the cyclization of 2,2-diaryl substituted γ-allenoic
acids 94, was explored by Slaughter and co-workers (Scheme 43) [112]. The formation of mixtures
of three isomeric products was in most the cases observed—i.e., the expected γ-vinyl-substituted
γ-butyrolactones 95, compounds 96 resulting from the double bond isomerization in 95, and the tricyclic
derivatives 97 which arise from a tandem hydroacyloxylation/hydroarylation process involving 95
as intermediates. However, an in-depth study of the process made it possible to selectively generate
lactones 95 and 96 by exploiting Brønsted acid/base and ligand effects. Thus, as shown in Scheme 43,
using the phosphite complex [AuCl{P(OPh)3}] in combination with AgOTf, compounds 95 were
preferentially formed in the presence of a base, whereas a Brønsted acid oriented the reaction towards
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the isomerized products 96. With a limited substrate scope, the authors also developed protocols to
obtain the bridged tricyclic lactones 97 in a selective manner.
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Finally, it should be noted that Reek and co-workers successfully employed a supramolecular
platinum-based nanosphere functionalized with a phosphine-gold(I)-chloride complex in the cyclization
of the closely related 2,2-diphenylhexa-4,5-dienoic acid into the corresponding five-membered ring
vinyl-lactone [44].

3.2. Intermolecular Addition of Carboxylic Acids to Allenes

Unlike other metals, such as palladium or rhodium, for which various catalytic systems capable
of promoting the intermolecular addition of carboxylic acids to allenes have been described [113], the
use of gold in this type of transformation has hardly been documented. In fact, only two examples
can currently be found in the literature. The first one was described Zhang and Widenhoefer in
2008 and involved the addition of propionic acid to the 1,3-disubstituted allene 98 catalyzed by the
carbene-gold(I) complex [AuCl(IPr)] in combination with AgOTf (Scheme 44) [114]. The reaction led to
the regio- and stereoselective formation of the allylic ester 99, which was isolated in 80% yield.
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In a more recent study, the group of Ichikawa reported the synthesis of the fluorinated allyl esters
101 by addition of acetic, trifluoroacetic or benzoic acid to the trisubstituted 1,1-difluoroallene 100
(Scheme 45) [115]. The reactions were promoted by the in situ generated [Au(PPh3)]+ cation and
proceeded again with complete regio- and stereoselectivity. AuCl3 proved to also be active in the
process, but led to esters 101 as mixtures of the corresponding (E) and (Z) isomers.
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4. Summary

In this contribution, the application of gold-based catalysts in the hydrofunctionalization of
alkynes and allenes with carboxylic acids has been comprehensively reviewed. The cyclisomerization
reactions of alkynoic acids have been the processes most widely studied, and several homogeneous and
heterogeneous systems have demonstrated their utility for the regio- and stereoselective construction
of different types of enol lactones under mild conditions, even in unconventional reaction media,
such as water, ionic liquids or deep eutectic solvents. In addition, a large number of elaborated
nitrogen-containing polycyclic compounds have been successfully accessed using readily available
alkynoic acids and functionalized amines as starting materials through cascade-type processes.
Gold-based catalysts have also demonstrated their utility in the intermolecular addition of carboxylic
acids to both terminal and internal alkynes, showing again high regio- and stereoselectivities.
Concerning allenes, the most remarkable results concern the preparation of chiral vinyl-lactones
with good enentioselectivities by using chiral catalysts or through axial-to-central chirality transfer
strategies; the latter found applications in the total synthesis of several natural products. It is hoped
that in the near future more attention will be paid to the intermolecular addition of carboxylic acids to
allenes, a process for which only two isolated examples are currently known.
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