
Efficient test execution in End to End testing

Resource optimization in End to End testing through a smart resource characterization and orchestration

Cristian Augusto†
 Department of Computing

University of Oviedo

 Gijon ASTURIAS SPAIN
 augustocristian@uniovi.es

ABSTRACT

Virtualization and containerization have been two disruptive

technologies in the past few years. Both technologies have

allowed isolating the applications with fewer resources and have

impacted fields as Software Testing. In the field of testing, the

execution of the containerized/virtualized test suite has achieved

great savings, but when the complexity or the cost of deployment

arises, there are open challenges like the efficient execution of

End to End (E2E) test suites. This paper proposes a research

problem and a feasible solution that looks for improving resource

usage into the E2E tests, towards smart resource identification and

a proper organization of its execution in order to achieve efficient

and effective resource usage. The resources are characterized by a

series of attributes that provide information about the resource and

to its usage during the E2E testing phase. The test cases are

grouped and scheduled with the resources (i.e. deployed in

parallel in the same machine or executed in a fixed arrange), in

order to make an efficient execution of the entire test suite,

reducing its total cost/time

CCS CONCEPTS

Software verification and validation

KEYWORDS

Orchestration, End to End Testing, Efficient use of resources,

Containerization

1 Introduction

Over half a century, virtualization has achieved important savings

in resource terms and has preceded the modern containerization

technologies that have emerged in the past decade.

Containerization technologies allow the isolation of applications

into separated instances with the binaries/libraries required. These

isolate environments share an engine layer (commonly Docker)

deployed in a host OS, avoiding have individual virtualized

machines for each deployment. This technology has supposed a

break with the old system deployment methods and has achieved

great savings in terms of resources required because each

container not require an entire operating system. Among many

fields, Software testing exploits these containerization advantages,

moreover with the last trends of moving the testing to the Cloud

[1]. Despite the important savings achieved in testing due to the

containerization, the execution of containerized E2E test suite is a

challenging practice, due to the expensive and complex systems

required, which arises the execution cost making unfeasible re-

execute the suite as needed The contributions of this line of

research are (1) A complete identification and characterization of

the resources employed during E2E testing (2). A test case and

resource organization to achieve an effective/efficient use of

resources in E2E testing.

The remainder of this paper is organized as follows: the

background and related work are described in Section 2, the

research project overview is presented in Section 3 and finally, the

conclusions and future work are exposed in Section 4.

2 Background and Related Work

E2E tests are those that test all application flow from start to end

ensuring that all are working as expected. During the E2E test

suite execution, it is common that the test cases require the entire

system up for its execution, becoming costly in terms of both

resources and time. Despite the inherent cost of re-deploy the

resources of the system, developers usually face with another

issue: the oversubscription. The oversubscription is caused by an

overestimation or a bad optimization of the resources needed by

the test case, instantiating more resources than needed. For

example, one test oversubscribes resources if in order to check the

data integrity into a database, deploys an unnecessarily complete

web server that would not use.

If an E2E test suite is integrated into a continuous integration

system without regarding the resource sharing/oversubscription

the advantages achieved [2], would be overshadowed by the

resources wasted in each repository change. The last tendencies of

moving the testing to the Cloud [1], the on-demand resources and

scalability, make disappear resource lacks, but increases the

execution costs as often as the E2E suite is executed, because of

the oversubscription.

The efficient and effective use of resources during testing has

attracted the attention of both industry and academia. A number of

works address this problem with prioritization, selection and

minimization techniques [3]–[8], analyzing both fault detection

rates and the total cost of executing the suite. Despite the positive

results achieved by these kinds of techniques in large enterprises

© C. Augusto 2020. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version
was published in https://dl.acm.org/doi/10.1145/3377812.3382177, https://doi.org/10.1145/3377812.3382177

© C. Augusto 2020. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version
was published in https://dl.acm.org/doi/10.1145/3377812.3382177, https://doi.org/10.1145/3377812.3382177

ICSE ‘20, May, 2020, Seoul, South Korea C. Augusto.

as Google [8] or Microsoft [9], they raise particular challenges

when dealing with E2E tests because the test cases deploy the

whole system for their execution. Other authors have studied

interdependences [10]–[15] between test cases in order to allow

sharing resources between each other. Although the isolation

achieved with the virtualization/containerization technologies,

when the resources are costly, discover the dependencies is

important to share those resources between the test cases.

3 Research Project Overview

This research project is intended to address efficient resource

usage during E2E testing via characterization of the resources

employed and a smart test case arrange with the resources

required. The proposal, so-called RETORCH (Resource-aware

orchestration framework for E2E testing) were preliminary

published on [16] and is composed of three processes that are the

basis of the orchestration technique: (1) the resource identification

process characterizes the resources required, (2) the grouping

process aims to reduce the costs, putting together the test cases

with the same resource requirements to allow sharing and avoid

unnecessary deployments, and (3) the scheduling process arrange

the test cases focused on achieving savings in execution time

Resource Identification: The first process identifies the resources

employed by each test case in order to detect which test cases

require similar resources. These resources are classified in a

number of different categories and are characterized by several

static attributes, that describe how the resource is used and made

available for the test. These include the elasticity that refers to the

possibility of making available the resource on the fly, the

resource hierarchy if the resource can be replaced by a mock

during the test phase and a Lifecycle with different phases as set-

up, execution or disposal. Resources are also characterized by a

number of access modes such as read, read-write, write-only or

dynamic. The access modes are related to how much safe and

idempotence are the operations performed by the test cases over

it, allowing sharing between the test cases that perform

compatible use of those resources. Resources also have dynamic

attributes, that change during the resource usage such as:

measurable to refer that it has indicators to measure its

performance, traceable that allows knowing in what phase of the

lifecycle, or availability according to how and the number of

times that may be instantiated, in order to specify how and the

number of resources would be deployed.

For instance, in one IoT testing infrastructure, we have sensor

simulators (containerized virtual devices), emulators (virtual

devices but bound to physical interfaces) and physical devices.

The elasticity of the three types could decrease as more physical is

the device, being able to instantiated “on the fly” the simulators,

and a fixed number of emulators-physical devices. The main

objective of these emulators-simulators is to replace the real

device (that is usually costly and non-flexible) performing the

same type of access mode over it (read-only), and facilitate the

performance measuring of the infrastructure (i.e. docker-stats).

Grouping Process: This process is aimed to optimize the usage of

resources through an aggrupation of test cases according to the

way they use such resources. These groups of test cases, called T-

Groups, include all the scaffolding required for its execution and

are focused to avoid the oversubscription and reducing the total

cost of performing the test suite. For example, in the previous

example of the IoT infrastructure, we can organize the test cases

into T-Groups according to the different resource requirements

(simulator, emulator or physical device) and the operations

performed over it. This TGroup arrangement is focused on not

deploy more resources than needed (i.e. a simple test that checks a

sensor heartbeat, don’t need an entire/expensive physical device

Scheduling Process: Finally, the T-Groups are optimized to

achieve resource savings in terms of time. The T-Groups are

divided, composed by a number of test cases and the scaffolding

required (TJobs). The TJobs allow the parallelization and

arrangement of the test case execution, as needed according to the

execution constraints ensuring that the resources are deployed in

an optimal way. Finally. in the previous IoT example, the

TGroups are scheduled taking into account attributes as the

flexibility or the access mode, in order to optimize the execution

time of the entire test suite. Despite the test cases could be

arranged in different feasible schedules (i.e. focused on reducing

the time, the cost among others), the objective pursued is found

the schedule that reduces the execution time at the same time it

optimizes the resources employed.

The first preliminary results of this line of research were

published on the QUATIC 19 conference [16] and has been

invited to be extended for the Software Quality Journal. In [16],

the approach was presented and exemplified with a real-world

example of an educational application called Fullteaching [17].

With this application, we propose to make smart resource

identification and orchestration, that avoid deploying all the

functionality when it is not needed. Into the extension, we not

only have achieved savings in terms of time (61% less than the

non-orchestrated suite) but also a better resource usage in terms of

physical memory (i.e. reducing the number of instances).

4 Conclusions and future work

The efficient usage of resources in E2E testing is a challenging

and promising field. We have seen how with smart resource

identification and organization of the test cases with the resources

required, we achieve savings in terms of time and also reductions

in the total cost of the test suite. As future work, we aim to extend

the resource identification with a taxonomy and attributes

provided, and automatize the organization, taking into account the

dependencies between the different test cases and the resource

properties, given by the identification process.

ACKNOWLEDGMENTS

This work was supported in part by the Spanish Ministry of

Economy and Competitiveness under TestEAMoS (TIN2016-

76956-C3-1-R) project and ERDF funds.

© C. Augusto 2020. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version
was published in https://dl.acm.org/doi/10.1145/3377812.3382177, https://doi.org/10.1145/3377812.3382177

© C. Augusto 2020. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version
was published in https://dl.acm.org/doi/10.1145/3377812.3382177, https://doi.org/10.1145/3377812.3382177

Efficient test execution in End to End testing ICSE ‘20, May, 2020, Seoul, South Korea

REFERENCES
[1] A. Bertolino et al., “A Systematic Review on Cloud Testing.”

[2] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and

productivity outcomes relating to continuous integration in GitHub,” in 2015

10th Joint Meeting of the European Software Engineering Conference and the

ACM SIGSOFT Symposium on the Foundations of Software Engineering,

ESEC/FSE 2015 - Proceedings, 2015, pp. 805–816.

[3] S. Yoo and M. Harman, “Regression testing minimization, selection and

prioritization: A survey,” Software Testing Verification and Reliability, vol. 22,

no. 2. John Wiley and Sons Ltd., pp. 67–120, Mar-2012.

[4] R. Lachmann, M. Nieke, C. Seidl, I. Schaefer, and S. Schulze, “System-level

test case prioritization using machine learning,” in Proceedings - 2016 15th

IEEE International Conference on Machine Learning and Applications, ICMLA

2016, 2017, pp. 361–368.

[5] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An extensive

study of static regression test selection in modern software evolution,” in

Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software

Engineering, 2016, vol. 13-18-Nove, pp. 583–594.

[6] G. Rothermel, M. J. Harrold, J. Von Ronne, and C. Hong, “Empirical studies of

test-suite reduction,” Softw. Test. Verif. Reliab., vol. 12, no. 4, pp. 219–249,

2002.

[7] W. E. Wong, J. R. Morgan, S. London, and A. P. Mathur, “Effect of test set

minimization on fault detection effectiveness,” Softw. - Pract. Exp., vol. 28, no.

4, pp. 347–369, 1998.

[8] A. Memon et al., “Taming google-scale continuous testing,” in Proceedings -

2017 IEEE/ACM 39th International Conference on Software Engineering:

Software Engineering in Practice Track, ICSE-SEIP 2017, 2017, pp. 233–242.

[9] H. Esfahani et al., “CloudBuild: Microsoft’s distributed and caching build

service,” in Proceedings - International Conference on Software Engineering,

Austin, Texas, 2016, pp. 11–20.

[10] A. Gambi, J. Bell, and A. Zeller, “Practical Test Dependency Detection,” in

Proceedings - 2018 IEEE 11th International Conference on Software Testing,

Verification and Validation, ICST 2018, 2018, pp. 1–11.

[11] J. Bell, G. Kaiser, E. Melski, and M. Dattatreya, “Efficient dependency

detection for safe Java test acceleration,” in 2015 10th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering, ESEC/FSE 2015 -

Proceedings, Bergamo, Italy, 2015, pp. 770–781.

[12] A. Gyori, A. Shi, F. Hariri, and D. Marinov, “Reliable testing: Detecting state-

polluting tests to prevent test dependency,” in 2015 International Symposium on

Software Testing and Analysis, ISSTA 2015 - Proceedings, 2015, pp. 223–233.

[13] K. Muşlu, B. Soran, and J. Wuttke, “Finding bugs by isolating unit tests,” in

SIGSOFT/FSE 2011 - Proceedings of the 19th ACM SIGSOFT Symposium on

Foundations of Software Engineering, 2011, pp. 496–499.

[14] S. Tahvili, L. Hatvani, M. Felderer, W. Afzal, and M. Bohlin, “Automated

functional dependency detection between test cases using Doc2Vec and

Clustering,” in Proceedings - 2019 IEEE International Conference on Artificial

Intelligence Testing, AITest 2019, 2019, pp. 19–26.

[15] T. Zimmermann and N. Nagappan, “Predicting defects using network analysis

on dependency graphs,” in Proceedings - International Conference on Software

Engineering, 2008, pp. 531–540.

[16] C. Augusto, J. Morán, A. Bertolino, C. de la Riva, and J. Tuya, “RETORCH:

Resource-aware End-to-end Test Orchestration,” in 12th International

Conference on the Quality of Information and Communications Technology

(QUATIC 2019), 2019, p. 14.

[17] P. F. Pérez, “Fullteaching: A web application to make teaching online easy.”

Universidad Rey Juan Carlos, 2017.

© C. Augusto 2020. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version
was published in https://dl.acm.org/doi/10.1145/3377812.3382177, https://doi.org/10.1145/3377812.3382177

© C. Augusto 2020. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version
was published in https://dl.acm.org/doi/10.1145/3377812.3382177, https://doi.org/10.1145/3377812.3382177

