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 Plot-level technical efficiency accounting for farm-level effects:  

Evidence from Chilean wine grape producers 

 

 

 

Abstract   

This paper extends previous work focusing on the analysis of technical efficiency (TE) for a 

sample of Chilean boutique wine grape producers. We apply alternative panel data models to a 

cross-sectional dataset that contains multi-plot observations for individual farms, where these plots 

have separate supervision according to specific requirements. Treating individual plots as being 

independent of each other reveals technical inefficiency differences across plots. However, when it 

is recognized that plots belonging to a particular farm are subject to an overall central (farm-level) 

management and farm-level unobserved heterogeneity is controlled for, no differences in 

intra-farm (i.e., plot level) inefficiencies are found. A Generalized True Random Effects model, 

which permits the separate identification of farm-level and plot-level inefficiencies while 

controlling for unobserved farm-level heterogeneity, shows that inefficiency differences exist at 

the farm level but not among plots within the same farm. This points to the importance of 

accounting for unobserved farm-level heterogeneity and farm-level inefficiency when data for 

individual plots within a farm unit is available. Geographical location was also found to matter for 

grape production. Moreover, agro-climatic conditions were found to influence production levels, 

with grape farms located on cooler zones producing significantly less than their counterparts in 

warmer zones, as expected.  
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Plot-level technical efficiency accounting for farm-level effects:  

Evidence from Chilean wine grape producers 

 

 

1.  Introduction 

Global production of wine has changed considerably in recent decades, where a notable 

development has been a significant rise in the so-called New World countries (Anderson, 2005; 

Anderson and Nelgen, 2011). Chile is one of these relative newcomers to the international wine 

market and has experienced rapid growth in land area planted with grapes (ODEPA, 2016). Such 

expansions have also occurred in several other countries including Australia, South Africa, New 

Zealand, China and the USA (Strohm, Dirksmeyer and Garming, 2014), and the overall effect 

has been increasing competition and all-out efforts to retain or expand market share. In 2017, 

most of the increase in exported wine went to China and Japan (Banfi Piazza, 2017). 

 

The evolution of the Chilean wine industry over the past two decades has been driven chiefly by 

the rapid growth in international markets, and more than 60% of Chilean wine is exported (Banfi 

Piazza, 2017). The Chilean model from 2000 up to 2006 was based on penetrating and 

developing markets based on good quality wines at a low price. By comparison, over the 

2007-2017 period, export earnings have increased faster than the total volume of bottled wine 

and thus the price per liter has risen (Buzzetti Horta, 2018). 

 

Despite the rapid growth enjoyed by Chilean wines in foreign markets, the reliance on exports 

makes this sector vulnerable to FOB prices and exchange rate volatility, which are factors totally 

outside the control of producers. Therefore, productivity growth along the wine value chain is 

fundamental for the commercial success of this industry. A particularly vulnerable link in this 
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value chain is growers that sell their highly perishable grapes to much larger wine makers. These 

growers have to focus carefully on minimizing costs while ensuring that their output satisfies the 

quality standards imposed by wine makers who in turn need to be responsive to the demands 

coming from international markets. Moreover, estimates indicate that grapes represent the most 

significant component in the cost structure of wine making in the Chilean industry (Arévalo and 

Martínez, 2006). Consequently, any efficiency gains at the vineyard level can have a significant 

bearing on the commercial success of the whole operation.  

 

Chilean wine production comprises two primary groups of firms, namely large companies and 

family-owned estates, and both are oriented primarily towards the export market. However, 

whereas the large companies place emphasis on a product for mass consumption, a substantial 

number of family-owned estates, commonly referred to as boutique vineyards, are focused on a 

reduced-scale production of higher quality wines. Both types of firms have wine cellars 

vertically integrated to wine grape plantations, the large companies possessing larger areas than 

the smaller family-owned estates. In 1994, 12 of these boutique vineyards formed the Tecnovid 

consortium, a number that grew over the following years to 42 associates, which in 2006 

accounted for 9% of all land area planted in the industry and 12% of total wine exports. 

Moreover, the farmers are located in all the main valleys where grapes are produced in Chile. 

Jano (2017) makes an interesting distinction between “quasi-subsistence” wine-grape farmers 

and “entrepreneurial” farmers in Chile. The former are low-income farmers that complement 

their subsistence income with earnings from wine-grape sales and/or rustic wine production, 

whereas the “entrepreneurial” farmers produce classic varieties that have the potential to produce 

high-quality wines. The producers associated with Tecnovid belong to the latter type of farmer. 
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In this paper, we use a unique cross-sectional data set to analyze the technical efficiency (TE) 

component of productivity for a sample of Chilean wine grape producers that belong to Tecnovid. 

Our work makes two main contributions. First, we add new evidence to the scant literature on the 

productivity of grape farming by presenting an analysis of TE for the boutique segment of Chilean 

wine-grape producers, a New World country that has acquired international standing in wine 

markets.  Second, we make a methodological contribution by applying and comparing the 

performance of various panel data stochastic frontier models to analyze plot-level (i.e., sub-units 

within a given farm) and farm level TE while accounting for unobserved farm heterogeneity and 

several observed attributes. A plot is a well-defined land area with distinct technology, 

management, and varying levels of inputs chosen to achieve an expected quality of grapes. In other 

words, our data is a cross section of farms where each farm has several plots (data points) and we 

exploit this structure in our application of panel data models to provide a novel analysis of TE. 

Each plot produces a unique quantity and type of grape, with different levels of inputs and 

possesses specific observable characteristics. Hence, we identify the TE of each plot while also 

separately identifying, in our most refined model, farm level TE and unobserved heterogeneity. A 

way to think about this is that each farm has a central administration that provides management to 

the overall farm unit while individual plots are subject to separate management. Therefore, if the 

analysis supports the presence of unobserved farm-level heterogeneity but this is not identified or 

controlled for, then the individual plot TE levels would be biased. Our results do indicate that 

unobserved heterogeneity matters, so specifications that ignore such heterogeneity lead to biased 

results. 
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The paper proceeds as follows: Section 2 presents a brief review of the few published papers we 

have found that focus on grape farm TE. Section 3 presents the methodological framework, while 

Section 4 describes the data used. The results are presented in Section 5, and Section 6 offers some 

concluding remarks. 

 

2.  Related literature 

Many studies have been published examining the TE component of productivity in farming 

(Bravo-Ureta, Jara-Rojas, Lachaud, Moreira, Scheierling and Treguer, 2016; Bravo-Ureta, Solís, 

Moreira, Maripani, Thiam and Rivas, 2007; Ogundari, 2014), but very few focus on wine grape 

production. Table 1 provides key features of 10 wine grape production studies. We trace this 

literature back to Townsend, Kirsten and Vink (1998), who analyzed the relationship between 

farm size, productivity and returns to scale for wine grape producers located in four regions of 

South Africa for the years 1992 to 1995, using a non-parametric approach. Another South 

African study, by Conradie, Cookson and Thirtle (2006), examined the relationship between TE 

and farm size for samples of producers situated in Western Cape Province. These authors 

estimated stochastic production frontier (SPF) models using panel data for wine grape farms 

located in the Robertson and Worcester regions for the years 2003 and 2004, and cross-sectional 

data for table grape farms located in De Doorns region for 2004. 

 

Henriques, Carvalho and Fragoso (2009) used non-parametric techniques to measure TE for a 

sample of 22 wine grape farms from the Alentejo region of Portugal for the years 2001 and 2004. 

Guesmi, Serra, Kallas and Gil (2012) focused on the TE of organic and conventional grape farms 

in Catalonia, Spain, using an SPF along with cross sectional data for a sample of 141 farms. 
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Moreira, Troncoso and Bravo-Ureta (2011) examined the TE of wine grape production for a 

sample of Chilean firms for 2005/2006 using a standard cross sectional model. A Cobb-Douglas 

SPF was estimated using data for 38 farms for which input-output information is available at the 

plot level. Ma, Wu, Feng and Jiao (2012) use 1,020 farm level observations collected across 24 

grape producing provinces in China to estimate a Cobb-Douglas SPF model. Coelli and Sanders 

(2013) used an unbalanced panel data set (2006/2007 to 2009/2010) for a sample of 135 farmers 

specializing in wine grape production located in the Murray and Murrumbidgee river basins in 

Australia. The authors used the translog functional form to fit SPF models based on the Battese 

and Coelli (1992) approach. 

 

More recently, Manevska-Tasevska (2013) used a three-year (2006-2008) panel data set for a 

sample of 300 commercial grape producers from Macedonia, employing a Cobb-Douglas SPF 

model and a second-stage regression to analyze TE. Latruffe and Nauges (2014) employed panel 

data for the period 1999-2007 for French crop farms, including grape producers, to examine 

whether TE using conventional practices has an effect on the likelihood of converting to organic 

farming, using both a Cobb-Douglas SPF as well as nonparametric frontier methods. Finally, 

Piesse, Conradie, Thirtle and Vink (2017) estimated a translog production frontier to examine TE 

for a panel of 77 wine grape farms in South Africa observed between 2005 and 2015 and 

compared the efficiency levels of old established wine regions with newer regions. 

 

From our review of studies that have examined the TE of wine grape producers, we can conclude 

that the literature so far has covered different continents and has used both non-parametric (3 
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cases) and parametric techniques (8 cases) and availed of both cross-section and panel data. The 

10 wine grape production studies summarized in Table 1 reported an overall average TE of 

67.5%. The limited available evidence in the literature points towards ample scope for 

improvements in TE amongst producers. Of particular relevance to the work presented in this 

paper is the fact that all the articles that we found focus on farm-level TE without considering 

possible intra-farm or plot-level variability and ignore unobserved heterogeneity even when 

panel data is employed. 

 

3.  Methodological framework 

As discussed in Section 2, in this paper we use a unique dataset that contains plot level data for a 

sample of grape farms, which enables the identification of TE for each planted plot separately from 

unobserved heterogeneity and TE at the farm level. In a general context, Greene (2005a, 2005b) 

argues that it is important to disentangle time-variant TE from time-invariant heterogeneity 

because the true “…underlying production function might contain unmeasured firm-specific 

characteristics that reflect the technology in use, not inefficiency [in which case] the model 

estimated … is actually incomplete or mis-specified…” (Greene, 2005a, p. 270). More recently, a 

distinction has been made, as discussed in more detail below, between time-invariant unobserved 

heterogeneity and time-invariant TE (Colombi, 2010; Filippini and Greene, 2016; Tsionas and 

Kumbhakar, 2014). Considering the cross-sectional structure of our data set, the notion of 

“time-invariant” in the preceding discussion needs to be replaced by ‘plot-invariant’.  

 

As stated above, the plots in our data have unique output, inputs and other observable attributes to 

be discussed later. A way to think about the plot-invariant heterogeneity is that farm level 
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management provides overall coordination across all plots, while there is also plot level 

supervision according to specific requirements. Another source of unobserved heterogeneity 

might stem from microclimatic and related agro-ecological variability across farms, and these are 

captured by the valley where the farms are located and by agro-ecological characteristics based on 

degree days. 

 

In order to identify the plot-level TE separately from the farm-level unobserved heterogeneity we 

make use of the True Fixed Effects and True Random Effects (TFE and TRE) models introduced 

by Greene (2005a, 2005b). Despite the added flexibility offered by the TFE and TRE models, there 

appears to be limited applications in the agricultural economics literature, with Abdulai and Tietje 

(2007), Carroll, Newman and Thorne (2011) and Qi, Bravo-Ureta and Cabrera (2015) representing 

exceptions. To further identify farm-level TE from unobserved heterogeneity, we apply the 

Generalized True Random Effects (GTRE) model (Colombi, 2010; Filippini and Greene, 2016; 

Tsionas and Kumbhakar, 2014). Applications of the GTRE model in agriculture are few in number 

and have relied on conventional panel data sets. Examples are Yang (2014), Njuki and 

Bravo-Ureta (2015), and Lachaud, Bravo-Ureta and Ludeña (2015).  

 

We now present each alternative frontier model used in the analysis below. These mirror a panel 

data structure, where plots, instead of time periods, can be assigned to farms. Thus, the alternative 

frontier models we consider below are variants of the following equation:  

𝑦𝑗𝑝 = 𝛽𝑗 + 𝑓(𝑥𝑗𝑝; 𝛿) + 𝑣𝑗𝑝 − 𝑢𝑗𝑝         (1) 

where:  
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𝑦𝑗𝑝 is the output quantity of the 𝑗𝑡ℎ farm from the 𝑝𝑡ℎ plot; 𝑥𝑗𝑝 = (𝑥1𝑗𝑝, 𝑥2𝑗𝑝, . . . , 𝑥𝑁𝑗𝑝) is the  

vector of all input quantities, where 𝑁 is the number of inputs; 𝛿 is a vector of parameters; 𝛽𝑗 

represents the individual farm effects1; 𝑣𝑗𝑝 is the idiosyncratic error term with an expectation of 

zero; and 𝑢𝑗𝑝 ≥ 0 is a one-sided error term capturing technical inefficiency.  

 

We begin by estimating a Pooled Stochastic Production Frontier (Pooled SF). This is the 

traditional composed error stochastic production frontier, as originally proposed by Aigner, Lovell 

and Schmidt (1977), where each observation (a plot in this study) is basically treated as 

independent from the others. This model can be written as:  

𝑦𝑗𝑝 = 𝛽0 + 𝑓(𝑥𝑗𝑝; 𝛿) + 𝑣𝑗𝑝 − 𝑢𝑗𝑝        (2) 

where 𝑣𝑗𝑝 is the symmetric random error term which we assume normally distributed with 

mean zero, and 𝑢𝑗𝑝 ≥ 0 is a one-sided error term capturing technical inefficiency assumed to 

follow a half-normal distribution, i.e., 𝑢𝑗𝑝~𝑁+(0, 𝜎𝑢
2). In this traditional stochastic frontier (SF) 

model, and subsequent SF models, the TE component (𝑇𝐸𝑗𝑝) is calculated applying the formula 

developed by Jondrow, Lovell, Materov and Schmidt (1982) and can be represented as 𝑇𝐸𝑗𝑝 =

𝑒𝑥𝑝(−𝑢̂𝑗𝑝). 

 

Turning now to panel data frontiers, the next two models are fixed effects specifications. The first 

is the Fixed Effects Frontier (FE). This is a reinterpretation of the standard linear panel data fixed 

effects model proposed by Schmidt and Sickles (1984): 

𝑦𝑗𝑝 = 𝛽0 + 𝑓(𝑥𝑗𝑝; 𝛿) + 𝑣𝑗𝑝 − 𝑢𝑗         (3) 

                                                           
1 The individual farm effects, 𝛽𝑗, may be a constant intercept or vary across individual farms depending on the model 

under consideration. For example, in a non-frontier OLS model, 𝛽𝑗 would be a common constant, while in a fixed 

effects models it would be a set of dummy variables for each farm, and so on. 
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where 𝑢𝑗 = 𝑚𝑎𝑥(𝛽𝑗) − 𝛽𝑗 ≥ 0. Thus, a farm’s inefficiency, which is invariant across plots, is 

calculated by the difference between the largest estimated fixed effect for the whole sample and 

the fixed effect of the farm (Coelli, Rao, O'Donnell and Battese, 2005; Cornwell, Schmidt and 

Sickles, 1990; Mundlak, 1961; Schmidt and Sickles, 1984). As such, this is a ‘deterministic’ rather 

than ‘stochastic’ frontier as inefficiency is calculated from a linear fixed effects model. Note that 

all unobserved plot-invariant heterogeneity in this formulation is attributed to inefficiency. 

 

The second fixed effects specification is the True Fixed Effects (TFE) model. The TFE 

stochastic frontier model was introduced by Greene (2005a), and in our context allows for the 

measurement of plot-variant TE through the term 𝑢𝑗𝑝  while also accounting for unobserved 

farm-level heterogeneity. This model can be expressed as: 

𝑦𝑗𝑝 = 𝛽𝑗 + 𝑓(𝑥𝑗𝑝; 𝛿) + 𝑣𝑗𝑝 − 𝑢𝑗𝑝        (4) 

where 𝑣𝑗𝑝~𝑁(0, 𝜎𝑣
2) and 𝑢𝑗𝑝~𝑁+(0, 𝜎𝑢

2). Cross-farm heterogeneity is captured by the vector 

𝛽𝑗, which represents farm dummy variables, and inefficiency is allowed to vary across plots.  

 

The FE and TFE specifications have the advantage of allowing for correlation between individual 

farm-specific effects and the explanatory variables. However, a potential drawback of the FE and 

TFE models is that they do not permit the inclusion of time/space-invariant variables (or, in our 

context, plot-invariant variables) which may be of particular interest. In our case, for example, key 

variables representing possible spatial heterogeneity which we want to account for are the 

agro-climatic zone and the valleys where the vineyards are located. These plot-invariant variables 

can be included in random effects frontier specifications, although these assume no correlation 

between the individual effects and the other regressors.  
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Our first random effects frontier is the True Random Effects (TRE) model. The TRE model, 

also introduced by Greene (2005a), is basically a random-effects counterpart to the fixed effects 

frontier, and is obtained by combining a conventional random-effects model with a one-sided 

stochastic term representing inefficiency. We can write this model as: 

𝑦𝑗𝑝 = 𝛽𝑗
∗ + 𝑓(𝑥𝑗𝑝; 𝛿) + 𝑣𝑗𝑝 − 𝑢𝑗𝑝        (5) 

where 𝑣𝑗𝑝~𝑁(0, 𝜎𝑣
2), 𝑢𝑗𝑝~𝑁+(0, 𝜎𝑢

2), and the farm-specific individual effect is distributed as 

𝛽𝑗
∗~𝑁(0, 𝜎𝛽∗

2 ) which is a farm-specific random term that captures cross-farm heterogeneity, and 

should be uncorrelated with all other terms in the model. Unlike the TFE model, the TRE model 

has the advantage of allowing for the incorporation of farm-invariant regressors, a matter of 

interest in this paper. However, since unobserved factors may be correlated with some of the 

explanatory variables, the estimates of the production frontier coefficients may be biased 

(Abdulai and Tietje, 2007).  

 

According to Mundlak (1978), the random effects specification is a mis-specified version of the FE 

(within) model since it ignores the possible correlation between individual effects and regressors 

(Debarsy, 2012). Mundlak (1978) proposed an approach to address this problem, which was to 

include the group-means of the explanatory variables as additional regressors. Farsi, Filippini and 

Kuenzle (2005) adopted Mundlak’s proposal in the context of the true random effects model 

giving rise to the Mundlak True Random Effects (MTRE) model.  The MTRE can be written 

as: 

𝑦𝑗𝑝 = 𝛽𝑗
∗ +  ∑ 𝜑𝑖𝑥𝑖𝑗

4
𝑖=1 + 𝑓(𝑥𝑗𝑝; 𝛿) + 𝑣𝑗𝑝 − 𝑢𝑗𝑝      (6) 
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where 𝑥𝑖𝑗 are the group means of the explanatory variables (plot-level inputs for a given farm in 

our setting) and everything else is the same as in the TRE model represented in equation (5). An 

attractive feature of the MTRE model is that it controls for unobserved heterogeneity while 

permitting relevant plot-invariant variables to be included. As such, the MTRE captures the 

positive features of the TFE and of the TRE.  

 

The TFE, TRE and MTRE models all account for unobserved farm-specific heterogeneity (𝛽𝑗), 

plot-varying inefficiency (𝑢𝑗𝑝), and plot level idiosyncratic error (𝑣𝑗𝑝). Our final model, the 

Generalized True Random Effects (GTRE), provides further flexibility by also permitting the 

estimation of farm-specific inefficiency (𝑢𝑗) . The GTRE, which is an extension of the 

‘true-random’ effects model, incorporates an error structure with four parts. In a standard panel 

data context, the GTRE allows for the separate identification of time-invariant unobserved 

firm-specific heterogeneity, persistent and transient inefficiency, and statistical errors (Colombi, 

Kumbhakar, Martini and Vittadini, 2014; Filippini and Greene, 2016; Kumbhakar, Lien and 

Hardaker, 2014; Tsionas and Kumbhakar, 2014). In our context, the GTRE model can be written 

as:   

𝑦𝑗𝑝 = 𝛽𝑗 + 𝑓(𝑥𝑗𝑝; 𝛿) + 𝑣𝑗𝑝 − 𝑢𝑗𝑝 − 𝜔𝑗      (7) 

where 𝛽𝑗~𝑁(0, 𝜎𝛽
2), 𝑣𝑗𝑝~𝑁(0, 𝜎𝑣

2), 𝑢𝑗𝑝~𝑁+(0, 𝜎𝑢
2), and 𝜔𝑗  is a non-negative farm-specific 

plot-invariant inefficiency term described by 𝜔𝑗~𝑁+(0, 𝜎𝜔
2 ). Thus, this model includes both 

farm-specific heterogeneity (𝛽𝑗)  and plot level idiosyncratic error (𝑣𝑗𝑝) , as well as 

farm-specific inefficiency (𝜔𝑗) and plot-varying inefficiency (𝑢𝑗𝑝). In this model we can think 

of an individual farm effect, 𝛼𝑗 , comprising farm-specific heterogeneity and plot invariant 
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inefficiency (𝛼𝑗 = 𝛽𝑗 − 𝜔𝑗) . We will estimate this model using the maximum simulated 

likelihood method proposed by Fillipini and Greene (2016). 

 

4.  Data 

The data used in the study was obtained from 38 Chilean wine grape producers that accepted to 

fully cooperate and provided all the data required for the study. Considering that the total number 

of Tecnovid producers when the survey was implemented was 42, the response rate is just over 

90% and this is considerably higher than what can be gleaned from the limited related published 

evidence (Johansson, Effland and Coble, 2017; Meyer, Mok and Sullivan, 2015; Pennings, Irwin 

and Good, 2002; Weber and Clay, 2013). Unfortunately, four of the 42 farms had to be excluded 

because they lacked some key variables; however, the available information at that time 

indicated nothing unusual about these farms compared to the 38 that are in the data set used in 

the analysis below. So, the 38 farms are considered to be a representative sample of all Tecnovid 

farms. 

  

The farms in the Tecnovid dataset exported more than 90% of their wine production and were 

classified as boutique wine producers. The data was collected by researchers from the 

Universidad de Talca in Central Chile and corresponds to the agricultural year 2005-2006. The 

total number of observations is 263, which is the total number of plots in the 38 farms. 

According to the descriptive statistics, presented in Table 2, the number of plots per farm goes 

from a low of two to a high of 17 with an average of seven. The size of the plots ranges from 0.2 

ha. to 108.7 ha. The grapes are classified according to quality as Premium or Varietal and the 
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number of plots is equally distributed between each category. Most of the grapes are produced in 

a simple cordon training system (73%), followed by a double cordon training system (13%). 

 

We also have information on the agro-climatic zone and the valleys where the vineyards are 

located. All farms are located in Central Chile and distributed, from North to South, among the 

following 10 valleys: Limarí, Aconcagua, Casablanca, San Antonio, Maipo, Cachapoal, Rapel, 

Colchagua, Curicó and Maule. A standard agro-climatic criterion, commonly known as 

"degree-days", is used to classify farms according to the total number of days with temperatures 

above 10ºC over the period September-February, when the vine is active. We then classify zones 

as “Cool” when degree-days are less than or equal to 1,200 and “Warm” when greater than 

1,200. According to this criterion, five farms come from a “Cool” agro-climatic zone, and the 

remaining 33 from a “Warm” zone.2 Note that farms from the same valley can be classified into 

different agro-climatic zones. The regional location and corresponding agro-climatic zone of each 

farm are potentially important factors to be considered when analyzing grape production (Fraga et 

al., 2014; Ponti, Gutierrez, Boggia and Neteler, 2018). 

 

In our econometric models, the dependent variable is Grape Production in kilograms. The inputs 

used are plot size measured in hectares (Land), annual expenditure on labor (Labor), annual 

expenditure on agrochemicals and fertilizers (Chemicals), and annual operating machinery costs 

(Capital), all measured at the plot level using market prices. Machinery costs include outlays for 

operating equipment associated with various field activities required in vineyards throughout the 

                                                           
2 Based on the range of degree-days, viticulturists classify vine growing climatic zones in four categories: (1) < 800 

degree-days; (2) 801-1000 degree-days; (3) 1,001-1,200 degree-days; and (4) 1,201-1,400 degree days. 33 of the 38 

farms fell into category 4, with categories (1), (2) and (3) having one, one and three farms respectively. To avoid 

having groups with a single farm, we grouped the farms from categories (1)-(3) together.  
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growing season (e.g. tractor plus disking, spraying, fumigation, or mowing, etc.). These outlays 

include both variable and fixed costs. The variable costs are for fuel, lubricants, operator and 

incidentals. The fixed costs are for depreciation, maintenance, repairs, insurance and the 

opportunity cost of the capital invested in machinery. 

 

Other explanatory variables include a series of dummy variables taking the value 1 (and 0 

otherwise) for vines older than 5 years (Age Vines), grape color (Red), grape quality (Premium), 

training system (Single Cordon, Double Cordon, Pergola), agro-climatic zone (Cool), and the 

valley where the vineyard is located (Aconcagua/Cachapoal, Colchagua/Rapel, Casablanca, 

Maipo, Curicó, Maule). Monetary variables are expressed in US$ and the exchange rate used is 

the average for 2005-2006 at US$1 = Ch$ 542 (Central Bank of Chile, www.bcentral.cl). 

 

5.  Econometric specification and results  

To implement the models presented in the previous section, we first need to specify an appropriate 

functional form for the production frontier. Selecting a functional form is an important 

consideration and the two most popular choices have been the translog and the Cobb-Douglas 

(Bravo-Ureta, Jara-Rojas, Lachaud, Moreira, Scheierling and Treguer, 2016; Bravo-Ureta, Solís, 

Moreira, Maripani, Thiam and Rivas, 2007). Another important consideration when relying on 

production function/frontier models has to do with identification or, to put it differently, with the 

possible endogeneity of inputs. The long-standing justification for the identification of such 

production models is “that…entrepreneurs maximize the mathematical expectation of profit” 

(Zellner, Kmenta and Drèze, 1966, p. 787). This justification was further elaborated by Hodges 

(1969) and Blair and Lusky (1975), and has been invoked regularly over the years in the 

http://www.bcentral.cl/
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agricultural economics literature either explicitly (e.g., Karagiannis and Kellermann, 2019; 

Picazo-Tadeo and Wall, 2011; Dawson and Lingard, 1982) or implicitly (e.g., Abdul-Rahaman 

and Abdulai, 2018; Piesse, Conradie, Thirtle and Vink, 2017). 

 

Due to its flexibility, we choose the translog functional form and will test this specification against 

the Cobb-Douglas. Given the variables available in the dataset, the generic frontier specification 

presented in equation (1) can be expressed in translog form as:  

ln 𝑦𝑗𝑝 = 𝛽𝑗 + ∑ 𝛿𝑖 ln 𝑥𝑖𝑗𝑝

4

𝑖=1

+
1

2
∑ ∑ 𝛿𝑖𝑗

4

𝑘=1

4

𝑖=1

ln 𝑥𝑖𝑗𝑝 ln 𝑥𝑘𝑗𝑝 

+ ∑ 𝛿𝑙𝐷𝑙

6

𝑙=1

+ ∑ 𝛿𝑧𝐷𝑧

2

𝑧=1

+ 𝑣𝑗𝑝 − 𝑢𝑗𝑝 

(8) 

where, as stated earlier, 𝑦𝑗𝑝 is the output quantity of the 𝑗𝑡ℎ farm of the 𝑝𝑡ℎ plot and 𝑥𝑖𝑗𝑝 is the 

quantity of the 𝑖𝑡ℎ input of the 𝑗𝑡ℎ farm of the 𝑝𝑡ℎ plot, 𝑣𝑗𝑝 is the idiosyncratic error term with 

an expectation of zero; and 𝛽𝑗 and the 𝛿’s are parameters to be estimated. Symmetry restrictions 

are imposed so that 𝛿𝑖𝑗 = 𝛿𝑗𝑖 ∀ 𝑖, 𝑗. Depending on the model, the individual farm effects, 𝛽𝑗, may 

comprise fixed effects or random effects capturing farm-specific heterogeneity. 𝐷𝑙 is a dummy 

variable for the region in which the farm is located (𝑙 = 1, … , 6)3, and 𝐷𝑧 is a dummy variable to 

capture the farm’s agro-climatic zone and is equal to 1 when the zone is 𝐶𝑜𝑜𝑙 and zero otherwise. 

In equation (8), the inefficiency term 𝑢 is depicted as plot-varying. However, depending on the 

model used, it may be only farm-varying ( 𝑢𝑗 ) or may encompass both plot-varying and 

farm-specific inefficiency (𝑢𝑗𝑝 − 𝜔𝑗). 

                                                           
3 The original 10 valleys were grouped into 7 because of the small number of observations for some of the valleys. 

Limarí is the omitted valley in the estimations. 
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As is common practice, when estimating the models, the logarithms of the inputs are transformed 

by subtracting their sample geometric mean (Coelli, Estache, Perelman and Trujillo, 2003). 

Consequently, the estimated first-order parameters can be interpreted as partial output elasticities 

for a representative farm characterized by an input endowment equal to the sample geometric 

mean.  

 

Before presenting the estimates from the stochastic production frontiers, we present findings from 

non-frontier models, namely the Ordinary Least Squares (OLS)4, Random Effects (RE) and Fixed 

Effects (FE) models. 5  For comparison purposes, we exclude the regional and agro-climatic 

variables as these are plot-invariant and therefore cannot be estimated in a fixed effects model. The 

results from these translog non-frontier models are presented in Table 3 and at the bottom we 

include a set of various specification tests. The first test is of the FE model against OLS and the 

latter is rejected. This shows the importance of unobserved farm-specific heterogeneity in our 

sample. The next test is a Hausman test of FE versus RE, which reveals that the RE is unsuitable. 

Thus, the FE model appears as the preferred model of the three. Given this, we test the validity of 

the translog specification versus the more restrictive Cobb-Douglas specification, and the 

Cobb-Douglas is strongly rejected. Looking more closely at the estimates in Table 3, it is notable 

that the first-order coefficients for Chemicals and Land have negative signs in the OLS and FE 

models respectively, implying negative partial output elasticities at the sample mean in 

contradiction to what is expected from economic theory. In the RE model, on the other hand, all 

                                                           
4 In the context of the frontier literature, the OLS model is often referred to as an average production function (King, 

1980; Timmer, 1971). 
5 All estimations presented in this paper have been carried out using the software package LIMDEP (version 11). The 

commands used and output are available in an on-line appendix.  
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first-order input coefficients are positive. To check the effects of input quantities on output, for 

each input we carried out a Wald test of the joint significance of the parameters of all explanatory 

variables that include this input quantity. For the OLS, FE and RE models presented in Table 3, the 

null hypothesis that they were jointly zero was rejected at conventional levels for all inputs with 

the exceptions of capital in the OLS and RE models. The parameters for the age of the vines (Age 

Vines), grape color (Red) and grape quality (Premium) are significant at the 5% level in all 

models. However, the parameters for the training systems (Single Cordon, Double Cordon, 

Pergola) are significant for the first two systems in the OLS model but none of them are significant 

in the FE and RE models.  

 

We also check the extent to which monotonicity conditions are fulfilled, i.e., positive marginal 

products. For the OLS model, for example, monotonicity is satisfied for 70% of all observations. 

Summarizing, the average compliance rate is 70.1% for all models presented in this paper, ranging 

from 66% for the FE model to 76.5% for the Pooled SPF with regional and agro-climatic variables. 

These compliances rates are quite similar to those presented by Perez-Mendez, Roibas and Wall 

(2019), who found that monotonicity conditions held for 74.1% of all observations when 

estimating a translog production function for Spanish dairy farms. 

 

We now turn to production frontier estimates and Table 4 shows results for the Pooled SPF, the 

TFE and the TRE models. The first-order coefficients for Chemicals in the Pooled SPF model 

and those for Land in the TFE and TRE models are negative. As in the OLS models, a Wald test 

of the joint significance of the parameters of the variables containing Capital could not reject 

that they were jointly zero. For the Pooled SPF, the null hypothesis of zero inefficiency was 
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strongly rejected on the basis of a generalized LR test.6 The parameter 𝜆(= 𝜎𝑢 𝜎𝑣⁄ ) for the 

Pooled SPF indicates a relatively large contribution of inefficiency to overall variance. This 

parameter is much smaller in the TFE model and is equal to zero in the TRE model. Thus, 

plot-varying inefficiencies can be estimated in the Pooled SPF and TFE models, while no 

plot-varying inefficiency was found in the TRE model.  

 

The TE scores corresponding to these models and to the FE frontier model (FEF, where the 

inefficiencies are calculated based on the estimates of the fixed effects) are presented at the top 

of Table 8, and we can observe some interesting differences. In particular, the FEF assigns the 

farm-specific effects completely to inefficiency and the efficiency scores have a very low 

average value (0.283) and are widely dispersed. The Pooled SPF and TFE models both allow for 

plot-varying inefficiency, and the latter also incorporates farm-specific heterogeneity. As we 

would expect, the efficiency scores for the TFE model are higher than those for the Pooled SPF 

and are less dispersed, consistent with the fact that the Pooled SPF assigns any unobserved 

farm-specific heterogeneity to inefficiency whereas the TFE distinguishes between unobserved 

farm-specific heterogeneity and inefficiency. In other words, part of the estimated differences in 

TE across farms in the Pooled SPF model can be attributed to unobserved heterogeneity; hence, 

when this unobserved heterogeneity is accounted for in the TFE model, the differences in TE 

across farms fall substantially.  

 

Now we move to results from models that incorporate the plot-invariant variables capturing 

possible spatial heterogeneity, which are the regional location of each farm and the 

                                                           
6 This was a likelihood-ratio test with a mixed 𝜒2 distribution of the test statistic. For the null hypothesis that 𝜎𝑢 = 0, 

the test statistic was 12.81, yielding p < 0.001. 
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corresponding agro-climatic zone. We begin by incorporating these variables into the simplest 

models, namely the OLS average production function and the Pooled SPF. Table 5 contains 

results from three models. The first column of results corresponds to the baseline OLS model 

with neither regional nor agro-climatic dummies that has already appeared in Table 3, the middle 

column shows the OLS model incorporating the regional and agro-climatic dummies, and the 

final column is the Pooled SPF also including the regional and agro-climatic variables. 

Comparing the OLS model with agro-climatic and regional variables with the baseline OLS 

model, we see that the region (valley) where the grape farm is located matters for productivity, as 

four out of the six coefficients of the regional dummy variables are highly significant. 

Incorporating the regional and agro-climatic effects also leads to improved p-values of the 

coefficients for the Age of Vine and Red variables. In addition, the coefficient for Chemicals, 

which is negative in the baseline model, becomes positive.7 However, not only the region but 

also the agro-climatic zone matters for grape productivity, as the coefficient for the agro-climatic 

zone dummy variable Cool is highly statistically significant with a negative value. The estimated 

coefficient for Cool implies that farms in the relatively cooler agro-climatic zones of Chile 

produce 25% less, ceteris paribus, than their counterparts in warmer zones. 

 

The OLS results indicate that regional and agro-climatic effects are indeed important in grape 

production. In the Pooled SPF model incorporating these effects, the parameters for the regional 

variables are significant at the 5% level for four regions and at the 10% level for another, while 

the agro-climatic variable is highly significant. As we would expect, incorporating the regional 

                                                           
7 A further improvement of the pooled SPF over the baseline OLS model is that for the former, the Wald test of the 

null hypotheses that the parameters of all explanatory variables that include the Capital input quantity are jointly zero 

was rejected at the 5% level (p = 0.041).  
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and agro-climatic effects into the Pooled SPF also affects the TE estimates.8 Comparing the TE 

estimates from the Pooled SPF with and without the regional and agro-climatic variables (Table 

8) we can see that the average and minimum TE scores are higher in the Pooled SPF model that 

includes regional and agro-climatic variables. 

 

We estimate the TRE model with agro-climatic and regional variables but, in line with the TRE 

model without these variables, the results show no evidence of plot-varying inefficiency. 

However, it may be the case that farm-specific inefficiency exists. To explore this, we now turn 

to the final set of estimates obtained from the Mundlak True Random Effects (MTRE) and 

Generalized True Random Effects (GTRE) models. When comparing the FE and RE models in 

Table 3, we observed that the RE is unsuitable on the basis of a Hausman test. Whereas the RE 

model assumes no correlation between inputs and unobserved heterogeneity, the MTRE model 

uses the Mundlak adjustment to relax the assumption of no correlation by incorporating the 

group means of the inputs into the model, as explained in Section 3. When we estimate the 

models with the group means of the four inputs, the models do not converge. After some 

experimentation, we obtain convergence of the MTRE when incorporating the group mean only 

for Chemicals. As the correlation issue can also arise with the GTRE model (Filippini and 

Greene, 2016), we estimate the latter incorporating the group mean of the Chemicals variable 

and label this model MGTRE.9 The results from these estimations, with and without the regional 

and agro-climatic variables are presented in Tables 6 and 7. 

 

                                                           
8 A likelihood ratio test of the null hypothesis that 𝜎𝑢 = 0, yielded a test statistic equal to 1.85. Given a mixed 𝜒2 

distribution of the test statistic, the resulting p-value is 0.087. 
9 We also estimated MGTRE models including the group means of Labor and Capital alongside that of Chemicals, 

and the conclusions did not change. The group means were not significant, and the estimated TE scores were virtually 

identical to those estimated by the model including only the group mean for Chemicals.  
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In the MTRE and MGTRE results without regional and agro-climatic variables (Table 6), the 

first-order parameter for Land is negative in both models. In addition, both models reveal no 

evidence of plot-varying inefficiency. However, the MGTRE results reveal the presence of 

farm-specific inefficiency. Incorporating the regional and agro-climatic variables (Table 7), we 

see that the first-order coefficient for Land is negative in the MTRE model but positive in the 

MGTRE model.10 As before, the MGTRE model shows evidence of farm-specific inefficiency.11  

 

Descriptive statistics for the TE scores obtained from the different models are summarized in 

Table 8. In the models without the regional and agro-climatic variables, the average TE score 

from the MGTRE model is lower than when these variables are included.12 Finally, Figure 1 

illustrates the effect of controlling for firm-specific heterogeneity by comparing the average 

farm-level TE scores from the Pooled SPF model with those from the MGTRE model. This 

comparison includes the regional and agro-climatic variables in both cases. As can be seen, the 

TE scores from the MGTRE model, with very few exceptions, are consistently higher than the 

corresponding scores from the Pooled SPF. Focusing on the points below the 45º line, the 

vertical gap between these points and the 45º line can be interpreted as representing the 

                                                           
10 It should be noted that the Wald tests for the contributions of the input quantities to output rejected the null 

hypothesis that the joint significance of the input parameters is zero in all models presented in Tables 6 and 7. 
11  We estimated an alternative 3-stage version of the GTRE model (Kumbhakar, Lien and Hardaker, 2014), 

incorporating the Mundlak adjustment, which confirmed the results of the 1-stage MGTRE model. The procedure 

involves first estimating the standard RE model. The predicted values for the estimated error term are then used as 

dependent variables in a standard SF model to estimate plot-varying inefficiency. Similarly, the estimated individual 

effects are used as the dependent variable in a standard SF model to estimate farm-specific technical inefficiency. As 

with the 1-stage model, no evidence of plot-varying inefficiency was found, but evidence was found of farm-specific 

inefficiency. Mean efficiency was 0.834, very similar to the 1-stage model, though the 3-stage showed somewhat 

greater dispersion of technical inefficiencies. We do not report these results to save space, but they are available on 

request. 
12 Recall that no evidence of plot-varying inefficiency was found in the MGTRE models. Therefore, the average 

overall farm-level efficiency scores in Table 8 only reflect farm-level efficiency.  
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farm-level heterogeneity which would be incorrectly attributed to inefficiency if such 

heterogeneity is ignored.  

 

6.  Concluding remarks 

We have analyzed wine grape production in Chilean boutique vineyards by estimating a series of 

production models, both average and frontier specifications. The dataset used has the advantage 

of containing information on inputs and output at the plot level (i.e., a sub-unit within a farm), 

which allows us to distinguish overall farm management influences from plot level management 

performance. The use of panel-data frontier models allows us to take account of unobserved 

farm-specific heterogeneity when estimating plot-level inefficiency. Our results show that 

unobserved heterogeneity is relevant, lending support to the use of panel-data specifications in 

cases such as ours where individual plots can be assigned to specific farms.  

 

When carrying out efficiency analysis in a context where data are available at farm and sub-unit 

levels, e.g. plots, care must be taken to control for unobserved heterogeneity besides 

management effects that may affect efficiency at the various levels. In the case of wine grape 

production, plot-invariant spatial variables, such as the valley in which the farm is located and its 

agro-climatic zone, are potentially relevant. Estimates from pooled stochastic frontier models 

with and without the latter variables exhibit inefficiency differences between plots from the same 

farm. The pooled model that includes regional and agro-climatic variables reveals that technical 

efficiency (TE) is higher than when such variables are omitted, implying that part of technical 

inefficiency measured in the latter model is wrongly attributed to differences in regional and 

agro-climatic effects. The results from our different model specifications show that farms located 



 24 

in a cooler agro-climatic zone, ceteris paribus, have a significantly lower grape production than 

farms in warmer zones. 

 

While our pooled models show evidence of intra-farm (i.e., inter-plot) differences in efficiency, 

these plot-level differences disappear when panel data frontier models are used to account for 

farm-specific heterogeneity. Thus, estimates from the true fixed effects (TFE) model yield an 

average TE of 0.941 compared to an average of 0.724 in the corresponding pooled model where 

there is very little variation in efficiency across plots. Estimates from the true random effects 

(TRE) model and the TRE model with a Mundlak adjustment (MTRE) show no TE differences 

between plots. Indeed, all plots were found to be equally efficient in these models. Thus, the 

conclusion of efficiency differences between plots obtained from the pooled frontier models is 

reversed, even when controlling for regional and agro-climatic effects.  

 

While the TRE and MTRE produce no evidence of inefficiency in plots, and by extension no 

evidence of inefficiency in farms, these models do not control for possible farm-specific 

inefficiency. In particular, they assign all the differences between farms captured by the 

individual farm-specific effects to unobserved heterogeneity. However, part of these differences 

may be due to differences in farm-level inefficiency. To address the question of whether farm 

level inefficiencies are present, we estimated the generalized true random effects model with a 

Mundlak adjustment (MGTRE), which yielded an average TE of 0.791; hence, these results do 

show evidence of farm-level inefficiency and this holds even when controlling for regional and 

agro-climatic effects (average TE of 0.859).  
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Overall, our results reveal that efficiency on a given farm in our sample is determined by 

management at the farm level and not by plot-level management differences. However, 

disparities in TE between farms exist, even when controlling for location and agro-climatic 

conditions. This implies, in accordance with the existing literature, that wine grape producers 

have the potential to augment productivity significantly by improving TE. This in turns suggests 

that strategies designed to improve farm-level managerial performance are likely to pay high 

dividends in the increasingly competitive wine value chain. It should be kept in mind that our 

sample represents a particular segment of the Chilean wine grape market –family-owned 

‘boutique wine’ farms - so our results are not necessarily generalizable to the market as a whole. 

Nevertheless, we have shown that panel data models can be adapted to cases where the available 

data is cross-sectional but composed of observations at different levels (e.g., plots or sub-units) 

for each individual unit (e.g., a farm). These models can be easily estimated and can provide rich 

insights regarding unit and subunit performance.   
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Table 1. Summary of Key Features of 10 Winegrape Production Studies  

 Country Region Period Methodology Mean TE Focus of study 

Townsend et al. (1998) South 

Africa 

Western Cape 

Province 

1992 to 1995 Non-parametri

c 

N.A. Relationship between farm size, 

productivity and returns to scale 

Conradie et al. (2006) South 

Africa 

 

Robertson and 

Worcester 

regions 

De Doorns 

2003 and 2004 

 

 

2004 

SPF 1st quartile 65% 

2nd quartile 71% 

3rd quartile 75% 

4th quartile 76% 

Relationship between TE and 

farm size 

Henriques et al. (2009) Portugal Alentejo 

region 

2001 and 2004 Non-parametri

c 

60.7% TE component of productivity 

Moreira et al. (2011) Chile Several 

regions 

2005/2006 SPF 77.2% TE component of productivity 

Guesmi et al. (2012) Spain Catalonia 2008 SPF Organic 80% 

Conventional 64% 

Organic and conventional grape 

farms 

Ma et al. (2012) China 24 provinces 2009 SPF South 76% 

Bohai Bay Rim area 71% 

TE levels and effect of inputs 

elements on profit 

Coelli and Sanders (2013) Australia Murray and 

Murrumbidgee 

river basins 

2006/2007 to 

2009/2010 

SPF 79% TE in wine grape production of 

Australia 

Manevska-Tasevska (2013) Macedonia Tikvesh 

vineyard 

district 

2006 to 2008 SPF 69% Effect of farmers’ knowledge on 

TE 

Latruffe and Nauges (2014) France Data from 

FADN 

database 

1999 to 2007 SPF and 

non-parametric 

Conventional 38% 67% 

and 72% 

Organic 35% 57% and 

72% 

Effect of conventional practices 

on the likelihood of converting to 

organic farming 

Piesse et al. (2017) South 

Africa 

Nine regions 2005 to 2015 SPF Old regions 72.9% 

New regions 72.9% 

Compare the efficiency levels of 

old established wine regions with 

newer regions 

Average Technical Efficiency (TE)  67.5%  



Table 2. Descriptive Statistics  

Variable Unit Average Min. Max. 

Number of farms Farms 38 

  Size of farms Ha 86.8 4.0 414.0 

Number of plots per farm Plots 7 2 17 

Size of plots Ha 12.5 0.2 108.7 

Grape production  1,000 Kg 134.4 1.2 1,155 

Labor  US$ 13,388 212 187,664 

Capital  US$ 4,362 43 40,474 

Chemical inputs US$ 3,844 45 34,865 

Age vines  Years 16 3 118 

Type of Wine Produced 

    - Red % 71 

  - White % 29 

  Grape Quality 

    - Premium % 50 

  - Varietal % 50 

  Training System 

   

  

- Simple cordon % 73 

  - Double cordon % 13 

  - Pergola % 7 

  - Other % 7 

  Location-Valley (from North to South) 

- Limarí  % 4 

  - Aconcagua  % 6 

  - Casablanca  % 8 

  - San Antonio  % 2 

  - Maipo  % 15 

  - Cachapoal  % 11 

  - Rapel  % 2 

  - Colchagua  % 30 

  - Curicó  % 6 

  - Maule  % 16 

  Agro-Climatic Zone     

- Cool Farms 5   

- Warm Farms 33   
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Table 3. Comparison of Non-Frontier Models: OLS, Fixed Effects (FE) and Random Effects (RE) Models 
 

 OLS FE RE 

Variable Coeff. S.E. p-value* Coeff. S.E. p-value Coeff. S.E. p-value 

          

Labor 0.502 0.087 0.000 0.721 0.145 0.000 0.612 0.105 0.000 

Capital 0.067 0.084 0.422 0.794 0.243 0.001 0.329 0.132 0.013 

Land 0.477 0.131 0.000 -0.516 0.219 0.019 0.078 0.159 0.626 

Chemicals -0.020 0.033 0.550 0.029 0.048 0.540 0.006 0.038 0.873 

0.5×Labor2 1.037 0.203 0.011 0.552 0.263 0.294 0.526 0.222 0.236 

0.5×Capital2 0.272 0.079 0.086 0.196 0.316 0.757 0.559 0.121 0.021 

0.5×Land2 1.376 0.415 0.099 3.528 0.527 0.001 2.490 0.420 0.003 

0.5×Chemicals2 -0.073 0.014 0.009 0.030 0.021 0.476 -0.024 0.017 0.473 

Labor×Capital -0.279 0.383 0.466 0.488 0.404 0.228 0.158 0.323 0.625 

Labor×Land -0.887 0.516 0.087 -1.649 0.610 0.007 -1.102 0.500 0.027 

Labor×Chemicals -0.105 0.097 0.279 0.483 0.123 0.000 0.270 0.106 0.011 

Capital×Land  -0.210 0.379 0.579 -0.965 0.689 0.163 -0.860 0.430 0.045 

Capital×Chemicals 0.127 0.101 0.209 0.211 0.149 0.158 0.091 0.118 0.442 

Land×Chemicals 0.028 0.157 0.861 -0.731 0.209 0.001 -0.346 0.174 0.046 

Age Vines 0.291 0.128 0.023 0.335 0.110 0.003 0.327 0.103 0.002 

Red -0.116 0.052 0.027 -0.111 0.038 0.004 -0.126 0.037 0.001 

Premium -0.255 0.048 0.000 -0.167 0.037 0.000 -0.185 0.036 0.000 

Single Cordon  -0.263 0.095 0.006 0.093 0.115 0.421 -0.006 0.101 0.956 

Double Cordon -0.545 0.114 0.000 0.130 0.127 0.309 -0.094 0.114 0.411 

Pergola -0.008 0.123 0.950 0.056 0.138 0.685 0.054 0.123 0.662 

Constant 11.289 0.159 0.000    10.940 0.149 0.000 

H0: OLS vs FE  𝜒(37)
2  = 272.36  p < 0.001 H0: RE vs FE   𝜒(20)

2  = 46.15  p < 0.001 

H0: Cobb-Douglas vs Translog (FE model)  𝜒(10)
2  = 39.00  p < 0.001     

* p-values of “0.000” in this and the remaining tables signify that p < 0.001.
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Table 4. Comparison of Frontier Models: Pooled SPF, TFE and TRE 
 

 Pooled SPF  TFE  TRE 

Variable Coeff. S.E. p-value Coeff. S.E. p-value Coeff. S.E. p-value 

Labor 0.439 0.081 0.000 0.719 0.143 0.000 0.707 0.062 0.000 

Capital 0.091 0.078 0.244 0.632 0.325 0.052 0.416 0.060 0.000 

Land 0.498 0.123 0.000 -0.352 0.279 0.207 -0.119 0.108 0.269 

Chemicals -0.010 0.031 0.756 0.048 0.063 0.447 0.021 0.023 0.355 

0.5×Labor2 1.001 0.185 0.007 0.641 0.256 0.211 0.554 0.121 0.022 

0.5×Capital2 0.177 0.078 0.253 0.082 0.530 0.938 0.685 0.049 0.000 

0.5×Land2 1.660 0.381 0.029 3.057 0.537 0.004 2.883 0.278 0.000 

0.5×Chemicals2 -0.061 0.013 0.020 0.007 0.033 0.920 0.000 0.009 -0.994 

Labor×Capital -0.080 0.351 0.820 0.492 0.553 0.374 0.157 0.229 0.494 

Labor×Land -1.097 0.480 0.022 -1.661 0.702 0.018 -1.220 0.362 0.001 

Labor×Chemicals -0.040 0.090 0.657 0.329 0.117 0.005 0.375 0.067 0.000 

Capital×Land  -0.267 0.331 0.420 -0.704 0.789 0.372 -1.002 0.243 0.000 

Capital×Chemicals 0.100 0.088 0.257 0.068 0.129 0.601 0.108 0.069 0.119 

Land×Chemicals -0.029 0.148 0.846 -0.432 0.189 0.022 -0.492 0.111 0.000 

Age Vines 0.279 0.108 0.010 0.500 0.064 0.000 0.329 0.082 0.000 

Red -0.136 0.048 0.005 -0.233 0.054 0.000 -0.119 0.034 0.001 

Premium -0.233 0.044 0.000 -0.031 0.064 0.630 -0.181 0.029 0.000 

Single Cordon -0.257 0.084 0.002 0.108 0.190 0.570 0.035 0.064 0.592 

Double Cordon -0.507 0.101 0.000 0.148 0.188 0.432 -0.042 0.080 0.600 

Pergola 0.019 0.110 0.864 0.141 0.210 0.502 0.058 0.091 0.526 

Constant 11.640 0.136 0.000    10.859 3.240 0.001 

          

Log Likelihood -77.27   -40.04   -26.20   

𝜎𝑢
2 0.189   0.006   0.000   

𝜎𝑣
2 0.041   0.039   0.218   

𝜆 (= 𝜎𝑢 𝜎𝑣⁄ ) 2.138   0.387   0.000   
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Table 5. Comparison of OLS Models with and without Regional and Agro-climatic 

Variables with Pooled SPF with Regional and Agro-climatic Variables 

 

OLS 

Baseline 

OLS + Regional and 

Agro-climatic Dummies 

Pooled SPF+ Regional 

and Agro-climatic 

Dummies 

    

Variable Coeff. S.E. p-value Coeff. S.E. p-value Coeff. S.E. p-value 

          

Labor 0.502 0.087 0.000 0.554 0.095 0.000 0.538 0.090 0.000 

Capital 0.067 0.084 0.422 0.128 0.077 0.098 0.118 0.073 0.110 

Land 0.477 0.131 0.000 0.286 0.125 0.023 0.320 0.119 0.007 

Chemicals -0.020 0.033 0.550 0.051 0.034 0.140 0.046 0.032 0.153 

0.5×Labor2 1.037 0.203 0.011 1.272 0.213 0.003 1.224 0.195 0.002 

0.5×Capital2 0.272 0.079 0.086 -0.116 0.074 0.435 -0.101 0.071 0.477 

0.5×Land2 1.376 0.415 0.099 1.731 0.409 0.035 1.797 0.383 0.019 

0.5×Chemicals2 -0.073 0.014 0.009 -0.047 0.015 0.110 -0.044 0.014 0.108 

Labor×Capital -0.279 0.383 0.466 0.042 0.343 0.902 0.041 0.319 0.897 

Labor×Land -0.887 0.516 0.087 -1.629 0.542 0.003 -1.576 0.504 0.002 

Labor×Chemicals -0.105 0.097 0.279 0.081 0.097 0.403 0.091 0.091 0.320 

Capital×Land  -0.210 0.379 0.579 0.139 0.337 0.680 0.070 0.311 0.821 

Capital×Chemicals 0.127 0.101 0.209 -0.169 0.104 0.107 -0.115 0.094 0.221 

Land×Chemicals 0.028 0.157 0.861 0.102 0.158 0.519 0.036 0.148 0.808 

Age Vines 0.291 0.128 0.023 0.255 0.114 0.026 0.244 0.104 0.019 

Red -0.116 0.052 0.027 -0.141 0.046 0.002 -0.147 0.043 0.001 

Premium -0.255 0.048 0.000 -0.224 0.044 0.000 -0.211 0.041 0.000 

Single Cordon -0.263 0.095 0.006 -0.169 0.087 0.052 -0.159 0.082 0.053 

Double Cordon -0.545 0.114 0.000 -0.239 0.108 0.028 -0.223 0.102 0.029 

Pergola -0.008 0.123 0.950 -0.026 0.111 0.813 0.003 0.103 0.979 

Aconca./Cachap.    0.279 0.122 0.023 0.201 0.115 0.079 

Colchagua/Rapel    0.394 0.120 0.001 0.325 0.110 0.003 

Casablanca    -0.178 0.150 0.236 -0.248 0.138 0.073 

Curicó    0.425 0.144 0.003 0.354 0.132 0.007 

Maipo    -0.013 0.114 0.909 -0.083 0.107 0.436 

Maule    0.281 0.122 0.022 0.224 0.113 0.048 

Cool    -0.253 0.077 0.001 -0.206 0.074 0.005 

Constant 11.29 0.159 0.000 11.00 0.176 0.000 11.29 0.163 0.000 

          

Log Likelihood       -41.66   

𝜎𝑢
2       0.086   

𝜎𝑣
2       0.050   

𝜆 (= 𝜎𝑢 𝜎𝑣⁄ )       1.312   
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Table 6. Comparison of MTRE and MGTRE without Regional and Agro-Climatic 

Variables 

 MTRE MGTRE 

Variable Coeff. S.E. p-value Coeff. S.E. p-value 

       

Labor 0.707 0.064 0.000 0.698 0.065 0.000 

Capital 0.417 0.060 0.000 0.436 0.064 0.000 

Land -0.120 0.115 0.297 -0.138 0.119 0.246 

Chemicals 0.021 0.033 0.531 0.029 0.034 0.404 

0.5×Labor2 0.554 0.123 0.024 0.454 0.239 0.057 

0.5×Capital2 0.686 0.049 0.000 0.770 0.107 0.000 

0.5×Land2 2.886 0.280 0.000 2.954 0.564 0.000 

0.5×Chemicals2 0.000 0.010 0.988 0.008 0.020 0.700 

Labor×Capital 0.157 0.230 0.495 0.189 0.231 0.414 

Labor×Land -1.221 0.362 0.001 -1.147 0.359 0.001 

Labor×Chemicals 0.375 0.067 0.000 0.372 0.068 0.000 

Capital×Land  -1.004 0.247 0.000 -1.132 0.255 0.000 

Capital×Chemicals 0.109 0.073 0.139 0.121 0.076 0.110 

Land×Chemicals -0.492 0.118 0.000 -0.508 0.122 0.000 

Age Vines 0.328 0.083 0.000 0.338 0.082 0.000 

Red -0.119 0.034 0.001 -0.114 0.035 0.001 

Premium -0.181 0.030 0.000 -0.183 0.030 0.000 

Single Cordon 0.035 0.065 0.592 0.016 0.065 0.804 

Double Cordon -0.042 0.080 0.601 -0.045 0.082 0.582 

Pergola 0.058 0.092 0.529 0.050 0.095 0.600 

Constant 0.707 0.064 0.000 10.883 4.529 0.016 

Mean-Chemicals 0.002 0.031 0.954 -0.024 0.031 0.441 

       

Log Likelihood -26.20   -25.672   

𝜎𝑢
2 0.000   0.000   

𝜎𝑣
2 0.219   0.047   

𝜆 (= 𝜎𝑢 𝜎𝑣⁄ ) 0.000   0.000 

  𝜎𝛽 (heterogeneity)    0.312 0.020 0.000 

𝜎𝜔 (inefficiency)    1.502 0.143 0.000 
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Table 7. Comparison of MTRE and MGTRE with Regional and  

Agro-Climatic Variables 

 MTRE MGTRE 

Variable Coeff. S.E. p-value Coeff. S.E. p-value 

       

Labor 0.685 0.078 0.000 0.704 0.078 0.000 

Capital 0.316 0.069 0.000 0.282 0.076 0.000 

Land -0.005 0.124 0.968 0.005 0.131 0.970 

Chemicals 0.029 0.036 0.434 0.033 0.037 0.369 

0.5×Labor2 0.732 0.150 0.014 0.681 0.297 0.022 

0.5×Capital2 0.288 0.057 0.012 0.264 0.123 0.032 

0.5×Land2 2.332 0.353 0.001 2.268 0.727 0.002 

0.5×Chemicals2 -0.015 0.014 0.583 -0.012 0.028 0.678 

Labor×Capital 0.117 0.275 0.672 0.100 0.284 0.724 

Labor×Land -1.332 0.476 0.005 -1.268 0.483 0.009 

Labor×Chemicals 0.337 0.085 0.000 0.339 0.085 0.000 

Capital×Land  -0.470 0.292 0.107 -0.446 0.312 0.153 

Capital×Chemicals -0.002 0.086 0.985 0.016 0.088 0.852 

Land×Chemicals -0.331 0.147 0.025 -0.355 0.149 0.018 

Age Vines 0.328 0.086 0.000 0.332 0.086 0.000 

Red -0.133 0.036 0.000 -0.133 0.036 0.000 

Premium -0.182 0.035 0.000 -0.182 0.035 0.000 

Single Cordon -0.022 0.078 0.775 -0.030 0.080 0.706 

Double Cordon -0.015 0.090 0.869 -0.018 0.093 0.849 

Pergola 0.012 0.102 0.908 0.003 0.102 0.977 

Aconca./Cachapoal 0.371 0.095 0.000 0.386 0.096 0.000 

Colchagua/Rapel 0.533 0.090 0.000 0.530 0.091 0.000 

Casablanca -0.180 0.115 0.119 -0.193 0.116 0.097 

Curicó 0.456 0.115 0.000 0.447 0.117 0.000 

Maipo 0.072 0.093 0.438 0.090 0.093 0.332 

Maule 0.461 0.095 0.000 0.535 0.097 0.000 

Cool -0.214 0.063 0.001 -0.232 0.064 0.000 

Constant 10.666 4.144 0.010 10.640 5.869 0.070 

Mean-Chemicals -0.003 0.038 0.940 0.005 0.039 0.900 

Log Likelihood -12.83   -12.51   

𝜎𝑢
2 0.000   0.000   

𝜎𝑣
2 0.048   0.049   

𝜆 (= 𝜎𝑢 𝜎𝑣⁄ ) 0.000   0.000   

𝜎𝛽 (heterogeneity)    0.206 0.017 0.000 

𝜎𝜔 (inefficiency)    0.444 0.113 0.000 
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Table 8. Summary Statistics of Technical Efficiency Scores 

 

Model Mean Min. Max. Std. Dev. 

 
  

  

Without Regional and Agro-climatic Variables     

 

    

Pooled SPF 0.724 0.331 0.929 0.133 

FEF 0.283 0.079 1.000 0.189 

TFE 0.941 0.900 0.970 0.010 

TRE  1.000 1.000 1.000 0.000 

MTRE 1.000 1.000 1.000 0.000 

MGTRE 0.791 0.768 0.799 0.006 

     

     

With Regional and Agro-climatic Variables     

     

Pooled SPF 0.797 0.413 0.937 0.084 

MTRE 1.000 1.000 1.000 0.000 

MGTRE 0.859 0.834 0.872 0.008 
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Figure 1. Comparison of farm-level TE scores: MGTRE model vs Pooled SPF model with 

regional and agro-climatic variables  
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