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Abstract

In this work, a novel methodology for fracture characterization of metallic notched components including the effect of
notch root radius and temperature is proposed based on the brittle-to-ductile transition curve. To this aim, two different
regression models are derived, either by considering temperature as an influencing variable or combined with the
notch radius effect. In the former case, the compatibility condition between the statistical distributions of the fracture
toughness for a given temperature and of the temperature for a given fracture toughness is applied. This allows the
Kc−T field to be analytically defined proving that both distributions are interrelated and cannot be arbitrarily defined.
The second regression model is based on the Theory of the critical distances by converting the experimental data at
different notch radii to a reference value. In this way the so-called notch or apparent fracture toughness is calculated
in a probabilistic manner for any combination of notch radii and temperature. The proposed methodology is applied
to the results of a large experimental campaign on a S355J2 steel involving different temperatures and notch root radii
conditions confirming its utility and suitability.

Keywords: Compatibility condition, Notched components, Stress intensity factor, Temperature effect, Theory of
critical distances.

1. Introduction and motivation

The fracture characterization of structural and mechanical components is usually confronted with the presence of
notches and notched-type defects due to manufacturing and mechanical design details, as rivets, holes and fillets, or
in-service defects, such as corrosion pits and impact indentations, among others. As a result, local stress concentration
raise around those notches causing premature failures of specimen or components under service conditions, such as
those due to fatigue crack growth when they are subject to cyclic loading (see Yen and Dolan [1] and Glinka and
Newport [2]). Additionally, the structural and mechanical components under real service conditions are also concerned
with other surrounding effects, such as for instance the temperature. In fact, temperature represents one of the variables
most influencing the fracture resistance properties of materials, particularly of metals, in which the predominant
fracture mechanism may evolve from ductile to brittle depending on the particular value of the temperature (see Ritchie
et al. [3] and Pineau [4]). Nevertheless, despite the possible concurrent effect of the mentioned influencing factors,
well-established methodologies, currently applied for fracture characterization, continue treating them separably each
other.
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Nomenclature

β shape Weibull parameter
δ scale Weibull parameter
λ location Weibull parameter
ρ notch root radius
ρ0 reference value of notch root radius
Kc fracture toughness
KN

c notch fracture toughness
Kmin minimum value of the fracture toughness
L critical distance parameter
p probability
Qρ notch factor
qmax(x) extreme value distribution for maxima values
qmin(x) extreme value distribution for minima values
T temperature
T0 reference temperature

Usually, those methodologies modelling the notch-effect referred to the root radius ρ provide a deterministic value
of the fracture resistance value for a given notch radius, despite of the non-negligible scatter exhibited by the notch
fracture toughness for fixed notch radii (see Anderson [5] and Wallin [6]), as illustrated in Figure 1. Thus, these
methods are focused on fitting the mean value of the notch fracture toughness for any notch radii, instead of providing
its statistical distribution to allow realistic probabilistic failure prediction to be performed according to the structural
integrity concept.
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Figure 1: A schematic example of experimental notch fracture toughness scatter for different values of notch radii.

From a theoretical viewpoint, failure of notched components is addressed by categorizing them as cracked ones,
leading to over-conservative predictions since the fracture resistance properties of notches are higher than that of
cracks. These predictions have been improved by defining the so-called notch or apparent fracture toughness KN

c
instead of the conventional fracture toughness Kc, as defined according to the two classical failure criteria paradigms:
local and global (see Pluvinage [7], Bao and Jin [8], Gómez and Elices [9, 10], Cicero et al. [11], Ayatollahi and
Torabi [12], Ayatollahi et al. [13, 14] and Radaj [15]). After the early contributions of Neuber [16] and Peterson [17],
the theory of critical distances (TCD) developed by Taylor [18] is one of the most celebrated and successfully applied
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in a large variety of materials (see Cicero et al. [19], Cicero et al. [20], Negru et al. [21, 22] and Justo et al. [23]).
In parallel, the effect of the temperature on the fracture resistance properties in metallic materials has been widely

studied during the last decades. Currently, this effect on the fracture toughness Kc is referred to the three main zones,
that is, lower or cleavage (LS), intermediate or transition (IS) and upper or ductile shelves (US), of the so-called
brittle-to-ductile transition curve (see Anderson [5]), as can be seen in Figure 2. Most of the proposed methodologies
are focused on the LS and IS regions, such as the master curve method developed by Wallin [6, 24, 25], in which the
fracture toughness Kc is assumed to follow a minimal Weibull distribution, thus providing a probabilistic definition
of the Kc− T field results though assuming universally fixed values of the Weibull parameters for certain types of
materials and failure.

x
x
x

x
x

x

x

x x

x
x

x
x

x

x x

x
x

x

x
x
x
x x
x x

x

x x

Cleavage Transition Ductile

X Failure

Tcrit
T

Ks

Kmin

Kc

Figure 2: A schematic example of brittle-to-ductile transition curve for a metallic material indicating the lower, intermediate and upper shelves.

Further advance and improvement of the master curve method would be of great interest in practical design, for
instance trough development of suitable innovative methodologies, in particular, those enabling the fracture assess-
ment under simultaneous participation of intervening factors or conditions, such as temperature and notch radius.
Additionally, a pending aspiration of material scientists and engineers, which represents a critical paradigm in the
characterization of materials, would be to guarantee the uniqueness and equivalence material characterization from
different test conditions (specimen size and shape, test type, etc.). This would even permit the joint evaluation of ex-
perimental results from different test conditions (specimen size and shape, test type, etc.). Once this aim is achieved,
transferability of this basic material characterization to the components design could be ensured.

To this aim, a novel probabilistic methodology is proposed for modelling the effects of both notch and temperature
conditions acting simultaneously on the fracture resistance properties at lower and intermediate shelves. The model
is derived from the compatibility condition between the statistical distribution of the fracture toughness for a given
temperature and that of the temperature for a given fracture toughness of the brittle-to-ductile transition curve. This
yields the unique possible solution according with the theory of the functional equations. Additionally, the theory
of critical distances (TCD) is used to allow the influence of the notch radius to be taken into account. In this way,
the notch fracture toughness is analytically derived and the brittle-to-ductile transition curve is extended to any other
notch radius condition. As a result, the transition curve is defined in a probabilistic way for any temperature and notch
radius condition in a probabilistic way, overcoming current deterministic approaches, in which both effects are treated
separately each other. The compatibility condition also shows that the statistical distribution of the fracture toughness
for a given temperature, and that of the temperature for a given fracture toughness, may not be independently and
arbitrarily defined due to their mutual dependency. This is an important premise to take into account in the derivation
of any regression model, which intend to consider both effects.

This proposal enhances the previous work of the authors (see Muñiz-Calvente et al. [26]) where the temperature
effect was assumed to act as a scale change in the distribution of the fracture toughness of the material since the
proposed methodology represents a more robust solution as the former assumption, which is replaced by other more
general statistical conditions now considered.

Additionally, the work also attempts to become a reference guideline in the derivation of mathematical models
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dealing with both temperature and notch radius effects based strictly on a more general formulation founded on statis-
tical and physical considerations, that is, avoiding particular solutions only valid for a particular family of materials.

The paper is organised as follows. In Section 2, some conditions indispensable for deriving valid mathematical
models handling simultaneously both temperature and notch effects, are presented. Section 3 describes the proposed
methodology, distinguishing two possible versions depending on the external effects considered: a) temperature and
b) notch effect and temperature. Then, in order to illustrate how the proposed methodology can be used in practice
for modelling both effects, an experimental campaign is used in Section 4 involving several temperatures and radii.
Finally, Section 5 discusses the advantages and limitations of the proposed methodology, and Section 6 outlines the
main conclusions of this work.

2. Feasible conditions

2.1 Dimensional analysis of the problem

The dimensional analysis, based on the Buckingham’s Theorem [27], represents a powerful tool to consider in the
derivation of mathematical models taking advantage of working with dimensionless variables. The involved variables
when modelling the effect of both temperature and notch geometry on the fracture toughness are summarized in the
following set:

ν ≡ {Kc,Kmin,T,T0,ρ,ρ0, p} . (1)

The Buckingham’s theorem states that the system of physical equations as a function of the initial set of seven dimen-
sional variables can be reduced, without loss of generality, to an equivalent one as a function of four dimensionless
variables. By selecting Kmin,T0 and ρ0 as the normalizing ones, the following ratios1 result:

K∗c = log
(

Kc

Kmin

)
; T ∗ = log

(
T
T0

)
; ρ
∗ =

ρ

ρ0
, (2)

from which the probability of failure p can be then written as:

p = f (K∗c ,T
∗,ρ∗). (3)

2.2 Physically valid formulas

An additional and necessary condition to be applied in the derivation of the model arises from the concept of physically
valid formulas concept, closely related with the dimensional analysis, namely that an equation relating dimensional
variables at both sides must satisfy that unit changes due to location or scale transformation at the one side must be
conveniently replicated at the other side.

For example, it is crucial to select properly the log-normal distribution for modelling temperatures, as occurs in
the work of Moskovic [28] about the fracture toughness, since this distribution is not stable with respect to changes
in location, while the temperature variable is allowed to. For this reason, if the units are transformed from Celsius
to Fahrenheit, implying location and scale changes, the log-normal distribution must also be transformed into a new
one that does not turn out to be from the same family. As a consequence, as a function of the units selected from
measuring the sample temperature, the parameters of the distribution will be different, as indicated in Castillo et al.

1The asterisk notation indicates a dimensionless variable.
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[29] and Castillo et al. [30]. Examples of valid distributions when dealing with temperatures are provided by the
generalized the extreme value family (Weibull, Gumbel and Fréchet) and the extended normal distribution.

Consequently, the use of the generalized extreme value family of distributions together with dimensionless vari-
ables in the proposed model in this paper guarantees this important feasible condition to be fulfilled.

3. The proposed methodology

In this section, the derivation of the proposed methodology is presented. Initially, the temperature effect on the fracture
toughness for a constant value of the notch radius is handled, and then the analysis is extended by including the notch
radius as an additional variable.

3.1 The regression model for constant notch radii ρ

The analysis of the brittle-to-ductile transition process for a constant notch radius in the lower and intermediate shelves
allows some interesting physical properties to be identified:

1. The lower and intermediate shelves in the brittle-to-ductile transition curve are concave from above.

2. The fracture toughness Kc is identified as the critical value of the stress intensity factor KI, i.e. the minimum one
at which the fracture occurs according to the weakest link principle. Thus, only minimal Weibull and Gumbel
distributions are justified for this random variable.

3. The critical value of the fracture toughness with respect to the temperature is identified with the largest value
of it at which the transition from brittle to ductile behaviour takes place, that is, the prediction of the turning
temperature in the Kc−T field constitutes a problem of maxima value, for that reason, only maximal Weibull
and Gumbel distributions must be considered.

Accordingly, the analytical definition of the Kc−T field comprises the simultaneous definition of the two extremal
distributions, i.e. F(K∗c |T ∗) referred to the fracture toughness for a given temperature and F(T ∗|K∗c ) referred to the
temperature for a given fracture toughness. This implies that these distributions are not independent interrelated
each other which is a fact ignored by previous models describing the Kc−T field. The interrelation condition can be
established through the compatibility condition at both participating distributions F(K∗c |T ∗) and F(T ∗|K∗c ) in the Kc−
T field, as originally proposed by Castillo and Fernández-Canteli [31] for modelling the fatigue lifetime prediction
through the ∆σ −N field (assuming minima-minima distributions) or the crack growth curves in the a−N field
(assuming maxima-minima distributions).

In the present case, the critical conditions for the K∗c −T ∗ field are represented by the minimum distribution for
the fracture toughness, K∗c , and the maximum distribution for temperature T ∗ while the material behaviour evolves
from brittle to ductile behaviour. Accordingly, the compatibility condition between both distributions is defined as

FK∗c |T ∗(K
∗
c |T ∗) = FT ∗|K∗c (T

∗|K∗c ), (4)

where FK∗c |T ∗(K
∗
c ,T

∗) and FT ∗|K∗c (T
∗,K∗c ) are the cdf of K∗c given T ∗ and T ∗ given K∗c , referred to as extreme value

distributions for minima and for maxima, respectively. Thus, by assuming a family of location and scale parameters,
the following compatibility condition in Eq. (4) results (see Castillo et al. [32]):

1−qmin

(
K∗c −λ1(T ∗)

δ1(T ∗)

)
= qmax

(
T ∗−λ2(K∗c )

δ2(K∗c )

)
, (5)

where qmin and qmax represent the two distributions for minima and maxima respectively, in an equivalent formulation
as the proposed by Castillo and Fernández-Canteli [31] for modelling the a−N crack growth curves. In Eq. (5),
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λ1(T ∗),λ2(K∗c ) and δ1(T ∗),δ2(K∗c ) are the location and scale parameters as a function of temperature and fracture
toughness, respectively.

Figure 3 illustrates schematically the compatibility condition in the K∗c −T ∗ field for both distributions evidencing
the coincidence of the areas of the frequency distributions for a given percentile curve.

T*

K
c*

p3p2p1

ρ0

Figure 3: Illustration of the compatibility condition showing equal areas (probabilities) of the two intersecting densities of K∗c |T ∗ and T ∗|K∗c .

The solution of the functional equation (5) for the unknown functions λ1(T ∗),λ2(K∗c ),δ1(T ∗) and δ2(K∗c ) provides
the unique possible functional expression of the K∗c −T ∗ field, which satisfies the compatibility condition comprising
both minima and maxima event conditions. To this end, substituting the Weibull distributions for maxima and minima,
that is,

qmin(x) = 1− exp [−(x)β ], and qmax(x) = exp [xβ ], (6)

into the compatibility condition Eq. (5) and solving the resulting functional equation, provides the final Weibull model
for the K∗c −T ∗ field:

F(K∗c ,T
∗;λ ,δ ,β ) = exp

[
−
(
− (B−T ∗)(K∗c −C)−λ

δ

)β
]
, (7)

where (λ ,δ ,β ) are the parameters of the Weibull distribution. The solution of the compatibility condition confirms
that only hyperbolic and straight percentile lines are the only possible solution to define the K∗c − T ∗ field, though
only the first option satisfies the physical properties required to the brittle-to-ductile transition curve in the LS and IS
zones, as previously mentioned. The result corroborates that any other model different from those solved will violate
the compatibility condition and the extremal conditions the random variables must compulsory satisfy.

The resulting asymptotes of the model, i.e. C and B, deserve particular attention. On the one hand, the horizontal
asymptote C indicates that fracture will not occur below a certain minimum value, Kmin, as shown in Figure 2. On the
other hand, the vertical asymptote B establishes the limit of applicability of the model, which can be interpreted as the
turning point or the transition temperature Tcrit (see Figure 2). Both results are relevant for practical design.

Finally, the quantile function F−1(p;T ∗) can be applied to obtain the regression p-percentile family of curves
in the Weibull-Weibull Eq. (7) when the interest is focused on the explicit definition of the fracture toughness as a
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function of temperature:

K∗c (T
∗) = F−1(p;T ∗) =

λ −δ (− log p)1/β

B−T ∗
+C. (8)

3.2 The regression model for varying notch radii ρ

Once the methodology for defining the K∗c −T ∗ field for constant notch radius has been established, the model exten-
sion implying the notch radius acting as an additional variable is straightforward by resorting to the theory of critical
distances.

The TCD represents one of the most celebrated models to derive the local failure criteria for notched components.
To be more precisely, this methodology comprises not only one model but a group of models, denoted Point, Line,
Surface and Volume methods. The theoretical stress distribution around the notch tip can be approached by the
expression proposed by Creager and Paris [33]:

σ(r) =
KI√

π

2(r+ρ)

(2r+ρ)3/2 , (9)

which is only valid if the notch radius ρ << a, being KI the stress intensity factor. Taking this into account, the line
method allows a simpler expression for the notch fracture toughness KN

c to be derived (see Taylor [18]):

KN
c (ρ;L) = Kc

√
1+

ρ

4L
, (10)

where L is the critical distance parameter and Kc is the fracture toughness for the cracked specimens, i.e. ρ = 0.
Accordingly, the notch fracture toughness KN

c results as the fracture toughness of the material Kc multiplied by a
factor given by the TCD approach as a function of ρ and L.

In a more general set, the transformation between two different notch radii ρ1 and ρ2 due to the TCD approach is
defined as:

KN
c (ρ1;L) = Kc

√
1+

ρ1

4L

KN
c (ρ2;L) = Kc

√
1+

ρ2

4L

⇒
KN

c (ρ2;L)
KN

c (ρ1;L)
=

√
4L+ρ2

4L+ρ1
, (11)

which can be rewritten as follows:

KN
c (ρ2;L) = Qρ(ρ1,ρ2)KN

c (ρ1;L), (12)

where

Qρ(ρ1,ρ2) =

√
4L+ρ2

4L+ρ1
, (13)
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represents a transformation factor allowing the values of the notch fracture toughness for different values of the notch
radius to be interrelated.

As suggested by Muñiz-Calvente et al. [26], the TCD method can be successfully applied to transform the results
of the fracture resistance for a given notch radii (KN

c 1, ...,K
N
c n) into the corresponding values for the cracked condition

(Kc1, ...,Kcn), that is, for a reference value of ρ = 0 at each tested temperature:

Kc = KN
c (ρ;L)Qρ(0,ρ) = KN

c (ρ;L)

√
4L

4L+ρ
. (14)

In this way, the experimental data in the Kc−T − ρ field can now be transformed to a master field Kc− T for
ρ = 0 where the compatibility condition is conveniently applied for a constant value of the notch radius as already
described in previous section. Once the master field has been defined, the TCD can again

p = exp

[
−
(
−
(B−T )(KN

c Qρ(0,ρ)−C)−λ

δ

)β
]
, (15)

to derive univocally the notch fracture toughness KN
c corresponding to any other notch radius ρ , that is,

p = exp

[
−
(
−

KN
c −λρ,T (ρ,T )

δρ,T (ρ,T )

)β
]
, (16)

where the model parameters λ and δ are now including the notch effect according to the following expressions:

T1
* T2

* T3
* T*

ρ1
* ρ0

*

K
*

0.990.99 0.5
0.01

0.990.99 0.5 0.01

Figure 4: Schematic illustration of the KN
c −T field for two different notch radii, indicating the evolution of the notch fracture toughness densities

for various given values of temperature.
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λρ,T (ρ,T ) =
[
C+

λ

B−T ∗

]√
1+

ρ

4L
,

δρ,T (ρ,T ) =
δ

B−T ∗

√
1+

ρ

4L
.

(17)

The resulting Kc−T fields for two different notch radius, at both lower and intermediate shelves, are schematically
represented by three percentile curves in Figure 4. Note that the percentile curves are shifted vertically implying
change of both location and scale parameters.

Thus, the explicit analytical definition of the notch fracture toughness KN
c for any notch radius is obtained in terms

of the quantile function of the Weibull-Weibull model,

KN
c (ρ,T ; p) =

[
λ −δ (− log p)1/β

B−T
+C

]√
1+

ρ

4L
. (18)

Note that the proposed model, in contrast to current methodologies only focused on the mean values (see Figure 1),
provides the analytical expression of the KN

c −ρ1/2 field in a probabilistic manner for a given temperature according
to Eq. (18), as shown in Figure 5, which represents a relevant feature in practical design.

T

0.95

0.75
0.50
0.25

0.05

ρ0 ρ1 ρ2 ρ3 ρ0.5

K
cN

Figure 5: Schematic illustration of the percentile curves in the KN
c −ρ0.5 field for a given temperature.

As a result, the pdf and cdf of the notch fracture toughness can be obtained for any notch radius and given
temperature, as can be seen in Figure 6, where both location and scale parameters of the Weibull distribution are
calculated according to Eq. (17).

3.3 Parameter estimation

When both temperature and notch effects are considered, the parameter estimation in the proposed methodology is
performed in the following steps:

a) Collecting experimental data. The general set of experimental notch fracture toughness data, collected from
different combinations of notch radius and temperatures, is expressed as follows:

{(
KN

ci jk
,Tj;ρk

)
|i = 1, ...,n; j = 1, ...,m;k = 1, ...,r

}
, (19)
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Figure 6: Pdf and cdf of the notch fracture toughness for different notch radius and a given temperature.

where KN
ci jk

represents the i-th value of the experimental fracture toughness resulting at temperature Tj and notch
radius ρk.

b) Estimation of the Kc,L parameter. The parameters of the TCD in Eq. (10) for describing the notch effect on
the fracture toughness KN

c can be estimated for each j-th temperature value based on the Least Squares (LS)
method, that is,

min
(Kc,...,Kcm ,L,...,Lm)

 m

∑
j=1

[
n

∑
i=1

(
KN

ci jk
−Kc j

√
1+

ρk

4L j

)]2
 . (20)

c) Conversion of the experimental data from ρ to ρ0. Once the parameters of the TCD method are known, the
experimental random samples (KN

c1 jk
, ...,KN

cn jk
) at notch radius ρk and temperature Tj are transformed into their

equivalences (Kc1 j , ...,Kcn j) referred to notch radius ρ0 at temperature Tj, according to Eq. (14), that is,

Kci j = KN
ci jk

(ρk;L j)Qρ(0,ρk). (21)

As a result, the KN
c −T field can now be transformed to its equivalent Kc−T field for applying the compatibility

condition.

d) Estimation of B,C parameters. According to Castillo et al. [34], Castillo and Hadi [35, 36] and Castillo
and Fernández-Canteli [31, 37], the parameter estimation of the asymptotes of the Weibull-Weibull model is
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performed by minimizing the following condition:

min
(µ,B,C)

(
Kci j −C− µ

B−Tj

)2

, (22)

where µ represents the mean of the temperature variable.

e) Estimation of the Weibull parameters λ ,β ,δ . According to the normalized variable V ∗ defined as follows:

Vi
∗ = (Kci j −C)(B−Tj), (23)

which results from the application of the compatibility condition to the K∗c −T ∗ field, all data points are pooled
together into a single Weibull cdf representing the p−V ∗ field. The corresponding Weibull parameters can
be estimated using some of the standard estimation techniques for extreme value family of distributions (see
Castillo [38] and Castillo et al. [39]), such as the probability paper method.

4. Example of practical application

In this section, the extensive experimental campaign of Madrazo et al. [40] on the fracture characterization including
different combinations of notch radii and temperatures is used to illustrate the suitability of the proposed methodology
described in Section 3 to asses the fracture toughness under the effect of both variables.

4.1 Description of the experimental program

The experimental program consists in 102 tests carried out on compact tension (CT) specimens of steel S355J2 with
six different notch radii (0.00,0.15,0.25,0.50,1.00 and 2.00 mm.) at different temperatures (-196, -150, -120 and -100o

C). Further details about the material, tensile strength, specimen geometry, testing temperature and critical load-
bearing results are found in the original work of Madrazo et al. [40]. Of particular interest are those considerations
related with the definition of the notch fracture toughness KN

c from the experimental results of the fracture toughness
Kc based on cracked specimen formulation outlined in the international standard ASTM E1820 [41].

The selected temperatures extend not only along the ductile-to-brittle transition shelf but also over the lower one,
since the fracture behaviour under notch geometries behaves in a more ductile way than that observed under cracked
conditions. As a result, the final fracture at the lower shelf may be preceded by a certain ductile behaviour followed
by final cleavage fracture with single initiation point.

4.2 Applicability of the proposed methodology

As described in Section 3.3, the first step to apply the proposed methodology consists in fitting the experimental
results for different notch radii in the KN

c −ρ1/2 field for each temperature in an independent way, according to the
TCD. In this way, the optimal values for Kc and L are provided by minimizing Eq. (20) using the least squares method,
allowing the experimental values of the notch fracture toughness to be transformed into the corresponding ones for
smooth specimen condition, as listed in Table 1. Figure 8 illustrates the predictions resulting from this deterministic
method for each of the different temperatures tested.

Once the TCD parameters are estimated, the original experimental results samples of the notch fracture toughness
for each notch radius and temperature are transformed into the equivalent fracture toughness values for the reference
notch radius ρ0 in accordance to Eq. (21). As a result, the compatibility condition can be conveniently applied and
the transformed experimental points be plotted in the Kc−T field. Accordingly, the estimation of the asymptotes can

11



Table 1: Parameter estimates for the TCD method in the analysis of the experimental data for feritic steel S355J2 from Madrazo et al. [40].

T
Parameters

L Kc

[o C] [mm] [MPa·mm0.5]

-196 0.028 32.276
-150 0.0096 61.452
-120 0.014 132.629
-100 0.078 296.546

now be performed by minimizing Eq. (22), providing the following estimates:

C = 2.2×10−14, B = 7.047. (24)

From Eq. (24), the normalized variable V ∗ is defined in such a way that all experimental data can be pooled together
into one single Weibull cdf by applying a plotting position scheme, providing the following parameter estimates:

λ = 6.85, δ = 2.76, β = 7.55. (25)

Figure 7 illustrates the final estimation of the Kc−T field showing some representative percentile curves after fitting
the experimental values of the notch fracture toughness transformed into the equivalent ones for ρ = 0. The practical
interest of the methodology is that any experimental result from different temperatures and notch geometry conditions
can be conveniently pooled into a single cdf representing the p−V ∗ field, which can now be contemplated as the most
general master curve of the material.

Note that the KN
c − ρ1/2 field can be straightforwardly obtained from the Kc − T field, as shown in Figure 8

for the experimental data at an exemplary T = −196o C. The inherent scatter of the experimental data can now be
conveniently estimated to achieve more reliable failure predictions using the theory of critical distances. This is an
additional contribution provided by the proposed methodology in contrast with current deterministic methods used in
practical structural and mechanical design.

5. Discussion

Though only the second regression model for considering both effects was illustrated, the first regression method
focused solely on the temperature effect could also be used as an alternative definition to the Kc− T field in the
conventional the master curve method. In this case, the experimental results of different samples of ferritic steels
are pooled together in one single Kc−T field according to the proposed methodology, which ensures compatibility
between both minimal and maximal statistical distributions, respectively, of the variables being involved, Kc and T , in
contrast to other current probabilistic master curve proposals.

A relaxation of the proposed regression models can alternatively be envisaged to the Weibull-Weibull model by
considering Gumbel distribution according to the extreme value theory while maintaining the physical considerations
concerning fracture toughness and temperature variables, as mentioned in Section 3 (see Castillo et al. [42] and
Castillo and Fernández-Canteli [31]).

Finally, it is also worth mentioning that the notch fracture toughness, as well-known, is also dependent of the
specimen thickness, i.e. on the specific constraint conditions prevailing (see Wallin [43]). Since only the experimental
results from the research of Cicero et al. [44] were used in the model assessment, in which the specimen width was
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Figure 7: Predicted Kc−T field for some representative percentiles (p = 0.01,0.25,0.50,0.75,0.99) (above) and estimated Weibull cdf in p−V ∗

field (below) for S355J2 experimental data from Madrazo et al. [40].

maintained throughout constant, such a scenario is not considered here. Furthermore, it must be also mentioned that
the proposed methodology to model notch effects is only applicable to U-notches whereas V-geometries cannot be
handled.

6. Conclusions

− A methodology to predict the probability of failure of notched components under different temperature condi-
tions both in lower and intermediate shelves is proposed. The model is based on statistical conditions, namely,
compatibility and those related to the extreme value theory. The resulting functional equations provides the
unique possible solution for the probabilistic Kc−T field.

− The compatibility condition implies that the statistical distribution of the fracture toughness for given tempera-
ture, K∗c |T ∗, and the temperature for a given fracture toughness, T ∗|K∗c , in the Kc−T field can neither arbitrarily
nor independently be chosen. They are mutually dependent each other, which represents a requirement to be
necessarily considered in the derivation of nay valid methodology for definition of the Kc−T field.

− A probabilistic approach, alternative to the deterministic application of the theory of critical distances, is de-
rived, which allows the statistical distributions of the notch fracture toughness to be defined for any value of the
notch root radius (KN

c −ρ1/2 field) and given temperature (KN
c −T field).

− The proposed methodology takes into account the concurrent effect of notch radius and temperature in the
prediction of the fracture resistance properties, providing a probabilistic definition of the global KN

c −ρ1/2−
T − p field.
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Figure 8: Estimated predictions of the percentile curves for the KN
c −ρ0.5 field as derived from the combination of the Weibull-Weibull (WW) and

theory of critical distances (TCD) models for S355J2 experimental data from Madrazo et al. [40].

− The compatibility condition allows the experimental results from different temperatures and notch radii con-
ditions to be pooled together into one single cdf pertaining to the Weibull distribution, representing a general
master curve of the material.

− The experimental results of an external campaign, including several temperatures and notch radii conditions, are
used for confirming the suitability of the proposed methodology in the characterization of metallic materials.

− General guidelines are suggested for derivation of methodologies to model the lower and intermediate shelves
of brittle-to-ductile transition curve. They are solely founded on statistical and physical conditions related to
the fracture process avoiding particular solutions about the resulting parameters of the models being used.
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