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Abstract

In this paper we study optimal control problems governed by a semilinear elliptic equation. The
equation is nonmonotone due to the presence of a convection term, despite the monotonocity of
the nonlinear term. The resulting operator is neither monotone nor coervive. However, by using
conveniently a comparison principle we prove existence and uniqueness of solution for the state
equation. In addition, we prove some regularity of the solution and differentiability of the relation
control-to-state. This allows us to derive first and second order conditions for local optimality.
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1 Introduction

In this paper, we consider an optimal control problem associated with the following elliptic semilinear
equation {

Ay + b(x) · ∇y + f(x, y) = u in Ω,
y = 0 on Γ,

(1.1)

where A is an elliptic operator, b : Ω −→ Rn is a given function, f : Ω × R −→ R is nondecreasing
monotone in the second variable, u ∈ L2(Ω), Ω is a domain in Rn, n = 2 or 3, and Γ is the boundary of
Ω. The precise assumptions on these data will be given in the next section. Due to the convection term
induced by b, the linear part of the above operator is nonmonote. We emphasize that here we neither
assume that div b = 0 nor b is small. Consequently, the bilinear form associated with the linear part of
the operator is not necessarily coercive. This introduces some important difficulties in the analysis of the
equation. A thorough study is needed to prove existence and uniqueness of a solution of the equation
(1.1) for every u. This study makes a strong use of a comparison principle.

In many publications div b = 0 is assumed. This property is satisfied in several applications, for
instance if the quantity b represents a velocity field of an incompressible Navier-Stokes flow. If the flow
is compressible, the assumption div b = 0 cannot be justified. Some examples of applications where the
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divergence of the convection term need not be zero can be found in the introductory chapter of the book
[1].

In many books devoted to partial differential equations, the convection term appears and it is not
assumed to have zero divergence. Let us mention the classical books [12] or [16]; see also [18]. However,
only a few references treat the topic of existence and uniqueness of solution for linear elliptic equations
with convection term such that div b 6= 0 and b is not small. When the nonlinear term f is not present
in the state equation, the reader is referred to the early reference [19] for the existence and uniqueness of
a solution; see also [13, Theorem 8.3] or the recent reference [4]. In [5], the case of a semilinear equation
in dimension n ≥ 3 with the non-linearity y|y|λ−1, λ > n

n−2 , is studied. As far as we know, the most
general and complete results for the analysis of equation (1.1) are the ones presented below in Section 2.

The case of nonmonotone quasilinear elliptic equations was considered in [8] and [15]. However, in
the last two papers, the operator was coercive. The equation considered in this paper does not fit in the
problems studied in the mentioned references.

Associated with the state equation (1.1) we consider the following control problem:

(P) min
u∈Uad

J(u) :=

∫
Ω

L(x, yu(x)) dx+
ν

2

∫
Ω

u2(x) dx

where yu is the solution of (1.1) associated with u, L : Ω× R −→ R is a given function, ν > 0, and

Uad = {u ∈ L2(Ω) : α ≤ u(x) ≤ β for a.a. x ∈ Ω}

with −∞ ≤ α < β ≤ +∞. A precise analysis of the state equation allows us to prove the existence of a
solution for (P) as well as to get the first and second order optimality conditions.

Typical examples of nonlinearities in the state equations are f(x, y) = a0(x)|y|ry with r > 0 or
f(x, y) = a0(x) exp(y), where a0 is assumed to be nonnegative and bounded. The assumption r > 1 is
needed to prove the existence of a second derivative of J . Concerning the functional J , the usual tracking
cost functional falls into this framework by setting L(x, y) = 1

2 (y − yd(x))2 for some fixed function
yd ∈ L2(Ω).

To our best knowledge, this is the first time that a control problem governed by a nonmonotone and
noncoercive equation of the kind described here has been considered. The methods to study the control
problem are technically more involved than those used for problems governed by coercive equations, as
it can be seen not only in the study of the state equation, but also in the proofs of some results such as
Lemma 3.5 or Theorem 3.8.

The paper is organized as follows. In section 2, the state equation is analyzed. We address the issues
of existence, uniqueness and regularity results of the solution for both the linear and semilinear cases.
Differentiability of the relation control-to-state is also established. Finally, the existence of solution for
(P) as well as first and second order optimality conditions are proved in Section 3. Based on the results
established in this paper, the numerical analysis for (P) will be carried out in a forthcoming paper.

2 Analysis of the state equation

In this section we study the equation (1.1) proving some results that will be used in the analysis of the
control problem (P). Before studying (1.1), we analyze a linear equation involving the convection term.
The section is divided into two subsections. The first one is devoted to the linear equation and the second
to the study of (1.1)

2.1 Study of the linear operator

The following assumption is needed for this analysis.
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Assumption 1. Ω is an open domain in Rn, n = 2 or 3, with a Lipschitz boundary Γ. A is
the operator given by

Ay = −
n∑

i,j=1

∂xj (aij(x)∂xiy) with aij ∈ L∞(Ω),

and satisfying the following ellipticity condition:

∃Λ > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ Λ|ξ|2 ∀ξ ∈ Rn and for a.a. x ∈ Ω.

The function b : Ω→ Rn satisfies b ∈ Lp(Ω)n with p ≥ 3 if n = 3 and p > 2 if n = 2. For the
function a0 : Ω→ R it is assumed that a0 ∈ Lq(Ω) with q > 1 if n = 2 and q ≥ 3

2 if n = 3.
Unless stated otherwise, in the rest of the paper p̄ will denote a number such that p̄ > n/2.

Notice that with this choice, Lp̄(Ω) ⊂W−1,r(Ω) ⊂ H−1(Ω) for some r > n.
Along this paper we will take

‖y‖H1
0 (Ω) =

(∫
Ω

|∇y(x)|2 dx
) 1

2

.

From the Poincaré inequality and the Sobolev embedding theorem, we know that there exist two constants
CΩ and KΩ such that

‖y‖L2(Ω) ≤ CΩ‖y‖H1
0 (Ω) and ‖y‖L6(Ω) ≤ KΩ‖y‖H1

0 (Ω) ∀y ∈ H1
0 (Ω). (2.1)

As a consequence, we have that ‖y‖H−1(Ω) ≤ CΩ‖y‖L2(Ω) for all y ∈ L2(Ω).
Let us consider the elliptic operator

Ay = Ay + b(x) · ∇y + a0(x)y with a0 ≥ 0. (2.2)

We first prove continuity of this operator and G̊arding’s inequality.

Lemma 2.1. Under Assumption 1 we have that A ∈ L(H1
0 (Ω), H−1(Ω)) and there exists a constant CΛ,b

such that

〈Az, z〉H−1(Ω),H1
0 (Ω) ≥

Λ

4
‖z‖2H1

0 (Ω) − CΛ,b‖z‖2L2(Ω) ∀z ∈ H1
0 (Ω). (2.3)

Proof. Let us show that A is a linear continuous operator. We will prove the result for dimension n = 3
and we can argue in a similar way for dimension n = 2. It is obvious that A : H1

0 (Ω) −→ H−1(Ω) is a
continuous linear mapping due to the fact that aij ∈ L∞(Ω). Moreover, from (2.1) and Hölder inequality
we infer for every z ∈ H1

0 (Ω)

‖b · ∇z‖
L

6
5 (Ω)

≤ ‖b‖L3(Ω)3‖∇z‖L2(Ω)3 = ‖b‖L3(Ω)3‖z‖H1
0 (Ω),

‖a0z‖
L

6
5 (Ω)

≤ ‖a0‖
L

3
2 (Ω)
‖z‖L6(Ω) ≤ KΩ‖a0‖

L
3
2 (Ω)
‖z‖H1

0 (Ω).

Hence, we have that A is a well-posed linear and continuous operator.
Let us prove (2.3). In this case, the proofs for n = 3 and n = 2 are slightly different. We start with

n = 2. Using that a0 ≥ 0 and Young and Hölder inequalities we get

〈Az, z〉H−1(Ω),H1
0 (Ω) ≥Λ‖∇z‖2L2(Ω)n − ‖∇z‖L2(Ω)n‖bz‖L2(Ω)n ≥

Λ

2
‖∇z‖2L2(Ω)n −

1

2Λ
‖bz‖2L2(Ω)n

≥Λ

2
‖∇z‖2L2(Ω)n −

1

2Λ
‖b‖2Lp(Ω)n‖z‖

2

L
2p
p−2 (Ω)

.
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Observe that the assumption p > 2 implies that 2 < 2p
p−2 < ∞ if n = 2. Now, we apply Lions’ Lemma,

[17, Chapter 2, Lemma 6.1], to the spaces H1
0 (Ω) ⊂ L

2p
p−2 (Ω) ⊂ L2(Ω) to deduce the existence of a

constant C0 depending of Λ and ‖b‖Lp(Ω)n such that

‖z‖
L

2p
p−2 (Ω)

≤ Λ

2‖b‖Lp(Ω)n
‖∇z‖L2(Ω)n + C0‖z‖L2(Ω).

From the last two inequalities we conclude (2.3) with

CΛ,b =
C2

0‖b‖2Lp(Ω)n

Λ
.

For n = 3 we proceed as follows. From [18, Lemma 3.1], we know that, for any ε > 0 there exists a
constant Kε,b > 0 depending on b and ε such that b = b′+b′′, with ‖b′‖L∞(Ω)n < Kε,b and ‖b′′‖L3(Ω)n < ε.
Taking ε = Λ/(4KΩ), KΩ satisfying (2.1), and using that a0 ≥ 0, Hölder and Young inequalities and
(2.1), we obtain

〈Az, z〉H−1(Ω),H1
0 (Ω) ≥Λ‖∇z‖2L2(Ω)n −

∫
Ω

(b′ + b′′) · ∇zzdx

≥Λ|∇z‖2L2(Ω)n − ‖b
′‖L∞(Ω)n‖∇z‖L2(Ω)n‖z‖L2(Ω) − ‖b′′‖L3(Ω)n‖∇z‖L2(Ω)n‖z‖L6(Ω)

≥Λ‖∇z‖2L2(Ω)n −
Λ

2
‖∇z‖2L2(Ω)n −

K2
ε,b

2Λ
‖z‖2L2(Ω) −

Λ

4
‖∇z‖2L2(Ω)n

and (2.3) follows with a constant CΛ,b = K2
ε,b/(2Λ).

Theorem 2.2. Under Assumption 1, the linear operator A : H1
0 (Ω) −→ H−1(Ω) is an isomorphism.

This theorem can be deduced from the results in [19]. We include a direct proof for the convenience
of the reader.

Proof. From Lemma 2.1 we know that A is a well-posed linear and continuous operator. Let us divide
the proof into three steps.

Step 1. – A is injective. We make this proof for n = 3. The case n = 2 follows along the same
lines with minor changes. To prove that the kernel of A is reduced to 0 we adapt the proof of Theorem
8.1 in [13]. Let y ∈ H1

0 (Ω) satisfy that Ay = 0. We prove that y ≤ 0 in Ω, the contrary inequality
follows by arguing on −y. We argue by contradiction and we suppose that this is false. Then, we take
0 < ρ < ess supx∈Ωy(x) ≤ +∞ and we define yρ(x) = (y(x)− ρ)+. Obviously we have that yρ ∈ H1

0 (Ω).
We denote Ωρ = {x ∈ Ω : ∇yρ(x) 6= 0}, then

∇yρ(x) =

{
∇y(x) if y(x) > ρ,

0 otherwise,
and yρ(x) = 0 if y(x) ≤ ρ.

Using these facts and our assumptions on b and a0 we get

0 =

∫
Ω

 n∑
i,j=1

aij(x)∂xiy∂xjyρ + [b(x) · ∇y]yρ + a0(x)yyρ

 dx

≥
∫

Ωρ

 n∑
i,j=1

aij(x)∂xiyρ∂xjyρ + [b(x) · ∇yρ]yρ

 dx

≥ Λ‖∇yρ‖2L2(Ωρ)n − ‖b‖L3(Ωρ)n‖∇yρ‖L2(Ωρ)n‖yρ‖L6(Ωρ).
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From here and (2.1) we infer

‖yρ‖L6(Ωρ) ≤ ‖yρ‖L6(Ω) ≤ KΩ‖∇yρ‖L2(Ω)n

= KΩ‖∇yρ‖L2(Ωρ)n ≤
1

Λ
KΩ‖b‖L3(Ωρ)n‖yρ‖L6(Ωρ).

Hence, we have

‖b‖L3(Ωρ)n ≥
Λ

KΩ
> 0,

which contradicts the fact that |Ωρ| → 0 if ρ → ess supx∈Ωy(x). Indeed, if the set of points E =
{x ∈ Ω : y(x) = ess supx∈Ωy(x)} has zero Lebesgue measure, then it is obvious that |Ωρ| → 0 if
ρ → ess supx∈Ωy(x). In the case that |E| > 0, then we have that ∇y(x) = 0 a.e. in E [13, Lemma 7.7],
and consequently ∇yρ(x) = ∇y(x) = 0 a.e. in E as well. Hence, |Ωρ| → 0 holds in any case.

We notice that the same procedure can be used to prove the injectivity of A∗ : H1
0 (Ω) → H−1(Ω),

given by

A∗ϕ = A∗ϕ− div(ϕb(x)) + a0ϕ.

To do this, we take ϕ ∈ H1
0 (Ω) such that A∗ϕ = 0, and define for all ε ≥ 0, Ωε = {x ∈ Ω : |ϕ(x)| > ε}

and ϕε(x) = proj[−ε,ε](ϕ(x)). Using integration by parts, that a0(x)ϕ(x)ϕε(x) ≥ 0 and the fact that
∇ϕε = 0 in Ωε, we have

0 =

∫
Ω

 n∑
i,j=1

aij(x)∂xiϕ∂xjϕ
ε − div(ϕb(x))ϕε + a0(x)ϕϕε

 dx

=

∫
Ω

 n∑
i,j=1

aij(x)∂xiϕ∂xjϕ
ε + ϕb(x) · ∇ϕε + a0(x)ϕϕε

 dx

≥Λ‖∇ϕε‖2L2(Ω)n − ‖b‖L3(Ω0\Ωε)n‖∇ϕε‖L2(Ω)n‖ϕε‖L6(Ω0\Ωε).

From here we infer that

‖∇ϕε‖L2(Ω)n ≤
1

Λ
‖b‖L3(Ω0\Ωε)n‖ϕε‖L6(Ω0\Ωε) ≤

1

Λ
ε|Ω0 \ Ωε| 16 ‖b‖L3(Ω0\Ωε)n .

Using this and (2.1) we get

|Ωε| = 1

ε2

∫
Ωε
ϕε(x)2dx ≤ 1

ε2

∫
Ω

ϕε(x)2dx ≤ 1

ε2
C2

Ω‖∇ϕε‖2L2(Ω)n ≤
C2

Ω

Λ2
|Ω0 \ Ωε| 13 ‖b‖2L3(Ω0\Ωε)n ,

and |Ω0| = limε→0 |Ωε| = 0 and, hence, ϕ = 0.
Step 2. – The range of A is dense and closed. To see that it is dense, we argue by contradiction:

suppose it is not dense. Then, there exists z ∈ H1
0 (Ω) with z 6= 0 such that 〈Ay, z〉H−1(Ω),H1

0 (Ω) = 0 for

all y ∈ H1
0 (Ω). By duality, this implies 〈A∗z, y〉H−1(Ω),H1

0 (Ω) = 0 for all y ∈ H1
0 (Ω), and hence A∗z = 0.

Since A∗ is injective, we obtain that z = 0, which is a contradiction.
Let us check that the range of A is closed. Let {fk}∞k=1 be a sequence in the range of A such that

fk → f in H−1(Ω). Let yk ∈ H1
0 (Ω) be such that Ayk = fk for every k ≥ 1. We are going to prove that

{yk}∞k=1 converges weakly in H1
0 (Ω) to some element y ∈ H1

0 (Ω) satisfying Ay = f .
First, let us prove that yk is bounded in L2(Ω). We argue by contradiction. Suppose it is not. Then,

for a subsequence denoted in the same form, we have that ‖yk‖L2(Ω) → +∞. Define ŷk = yk/‖yk‖L2(Ω),
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and f̂k = fk/‖yk‖L2(Ω). We have that Aŷk = f̂k. Using again G̊arding’s inequality and the fact that
‖ŷk‖L2(Ω) = 1, we obtain

Λ

4
‖ŷk‖2H1

0 (Ω) ≤〈Aŷk, ŷk〉H−1(Ω),H1
0 (Ω) + CΛ,b‖ŷk‖2L2(Ω) = 〈f̂k, ŷk〉H−1(Ω),H1

0 (Ω) + CΛ,b‖ŷk‖2L2(Ω)

≤‖f̂k‖H−1(Ω)‖ŷk‖H1
0 (Ω) + CΛ,b ≤

2

Λ
‖f̂k‖2H−1(Ω) +

Λ

8
‖ŷk‖2H1

0 (Ω) + CΛ,b,

and therefore
Λ

8
‖ŷk‖2H1

0 (Ω) ≤
2

Λ
‖f̂k‖2H−1(Ω) + CΛ,b.

Since {fk}∞k=1 is bounded in H−1(Ω), we infer from the above inequality that {ŷk}∞k=1 is bounded in
H1

0 (Ω). Hence, there exists ŷ ∈ H1
0 (Ω) such that (for a new subsequence, again denoted in the same

way) ŷk ⇀ ŷ in H1
0 (Ω), and by Rellich’s theorem ŷk → ŷ in L2(Ω). In particular, this implies that

‖ŷ‖L2(Ω) = 1. On the other hand, using that ‖f̂k‖H−1(Ω) → 0 and Aŷk = f̂k, we can pass to the limit
in this equation and deduce that Aŷ = 0. Hence ŷ = 0 and we have a contradiction. Thus, {yk}∞k=1 is
bounded in L2(Ω).

Using again G̊arding’s inequality for the equation Ayk = fk, we obtain as above that

Λ

8
‖yk‖2H1

0 (Ω) ≤
2

Λ
‖fk‖2H−1(Ω) + CΛ,b‖yk‖2L2(Ω),

and therefore, {yk}∞k=1 is bounded in H1
0 (Ω). So there exists y ∈ H1

0 (Ω) and a subsequence, denoted in
the same way, such that yk ⇀ y in H1

0 (Ω). Taking the limit in the equation Ayk = fk, we have that
Ay = f . Hence, f belongs to the range of A and this subspace is closed in H1

0 (Ω).

The following corollary is a straightforward application of Theorem 2.2 and the Hölder regularity
result [18, Théorème 7.3]; see also Theorem 14.1 in [16] and the remark after it.

Corollary 2.3. Suppose Assumption 1 holds. Then, for every u ∈ Lp̄(Ω) there exists a unique function
y ∈ H1

0 (Ω) ∩ C0,µ(Ω̄), for some µ ∈ (0, 1) independent of u, satisfying Ay = u. Moreover, there exists a
constant CA,µ such that

‖y‖C0,µ(Ω̄) ≤ CA,µ‖u‖Lp̄(Ω) ∀u ∈ Lp̄(Ω). (2.4)

The adjoint operator also enjoys these properties.

Corollary 2.4. Under Assumption 1, the adjoint operator A∗ : H1
0 (Ω) −→ H−1(Ω) given by

A∗ϕ = A∗ϕ− div[b(x)ϕ] + a0(x)ϕ (2.5)

is an isomorphism. Moreover, for every f ∈ Lp̄(Ω), there exists a unique ϕ ∈ H1
0 (Ω) satisfying A∗ϕ = f

and there exist µ ∈ (0, 1) and CA∗,µ independent of f such that ϕ ∈ C0,µ(Ω̄) and

‖ϕ‖C0,µ(Ω̄) ≤ CA∗,µ‖f‖Lp̄(Ω) ∀f ∈ Lp̄(Ω). (2.6)

Proof. The first statement follows directly from Theorem 2.2. The second is again a consequence of [18,
Theorem 7.3] or [16, Theorem 14.1].
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Under additional assumptions we have the following regularity result.

Theorem 2.5. Suppose Assumption 1 holds and assume further that aij ∈ C0,1(Ω̄) for 1 ≤ i, j ≤ n,
a0 ∈ L2(Ω) and Γ is of class C1,1 or Ω is convex. Then, A : H2(Ω)∩H1

0 (Ω) −→ L2(Ω) is an isomorphism.

Proof. First we observe that A : H2(Ω) ∩ H1
0 (Ω) −→ L2(Ω) is an injective, continuous linear operator.

Indeed, taking into account that H2(Ω) ⊂W 1, 2p
p−2 (Ω) and H2(Ω) ⊂ C(Ω̄), we get the following estimates

‖∂xj (aij∂xiy)‖L2(Ω) ≤ ‖∂xjaij∂xiy‖L2(Ω) + ‖aij∂2
xi,xjy‖L2(Ω)

≤ ‖∂xjaij‖L∞(Ω)‖∂xiy‖L2(Ω) + ‖aij‖L∞(Ω)‖∂2
xi,xjy‖L2(Ω) ≤ ‖aij‖C0,1(Ω̄)‖y‖H2(Ω),

‖b · ∇y‖L2(Ω) ≤ ‖b‖Lp(Ω)n‖∇y‖
L

2p
p−2 (Ω)n

≤ C‖b‖Lp(Ω)n‖y‖H2(Ω),

‖a0y‖L2(Ω) ≤ ‖a0‖L2(Ω)‖y‖L∞(Ω) ≤ C‖a0‖L2(Ω)‖y‖H2(Ω).

The above estimates prove that A is well defined and continuous. The injectivity of A is an immediate
consequence of Theorem 2.2. Let us prove that A is surjective. Given u ∈ L2(Ω) arbitrary, from Theorem
2.2 we deduce the existence of an element y ∈ H1

0 (Ω) such that Ay = u. We have to prove that y ∈ H2(Ω).
To this end we divide the proof into three steps.

Step 1.- Here we regularize the coefficients b and a0. We make the proof for n = 3 and comment later
the modifications for n = 2.

The Lipschitz regularity of the coefficients aij implies that A : H2(Ω) ∩ H1
0 (Ω) −→ L2(Ω) is an

isomorphism; see, for instance, Theorems 2.2.2.3 and 3.2.1.2 of [14] for a C1,1 boundary Γ and a convex
domain Ω, respectively. Hence, there exists a constant CA such that

‖y‖H2(Ω) ≤ CA‖Ay‖L2(Ω) for all y ∈ H2(Ω). (2.7)

For n = 3, we are assuming p ≥ n, and hence 2p/(p − 2) ≤ 6. Therefore, from the Sobolev imbedding
theorem, we also know that there exists a constant MΩ such that

‖∇y‖
L

2p
p−2 (Ω)n

≤MΩ‖y‖H2(Ω) for all y ∈ H2(Ω). (2.8)

Consider, as in the proof of Lemma 2.1, the decomposition b = b′ + b′′, where now

‖b′′‖Lp(Ω)n < ε =
1

8CAMΩ
and ‖b′‖L∞(Ω)n < Kε,b.

Consider also two sequences {b′′k}∞k=1 ⊂ L∞(Ω)n and {a0,k}∞k=1 ⊂ L∞(Ω) such that b′′k → b′′ strongly
in Lp(Ω)n and 0 ≤ ak → a0 strongly in L2(Ω). Denote bk = b′ + b′′k and define the operator Ak :
H2(Ω) ∩H1

0 (Ω) −→ L2(Ω) by
Akz = Az + bk(x) · ∇z + a0,k(x)z.

Let us prove that Ak : H2(Ω) ∩ H1
0 (Ω) → L2(Ω) is an isomorphism. The proof of the continuity and

injectivity follows as we did for A. Now, from Theorem 2.2 we deduce the existence of an element
yk ∈ H1

0 (Ω) such that Akyk = u. This equation can be written as follows

Ayk = u− bk(x) · ∇yk − a0,k(x)yk.

We have the estimates

‖bk · ∇yk‖L2(Ω) ≤ ‖bk‖L∞(Ω)n‖∇yk‖L2(Ω)n ,

‖a0,kyk‖L2(Ω) ≤ ‖a0,k‖L∞(Ω)‖yk‖L2(Ω).
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Thus, we have that Ayk ∈ L2(Ω). From here and (2.7) we infer

‖yk‖H2(Ω) ≤ CA‖u− bk · ∇yk − a0,kyk‖L2(Ω)

≤ CA
(
‖u‖L2(Ω) + ‖b′ · ∇yk‖L2(Ω) + ‖b′′k · ∇yk‖L2(Ω) + ‖a0,kyk‖L2(Ω)

)
≤ CA

(
‖u‖L2(Ω) + ‖b′‖L∞(Ω)n‖∇yk‖L2(Ω)n + ‖b′′k‖Lp(Ω)n‖∇yk‖

L
2p
p−2 (Ω)n

+ ‖a0,k‖L2(Ω)‖yk‖L∞(Ω)

)
.

From the strong convergences of the sequences {b′′k}∞k=1 and {a0,k}∞k=1, we deduce the existence of some
integer k0 such that

‖b′′k‖Lp(Ω)n ≤ 2‖b′′‖Lp(Ω)n and ‖a0,k‖L2(Ω) ≤ 2‖a0‖L2(Ω) ∀k ≥ k0.

Inserting these inequalities in the above expression and taking into account the relations ‖b′‖L∞(Ω)n ≤
Kε,b and ‖b′′‖Lp(Ω)n < ε, we infer ∀k ≥ k0

‖yk‖H2(Ω) ≤ CA
(
‖u‖L2(Ω) +Kε,b‖∇yk‖L2(Ω)n + 2ε‖∇yk‖

L
2p
p−2 (Ω)n

+ 2‖a0‖L2(Ω)‖yk‖L∞(Ω)

)
. (2.9)

Now, we apply Lions’ Lemma to the embeddings H2(Ω) ⊂ H1(Ω) ⊂ L2(Ω) and H2(Ω) ⊂ C(Ω̄) ⊂ L2(Ω),
where the first embedding in each of the chains is compact. Selecting

λ =
1

4CA max{Kε,b, 2‖a0‖L2(Ω)}
,

we deduce the existence of a constant Cλ such that for all y ∈ H2(Ω) ∩H1
0 (Ω)

‖∇y‖L2(Ω)n ≤ λ‖y‖H2(Ω) + Cλ‖y‖L2(Ω)

and
‖y‖L∞(Ω) ≤ λ‖y‖H2(Ω) + Cλ‖y‖L2(Ω).

Inserting these two inequalities in the estimate (2.9), using (2.8), and taking into account the definition
of ε, we get

‖yk‖H2(Ω) ≤ CA
(
‖u‖L2(Ω) + Cλ

[
Kε,b + 2‖a0‖L2(Ω)

]
‖yk‖L2(Ω)

)
+

3

4
‖yk‖H2(Ω),

which, leads to the desired estimate:

‖yk‖H2(Ω) ≤ 4CA

(
‖u‖L2(Ω) + Cλ[Kε,b + ‖a0‖L2(Ω)]‖yk‖L2(Ω)

)
. (2.10)

For n = 2 the proof is slightly different. We take {bk}∞k=1 ⊂ L∞(Ω)n such that bk → b strongly in
Lp(Ω)n. In the same way as before we obtain that yk ∈ H2(Ω), but we directly write the estimate

‖yk‖H2(Ω) ≤ CA‖u− bk · ∇yk − a0,kyk‖L2(Ω)

≤ CA
(
‖u‖L2(Ω) + ‖bk‖Lp(Ω)n‖∇yk‖

L
2p
p−2 (Ω)n

+ ‖a0,k‖L2(Ω)‖yk‖L∞(Ω)

)
.

Now, we do not have that ‖bk‖Lp(Ω)n is small, but since for n = 2 we are assuming p > n we have that

H2(Ω) ⊂W 1, 2p
p−2 (Ω) ⊂ L2(Ω), the first embedding being compact, and we can argue using Lions’ Lemma

for the term ‖∇yk‖
L

2p
p−2 (Ω)n

.
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Step 2.- Let us prove that yk → y = A−1u strongly in H1
0 (Ω). We have

‖yk − y‖H1
0 (Ω) ≤ CΩ‖A−1

k −A
−1‖L(H−1(Ω),H1

0 (Ω))‖u‖L2(Ω),

it is enough to show that ‖A−1
k −A−1‖L(H−1(Ω),H1

0 (Ω)) → 0 when k →∞. First we prove that {A−1
k }∞k=1

is bounded in L(H−1(Ω), H1
0 (Ω)). It is immediate that

‖Ak −A‖L(H1
0 (Ω),H−1(Ω)) ≤ CΩ,p‖bk − b‖

L
2p
p−2 (Ω)n

+ CΩ‖a0.k − a0‖L2(Ω)
k→∞−→ 0. (2.11)

Hence, there exists an integer k1 such that

‖Ak −A‖L(H1
0 (Ω),H−1(Ω)) ≤

1

2‖A−1‖L(H−1(Ω),H1
0 (Ω))

∀k ≥ k1.

This implies that

‖A−1(A−Ak)‖L(H1
0 (Ω),H1

0 (Ω)) ≤
1

2
∀k ≥ k1.

Hence, the operator I −A−1(A−Ak) is invertible in H1
0 (Ω) and its inverse is given by(

I −A−1(A−Ak)
)−1

=

∞∑
j=0

[
A−1(A−Ak)

]j
.

From here we obtain for every k ≥ k1

‖
(
I −A−1(A−Ak)

)−1

‖L(H1
0 (Ω),H1

0 (Ω)) ≤
∞∑
j=0

‖A−1(A−Ak)‖jL(H1
0 (Ω),H1

0 (Ω))
≤ 2.

Now, we observe that A−1
k =

(
I −A−1(A−Ak)

)−1

A−1. Thus, we obtain that

‖A−1
k ‖L(H−1(Ω),H1

0 (Ω)) ≤ 2‖A−1‖L(H−1(Ω),H1
0 (Ω)) ∀k ≥ k1. (2.12)

Finally, we find with (2.11) and (2.12) that

‖A−1
k −A

−1‖L(H−1(Ω),H1
0 (Ω)) = ‖A−1[A−Ak]A−1

k ‖L(H−1(Ω),H1
0 (Ω))

≤ ‖A−1‖L(H−1(Ω),H1
0 (Ω))‖A −Ak‖L(H1

0 (Ω),H−1(Ω))‖A−1
k ‖L(H−1(Ω),H1

0 (Ω))

≤ 2‖A−1‖2L(H−1(Ω),H1
0 (Ω))‖A −Ak‖L(H1

0 (Ω),H−1(Ω))
k→∞−→ 0.

Step 3.- Finally, the estimate (2.10) and the convergence yk → y in H1
0 (Ω) yields yk ⇀ y weakly in

H2(Ω). Since u ∈ L2(Ω) was arbitrary, this implies the surjectivity of A.

Corollary 2.6. Under the assumptions of Theorem 2.5 and in addition div b ∈ L2(Ω), the operator
A∗ : H2(Ω) ∩H1

0 (Ω) −→ L2(Ω) is an isomorphism.

Proof. Injectivity follows from Corollary 2.4. Let us prove that it is surjective. Take f ∈ L2(Ω) and let
ϕ ∈ H1

0 (Ω) be the unique solution of A∗ϕ = f . Notice that, from the second part of Corollary 2.4 we
also know that ϕ ∈ L∞(Ω). Taking into account that we can write

A∗ϕ = A∗ϕ− b(x) · ∇ϕ+ (a0(x)− div b(x))ϕ,

we have that
A∗ϕ− b(x) · ∇ϕ+ a0(x)ϕ = f + div b(x)ϕ in Ω, ϕ = 0 on Γ

and the result follows from Theorem 2.5 because f + div b(x)ϕ ∈ L2(Ω).
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2.2 Analysis of the semilinear equation

Here, we analyze the equation (1.1). To deal with this equation we make the following hypotheses on the
nonlinear term f .

Assumption 2. We assume that f : Ω×R −→ R is a Carathéodory function monotone nondecreasing
with respect to the second variable satisfying:

∀M > 0 ∃φM ∈ Lp̄(Ω) : |f(x, y)| ≤ φM (x) for a.a. x ∈ Ω and ∀|y| ≤M. (2.13)

Let us recall that p̄ stands for a real number bigger than n
2 .

Now, we prove the existence and uniqueness of a solution for problem (1.1).

Theorem 2.7. Under the Assumptions 1 and 2, for every u ∈ Lp̄(Ω) the equation (1.1) has a unique
solution yu in H1

0 (Ω) ∩ C(Ω̄). Moreover, there exists a constant Kf independent of u such that

‖yu‖H1
0 (Ω) + ‖yu‖C(Ω̄) ≤ Kf

(
‖u‖Lp̄(Ω) + ‖f(·, 0)‖Lp̄(Ω) + 1

)
. (2.14)

Before proving this theorem we establish the following lemma.

Lemma 2.8. Let g : Ω×R −→ R be a function satisfying Assumption 2. We also suppose that Assumption
1 holds. Then, if y1, y2 ∈ H1

0 (Ω) ∩ L∞(Ω) are solutions of the equations

Ayi + b(x) · ∇yi + g(x, yi) = ui, i = 1, 2, (2.15)

with u1, u2 ∈ Lp̄(Ω) and u1 ≤ u2 in Ω, then y1 ≤ y2 in Ω as well.

Proof. We make the proof for n = 3. The case n = 2 can be proved in a similar way. We argue by
contradiction, proceeding similarly to the proof of Theorem 2.2. If the statement of the lemma is false,
then there exists 0 < ρ < esssupx∈Ω(y1(x)− y2(x)). Now, we set z(x) = [(y1(x)− y2(x))− ρ]+. We have
that z ∈ H1

0 (Ω). We denote Ωρ = {x ∈ Ω : ∇z(x) 6= 0}. Let us observe that we have

∇z(x) =

{
∇(y1 − y2)(x) if (y1 − y2)(x) > ρ,

0 otherwise,

and
z(x) = 0 if (y1 − y2)(x) ≤ ρ.

Using these facts, our assumptions on b and ui, and the monotonicity of g we get

0 ≥
∫

Ω

(u1 − u2)z dx

=

∫
Ω

( n∑
i,j=1

aij(x)∂xi(y1 − y2)∂xjz + [b(x) · ∇(y1 − y2)]z
)
dx

+

∫
Ω

[g(x, y1)− g(x, y2)]z dx ≥
∫

Ωρ

( n∑
i,j=1

aij(x)∂xiz∂xjz + [b(x) · ∇z]z
)
dx

≥ Λ‖∇z‖2L2(Ωρ)n − ‖b‖L3(Ωρ)n‖∇z‖L2(Ωρ)n‖z‖L6(Ωρ).

Now, we continue as in the proof of Theorem 2.2 to achieve the contradiction

‖b‖L3(Ωρ)n ≥
Λ

C1
> 0 ∀ρ < ess supx∈Ω(y1 − y2)(x).
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Proof of Theorem 2.7. The uniqueness of a solution is an immediate consequence of Lemma 2.8. The
proof of existence is divided into three steps according to different assumptions on f . To simplify the
presentation, we redefine f = f − f(·, 0) and u = u − f(·, 0) ∈ Lp̄(Ω). Then, due to Assumption 2, f is
continuous and monotone nondecreasing, f(x, 0) = 0, and f is dominated by a function φM ∈ Lp̄(Ω) in
Ω× [−M,+M ] for every M > 0.

Step 1.- Assume that there exists φ ∈ Lp̄(Ω) such that |f(x, y)| ≤ φ(x) in Ω × R. In this case, we
consider the operator T : C(Ω̄) −→ C(Ω̄) given by Tw = yw, where yw is the solution of the problem{

Ay + b(x) · ∇y + f(x,w) = u in Ω,
y = 0 on Γ.

From Corollary 2.3 we have the existence and uniqueness of a solution yw ∈ H1
0 (Ω) ∩ C0,µ(Ω̄) for some

µ ∈ (0, 1). This solution satisfies

‖yw‖C0,µ(Ω̄) ≤ CA,b‖u− f(x,w)‖Lp̄(Ω) ≤ CA,b
(
‖u‖Lp̄(Ω) + ‖φ‖Lp̄(Ω)

)
= ρ.

From the compactness of the embedding C0,µ(Ω̄) ⊂ C(Ω̄), we deduce that T is a compact operator
applying the closed ball B̄ρ(0) into itself. Hence, from Schauder’s fixed point Theorem we infer the
existence of a solution yu ∈ H1

0 (Ω) ∩ C(Ω̄) of (1.1). Moreover, (2.14) follows from the above inequality
and the redefinition of u along with the fact that A+ b · ∇I : H1

0 (Ω) −→ H−1(Ω) is an isomorphism.
Step 2.- We relax the assumption of step 1 and now we only assume that there exists φ ∈ Lp̄(Ω) such

that f ≥ φ in Ω × R. For every integer k ≥ 1 we set fk(x, y) = f(x,min{y, k}). Then, from (2.13) we
infer

φ(x) ≤ fk(x, y) ≤ f(x, proj[−k,+k](y)) ≤ φk(x).

Hence, |fk(x, y)| ≤ ψk(x) = max{|φ(x)|, |φk(x)|} with ψk ∈ Lp̄(Ω). Then, we can apply Step 1 to deduce
the existence of a function yk ∈ H1

0 (Ω) ∩ C(Ω̄) satisfying{
Ayk + b(x) · ∇yk + fk(x, yk) = u in Ω,
yk = 0 on Γ.

Now, by Corollary 2.3 there exists a function y ∈ H1
0 (Ω) ∩ C(Ω̄) solution of{

Ay + b(x) · ∇y = u− φ in Ω,
y = 0 on Γ.

Subtracting both equations we get

A(yk − y) + b(x) · ∇(yk − y) = −fk(x, yk) + φ ≤ 0.

Then, Lemma 2.8 implies that yk ≤ y in Ω. Therefore, if we take k > ‖y‖C(Ω̄), we have that fk(x, yk) =
f(x, yk), and therefore yk is solution of (1.1). The estimate (2.14) follows from the bound for yk inde-
pendently of k and Assumption 2.

Step 3.- The general case. Let us define fk(x, y) = f(x,proj[−k,+k](y)). Then, according to Assump-
tion 2, there exists a function φk ∈ Lp̄(Ω) such that |fk(x, y)| ≤ φk(x) in Ω× R. Therefore, from Step 1
we know that there exists yk ∈ H1

0 (Ω) ∩ C(Ω̄) satisfying

Ayk + b(x) · ∇yk + fk(x, yk) = u.

Now, we take z1 ∈ H1
0 (Ω) ∩ C(Ω̄) satisfying Az1 + b(x) · ∇z1 + f(x, z+

1 ) = u. The existence of such a
function follows from Step 2 because f(x, z+

1 ) ≥ 0. This equation can be written as

Az1 + b(x) · ∇z1 + fk(x, z1) = u+ fk(x, z1)− f(x, z+
1 ).
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From the monotonicity of f with respect to the second variable, we have that fk(x, z1) − f(x, z+
1 ) ≤ 0,

and hence Lemma 2.8 implies that z1 ≤ yk in Ω.
Now, let z2 ∈ H1

0 (Ω) ∩ C(Ω̄) satisfy

Az2 + b(x) · ∇z2 = u− f(x,−‖z1‖C(Ω̄)).

The existence of such a function follows from Theorem 2.2 and Corollary 2.3. Indeed, it is enough to
observe that from (2.13) with M = ‖z1‖C(Ω̄) we deduce the existence of a function φM ∈ Lp̄(Ω) such that
|f(x,−‖z1‖C(Ω̄))| ≤ φM (x) for almost all x ∈ Ω. Then, f(·,−‖z1‖C(Ω̄)) ∈ Lp̄(Ω) holds. Noticing that the
equation satisfied by yk can be written

Ayk + b(x) · ∇yk = u− fk(x, yk)

and that, using the fact that yk ≥ z1 ≥ −‖z1‖C(Ω̄), we have fk(x, yk(x)) ≥ f(x,−‖z1‖C(Ω̄)). Then,
subtracting the equations satisfied by yk and z2 we get

A(z2 − yk) + b(x) · ∇(z2 − yk) = fk(x, yk)− f(x,−‖z1‖C(Ω̄)) ≥ 0.

Therefore, z1 ≤ yk ≤ z2 and, hence, fk(x, yk) = f(x, yk) for every k > max{‖z1‖C(Ω̄), ‖z2‖C(Ω̄)}, and
consequently yk is solution of (1.1) for k large enough. As in the previous step, the estimate (2.14) follows
from the bound for yk independently of k.

Now, we establish some additional regularity for the solutions of (1.1).

Corollary 2.9. There exists some µ ∈ (0, 1) such that the solution yu of (1.1) belongs to C0,µ(Ω̄).
Moreover, for every M > 0 there exists a constant Kf,µ,M such that

‖yu‖C0,µ(Ω̄) ≤ Kf,µ,M ∀u ∈ Lp̄(Ω) satisfying ‖u‖Lp̄(Ω) ≤M.

Proof. Since Ayu+ b ·∇yu = u−f(x, yu), this corollary follows from (2.13), (2.14) and Corollary 2.3.

Theorem 2.10. Suppose that Assumption 1 holds, aij ∈ C0,1(Ω̄) for 1 ≤ i, j ≤ n and a0 ∈ L2(Ω). We
also suppose that Assumption 2 holds with p̄ = 2, and that Γ is of class C1,1 or Ω is convex. Then, for
every u ∈ L2(Ω), the equation (1.1) has a unique solution yu ∈ H2(Ω) ∩ H1

0 (Ω). Moreover, for every
M > 0 there exists a constant CA,f,M such that

‖yu‖H2(Ω) ≤ CA,f,M ∀u ∈ Lp̄(Ω) satisfying ‖u‖Lp̄(Ω) ≤M.

This is an immediate consequence of Theorems 2.5 and 2.7. The following result on the continuous
dependence of the state yu respect to u will be useful to prove the existence of a solution for the control
problem (P).

Theorem 2.11. Let {uk}∞k=1 ⊂ Lp̄(Ω) be a sequence weakly converging to u in Lp̄(Ω). Then, under the
assumptions of Theorem 2.7 we have that yuk → yu strongly in H1

0 (Ω) ∩ C(Ω̄).

Proof. From Theorem 2.7 and Corollary 2.9 we know that {yuk}∞k=1 is bounded inH1
0 (Ω)∩C0,µ(Ω̄). Hence,

using the compactness of the embedding C0,µ(Ω̄) ⊂ C(Ω̄), we deduce the existence of a subsequence,
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denoted in the same way, and an element y ∈ H1
0 (Ω) ∩ C(Ω̄) such that yuk ⇀ y in H1

0 (Ω) and yuk → y
in C(Ω̄). Now, setting M = max1≤k<∞ ‖yuk‖C(Ω̄), we deduce from (2.13)

|f(x, yuk(x))| ≤ |f(x, 0)|+ |f(x, yuk(x))− f(x, 0)|
≤ |f(x, 0)|+ Cf,M |yuk(x)| ≤ |f(x, 0)|+ Cf,MM.

As a consequence we have that f(x, yuk) → f(x, y) strongly in Lp̄(Ω). Moreover, the compactness of
the embedding Lp̄(Ω) ⊂ H−1(Ω) implies that uk → u strongly in H−1(Ω). Hence, from Theorem 2.2 we
infer that yuk = (A+ b · ∇I)−1(uk − f(x, yuk))→ (A+ b · ∇I)−1(u− f(x, y)) strongly in H1

0 (Ω). Thus,
we have that y = yu and yuk → yu strongly in H1

0 (Ω) ∩ C(Ω̄). Since, this convergence holds for any
converging subsequence, we deduce that the whole sequence converges as indicated in the statement of
the theorem.

To finish this section we analyze the differentiability of the relation u → yu. To this end, we make
the following assumptions on f .

Assumption 3. We assume that f : Ω× R −→ R is a Carathéodory function of class C2 with respect
to the second variable satisfying:

f(·, 0) ∈ Lp̄(Ω) and
∂f

∂y
(x, y) ≥ 0 a.e. in Ω and ∀y ∈ R, (2.16)

and for all M > 0 there exists a constant Cf,M > 0 such that∣∣∣∣∂f∂y (x, y)

∣∣∣∣+

∣∣∣∣∂2f

∂y2
(x, y)

∣∣∣∣ ≤ Cf,M for a.e. x ∈ Ω and for all |y| ≤M. (2.17)

For every M > 0 and ε > 0 there exists δ > 0, depending on M and ε, such that∣∣∣∣∂2f

∂y2
(x, y2)− ∂2f

∂y2
(x, y1)

∣∣∣∣ < ε if |y1|, |y2| ≤M, |y2 − y1| ≤ δ, for a.a. x ∈ Ω. (2.18)

Let us recall again that p̄ stands for a real number bigger than n
2 . It is obvious that Assumption 3 implies

Assumption 2. Therefore, all the previous results remain valid if we replace Assumption 2 by Assumption
3.

Theorem 2.12. Let us suppose that Assumptions 1 and 3 hold. Then, the mapping G : Lp̄(Ω) −→
H1

0 (Ω) ∩ C(Ω̄) given by G(u) = yu is well defined and of class C2. Moreover, given u, v ∈ Lp̄(Ω),
zv = DG(u)v is the solution of Az + b(x) · ∇z +

∂f

∂y
(x, yu)z = v in Ω,

z = 0 on Γ.
(2.19)

For v1, v2 ∈ Lp̄(Ω) the second derivative zv1,v2 = D2G(u)(v1, v2) is the solution of the equation Az + b(x) · ∇z +
∂f

∂y
(x, yu)z = −∂

2f

∂y2
(x, yu)zv1

zv2
in Ω,

z = 0 on Γ,
(2.20)

where zvi = DG(u)vi, i = 1, 2.
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Proof. The fact that G is well defined is a straightforward consequence of Theorem 2.7. To prove the
differentiability we will use the implicit function theorem as follows. We consider the vector space

Y = {y ∈ H1
0 (Ω) ∩ C(Ω̄) : Ay + b · ∇y ∈ Lp̄(Ω)}.

This is a Banach space when we endow it with the norm

‖y‖Y = ‖y‖H1
0 (Ω) + ‖y‖C(Ω̄) + ‖Ay + b · ∇y‖Lp̄(Ω).

Let us consider the mapping

F : Y × Lp̄(Ω) −→ Lp̄(Ω)

given by

F(y, u) = Ay + b(x) · ∇y + f(·, y)− u.

Using Assumption 3 and Corollary 2.3 it is easy to check that f(·, y) ∈ Lp̄(Ω) for every y ∈ Y , and the
mapping y ∈ Y → f(·, y) ∈ Lp̄(Ω) is of class C2. Hence, F is well defined and it is of class C2. Moreover,
the linear mapping

∂F
∂y

(y, u) : Y −→ Lp̄(Ω)

∂F
∂y

(y, u)z = Az + b(x) · ∇z +
∂f

∂y
(x, y)z

is an isomorphism. Indeed, if we consider the operator A defined by (2.2) with a0(x) = ∂f
∂y (x, y(x)), we

have to prove that A : Y −→ Lp̄(Ω) is an isomorphism. From the definition of Y and the above estimates,
we know that A is well defined and continuous. From Theorem 2.2 we also deduce the existence of a
unique solution z ∈ H1

0 (Ω) of the equation Az = v for every v ∈ Lp̄(Ω) ⊂ H−1(Ω). In addition, from
Corollary 2.3 we know that z ∈ C(Ω̄). Hence, we have that z ∈ Y and A is an isomorphism. Then, we
can apply the implicit function theorem and deduce easily the theorem; see e.g. [6, Proposition 16].

3 Analysis of the optimal control problem

In this section, we firstly prove the existence of a global solution ū of the control problem. Then,
we derive first and second order necessary optimality conditions for local solutions. Finally, we prove
sufficient conditions for local optimality. In the whole section we suppose that Assumptions 1 and 3 are
fulfilled.

Theorem 3.1. Let us assume that L : Ω× R −→ R is a Carathédory function satisfying

∀M > 0 ∃ψM ∈ L1(Ω) : |L(x, y)| ≤ ψM (x) for a.a. x ∈ Ω and ∀|y| ≤M. (3.1)

Then, if Uad is bounded in L2(Ω) or L is bounded from below, the control problem (P) has at least one
solution ū.

Proof. Let {uk}∞k=1 ⊂ Uad be a minimizing sequence of (P). From the boundedness of Uad or the lower
boundedness of L we deduce that {uk}∞k=1 is bounded in L2(Ω). Hence, we can take a subsequence,
denoted in the same way, converging weakly in L2(Ω) to some element ū. Since Uad is weakly closed in
L2(Ω) we infer that ū ∈ Uad. Moreover, Theorem 2.5 implies that yuk → yū strongly in H1

0 (Ω) ∩ C(Ω̄).
Therefore, using the assumption (3.1) along with Lebesgue’s dominated convergence theorem, we get that
J(ū) ≤ lim infk→∞ J(uk) = inf (P) and, hence, ū is a solution of (P).
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Before establishing the optimality conditions for (P), we study the differentiability of J . To this end
we make the following assumptions on L.

Assumption 4. We assume that L : Ω×R −→ R is a Carathéodory function of class C2 with respect to
the second variable satisfying that L(·, 0) ∈ L1(Ω) and for all M > 0 there exist a function ψM ∈ Lp̄(Ω)
with p̄ > n

2 and a constant CL,M > 0 such that∣∣∣∣∂L∂y (x, y)

∣∣∣∣ ≤ ψM (x) and

∣∣∣∣∂2L

∂y2
(x, y)

∣∣∣∣ ≤ CL,M for a.e. x ∈ Ω and for all |y| ≤M. (3.2)

In addition, for every M > 0 and ε > 0 there exists δ > 0, depending on M and ε, such that∣∣∣∣∂2L

∂y2
(x, y2)− ∂2L

∂y2
(x, y1)

∣∣∣∣ < ε if |y1|, |y2| ≤M, |y2 − y1| ≤ δ, for a.a. x ∈ Ω. (3.3)

It is obvious that (3.1) holds under Assumption 4. In the rest of the paper, we will suppose that
Assumptions 1, 2 and 4 are fulfilled. Then, we have the following differentiability result.

Theorem 3.2. The functional J is of class C2. Moreover, given u, v, v1, v2 ∈ L2(Ω) we have

J ′(u)v =

∫
Ω

(ϕu + νu)v dx, (3.4)

J ′′(u)(v1, v2) =

∫
Ω

[∂2L

∂y2
(x, yu)− ϕu

∂2f

∂y2
(x, yu)

]
zv1

zv2
dx+ ν

∫
Ω

v1v2 dx, (3.5)

where ϕu ∈ H1
0 (Ω) ∩ C(Ω̄) is the unique solution of the adjoint equation A∗ϕ− div[b(x)ϕ] +

∂f

∂y
(x, yu)ϕ =

∂L

∂y
(x, yu) in Ω,

ϕ = 0 on Γ.
(3.6)

Proof. The C2 differentiability of J is an immediate consequence of Theorem 2.12, Assumption 4 and
the chain rule. Moreover, the derivation of the formulas (3.4) and (3.5) is standard. The existence of a
unique ϕu ∈ H1

0 (Ω) ∩ C(Ω̄) follows from Corollary 2.4 and the facts that (2.17) along with yu ∈ C(Ω̄)
implies that a0 = ∂f

∂y (·, yu) ∈ L∞(Ω) and assumption (3.2) implies that ∂L
∂y (·, yu) ∈ Lp̄(Ω).

Since (P) is not a convex problem, we consider local solutions of (P) as well. Let us state precisely
the different concepts of local solution.

Definition 3.3. We say that ū ∈ Uad is an Lr(Ω)-weak local minimum of (P) with r ∈ [1,+∞], if there
exists some ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ Uad with ‖ū− u‖Lr(Ω) ≤ ε.

An element ū ∈ Uad is said a strong local minimum of (P) if there exists some ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ Uad with ‖yū − yu‖L∞(Ω) ≤ ε.

We say that ū ∈ Uad is a strict (weak or strong) local minimum if the above inequalities are strict for
u 6= ū.

As far as we know, the notion of strong local solutions in the framework of control theory was
introduced in [2] for the first time; see also [3]. We analyze the relationships among these concepts in the
followin lemma.
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Lemma 3.4. The following properties hold:
If Uad is bounded in L2(Ω), then

1. ū is an L1(Ω)-weak local minimum of (P) if and only if it is an Lr(Ω)-weak local minimum of (P)
for every r ∈ (1,+∞).

2. If ū is an Lr(Ω)-weak local minimum of (P) for some r < +∞, then it is an L∞(Ω)-weak local
minimum of (P).

3. ū is a strong local minimum of (P) if and only if it is an Lr(Ω)-weak local minimum of (P) for all
r ∈ [1,∞).

If Uad is not bounded in L2(Ω), then

1. If ū is an L2(Ω)-weak local solution and L is bounded from below, then ū is an L1(Ω)-weak local
solution.

2. If ū is an Lp(Ω)-weak local solution, then ū is an Lq(Ω)-weak local solution for every p < q ≤ ∞.

3. ū is an L2(Ω)-weak local solution if and only if it is a strong local solution.

The reader is referred to [7] and [11] for the proof of this lemma. To deduce that any strong local
solution is an L2(Ω)-weak local solution the following estimate is used

‖yu − yū‖C(Ω̄) ≤ C‖u− ū‖L2(Ω) ∀u ∈ Bε(ū),

where Bε(ū) is the ball in L2(Ω). This inequality follows from the next result.

Lemma 3.5. Let U be a bounded subset of Lp̄(Ω). Then, there exists a constant MU such that

‖yu − yv‖H1
0 (Ω) + ‖yu − yv‖C(Ω̄) ≤MU‖u− v‖Lp̄(Ω) ∀u ∈ U .

Proof. Without loss of generality, we can suppose that U is convex. Otherwise, we replace it by its convex
hull, which is also a bounded set. Given u, v ∈ U , from Theorem 2.12 and the mean value theorem we
have

‖yu − yv‖H1
0 (Ω) + ‖yu − yv‖C(Ω̄) ≤ sup

û∈U
‖DG(û)‖L(Lp̄(Ω),H1

0 (Ω)∩C(Ω̄))‖u− v‖Lp̄(Ω).

Then, it is enough to prove that ‖DG(û)‖L(Lp̄(Ω),H1
0 (Ω)∩C(Ω̄)) is bounded by a constant MU for every

û ∈ U . From Corollary 2.9, we know that M = sup{‖yu‖C(Ω̄) : u ∈ U} < +∞. Hence, from Assumption
3 we have ∣∣∣∣∂f∂y (x, yu(x))

∣∣∣∣ ≤ Cf,M for a.a. x ∈ Ω and ∀u ∈ U .

Now, given u ∈ U arbitrary and v ∈ Lp̄(Ω) with ‖v‖Lp̄(Ω) = 1, we denote by z and z0 the elements of
H1

0 (Ω) ∩ C(Ω̄) satisfying the equations Az + b(x) · ∇z +
∂f

∂y
(x, yu)z = v in Ω,

z = 0 on Γ.{
Az0 + b(x) · ∇z0 = |v| in Ω,
z = 0 on Γ.
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Taking in Lemma 2.8 g = 0, u1 = 0 and u2 = |v|, we deduce that z0 ≥ 0. Now, subtracting and adding
the equations satisfied by z and z0, and using the monotonicity of f we get

A(z0 − z) + b(x) · ∇(z0 − z) +
∂f

∂y
(x, yu)(z0 − z) =

∂f

∂y
(x, yu)z0 + |v| − v ≥ 0 in Ω,

A(z0 + z) + b(x) · ∇(z0 + z) +
∂f

∂y
(x, yu)(z0 + z) =

∂f

∂y
(x, yu)z0 + |v|+ v ≥ 0 in Ω.

Using again Lemma 2.8 we infer that z0 − z ≥ 0 and z0 + z ≥ 0 in Ω, or equivalently −z0 ≤ z ≤ z0 in Ω.
Thus, we get with (2.4)

‖z‖C(Ω̄) ≤ ‖z0‖C(Ω̄) ≤ CA,b‖v‖Lp(Ω) = CA,b.

On the other hand, from Theorem 2.2 we deduce the existence of a constant C independent of v such
that

‖z‖H1
0 (Ω) ≤ C

(
‖v‖Lp(Ω) +

∥∥∥∥∂f∂y (x, yu)z

∥∥∥∥
Lp(Ω)

)

≤ C

(
1 +

∥∥∥∥∂f∂y (x, yu)

∥∥∥∥
L∞(Ω)

‖z‖C(Ω̄)|Ω|
1
p

)
≤ C(1 + Cf,MCA,b|Ω|

1
p ).

Hence, we have

‖z‖H1
0 (Ω) + ‖z‖C(Ω̄) ≤ C(1 + Cf,MCA,b|Ω|

1
p ) + CA,b = MU .

Since u and v are arbitrary, we conclude that ‖DG(û)‖L(Lp̄(Ω),H1
0 (Ω)∩C(Ω̄)) ≤MU , and the lemma follows.

Now, we establish the first order optimality conditions.

Theorem 3.6. Let ū be a local solution of (P) in any of the previous senses. Then there exist two unique
elements ȳ, ϕ̄ ∈ H1

0 (Ω) ∩ C(Ω̄) such that{
Aȳ + b(x) · ∇ȳ + f(x, ȳ) = ū in Ω,
ȳ = 0 on Γ,

(3.7) A∗ϕ̄− div[b(x)ϕ̄] +
∂f

∂y
(x, ȳ)ϕ̄ =

∂L

∂y
(x, ȳ) in Ω,

ϕ̄ = 0 on Γ,
(3.8)

∫
Ω

(ϕ̄+ νū)(u− ū) dx ≥ 0 ∀u ∈ Uad. (3.9)

This theorem is consequence of the expression for J ′ given in (3.4) and the convexity of Uad, which
implies that J ′(ū)(u − ū) ≥ 0 holds for every u ∈ Uad. As a consequence of this theorem we have the
following regularity result on the optimal control.

Corollary 3.7. Let ū satisfy (3.7)–(3.9) along with (ȳ, ϕ̄), then ū ∈ H1(Ω) ∩ C(Ω̄) holds. Moreover,
if aij ∈ C0,1(Ω̄) for 1 ≤ i, j ≤ n, div b ∈ L2(Ω), p̄ = 2, and Γ is of class C1,1 or Ω is convex, then
ȳ, ϕ̄ ∈ H2(Ω) ∩H1

0 (Ω) holds. Finally, if Uad = L2(Ω), then we have that ū ∈ H2(Ω) ∩H1
0 (Ω).
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Proof. It is well known that (3.9) implies that

ū(x) = Proj[α,β]

(
− 1

ν
ϕ̄(x)

)
.

Then, the H1(Ω) ∩ C(Ω̄) regularity of ū follows from this formula and the same regularity of ϕ̄. Under
the additional assumptions on the data of the problem, the regularity of ȳ and ϕ̄ follows from Theorem
2.10 and Corollary 2.6. Finally, if Uad = L2(Ω), then (3.9) is reduced to ϕ̄+ νū = 0, hence ū enjoys the
same regularity as ϕ̄.

In order to write the second order optimality conditions we introduce the cone of critical directions.
Let ū ∈ Uad be a function satisfying the system (3.7)-(3.9) along with the associated state ȳ and adjoint
state ϕ̄. We define the cone

Cū = {v ∈ L2(Ω) : J ′(ū)v = 0 and (3.10) holds}

v(x, t)

{
≥ 0 if ū(x, t) = α,
≤ 0 if ū(x, t) = β.

(3.10)

Let us observe that (3.9) implies that

ϕ̄(x) + νū(x)

{
≥ 0 if ū(x) = α,
≤ 0 if ū(x) = β.

Therefore, if v ∈ L2(Ω) satisfies (3.10), then J ′(ū)v ≥ 0 holds, and J ′(ū)v = 0 if and only if v(x) = 0 if
ϕ̄(x) + νū(x) 6= 0.

In the case where there are not control constraints, namely Uad = L2(Ω), then J ′(ū) = 0 and
Cū = L2(Ω).

Now, we have the second order conditions.

Theorem 3.8. If ū is a local solution of (P) in any sense of those given in Definition 3.3, then J ′′(ū)v2 ≥
0 ∀v ∈ Cū. Conversely, if ū ∈ Uad satisfies (2.12)–(2.14) along with (ȳ, ϕ̄) and

J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0}, (3.11)

then there exist ε > 0 and κ > 0 such that

J(ū) +
κ

2
‖u− ū‖2L2(Ω) ≤ J(u) ∀u ∈ Uad : ‖yu − ȳ‖L∞(Ω) ≤ ε. (3.12)

Proof. The proof follows the steps of [9] or [10]. To reproduce that proof we have to use that yuk → yu
and ϕuk → ϕu strongly in H1

0 (Ω)∩C(Ω̄) when uk ⇀ u in L2(Ω). The convergence for the states is proved
in Theorem 2.11. Here we prove the part corresponding to the adjoint states. To this end we set

A∗ϕ = A∗ϕ− div[b(x)ϕ] +
∂f

∂y
(x, yu)ϕ,

A∗kϕ = A∗ϕ− div[b(x)ϕ] +
∂f

∂y
(x, yuk)ϕ.

Since yuk → yu in C(Ω̄), there exists M > 0 such that ‖yuk‖C(Ω̄) ≤ M ∀k. Then, from (2.17) and the
mean value theorem we deduce for ‖ϕ‖H1

0 (Ω) ≤ 1:

‖(A∗ −A∗k)ϕ‖H−1(Ω) ≤ CΩ

∥∥∥[∂f
∂y

(x, yu)− ∂f

∂y
(x, yuk)

]
ϕ
∥∥∥
L2(Ω)

≤ CΩCf,M‖yu − yuk‖C(Ω̄)‖ϕ‖L2(Ω) ≤ C2
ΩCf,M‖yu − yuk‖C(Ω̄)

k→∞−→ 0.
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Hence, we can proceed as in the proof of Theorem 2.5 to deduce the existence of k0 such that

‖[A∗k]−1‖L(H−1(Ω),H1
0 (Ω)) ≤ 2‖[A∗]−1‖L(H−1(Ω),H1

0 (Ω)) ∀k ≥ k0.

In addition, arguing as in Step 2 of the proof of Theorem 2.5, we have

‖[A∗]−1 − [A∗k]−1‖L(H−1(Ω),H1
0 (Ω)) → 0 when k →∞.

Hence, we get with (3.2)

‖ϕu − ϕuk‖H1
0 (Ω) =

∥∥∥[A∗]−1 ∂L

∂y
(x, yu)− [A∗k]−1 ∂L

∂y
(x, yuk)

∥∥∥
H1

0 (Ω)

≤
∥∥∥([A∗]−1 − [A∗k]−1)

∂L

∂y
(x, yu)

∥∥∥
H1

0 (Ω)

+
∥∥∥[A∗k]−1

[∂L
∂y

(x, yu)− ∂L

∂y
(x, yuk)

]∥∥∥
H1

0 (Ω)

≤ ‖[A∗]−1 − [A∗k]−1‖L(H−1(Ω),H1
0 (Ω))

∥∥∥∂L
∂y

(x, yu)
∥∥∥
H−1(Ω)

+ 2‖[A∗]−1‖L(H−1(Ω),H1
0 (Ω))

∥∥∥∂L
∂y

(x, yu)− ∂L

∂y
(x, yuk)

∥∥∥
H−1(Ω)

≤ ‖[A∗]−1 − [A∗k]−1‖L(H−1(Ω),H1
0 (Ω))

∥∥∥∂L
∂y

(x, yu)
∥∥∥
H−1(Ω)

+ 2CΩCL,M‖[A∗]−1‖L(H−1(Ω),H1
0 (Ω))‖yu − yuk‖L2(Ω) → 0.

It remains to prove that ‖ϕu − ϕuk‖C(Ω̄) → 0. The equation satisfied by ϕuk can be written as

A∗ϕuk − div(b(x)ϕuk) = −∂f
∂y

(x, yuk)ϕuk +
∂L

∂y
(x, yuk).

Since {ϕuk}∞k=1 is convergent in H1
0 (Ω), we have that it is bounded in L2(Ω). Using this, the fact that

‖yuk‖C(Ω̄) ≤M , and Assumptions 3 and 4, we have that the right hand side is bounded in Lp̄(Ω). Hence

from Corollary 2.4 we deduce that {ϕuk}∞k=1 is bounded in C0,µ(Ω̄) for some µ > 0. Then, the convergence
in C(Ω̄) follows from the compact embedding C0,µ(Ω̄) ⊂ C(Ω̄).

The following corollary is an immediate consequence of Theorem 3.8 and Lemma 3.5.

Corollary 3.9. Under the assumptions of Theorem 3.8. there exist κ > 0 and ε > 0 such that

J(ū) +
κ

2
‖u− ū‖2L2(Ω) ≤ J(u) ∀u ∈ Uad : ‖u− ū‖L2(Ω) ≤ ε. (3.13)

It is interesting to remark that if ū satisfies (3.7)-(3.9) and (3.11), then besides of being a strict local
solution of (P), there exists a ball Br(ū) ⊂ L2(Ω) such that ū is the unique stationary point of (P) in
Br(ū), i.e. the unique control satisfying (3.7)-(3.9); see [9, Corollary 2.6].
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[4] Lucio Boccardo. Stampacchia-Caldéron-Zygmund theory for linear elliptic equations with discontin-
uous coefficients and singular drift. ESAIM Control Optim. Calc. Var., 25:47, 2019.

[5] Lucio Boccardo. Two semilinear Dirichlet problems “almost” in duality. Boll. Unione Mat. Ital.,
12(3):349–356, 2019.

[6] E. Casas and M. Mateos. Optimal control of partial differential equations. In Computational mathe-
matics, numerical analysis and applications, volume 13 of SEMA SIMAI Springer Ser., pages 3–59.
Springer, Cham, 2017.

[7] E. Casas and M. Mateos. Critical Cones for Sufficient Second Order Conditions in PDE Constrained
Optimization. SIAM J. Optim., 30(1):585–603, 2020.
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