```
Publicado en Marine Environmental Research.
 1
 2
      DOI: https://doi.org/10.1016/j.marenvres.2021.105340
 3
 4
 5
      Building on gAMBI in ports for a challenging biological invasions scenario: Blue-gNIS
 6
      as a proof of concept.
 7
      Ibabe, A.<sup>1</sup>, Miralles, L.<sup>1,2</sup>, Carleos, C.E.<sup>3</sup>, Soto-López, V.<sup>4</sup>, Menéndez-Teleña, D.<sup>4</sup>,
 8
      Bartolomé, M.<sup>4</sup>, Montes, H.J.<sup>4</sup>, González, M.<sup>5</sup>, Dopico, E.<sup>6</sup>, Garcia-Vazquez, E.<sup>1</sup> & Borrell,
 9
      Y.J.<sup>1*</sup>
10
11
12
      <sup>1</sup>Genetics. Department of Functional Biology, University of Oviedo. C/ Julián Clavería s/n.
      33006-Oviedo, Spain
13
14
      <sup>2</sup>Ecohydros S.L., Polígono Industrial de Cros, Edif. 5-Nave 8. 39600 Maliaño, Cantabria.
15
      <sup>3</sup>Department of Statistics and Operations Research and Mathematics Didactics,
      University of Oviedo. Facultad de Ciencias, C/ Federico García Lorca, s/n 33007 Oviedo,
16
17
      Spain.
      <sup>4</sup>Department of Marine Science and Technology, University of Oviedo. Escuela Superior
18
19
      de Marina Civil. Campus de Gijón C/Blasco de Garay s/n 33203 Gijón-Asturias.
20
      <sup>5</sup>CEO of Environmental Sustainability. Port Authority of Gijon. Spain.
      <sup>6</sup> Department of Educational Sciences. C/ Aniceto Sela s/n. 33005-Oviedo, Spain
21
22
      * Corresponding author: borrellyaisel@uniovi.es
23
24
      ABSTRACT
```

25 The status of aquatic ecosystems has historically been monitored by the use of biotic 26 indices. However, few biotic measures consider the presence of non-indigenous species 27 as a sign of anthropogenic pollution and habitat disturbance even when this may 28 seriously affect the metric scores and ecological status classifications of an environment. 29 Today, biological invasions are currently one of the greatest threats to biodiversity and sustainable blue economies around the world. In this work, environmental assessments 30 31 were conducted in the Port of Gijon, Northern Spain, using eDNA metabarcoding, and the gAMBI (genetics based AZTI Marine Biotic Index) was estimated. Results indicate a 32 33 high/good ecological status within the port. However, nine non-indigenous species and five invasive species were found, and a modification of the gAMBI that includes species 34

invasiveness was proposed: Blue-gNIS. The index was preliminary tested against existing
 validated indices such as gAMBI, BENTIX (based on the ecology of macroinvertebrates)
 and ALEX (based on the invasiveness of the species). Blue-gNIS classified the port in a
 good ecological status and showed its potential usefulness to achieve more complete

- 39 water quality assessments of ports.
- 40

41 KEY WORDS

42 Metabarcoding, invasive species, AMBI, gAMBI, biotic index, Blue-gNIS, Blueports.

43 INTRODUCTION

Marine ecosystems and their biodiversity are fundamental resources for society because economic activities, such as fishing, tourism, aquaculture and shipping depend on them (Baine et al., 2007; FAO 2012; Gössling et al., 2018). Currently, global warming, pollution and overexploitation are some of the anthropogenic stressors that have led to drastic changes in marine ecosystems, reducing their biodiversity and altering ecosystem functions and services (Halpern et al., 2008; McCauley et al., 2015; Halpern et al., 2015).

Biological invasions are also an important threat to biodiversity (Molnar et al., 2008). 50 Marine ecosystems are facing constant introductions of new species, mostly in ports 51 that are the main entry gates for non-indigenous species (NIS), occurring principally 52 through biofouling and ballast water (Katsanevakis et al., 2013; Nunes et al., 2014). 53 54 When non-indigenous species manage to establish reproductively viable populations in 55 new areas and begin to disperse and proliferate uncontrollably, they can outnumber native species, dominate the ecosystem and generate serious environmental impacts, 56 57 becoming invasive alien species (IAS). Since eradication is more difficult in late than early invasion stages, new strategies are needed for the effective prevention and early 58 59 detection of nuisance organisms (Gherardi & Angiolini, 2009; Ujiyama et al., 2018).

The current situation revealed that despite all the available knowledge about NIS 60 detection and prevention, appropriate strategies are far from being effectively 61 62 implemented within the ports. To address this problem, several policies and directives 63 have been developed to protect marine ecosystems, such as the EU Water Framework 64 Directive (WFD, Directive 2000/60/EC) and Marine Strategy Framework Directive 65 (MSFD, Directive 2008/56/EC). Their main objective is to improve the ecological status of European aquatic ecosystems and to reach an overall "good ecological status". To do 66 67 this, the member states are required to perform periodic evaluations of their water bodies (De Jonge et al., 2006). To date, different aquatic ecosystems, including rivers, 68 69 lakes, transitional and coastal waters, have been analyzed in European monitoring programs (Zacharias et al., 2020). However, less than 3% of the reported information is 70 71 from coastal waters (EEA, 2012), which contain modified habitats such as ports where 72 metal pollution, oil spills, garbage, antifouling paints, ballast waters and greenhouse gas 73 emissions can affect the local biodiversity (UNCTAD, 2015; Yu et al., 2017).

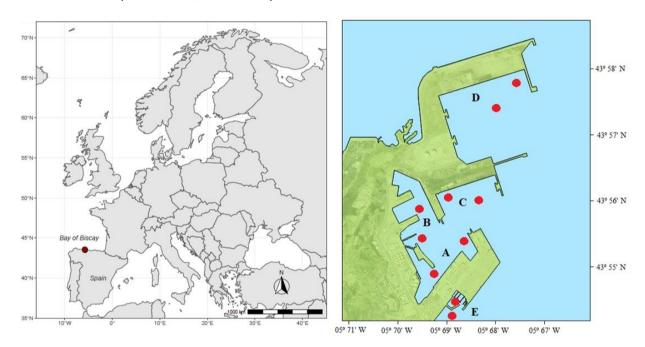
74 Through the execution of periodic monitoring, it is possible to assess the environmental 75 status of these aquatic ecosystems, and in this way, action strategies can be developed 76 to prevent further deterioration and biodiversity loss (Birk et al., 2012; Borja et al., 2010). In this context, the use of biotic indices has become very relevant at the time of 77 78 communicating and presenting the results from monitoring networks or environmental 79 impact studies to managers, stakeholders or policy makers, as these indices constitute 80 an easy method to transmit the results in a simple and understandable way (Borja et al., 2019). However, most of the biotic indices employed for environmental assessments are 81 82 solely based on ecological traits from specific taxa such as macroinvertebrates and do 83 not consider other important aspects such as the species invasiveness. Biological 84 invasions are currently considered the second cause of biodiversity loss (Bellard et al., 85 2016) so that there is an urgent need to use biotic indices that combine both, ecology and invasiveness, when performing environmental evaluations. 86

87 Aquatic pollution triggers the decline in pollution-sensitive species and leaves free 88 ecological niches that can be occupied by pollution tolerant species which in many cases 89 can be non-indigenous or invasive species (Crooks et al., 2011). In this way, biodiversity 90 losses triggered by pollution may lead to a reduction in the resilience of ecosystems to 91 invasion (Shea and Chesson, 2002; Miralles et al., 2016), indicating that there is a need 92 to periodically monitor local environmental conditions to avoid the deterioration of the ecosystem and increase the resistance to invasion events. The prevention of the 93 introduction of invasive alien species (IAS) is one of the lines of action that have been 94 95 stated by the European Commission for the EU Blue Growth strategy (European 96 Commission, 2017; Eikeset et al., 2018). The introduction of IAS into ports, coastal areas 97 and watersheds is damaging aquatic ecosystems around the world, with estimated 98 direct costs of many millions of dollars spent on monitoring, prevention of spread and 99 remediation of the ecosystems (Walsh et al., 2016; Interwies and Khuchua, 2017). Thus, 100 biological invasions are one of the greatest threats to biodiversity and sustainable blue 101 economies that can also affect human health (Bayliss et al., 2017) and therefore must 102 be included in any environmental quality status evaluations.

103 The AZTI Marine Biotic Index (AMBI) (Borja et al., 2000) is currently one of the most used 104 biotic indices (Borja et al., 2015; Abaza et al., 2018; Belhaouari et al., 2019; Yan et al., 105 2020) and it is useful for environmental quality assessments of marine ecosystems. It is 106 currently included in both the WFD and MSFD directives for the purpose of improving 107 the quality and preventing the further deterioration of aquatic environments (Borja et 108 al., 2009). The AMBI is based on macroinvertebrate species that are classified into five 109 ecological groups, depending on their sensitivity/tolerance to disturbance, and it is 110 known to be useful for detecting anthropogenic changes in an environment (Borja et al., 2000). New biological indices have been developed, such as the gAMBI (genetics-based 111 AMBI), which is a modification of the AMBI that works with genetic data (Aylagas et al., 112 2014) that can be based on presence/absence information but also on relative 113 114 abundance data, including the number of reads obtained for each species (Aylagas et al., 2018). This methodology allows faster and cheaper marine monitoring and health 115 116 status assessment compared to other methods. However, these indices do not take into account the invasiveness of non-indigenous species, which should be considered for a
 more complete quality assessment of an area. In fact, it has been demonstrated that
 the presence of invasive species may affect the metric scores and ecological status
 classifications of an environment (MacNeil et al., 2013; Mathers et al., 2016).

121 DNA metabarcoding has become popular in recent years as a useful tool for evaluating 122 the ecological and environmental status of aquatic ecosystems (Baird and Sweeney 123 2011; Baird and Hajibabaei 2012; Taberlet et al., 2012; Keck et al., 2017; Hering et al., 2018; Pawlowski et al. 2018). It is a technique based on gene markers used to identify 124 taxa-specific sequences from the released organism's DNA, allowing the simultaneous 125 126 identification of multiple taxa from bulk or environmental samples. Although there are 127 multiple issues that are still unresolved when using metabarcoding techniques (e.g. incomplete reference databases, primer biases, and unstandardized bioinformatic 128 processes), in contrast with classical methods that employ species identifications based 129 130 on morphological traits, DNA metabarcoding is more time and cost-effective and increases the taxonomic resolution, species detectability (specially for earlier life stages 131 132 or fragmented/destroyed samples) and comparability across geographic regions (Pawlowski et al. 2018). It is a technique that provides better taxonomic 133 characterizations, with the potential of revealing hidden diversity (Lindeque et al., 134 135 2013), and has also become successful in terms of efficient monitoring of endemic, 136 endangered and invasive alien species (Ficetola et al., 2008; Dejean et al., 2012; Valentini et al., 2016; Blackman 2017; Borrell et al., 2017; Hering et al., 2018). 137

138 In this research, we targeted the industrial Port of Gijon, (central Cantabrian Coast, 139 northern Spain), which receives large international and national cargo vessels, and used 140 DNA metabarcoding as a tool to evaluate the ecological status of the port. We also propose a slight modification of the gAMBI to obtain a new exploratory multihabitat 141 index called Blue-gNIS based not only on the ecology but also on the invasiveness of the 142 143 detected species. The aim is to obtain better characterizations of coastal waters where 144 non-indigenous species can seriously affect local biodiversity. Blue-gNIS could become a useful tool for biomonitoring programs in ports where intense marine traffic can act 145 146 as a vector for the introduction and spread of harmful species.


147

148 MATERIALS AND METHODS

149 The Port of Gijon (Bay of Biscay) characterization and sampling

The Port of Gijon is located on the Cantabrian coast (5°41'W and 43°34'N) and is one of the main seaports in the Atlantic Arc and the leading port for bulk solid movement in Spain (https://www.puertogijon.es/en/). The Port of Gijon occupies 415 hectares and has more than 7,000 linear meters of docks, and it includes areas divided by the type of traffic (solid and liquid bulk and container terminals and multipurpose facilities for various types of traffic). The port also has a small marina with recreational boats located outside the main docks. The traffic data from the Port of Gijón (period 2004-2017) was obtained from Gijon Port Authority (2017) and it was measured by employing the gross tonnage arrived from each biogeographical zone (measured in GTs), which is related to the capacity of ships and the surface of the ship's hull on which species can be transported (Davidson et al., 2009).

The sampling was conducted in July 2017. The port was divided into 5 sites following the 161 dock distribution within the port, namely, sites A, B, C, D and the marina (E), and within 162 163 each site, two points were chosen (Figure 1). Four samples were taken at each point, with two replicates in the water column and another two in the sediment. Water 164 samples were taken using Niskin bottles between the surface and 1 m depth. For the 165 166 sediment, a Van Veen grab was used to collect a total surface of 90cm² in each replicate. 167 Samples were stored in 50 mL vials and introduced in ice-cold bags for the transportation 168 to the University of Oviedo, where they were stored at -20 °C.

169

Figure 1. Sampling locations within the Port of Gijon in the southern central area of the
 Bay of Biscay (5°41'W, 43°34'N).

172

173 Environmental DNA extractions

The eDNA extractions were conducted under sterile conditions inside a laminar airflow 174 175 chamber previously disinfected with UV light and 10% bleach solution. Negative controls 176 were used in all filtration and extraction processes. The negative control for the filtration was 1L of milliQ water and all filtrations took place under sterile conditions in 177 178 the laboratory of eDNA in the Genetics Department from the University of Oviedo. All 179 samples were carefully preserved in cold (under 5°C) before filtered. Filtrations were 180 done immediately after collected (a time scale of hours). Finally, we used pumps from Labbox Labware (Spain). The water samples (1 L per sample) were filtered through 0.22 181 182 µm sterile nitrocellulose membranes (Prat Dumas, France), and then, the DNA was extracted using a PowerWater[®] DNA Isolation Kit (Qiagen Laboratories, USA). For the 183

184 sediments, 10 g per sample was vortexed for initial homogenization, and then the 185 DNeasy PowerMax Soil[®] DNA Isolation Kit (Qiagen Laboratories, USA) was used following the manufacturer 's instructions. The correct extraction of the DNA was 186 187 visually assessed on 1.5% agarose gel (by checking the presence of bands of the expected size), and the samples were quantified using the Picogreen method and Victor-188 189 3 fluorometry (Invitrogen, cat. #P7589). A positive DNA control was used during the 190 whole sequencing process and employing the same conditions as for eDNA samples. It 191 contained equimolarly pooled DNA (50ng µL-1) belonging to 9 different 192 macroinvertebrate species and another 10 additional species (Supplementary Table 1).

193 PCR amplification, next-generation sequencing and bioinformatics analyses

194 PCR amplifications of the mitochondrial cytochrome oxidase subunit I gene (COI) were 195 undertaken on an Eppendorf Mastercycler (Eppendorf, Germany) in a total volume of 53 µl using 25 µl of MyTaq[™]Red Mix which includes KAPA HiFi HotStart DNA Polymerase 196 197 (Bioline, USA), 2 µl of each primer and 3 µl of template DNA using the universal primers mlCOlintF (5'- GGWACWGGWTGAACWGTWTAYCCYCC-3') and jgHCO2198 (5'-198 199 TAIACYTCIGGRTGICCRAARAAYCA -3') (Leray et al. 2013). For the index PCR, 5 μl of indexes 200 were used from the Nextera XT index kit (FC-131-1001 or FC-131-1002) following the 201 protocols described in the 16S Metagenomic Sequencing Library Preparation Manual from 202 Macrogen Korea (Illumina, 2011). After multiple trials, for the best amplification success, 203 the PCR conditions were adjusted as follows: for the first PCR, 1x: 95 °C for 3 min; 25x: 95 204 °C for 30 sec, 44.7 °C for 30 sec and 72 °C for 30 sec; and finally, 1x: 72 °C for 5 min followed by a 4 °C hold. Conditions for the index PCR were: 1x: 95 °C for 3 min; 8x: 95 °C for 30 sec, 205 206 44.7 °C for 30 sec and 72 °C for 30 sec; and finally, 1x: 72 °C for 5 min followed by a 4 °C hold. Library construction included quality controls for the size (Agilent Technologies 2100 207 208 Bioanalyzer using a DNA 1000 chip) and quantity (Roche's Rapid library-standard quantification solution and calculator). The bands of the expected size (313 bp) were 209 210 sequenced by 300bp paired ends in the Illumina Miseq system (Macrogen, Korea) and the 211 BCL (base calls) binary was converted into FASTQ utilizing illumina package bcl2fastq2v2.20.0 conversion software. Scythe (v0.994) (Buffalo, 2011) and Sickle (Joshi & Fass, 212 213 2011) programs were used to remove adapter sequences. After adapter trimming, reads shorter than 36bp were dropped in order to produce clean data 214

Bioinformatics analyses were performed using QIIME2 (Bolyen et al., 2018). An initial quality filter was performed by cutting forward and reverse reads to a specified length when the nucleotide assignment qualities showed Phred scores lower than 20 (at 260bp for forward reads and 210bp for reverse reads). Then, paired end reads were merged, and chimeras were removed using the consensus method, which performs de novo identification for each sample and removes all amplicon sequence variants identified as chimeras. To finish the filtering step, the remaining sequences were dereplicated.

An updated COI sequence database was generated by downloading data from the current NCBI webpage (September 2020). Only nonenvironmental DNA belonging to voucher specimens was considered, and all eukaryotic organisms were included. To do this, the following key words were employed in the NCBI browser: Mitochondrial, Cytochrome

Oxidase 1 (and corresponding abbreviations CO1, COI and cox1), voucher, and 226 227 nonenvironmental. This generated a dataset composed of more than 455,000 fastaformatted entries for the COI gene belonging to 123,439 different species. The script 228 229 entrez giime.py (Baker, 2016) was then used to generate the taxonomy file associated with the generated database. Taxonomic assignments were done by using the glime 230 231 feature-classifier plugin from QIIME2 (version 2019.4.0) with a 90% of minimum identity 232 and E-value of 1e-50 following Fernandez et al. (2018). Sequences were rearranged and clustered using the vsearch cluster-features-denovo plugin, version 2019.7.0 (Rognes et 233 234 al., 2016). A similarity threshold of 97% was employed because it is considered the level 235 at which species differ in the case of the COI gene (Hebert et al., 2003). Sequences with a 236 higher similarity percentage were clustered into the same operational taxonomic unit 237 (OTU). Once the OTU table was created, a final filtering step was performed, and only 238 marine OTUs were retained for further analyses. The assigned marine OTUs were individually revised and named using WoRMS taxonomy (Horton et al., 2019) as a model 239 240 to avoid discrepancies or outdated nomenclature.

241 Biotic indices (gAMBI and Blue-gNIS) and ecological status evaluations

242 gAMBI is a biological index that classifies species into five different ecological groups, 243 depending on their tolerance to pollution: group 1, contains the most pollution-244 sensitive species that cannot survive in polluted areas, followed by groups 2 and 3 which 245 contain species that show more tolerance to pollution. Groups 4 and 5 contain the most 246 pollution-tolerant species that usually inhabit disturbed areas. The percentage of 247 species belonging to each group defines the final index value, which can range from 0 248 (unpolluted areas) to 6 (heavily polluted areas). Each index score has an associated ecological status that can be high, good, moderate, poor or bad (Supplementary Table 249 2). The index is calculated by the following formula: 250

251

252
$$gAMBI = \frac{[(0x\%G1) + (1,5x\%G2) + (3x\%G3) + (4,5x\%G4) + (6x\%G5)]}{100}$$

253

The environmental assessment of the port of Gijon was carried out by estimating the gAMBI value for each station. The index values were calculated using the AMBI software downloadable at https://ambi.azti.es/es/descarga-de-ambi/, which contains a list of macroinvertebrates classified into the five ecological groups.

In this work, we propose an adaptation of gAMBI, namely, Blue-gNIS (named after the EU Blue Growth strategy), which not only considers species ecology or tolerance level to anthropogenic stressors, but also takes into account the invasiveness of species inhabiting the area under assessment. The Blue-gNIS uses the same formula as the gAMBI, and has the same range, from 0 (undisturbed areas) to 6 (extremely disturbed areas). The only difference is in the classification of species into ecological groups, which is done by combining ecological traits with the invasion history (Figure 2). First, in order to 265 determine the group to which each species belongs, the invasiveness is analyzed by 266 searching for the species distributional data. In this research, the following databases were consulted: AquaNIS (AquaNIS, 2015), DAISIE (Roy et al., 2019) ISSG 267 268 (http://www.issg.org/database), GRIIS (http://www.griis.org), CABI (CABI, 2019), Algaebase (Guiry & Guiry, 2019) and Marine Planktonic Copepods (Razouls et al., 2019). 269 270 Species introduction events were analyzed using the AquaNIS webpage as the main source 271 of information. With this information, species were classified as native, NIS (exotic species 272 without reports of producing environmental impacts in the area under study) or IAS 273 (exotic species that produce environmental impacts in the area under study). Cryptogenic 274 species were not included in the analysis. Finally, a search for previous reports of the 275 presence of the assigned NIS and IAS was done to check their current status in the area 276 under study (Figure 2).

277 Once the invasiveness is assessed, the ecological information is added. In the case of 278 native species, those species belonging to gAMBI (macroinvertebrate species) were 279 classified based on the existing values (that are based on the ecology of the species). For 280 NIS and IAS, the initial ecological group was determined following the categories from the 281 ALEX (ALien Biotic IndEX), which is an index that considers species invasiveness (Çinar and 282 Bakir, 2014). In the case of NIS, they were initially classified into ecological group 3, as 283 these species show more tolerance than native species to anthropic environments and 284 pollution, along with the ability to survive in extreme conditions, such as in ballast tanks, where many of these species are transported to recipient regions (Piola and Johnston, 285 286 2009). This value can be increased, depending on the ecological traits of the species. If the 287 NIS has an existing AMBI value, and if it is higher than 3, the species will be classified into 288 that group, but if, on the contrary, the value is lower than 3, the species will remain in 289 group 3. If there is no previous AMBI ecological group for the species, a bibliographical 290 search is conducted to determine its ecological traits (such as tolerance to hypoxic 291 conditions, heavy metals, eutrophication, high temperatures, etc). This way all the 292 detected non-indigenous species are considered in the Blue-gNIS index calculation. In the 293 case in which reports reveal the species presence in disturbed conditions, the ecological 294 group is increased from 3 to 4. The same criteria were employed for IAS, but in this case, 295 following the categories from Cinar and Bakir (2014), these species were initially classified 296 into group 4, because aquatic pollution increases the relative success of invasive species 297 (Crooks et al., 2011). This value can also be increased to group 5 if they meet the previously 298 specified conditions or if they have specific ecological traits related to disturbed habitats 299 (Figure 2).

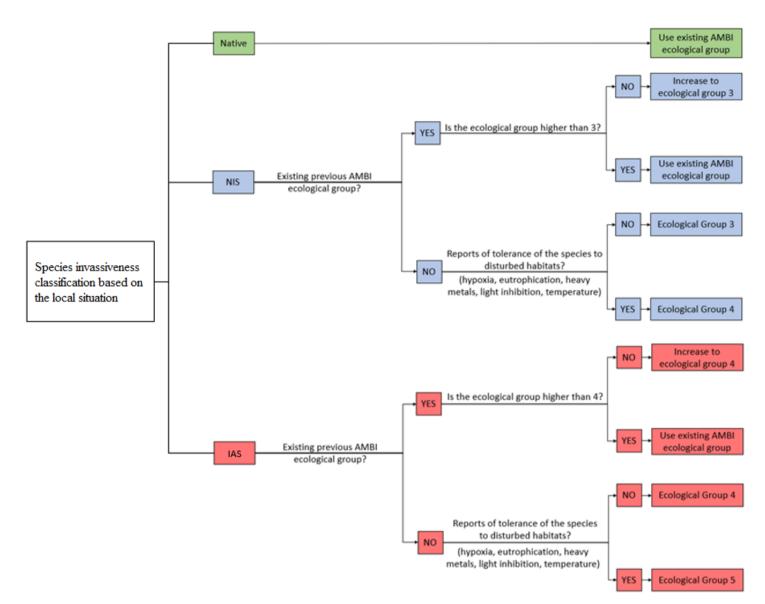


Figure 2. Criteria for the classification of species into ecological groups for Blue-gNIS
 estimations.

302

303 Apart from these criteria for species classification into ecological groups, the Blue-gNIS 304 has another difference relative to the gAMBI in the taxa that are considered for the environmental assessment. In the case of the gAMBI, only macroinvertebrate taxa are 305 306 employed for the index calculation. On the other hand, regarding the invasiveness of the species, the presence of any NIS is considered informative for the Blue-gNIS, whether 307 308 macroinvertebrate or not. For example, if non-indigenous macrophytes are detected 309 during the environmental assessment, they are included in the analysis. In this way, a 310 better representation of the real status of the port is obtained because all the NIS present 311 in the area under study are taken into account. Moreover, in order to classify these species into ecological groups, not only their invasiveness but also their ecological traits are 312 considered. For instance, macrophytes are classified depending on their ecological group 313

defined by the Ecological Evaluation Index (EEI) that uses only macrophytes as bioindicator
 species (Orfanidis et al., 2011).

316 Testing the performance of Blue-gNIS

The performance of the Blue-gNIS was calibrated by comparing the obtained results with 317 318 validated biotic indices reported by Aylagas et al., (2014) (gAMBI) and Simboura and 319 Zenetos, (2002) (Bentix), which are based on species ecology, and the one from Cinar and 320 Bakir (2014) (ALEX), which is based on species invasiveness. This way, Blue-gNIS was 321 preliminary calibrated considering both, the ecological component (against gAMBI and 322 Bentix) and the component related to biological invasions (against ALEX). Both 323 presence/absence and quantitative data were used in the comparisons. The index scores 324 and the associated ecological status were calculated following the formulas from the 325 authors mentioned above. These scores were normalized to the Ecological Quality Ratio 326 (EQR) and compared using Spearman's rank correlations due to the lack of linearity among 327 them. Data used to perform these comparisons were not only those obtained in this study 328 for the port of Gijon, but also additional data belonging to previous studies conducted in 329 the Cantabrian Sea, such as those of Borrell et al. (2017) (metabarcoding in Ports), Borrell 330 et al. (2018) (metabarcoding in estuaries) and Miralles et al. (2019) (specific eDNA 331 detection of Crepidula fornicata in different locations of the Bay of Biscay and unpublished 332 metabarcoding data) were used in order to obtain a better calibration of the Blue-gNIS 333 (Supplementary Table 3). Rarefaction plots were generated for all these data, and only 334 samples reaching the plateau and thus representing an adequate sampling depth and 335 species richness within these studies were selected for the analysis (Supplementary Figure 336 1).

337 Statistical analyses

338 Statistical analyses were conducted using the PAST program (Hammer et al. 2001) on 339 both, presence/absence and quantitative metabarcoding data. Normality was checked in 340 the dataset, and then diversity permutation tests and diversity t-tests were performed to 341 compare differences in biodiversity levels among different sampling methods and port 342 stations. The Shannon index was chosen for these comparisons (Herrera et al., 2007; 343 Ransome et al., 2017; Lacoursière-Roussel et al., 2018; Wangesteen et al., 2018). ANOVA 344 tests were conducted for samples obtained in the same substrate (water or sediment) 345 within each station. Similarities between stations and sampling techniques were 346 determined using Bray-Curtis distances and a nonmetric multidimensional scaling 347 (nmMDS) analysis after checking the stress and r2 values in Shepard plots. Tolerable stress 348 levels were considered those below 0.2 (Oksanen et al., 2016). A PERMANOVA test was 349 conducted using 9999 permutations and Bray-Curtis similarity index to compare sediment 350 and water samples. Regarding the calibration of Blue-gNIS, the normality of the 351 parameters was checked performing Shapiro Wilk tests and Bonferroni correction was applied to the performed correlations. 352

353

354 **RESULTS**

355 Metabarcoding analyses

The quantity of DNA obtained from water and sediment samples that was used for High-356 ranged between 0.01 ng µL-1 and 80.55 ng µL-1 357 throughput sequencing (HTS) 358 (Supplementary Table 4) and provided a total of 3,342,049 reads. For bioinformatics analyses, the guality-filtering step removed too-short, low-guality and chimeric reads, 359 resulting in 1,896,906 sequences. A total of 241,756 sequences, with an average length 360 361 of 365 bp, were successfully assigned against the COI database and classified into 452 362 OTUs belonging to different taxonomic levels. Some terrestrial taxa were identified, 363 which were mainly insects (193 OTUs) and terrestrial mammals (96 OTUs). After filtering 364 these taxa, 141 marine OTUs were obtained, which were classified into 25 classes mainly composed of Florideophyceae, Hexanauplia and Polychaeta. From this dataset 365 macroinvertebrates, NIS and IAS were employed for biotic index calculations 366 367 (Supplementary Table 5).

368 Samples obtained from the same substrate (water or sediment) within each station were combined for posterior analyses as they did not show statistically significant differences. 369 370 The nonmetric multidimensional scaling (nmMDS) analysis based on Bray Curtis 371 distances, showed a stress value of 0.12 and r² values of 0.58 and 0.30 for axes 1 and 2, 372 respectively, in the Shepard plot (Supplementary Figure 2). This plot indicates how well 373 the Multidimensional Scaling reflects the actual proximities. Results indicate a good 374 correlation between the original distances (target rank) and the transformed ones 375 (obtained rank). A clear differentiation between samples taken from water and those 376 taken from sediment was observed (Figure 3). In both cases (sediment and water), 377 station E (the recreational marina) was the most dissimilar compared to stations A, B, C and D, which were much more similar to each other. The PERMANOVA analysis showed 378 379 statistically significant differences between stations' beta diversities (p=0.006) when 380 comparing water and sediment samples (Supplementary table 6).

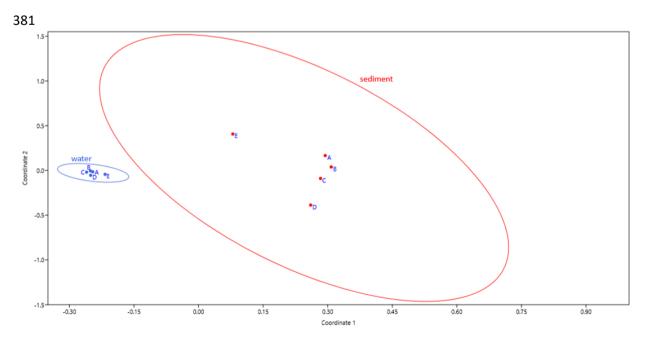
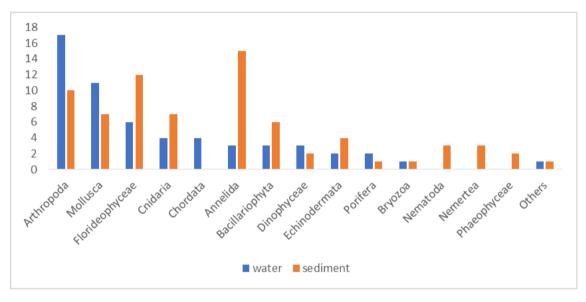



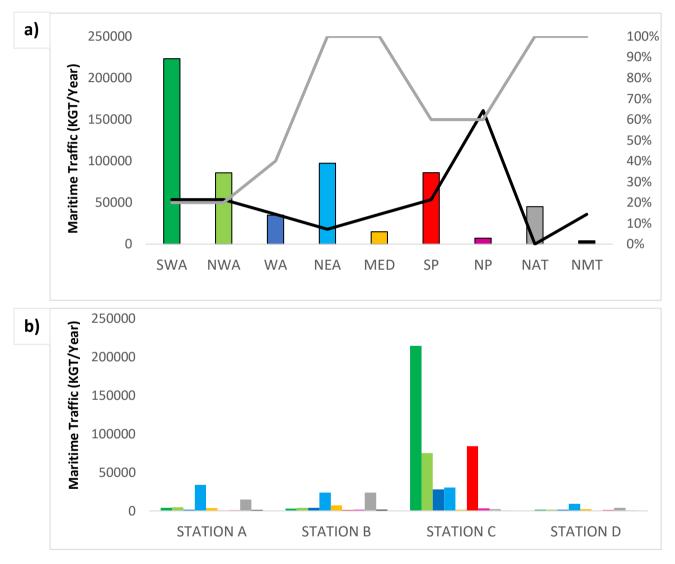
Figure 3. Non-metric Multidimensional Scaling of the metabarcodes found in each
 station for water (blue dots) and sediment (red dots) samplings in the Port of Gijon,
 Bay of Biscay. Circles indicate 95% confidence ellipses.

385

386 Some taxa showed a greater abundance in sediment than in water, as in the case of 387 annelids, for which 15 OTUs were detected in sediments and only three in water. A greater diversity of annelids was detected in the sediment samples than in the water 388 389 samples (diversity t test for the Shannon index: t= -4.27, df= 4.84, P= 0.0086). Taxa such 390 as Nematoda, Nemertea and Phaeophyceae could only be detected in sediment samples 391 (Figure 4). More OTUs were detected in water than in sediment in the cases of 392 Arthropoda (17 in water and 10 in sediment), Mollusca (11 in water and 7 in sediment) 393 and Chordata (composed only of Actinopterygians), which were only detected in water samples. For species level, only a 4% was found in both water and sediment samples. 394

395

Figure 4. Number of OTUs detected using metabarcoding for major taxa in sediment andwater samples from the Port of Gijon, Bay of Biscay.


398

399 Nine NIS (Paracalanus quasimodo, Oncaea waldemari, Clytia gregaria, Grateloupia 400 imbricata, Neogastroclonium subarticulatum, and Hymeniacidon gracilis) and five IAS 401 (Asparagopsis armata, Bonnemaisonia hamifera, Dasysiphonia japonica, Bugula neritina and Botryocladia wrightii) were detected in the Port of Gijon. These IAS were all 402 403 Florideophyceae, except Bugula neritina, which is a bryozoan. Almost all species were 404 detected several times and at different stations of the port, except four species that only 405 appeared in a single station (Table 1). All of the IAS that were detected in this study had 406 been previously reported in the port of Gijon or in the Cantabrian Sea. Regarding NIS, although five species have no reports to date, the other four have already been reported 407 408 in the study area (Supplementary Table 7).

Table 1. NIS (non-indigenous species) and IAS (invasive alien species) found in the Port of Gijon, Bay of Biscay, using metabarcoding on eDNA from different stations and substrates. Their invasion status in the area under study and introduction events in different biogeographic regions suggesting most probable vectors and pathways: NEA (North East Atlantic), MED (Mediterranean), NP (Northern Pacific), SP (Southern Pacific), WA (Western Atlantic), SWA (South West Atlantic), NWA (North West Atlantic); HF (Hull Fouling), WC (Water Currents), AQ (Aquaculture), BW (Ballast Water).

			Introduction	Most	Current	Sul	ostrate		St	tati	on	
Class	Species	Native range	events (AquaNIS)	probable pathway	status in Gijon	Water	Sediment	Α	В	С	D	E
Hexanauplia	Paracalanus quasimodo	Western Atlantic, North East Pacific, Baltic Sea	-	-	NIS	х		Х	х	х	Х	
Hexanauplia	Oncaea waldemari	English Channel to Baltic Sea	-	-	NIS	х		Х			Х	Х
Hydrozoa	Clytia gregaria	North Pacific and New Zealand	-	-	NIS		Х			х		
Florideophyceae	Asparagopsis armata	Australia and New Zealand	NEA, MED, NP, WA	HF, WC, AQ	IAS	х	Х	Х	Х	х		х
Florideophyceae	Bonnemaisonia hamifera	North West Pacific	NEA, MED, SP	HF, WC, AQ	IAS	х	Х	Х	х			х
Florideophyceae	Dasysiphonia japonica	North West Pacific	NEA, MED, NP	HF, WC, AQ, BW	IAS	х	Х		Х			х
Florideophyceae	Grateloupia imbricata	North West Pacific	-	-	NIS	Х					Х	
Florideophyceae	Mesophyllum expansum	Mediterranean Sea	-	-	NIS	Х	Х	Х	Х	Х		
Polychaeta	Dipolydora capensis	South Africa	-	-	NIS	Х		Х	Х	Х		
Gymnolaemata	Bugula neritina	Tropical or Subtropical waters	NEA, SWA, NWA, SP, NP	HF, BW	IAS	х					Х	
Florideophyceae	Gelidium microdonticum	Western Atlantic	-	-	NIS	Х			Х	Х		
Florideophyceae	Neogastroclonium subarticulatum	Pacific coast of America	-	-	NIS	х		Х	Х	х		
Demospongiae	Hymeniacidon gracilis	Indonesia	-	-	NIS	Х		Х				
Florideophyceae	Botryocladia wrightii	North West Pacific	NEA, MED	AQ	IAS	Х		Х				

Of the 14 non-indigenous species that were detected, 64.3% of them are native to the Northern Pacific. However, this region was the one with the lowest levels of traffic (Gijon Port Authority, 2017) regarding the gross tonnage of ships arriving at Gijon from this area (Figure 5a). On the other hand, the South west Atlantic was the zone with the highest traffic (mainly ships coming from Brazil), but only 21.4% of the species that were detected with metabarcoding were native to this biogeographic area. The analyses by station showed that station C received a much higher volume of traffic compared to its station counterparts in the analyzed period (Figure 5b).

Figure 5. a) Different traffic origins and corresponding global ships tonnage arrived to the Port of Gijon (Period 2004-2017) from South West Atlantic (SWA), North West Atlantic (NWA), Western Africa (WA), North East Atlantic (NEA), Mediterranean (MED), Southern Pacific (SP), Northern Pacific (NP), national Atlantic traffic (NAT) and national Mediterranean traffic (NMT). Grey and black lines represent the percentages of non-indigenous species detected with metabarcoding and their native biogeographical area (primary dispersal: in black) or invaded areas (secondary dispersal: in grey) **b)** Marine traffic by stations in the Port of Gijon.

The ecological status of the port of Gijon following biotic indices and including BluegNIS.

Overall, the results from our eDNA-based sampling indicate that the port of Gijon has a high/good ecological status (Table 2). Although there are small discrepancies among stations or depending on the biotic index used to measure the environmental status, the results are uniform and indicate good environmental conditions in the port. It is remarkable that, regarding quantitative data (q), the corresponding index scores were mostly worse than those obtained with presence/absence data (p/a) (higher for gAMBI, Blue-gNIS and ALEX and lower for Bentix). However, none of the biotic indices did show statistically significant differences between one method and the other.

On the other hand, when comparing gAMBI and Blue-gNIS indices, both presence/absence data (p=0.012) and quantitative data (p=0.014) showed statistically significant differences. Blue-gNIS showed worse scores for all stations and for the global values when compared to gAMBI.

Area	Sample name	Blue-gNIS (p/a)	gAMBI (p/a)	Bentix (p/a)	ALEX (p/a)	Blue-gNIS (q)	gAMBI (q)	Bentix (q)	ALEX (q)
	Station A	2.00(G)	1.13(H)	5.06(H)	0.55(H)	2.49(G)	1.84(G)	3.70(G)	0,58(H)
Port	Station B	1.82(G)	1.14(H)	4.94(H)	0.39(H)	2.15(G)	1.64(G)	4.40(G)	0,47(H)
of	Station C	1.56(G)	1.15(H)	4.76(H)	0.33(H)	1.38(G)	0.73(H)	5.10(H)	0,42(H)
Gijon	Station D	1.95(G)	1.21(G)	4.66(H)	0.42(H)	2.55(G)	1.23(G)	2.20(P)	1,03(G)
	Station E	2.25(G)	1.28(G)	5.14(H)	0.50(H)	2.01(G)	1.48(G)	5.15(H)	0,25(H)
Glo	bal value	1.92(G)	1.18(H)	4.91(H)	0.44(H)	2.12(G)	1.38(G)	4.11(G)	0.55(H)

Table 2. Different biotic index scores obtained from presence/absence (p/a) and quantitative (q) data in the port of Gijon, Bay of Biscay. Water Framework Directive (WFD) ecological status is shown in parenthesis: High (H), Good (G) and Poor (P).

Correlations among index scores

The Blue-gNIS showed significant correlations with both ecology-based (AMBI) and invasiveness-based (ALEX) index scores. All significant correlations were positive, indicating that the Blue-gNIS responds in a similar way to the environmental factors (Table 3). From the 17 significant correlations that were found, 6 were significant when the Bonferroni correction was applied. The best correlation was found between the quantitative Blue-gNIS and gAMBI, which share the same formula; however, the Blue-gNIS also showed a strong correlation (p<0.001) with the ALEX. This way Blue-gNIS showed a strong correlation with an ecology-based biotic index (gAMBI) and an invasiveness-based biotic index (ALEX) that do not correlate each other (Table 3). Also, results indicate that Blue-gNIS responds in a similar way to Bentix (when considering quantitative data) due to their positive correlation, although it is not significant when applying Bonferroni correction (Table 3).

Table 3. Spearman rank correlations between Blue-gNIS, gAMBI, Bentix and ALEX scores obtained in the port of Gijon and the additional points from the Cantabrian Sea. Both, presence/absence (p/a) and quantitative data (q) were analyzed. For each pair, the correlation coefficients are presented in the first line and the p-value in the second line. Significant correlations are indicated in bold and the significant correlations after applying Bonferroni correction are indicated with an asterisk.

	Blue- gNIS (p/a)	gAMBI (p/a)	Bentix (p/a)	ALEX (p/a)	Blue-gNIS (q)	gAMBI (q)	Bentix (q)	ALEX (q)
Blue-gNIS (p/a)	-	0.53 0.012	0.24 <i>0.679</i>	0.65 * 0	0.53 * 0	0.34 0.010	0.28 <i>0.973</i>	0.38 0.02
gAMBI (p/a)	-	-	0.28 0.016	0.40 <i>0.112</i>	0.59 * 0	0.53 * 0	0.40 0.039	-0.06 <i>0.432</i>
Bentix (p/a)	-	-	-	0.08 <i>0.946</i>	0.29 0.011	0.37 0.035	0.53 * 0	-0.29 <i>0.778</i>
ALEX (p/a)	-	-	-	-	0.55 0.006	0.38 <i>0.074</i>	-0.03 <i>0.581</i>	0.49 0.009
Blue-gNIS (q)	-	-	-	-	-	0.74 * 0	0.52 0.032	0.19 <i>0.260</i>
gAMBI (q)	-	-	-	-	-	-	0.44 0.035	-0.08 <i>0.708</i>
Bentix (q)	-	-	-	-	-	-	-	-0.08 <i>0.746</i>
ALEX (q)	-	-	-	-	-	-	-	-

DISCUSSION

DNA metabarcoding is a technique with a demonstrated effective cost-benefit ratio due to its high taxonomic resolution, species detectability and comparability across geographic regions (Pawlowski et al. 2018). The results from this work showed the high species detectability of metabarcoding since 141 marine OTUs belonging to a wide range of eukaryotic taxa were detected. This includes species-level assignments for Polychaeta, Nematoda and Demospongiae classes that require high levels of taxonomic expertise for identification based on visual traits. In this way, using environmental DNA, species could be detected with a high effectiveness and taxonomic resolution, supporting previous studies that propose metabarcoding as an innovative tool for the evaluation of the ecological and environmental status of aquatic ecosystems (Chariton et al., 2015; Hering et al., 2018; Pawlowski et al., 2018).

The sampling strategy used in this work, which involved combining water and sediment sampling, allowed us to detect many benthic macroinvertebrate species that could not be detected in water samples. Thanks to this, the biotic indices could be calculated with a larger list of species. Therefore, our results are consistent with those of other authors (Holman et al., 2019) suggesting that both, water and sediment, should be considered in these types of environmental studies. Despite this, metabarcoding results must be carefully treated, especially when working with quantitative data. In our case, sediment and water data were pooled in each station because a very low percentage (4%) of species was detected in both of the substrates and the obtained biotic index scores were not statistically different when comparing sediment and water results. However, this is something that must be considered when performing these kinds of analyses, as species that are present in both type of samples can be overrepresented (the number of detected sequences is not proportional to the number of individuals) and bias the results.

Moreover, many problems associated with DNA barcode reference databases can also affect the metabarcoding results. Regarding the objective of this study, marine macroinvertebrates that are commonly used for biomonitoring are not completely covered in the reference databases, and these gaps could lead to erroneous environmental evaluations (Weigand et al., 2019). This is something that has been directly observed in this study when the list of macroinvertebrates used for gAMBI estimations was compared with our COI database; only a 17.44% of these macroinvertebrate species was represented. This is consistent with Aylagas et al., 2014 which found a 15% to 20% of macroinvertebrate representation in the databases. This data is useful to emphasize the urgent need to complete and update the databases in order to perform more accurate metabarcoding studies. Besides, invertebrate taxa may show lower detection outcomes than other species when employing eDNA due to factors such as differential sampling, primer affinities, incomplete databases or too stringent bioinformatic processing (Macher et al., 2018; Blackman et al., 2019), which also affects the number of species that can be detected. These can be some of the reasons why in this study two out of the nine macroinvertebrate species that were included in the positive control (and are included in the COI database) were not detected after the sequencing process, indicating the need of performing calibration experiments in order to achieve a standardized eDNA-based macroinvertebrate biomonitoring.

Blue-gNIS evaluation

The biotic indices calculated in this research and exclusively based on the detected macroinvertebrate species (Bentix, gAMBI, ALEX) classified the port of Gijon in a high/good ecological status. However, these indices are based on a single parameter, such as the species ecology (gAMBI, Bentix) or species invasion history (ALEX). New biotic indices that combine these two parameters are lacking, and the impacts that biological invasions cause on ecosystems are not considered when performing

environmental evaluations with current macroinvertebrate-based indices. This is even more necessary when evaluating the environmental status of ports that are main hot spots for the introduction of non-indigenous marine species.

Invasive species can impact native macroinvertebrate communities; for example, the introduction of primary producers (such as algae) affects native herbivorous macroinvertebrates. This is why the inclusion of invasive species in environmental assessments has the added value to give in-advance notice of the threat of invasive species for the ecosystems. This can be an excellent tool to take measures before non-indigenous and invasive species can affect macroinvertebrate communities (among others), as their presence will be reflected in the ecological quality, which can determine the need for starting management actions.

In this context, we propose the Blue-gNIS (significantly different from gAMBI), which combines species ecological information with their invasion history. Blue-gNIS classified the port of Gijon in a good ecological status with both presence/absence and quantitative data. It was calibrated by comparisons with the gAMBI, Bentix and ALEX indices and (although based on limited data) showed significant positive correlations, indicating that it responds in a similar way to the environmental factors. However, Blue-gNIS should also be tested in other regions where invasion rates are more intense than in the Cantabrian Sea, this way the correlation between Blue-gNIS and gAMBI in highly invaded areas could also be analyzed.

The basis for the generation of Blue-gNIS is the AZTI Marine Biotic Index (gAMBI), which has been previously calibrated and validated by many authors and which analyses exclusively macroinvertebrates to assess the ecological status (Muniz et al., 2005; Teixeira et al., 2012; Pelletier et al., 2018). Blue-gNIS's proposal is to add to this validated index (gAMBI) the ecological groups of the detected non-indigenous and exotic species without changing the original gAMBI, which is currently used as argument for conducting actions, and take measures in ports and that it is accepted and well known by institutions, states and at a supranational level.

One of the advantages of the Blue-gNIS is that not only macroinvertebrates are used for the environmental assessment, but any other taxa (with known distributional information and ecology) can also be included in the index calculations. For example, in this research, eight non-indigenous macroalgae species were included in the index calculation. At this point, special care must be taken to avoid potential future establishment and invasion events related to those NIS that were detected. These species may be new potential introductions in an early stage, so special attention should be taken in future samplings. If these organisms continue to be detected, this could indicate a possible establishment process that would need to start being managed. Moreover, many of these NIS were detected at different stations, which makes this finding more relevant. These results are useful to obtain an initial view of the potential biological invaders inhabiting the port of Gijon. In this case eight out of the fourteen NIS and IAS that were detected with metabarcoding in the port were macroalgae that commonly inhabit hard substrata. Considering these results, future morphology-based monitoring should focus on hard substrata areas of the port in order to corroborate that these NIS are present and alive in the area.

NIS monitoring in the port of Gijon

Explaining the causes behind the current presence of these exotic species in an area is difficult. An analysis of the traffic volumes from different biogeographical areas was conducted to identify the potential origins of NIS. However, despite the very well demonstrated relationship between marine traffic and biological invasions events (Sardian et al., 2019; Lacarella et al. 2020), no clear correlation was observed regarding the native areas of these species, as the traffic levels arriving from these biogeographic zones were quite low. In fact, the South west Atlantic was the area with the highest traffic level coming to the Port of Gijon. However, only 21.43% of the detected NIS and IAS were native to that area. Thus, the spread from their native areas was unlikely to be the pathway by which these species arrived at the port of Gijon. The possibility that species could have arrived at the port through secondary dispersal from previously invaded areas was also considered. To date, five of the fourteen detected species have already successfully invaded areas outside of their native range (Board, 2015), and all of them are considered invasive (Table 1). These species are Asparagopsis armata, Bonnemaisonia hamifera, Dasysiphonia japonica, Bugula neritina and Botryocladia wrightii. Only one species, Bugula neritina, is invasive in the South western Atlantic, which is the area with the highest level of marine traffic coming into the port of Gijon. Remarkably, the Mediterranean area (with national and international traffic relevant to the port of Gijon) has previously been invaded by 100% of these invasive species. At the same time, 100% of these species have already invaded the North east Atlantic, which is the area with the second highest level of traffic to Gijon. This suggests that secondary dispersal from previously invaded areas that are geographically closer to Gijon could have been the origin of these species. Therefore, special attention must be paid to countries that are relatively closer to the recipient region (Gijon in this case) and that have established biological invaders in their ports.

Some of the NIS detected in this research (such as *Bonnemaisonia hamifera* and *Dasysiphonia japonica*) have been found in other morphological monitoring programs (Supplementary Table 7), showing that these species are already established in the area. The persistence of these NIS and IAS could be related to the high levels of human activities that can lead to a reduction in the resilience of ecosystems to invasion (Shea and Chesson, 2002; Miralles et al., 2016). Our results are consistent with this notion, as station D (the station most recently altered by the construction of new docks) showed the worst ecological status within the port (quantitative Blue-gNIS= 2,55). Comparing this value to the one obtained with gAMBI (1.23), Blue-gNIS score for station D was notoriously worse due to the presence of NIS. However, it is remarkable that this value, which is the worst environmental value obtained in this study is still in a good ecological status. This is why Blue-gNIS should be tested in other areas with higher exposures to NIS in order to evaluate its performance in a broader range and including those values that are closer to 6 in areas with poor or bad ecological status.

On the other hand, Blue-gNIS scores in the marina (station E) ranged between 2.01 and 2.25, whilst the scores for gAMBI were between 1.28 and 1.48. This increase is caused by the presence of non-indigenous and invasive species. Concretely, 1 NIS (*Oncaea waldemari*) and 4 IAS (*Asparagopsis armata, Bonnemaisonia hamifera and Dasysiphonia japonica*) were detected in the marina. These results suggest that more attention should be paid to marinas as recreational boating could effectively facilitate the spread of NIS and IAS (Ferrario et al., 2017; Martínez-Laiz et al., 2019). Our work reinforces the need to perform periodic environmental evaluations in ports to control non-indigenous species that may arrive and become invasive. By promoting the early detection of these species (which can effectively be conducted using metabarcoding techniques), easier and cheaper management plans can be designed to avoid the transmission of these species among ports (Mauremootoo et al., 2019; Rey et al., 2019).

In summary, innovative approaches for environmental evaluations that also consider biological invasions as a part of marine ecosystem quality assessments are urgent and necessary. The Blue-gNIS is a modification of gAMBI that proposes to include the NIS and IAS that affect the local biodiversity in environmental evaluations. In any case, there is still a long road ahead involving testing and implementing improvements to become an efficient and useful tool. Its use in other marine geographical areas facing much more pressure as a consequence of intense and periodic biological invasion events will undoubtedly give us more clues about its efficacy.

ACKNOWLEDGMENTS

This study has been supported by the Spanish Ministry of Economy and Competitiveness and Asturias Government with the Project MINECO-17-CGL2016-79209-R. Prof. Carleos C. was funded through the project MINECO-16-MTM2015-63971-P. Authors would like to thank the support from the authorities from the Port of Gijon. This is a contribution of the Marine Observatory of Asturias (OMA). A. Ibabe hold an FPI fellowship from Spanish Government.

REFERENCES

- Abaza, V., Dumitrache, C., SPINU, A., & Filimon, A. (2018). Ecological quality assessment of circalittoral broad habitats using M-AMBI*(n) index. *J Environ Prot Ecol*, 19(2), 564-572.
- A Coruña Port Authority. (2017). http://cma.puertocoruna.com/intranet/modelizacion/ROM/frmROM.aspx
- Afonso, I., Berecibar, E., Castro, N., Costa J.L., Frias, P., Henriques, F., Moreira, P., Oliveira, P.M., Silva, G., Chainho P. (2020) Assessment of the colonization and

dispersal success of non-indigenous species introduced in recreational marinas along the estuarine gradient. *Ecological Indicators* 113, 106147.

- AquaNIS. Editorial Board, 2015. Information system on Aquatic Non-Indigenous and Cryptogenic Species. World Wide Web electronic publication. www.corpi.ku.lt/databases/aquanis. Version 2.36. Accessed 2019-06-04.
- Aylagas, E., Borja, Á., & Rodríguez-Ezpeleta, N. (2014). Environmental status assessment using DNA metabarcoding: towards a genetics based marine biotic index (gAMBI). PloS one, 9(3), e90529.
- Aylagas, E., Borja, Á., Muxika, I., & Rodríguez-Ezpeleta, N. (2018). Adapting metabarcoding-based benthic biomonitoring into routine marine ecological status assessment networks. *Ecological indicators*, 95, 194-202.
- Azti Tecnalia. (2018). Plan de vigilancia del medio receptor del vertido de la edar de Galindo. Año 2017. <u>https://www.consorciodeaguas.eus/web/GestionAmbiental/PDF/Vigilancia/PPVV%202</u> 017/Informe GALINDO.pdf
- Baine, M., Howard, M., Kerr, S., Edgar, G., & Toral, V. (2007). Coastal and marine resource management in the Galapagos Islands and the Archipelago of San Andres: Issues, problems and opportunities. *Ocean & Coastal Management*, 50(3-4), 148-173.
- Baird, D. J., & Hajibabaei, M. (2012). Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. *Molecular* ecology, 21(8), 2039-2044.
- Baird, D. J., & Sweeney, B. W. (2011). Applying DNA barcoding in benthology: the state of the science. *Journal of the North American Benthological Society*, 30(1), 122-124.
- Baker, C. (2016). entrez qiime: a utility for generating QIIME input _les from the NCBI databases.
- Bárbara, I., García-Redondo, V., Díaz-Tapia, P., García-Fernández, A., Piñeiro-Corbeira,
 C., Peña, V., ... & Cremades, J. (2019). Adiciones y correcciones a la flora bentónica marina del Atlántico ibérico norte.
- Bárbara, I., Lee, S. Y., Peña, V., Díaz, P., Cremades, J., Oak, J. H., & Choi, H. G. (2008). Chrysymenia wrightii (Rhodymeniales, Rhodophyta) a new non-native species for the European Atlantic Coast. *Aquatic Invasions*, 3(4), 367-375.
- Barrière P, Jenna Wong L, Pagad S (2018). Global Register of Introduced and Invasive Species GRIIS- France-New Caledonia. Version 1.4. Invasive Species Specialist Group ISSG.
- Bayliss, H. R., Schindler, S., Adam, M., Essl, F., & Rabitsch, W. (2017). Evidence for changes in the occurrence, frequency or severity of human health impacts

resulting from exposure to alien species in Europe: a systematic map. *Environmental Evidence*, 6(1), 21.

- Bellard, C., Cassey, P., & Blackburn, T. M. (2016). Alien species as a driver of recent extinctions. *Biology letters*, 12(2), 20150623.
- Belhaouari, B., Si-hamdi, F., & Belguermi, A. (2019). Study of the benthic macrofauna and application of AMBI index in the coastal waters of Algeria. *Egyptian Journal* of Aquatic Biology and Fisheries, 23(3), 321-328.
- Bigot, L., Grémare, A., Amouroux, J. M., Frouin, P., Maire, O., & Gaertner, J. C. (2008). Assessment of the ecological quality status of soft-bottoms in Reunion Island (tropical Southwest Indian Ocean) using AZTI marine biotic indices. *Marine Pollution Bulletin*, 56(4), 704-722.
- Birk, S., Bonne, W., Borja, A., Brucet, S., Courrat, A., Poikane, S., ... & Hering, D. (2012). Three hundred ways to assess Europe's surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. *Ecological Indicators*, 18, 31-41.
- Blackman, R. C., Constable, D., Hahn, C., Sheard, A. M., Durkota, J., Hänfling, B., & Lawson Handley, L. (2017). Detection of a new non-native freshwater species by DNA metabarcoding of environmental samples--first record of Gammarus fossarum in the UK. Aquatic Invasions, 12(2).
- Blackman, R. C., Mächler, E., Altermatt, F., Arnold, A., Beja, P., Boets, P., ... & Macher, J. (2019). Advancing the use of molecular methods for routine freshwater macroinvertebrate biomonitoring—the need for calibration experiments. *Metabarcoding and Metagenomics*, 3, 49-57.
- Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C., Al-Ghalith, G. A., ... & Bai, Y. (2018). QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science (No. e27295v1). PeerJ Preprints.
- Borja, A., Chust, G., & Muxika, I. (2019). Forever young: The successful story of a marine biotic index. *Advances in marine biology*, 82, 93.
- Borja, Á., Elliott, M., Carstensen, J., Heiskanen, A. S., & van de Bund, W. (2010). Marine management-towards an integrated implementation of the European Marine Strategy Framework and the Water Framework Directives. *Marine pollution bulletin*, 60(12), 2175-2186.
- Borja, A., Franco, J., & Pérez, V. (2000). A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. *Marine pollution bulletin*, 40(12), 1100-1114.
- Borja, Á., Marín, S. L., Muxika, I., Pino, L., & Rodríguez, J. G. (2015). Is there a possibility of ranking benthic quality assessment indices to select the most responsive to different human pressures? *Marine pollution bulletin*, 97(1-2), 85-94.

- Borja, A., Miles, A., Occhipinti-Ambrogi, A., & Berg, T. (2009). Current status of macroinvertebrate methods used for assessing the quality of European marine waters: implementing the Water Framework Directive. *Hydrobiologia*, 633(1), 181-196.
- Borja, A., Muxika, I., & Franco, J. (2003a). The application of a Marine Biotic Index to different impact sources affecting soft-bottom benthic communities along European coasts. *Marine Pollution Bulletin*, 46(7), 835-845.
- Borja, A., Franco, J., & Muxika, I. (2003b). Classification tools for marine ecological quality assessment: the usefulness of macrobenthic communities in an area affected by a submarine outfall. *ICES CM*, 2, 1-10.
- Borrell, Y. J., Miralles, L., Do Huu, H., Mohammed-Geba, K., & Garcia-Vazquez, E. (2017). DNA in a bottle—Rapid metabarcoding survey for early alerts of invasive species in ports. *PloS one*, *12*(9), e0183347.
- Borrell, Y. J., Miralles, L., Mártinez-Marqués, A., Semeraro, A., Arias, A., Carleos, C. E., & García-Vázquez, E. (2018). Metabarcoding and post-sampling strategies to discover non-indigenous species: A case study in the estuaries of the central south Bay of Biscay. *Journal for Nature Conservation*, 42, 67-74.
- Buffalo, V. (2011) Scythe A Bayesian adapter trimmer [software]. https://github.com/vsbuffalo/scythe.
- CABI, 2019. Invasive Species Compendium. Wallingford, UK: CAB International. <u>www.cabi.org/isc</u>. Accessed 2019-06-04.
- Carvalho, S., Gaspar, M. B., Moura, A., Vale, C., Antunes, P., Gil, O., ... & Falcao, M. (2006). The use of the marine biotic index AMBI in the assessment of the ecological status of the Óbidos lagoon (Portugal). *Marine Pollution Bulletin*, 52(11), 1414-1424.
- Chan, F. T., Stanislawczyk, K., Sneekes, A. C., Dvoretsky, A., Gollasch, S., Minchin, D., ...
 & Bailey, S. A. (2019). Climate change opens new frontiers for marine species in the Arctic: Current trends and future invasion risks. *Global change biology*, 25(1), 25-38.
- Chariton, A. A., Stephenson, S., Morgan, M. J., Steven, A. D., Colloff, M. J., Court, L. N., & Hardy, C. M. (2015). Metabarcoding of benthic eukaryote communities predicts the ecological condition of estuaries. *Environmental pollution*, 203, 165-174.
- Çinar, M. E., & Bakir, K. (2014). ALien Biotic IndEX (ALEX)–A new index for assessing impacts of alien species on benthic communities. *Marine pollution bulletin*, 87(1-2), 171-179.
- Crooks, J. A., Chang, A. L., & Ruiz, G. M. (2011). Aquatic pollution increases the relative success of invasive species. *Biological Invasions*, 13(1), 165-176.

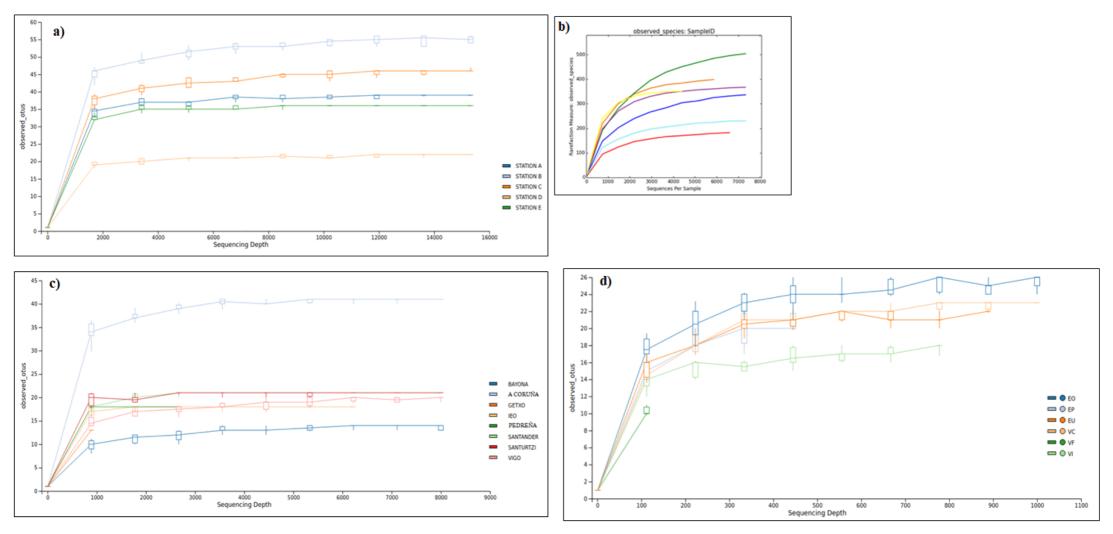
- DAISIE European Invasive Alien Species Gateway (http://www.europe-aliens.org) Accessed 2019-06-04.
- Davidson, I. C., Brown, C. W., Sytsma, M. D., & Ruiz, G. M. (2009). The role of containerships as transfer mechanisms of marine biofouling species. *Biofouling*, 25(7), 645-655.
- Dejean, T., Valentini, A., Miquel, C., Taberlet, P., Bellemain, E., & Miaud, C. (2012). Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. *Journal of applied ecology*, 49(4), 953-959.
- De Jonge, V. N., Elliott, M., & Brauer, V. S. (2006). Marine monitoring: its shortcomings and mismatch with the EU Water Framework Directive's objectives. *Marine pollution bulletin*, 53(1-4), 5-19.
- Drake, J. M., & Lodge, D. M. (2004). Global hot spots of biological invasions: evaluating options for ballast–water management. *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 271(1539), 575-580.
- EEA, 2012. European waters assessment of status and pressures. EEA Report, 8: 100 pp.
- Eikeset, A. M., Mazzarella, A. B., Davíðsdóttir, B., Klinger, D. H., Levin, S. A., Rovenskaya, E., & Stenseth, N. C. (2018). What is blue growth? The semantics of "Sustainable Development" of marine environments. *Marine Policy*, 87, 177-179.
- Europen Comission. (2017). Report on the Blue Growth Strategy Towards more sustainable growth and jobs in the blue economy.
- Fernández, S., Rodríguez-Martínez, S., Martínez, J.L., Borrell Y.J., Ardura, A., García-Vázquez, E. (2018). Evaluating freshwater macroinvertebrates from eDNA metabarcoding: A river Nalón case study. Plos One 13, e0201741.
- Ferrario, J., Caronni, S., Occhipinti-Ambrogi, A., & Marchini, A. (2017). Role of commercial harbours and recreational marinas in the spread of non-indigenous fouling species. Biofouling, 33(8), 651-660.
- Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from water samples. *Biology letters*, 4(4), 423-425.
- Fisheries, FAO Aquaculture Department (2012) The state of world fisheries and aquaculture 2012. Food and Agriculture Organization of the United Nations, Rome, 3-5.
- Galil, B. S., Marchini, A., & Occhipinti-Ambrogi, A. (2018). East is east and West is west? Management of marine bioinvasions in the Mediterranean Sea. *Estuarine, Coastal and Shelf Science*, 201, 7-16.

- Gherardi, F., & Angiolini, C. (2009). Eradication and control of invasive species. *Biodiversity Conservation and Habitat Management, Encyclopedia of Life Support Systems (EOLSS)*; Gherardi, F., Gualtieri, M., Corti, C., Eds, 271-299.
- Gijon Port Authority. (2017). Annual Report 2017. https://www.puertogijon.es/wpcontent/uploads/2018/08/MEMORIA-2017WEB.pdf
- Gössling, S., Hall, C. M., & Scott, D. (2018). Coastal and ocean tourism. *In Handbook on Marine Environment Protection* (pp. 773-790). Springer, Cham.
- Guiry, M.D. & Guiry, G.M. 2019. *AlgaeBase*. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; Accessed 2019-06-04.
- Halpern, B. S., Frazier, M., Potapenko, J., Casey, K. S., Koenig, K., Longo, C., ... & Walbridge, S. (2015). Spatial and temporal changes in cumulative human impacts on the world's ocean. *Nature communications*, 6, 7615.
- Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D'agrosa, C., ... & Fujita, R. (2008). A global map of human impact on marine ecosystems. *Science*, 319(5865), 948-952.
- Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. [Computer program] Palaeontología Electrónica. Accessed onlinea. org/2001_1/past/issue1_01. htm (accessed on 26 May 2017).
- Hebert, P. D., Ratnasingham, S., & de Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(suppl_1), S96-S99.
- Herrera, A., Héry, M., Stach, J. E., Jaffré, T., Normand, P., & Navarro, E. (2007). Species richness and phylogenetic diversity comparisons of soil microbial communities affected by nickel-mining and revegetation efforts in New Caledonia. *European Journal of Soil Biology*, 43(2), 130-139.
- Hering, D., Borja, A., Jones, J. I., Pont, D., Boets, P., Bouchez, A., ... & Leese, F. (2018). Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. *Water Research*, 138, 192-205.
- Holman, L. E., de Bruyn, M., Creer, S., Carvalho, G., Robidart, J., & Rius, M. (2019). Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. *Scientific reports*, 9(1), 1-10.
- Horton T, Kroh A, Bailly, N et al. (2019). World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Accessed 2019-06-10. doi:10.14284/170.
- Hulme, P. E. (2017). Climate change and biological invasions: evidence, expectations, and response options. *Biological Reviews*, 92(3), 1297-1313.

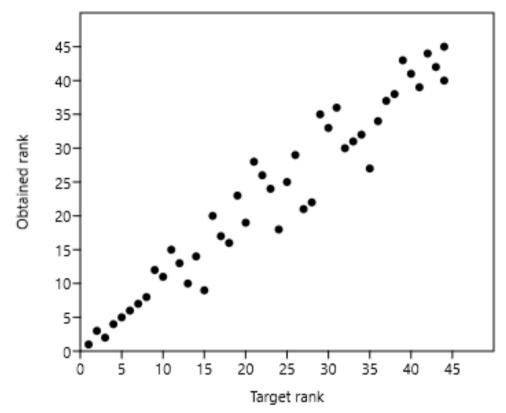
- Hutton, M., Venturini, N., García-Rodríguez, F., Brugnoli, E., & Muniz, P. (2015). Assessing the ecological quality status of a temperate urban estuary by means of benthic biotic indices. *Marine Pollution Bulletin*, 91(2), 441-453.
- Illumina. (2011). Preparing 16S ribosomal RNA gene amplicons for the Illumina MiSeq system. *Illumina technical note*.
- IMO, M. (2004). International convention for the control and management of ships' ballast water and sediments. In International Conference on Ballast Water Management for Ships, BWM/CONF/36, 16 February 2004. International Maritime Organization.
- Interwies, E. and Khuchua, N., (2017). Economic Assessment of Ballast Water Management: A Synthesis of the National Assessments conducted by the Lead Partnering Countries of the GEF-UNDP-IMO GloBallast Partnerships Programme. *GloBallast Monograph No. 24*. Technical Ed. Ameer Abdulla.
- Invasive Species Specialist Group ISSG 2015. The Global Invasive Species Database. Version 2015.1
- Joshi NA, Fass JN. (2011). Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. Available at https://github.com/najoshi/sickle.
- Jylhä, M. (2017). Implementing the IMO Resolution MEPC. 127 (53) Guidelines for Ballast Water Management and Development of Ballast Water Management Plans (G4) in tugs and barges.
- Katsanevakis, S., Zenetos, A., Belchior, C., & Cardoso, A. C. (2013). Invading European Seas: assessing pathways of introduction of marine aliens. *Ocean & Coastal Management*, 76, 64-74.
- Keck, F., Vasselon, V., Tapolczai, K., Rimet, F., & Bouchez, A. (2017). Freshwater biomonitoring in the Information Age. *Frontiers in Ecology and the Environment*, 15(5), 266-274.
- Lacarella, J.C., Burkealan, L., Davidson, I.C., DiBaccod, C., Therriault, T.W., Dunhame, A. (2020) Unwanted networks: Vessel traffic heightens the risk of invasions in marine protected areas. *Biological Conservation* 245: 108553.
- Lacoursière-Roussel, A., Howland, K., Normandeau, E., Grey, E. K., Archambault, P., Deiner, K., & Bernatchez, L. (2018). eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity. *Ecology and evolution*, 8(16), 7763-7777.
- Leray, M., Yang, J. Y., Meyer, C. P., Mills, S. C., Agudelo, N., Ranwez, V., ... & Machida, R. J. (2013). A new versatile primer set targeting a short fragment of the

mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. *Frontiers in zoology*, 10(1), 34.

- Lindeque, P. K., Parry, H. E., Harmer, R. A., Somerfield, P. J., & Atkinson, A. (2013). Next generation sequencing reveals the hidden diversity of zooplankton assemblages. *PloS one*, 8(11).
- Macher JN, Vivancos A, Piggott JJ, Centeno FC, Matthaei CD, Leese F (2018) Comparison of environmental DNA and bulk-sample metabarcoding using highly degenerate cytochrome c oxidase I primers. *Molecular Ecology Resources* 18: 1456–1468. https://doi.org/10.1111/1755-0998.12940
- MacNeil, C., Boets, P., Lock, K., & Goethals, P. L. (2013). Potential effects of the invasive 'killer shrimp'(Dikerogammarus villosus) on macroinvertebrate assemblages and biomonitoring indices. *Freshwater Biology*, 58(1), 171-182.
- Martínez-Laiz, G., Ulman, A., Ros, M., & Marchini, A. (2019). Is recreational boating a potential vector for non-indigenous peracarid crustaceans in the Mediterranean Sea? A combined biological and social approach. Marine pollution bulletin, 140, 403-415.
- Mathers, K. L., Chadd, R. P., Extence, C. A., Rice, S. P., & Wood, P. J. (2016). The implications of an invasive species on the reliability of macroinvertebrate biomonitoring tools used in freshwater ecological assessments. *Ecological indicators*, 63, 23-28.
- McCauley, D. J., Pinsky, M. L., Palumbi, S. R., Estes, J. A., Joyce, F. H., & Warner, R. R. (2015). Marine defaunation: Animal loss in the global ocean. *Science*, 347(6219), 1255641.
- Ministerio de Agricultura, Pesca y Alimentación. (2017). https://servicio.pesca.mapama.es/acuivisor/
- Miralles, L., Ardura, A., Arias, A., Borrell, Y. J., Clusa, L., Dopico, E., ... & Valiente, A. G. (2016). Barcodes of marine invertebrates from north Iberian ports: Native diversity and resistance to biological invasions. *Marine pollution bulletin*, 112(1-2), 183-188.
- Miralles, L., Parrondo, M., Hernández de Rojas, A., Garcia-Vazquez, E., Borrell, Y.J. (2019) Development and validation of eDNA markers for the detection of Crepidula fornicata in environmental samples. *Marine Pollution Bulletin*. 146: 827-830.
- Miralles, L., Ibabe, A., Arenales, M., Borrell Y.J. (2020) Establishing informative monitoring baselines in ports to deal with the problem of biological invasions. In book: Eduardo Dopico & Yaisel Borrell (eds.) (2020). Scientific and educational strategies for a sustainable port activity facing biological invasions: from Ports to BluePorts. Is it possible? Publisher: Servicio de Publicaciones Universidad de Oviedo. ISBN 978-84-17445-73-7.


- Molnar, J. L., Gamboa, R. L., Revenga, C., & Spalding, M. D. (2008). Assessing the global threat of invasive species to marine biodiversity. *Frontiers in Ecology and the Environment*, 6(9), 485-492.
- Montes, M., Rico, J. M., García-Vázquez, E., & Borrell, Y. J. (2016). Morphological and molecular methods reveal the Asian alga Grateloupia imbricata (Halymeniaceae) occurs on Cantabrian Sea shores (Bay of Biscay). *Phycologia*, 55(4), 365-370.
- Montes, M., Borrell, Y. J., Skukan, R., García-Vázquez, E., Rico, JM. (2020) Past and current perspectives about seaweed assemblages-anthropogenic disturbances interactions in the central area of the Bay of Biscay, Asturias, and its implications for the seaweed's biological invasion challenge. Submitted.
- MFSD. (2008). Directive 2008/56/EC of the European Parliament and the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). OJ L 164, 25.6.2008, pp 19-40.
- Muniz, P., Venturini, N., Pires-Vanin, A. M., Tommasi, L. R., & Borja, A. (2005). Testing the applicability of a Marine Biotic Index (AMBI) to assessing the ecological quality of soft-bottom benthic communities, in the South America Atlantic region. *Marine Pollution Bulletin*, 50(6), 624-637.
- Ni, D., Zhang, Z., & Liu, X. (2019). Benthic ecological quality assessment of the Bohai Sea, China using marine biotic indices. *Marine Pollution Bulletin*, 142, 457-464.
- Nunes, A. L., Katsanevakis, S., Zenetos, A., & Cardoso, A. C. (2014). Gateways to alien invasions in the European seas. *Aquatic Invasions*, 9(2), 133-144.
- Oksanen, J., Blanchet, F., Friendly, M., Kindt, R. (2016). Package "Vegan" Title Community Ecology Package.
- Orfanidis, S., Panayotidis, P., & Ugland, K. (2011). Ecological Evaluation Index continuous formula (EEI-c) application: a step forward for functional groups, the formula and reference condition values. *Mediterranean marine science*, 12(1), 199-232.
- Pawlowski, J., Kelly-Quinn, M., Altermatt, F., Apothéloz-Perret-Gentil, L., Beja, P., Boggero, A., & Feio, M. J. (2018). The future of biotic indices in the ecogenomic era: Integrating (e) DNA metabarcoding in biological assessment of aquatic ecosystems. *Science of The Total Environment*, 637, 1295-1310.
- Pelletier, M. C., Gillett, D. J., Hamilton, A., Grayson, T., Hansen, V., Leppo, E. W., ... & Borja, A. (2018). Adaptation and application of multivariate AMBI (M-AMBI) in US coastal waters. *Ecological indicators*, 89, 818-827.
- Piola, R. F., & Johnston, E. L. (2009). Comparing differential tolerance of native and nonindigenous marine species to metal pollution using novel assay techniques. *Environmental Pollution*, 157(10), 2853-2864.

- Pitacco, V., Lipej, L., Mavrič, B., Mistri, M., & Munari, C. (2018). Comparison of benthic indices for the evaluation of ecological status of three Slovenian transitional water bodies (northern Adriatic). *Marine pollution bulletin*, 129(2), 813-821.
- Quiroga, E., Ortiz, P., Reid, B., & Gerdes, D. (2013). Classification of the ecological quality of the Aysen and Baker Fjords (Patagonia, Chile) using biotic indices. *Marine pollution bulletin*, 68(1-2), 117-126.
- Ransome, E., Geller, J. B., Timmers, M., Leray, M., Mahardini, A., Sembiring, A., ... & Meyer, C. P. (2017). The importance of standardization for biodiversity comparisons: A case study using autonomous reef monitoring structures (ARMS) and metabarcoding to measure cryptic diversity on Mo'orea coral reefs, French Polynesia. *PloS one*, 12(4), e0175066.
- Razouls C., de Bovée F., Kouwenberg J. et Desreumaux N. (2019). Diversity and Geographic Distribution of Marine Planktonic Copepods. Sorbonne University, CNRS. Available at <u>https://copepodes.obs-banyuls.fr/en</u>.
- Rey, A., Basurko, O. C., & Rodriguez-Ezpeleta, N. (2019). Guidelines and considerations for metabarcoding-based port baseline biodiversity surveys: towards improved marine non-indigenous species monitoring. *bioRxiv*, 689307.
- Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. *PeerJ*, 4, e2584.
- Roy, D., Alderman, D., Anastasiu, P., Arianoutsou, M., Augustin, S., Bacher, S., ... & Reyserhove, 887 L. (2019). DAISIE-Inventory of alien invasive species in Europe. Version 1.7. Research 888 Institute for Nature and Forest (INBO). Checklist dataset https://doi. 889 org/10.15468/ybwd3x accessed on, 5, 2019.
- Salas, F., Neto, J. M., Borja, A., & Marques, J. C. (2004). Evaluation of the applicability of a marine biotic index to characterize the status of estuarine ecosystems: the case of Mondego estuary (Portugal). *Ecological indicators*, 4(3), 215-225.
- Santibañez-Aguascalientes, N. A., Borja, Á., Kuk-Dzul, J. G., Montero-Muñoz, J. L., & Ardisson, P. L. (2018). Assessing benthic ecological status under impoverished faunal situations: A case study from the southern Gulf of Mexico. *Ecological Indicators*, 91, 679-688.
- Sardian, A., Sardian, E., Leung, B. (2019) Global forecasts of shipping traffic and biological invasions to 2050. *Nature Sustainability* 2: 274–282.
- Shea, K., & Chesson, P. (2002). Community ecology theory as a framework for biological invasions. *Trends in Ecology & Evolution*, 17(4), 170-176.
- Simboura, N., & Reizopoulou, S. (2007). A comparative approach of assessing ecological status in two coastal areas of Eastern Mediterranean. *Ecological Indicators*, 7(2), 455-468.


- Simboura, N., & Zenetos, A. (2002). Benthic indicators to use in ecological quality classification of Mediterranean soft bottom marine ecosystems, including a new biotic index. *Mediterranean Marine Science*, 3(2), 77-111.
- Simkin, S. M., Allen, E. B., Bowman, W. D., Clark, C. M., Belnap, J., Brooks, M. L., ... & Jovan, S. E. (2016). Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. *Proceedings of the National Academy of Sciences*, 113(15), 4086-4091.
- Sun, Y., Chen, B., Wu, H., Huang, H., Ma, Z., & Tang, K. (2018). Assessing benthic ecological status in subtropical islands, China using AMBI and Bentix indices. *Estuarine, Coastal and Shelf Science*, 207, 345-350.
- Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., & Willerslev, E. (2012). Towards next-generation biodiversity assessment using DNA metabarcoding. *Molecular ecology*, 21(8), 2045-2050.
- Teixeira, H., Weisberg, S. B., Borja, A., Ranasinghe, J. A., Cadien, D. B., Velarde, R. G., ...
 & Ritter, K. J. (2012). Calibration and validation of the AZTI's Marine Biotic Index (AMBI) for Southern California marine bays. *Ecological Indicators*, 12(1), 84-95.
- Tweedley, J. R., Warwick, R. M., Clarke, K. R., & Potter, I. C. (2014). Family-level AMBI is valid for use in the north-eastern Atlantic but not for assessing the health of microtidal Australian estuaries. *Estuarine, Coastal and Shelf Science*, 141, 85-96.
- Ujiyama, S., & Tsuji, K. (2018). Controlling invasive ant species: a theoretical strategy for efficient monitoring in the early stage of invasion. *Scientific reports*, 8(1), 8033.
- UNCTAD Review of Maritime Transport. In: UNCTAD/RMT/2015 (ed.) (2015) (New York and Geneva).
- Valença, A. P. M., & Santos, P. J. (2012). Macrobenthic community for assessment of estuarine health in tropical areas (Northeast, Brazil): review of macrofauna classification in ecological groups and application of AZTI Marine Biotic Index. *Marine pollution bulletin*, 64(9), 1809-1820.
- Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen, P. F., ... & Gaboriaud, C. (2016). Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. *Molecular Ecology*, 25(4), 929-942.
- Vigo Port Authority. (2017). Annual Report 2017. https://www.apvigo.es/descargas/descargar/4638/Memoria%20sostenibilidad %202017.p
- Walsh, J. R., Carpenter, S. R., & Vander Zanden, M. J. (2016). Invasive species triggers a massive loss of ecosystem services through a trophic cascade. *Proceedings of the National Academy of Sciences*, 113(15), 4081-4085.

- Wangensteen, O. S., Palacín, C., Guardiola, M., & Turon, X. (2018). DNA metabarcoding of littoral hard-bottom communities: high diversity and database gaps revealed by two molecular markers. *PeerJ*, 6, e4705.
- Weigand, H., Beermann, A. J., Čiampor, F., Costa, F. O., Csabai, Z., Duarte, S., ... & Strand,
 M. (2019). DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. *Science of the Total Environment*, 678, 499-524.
- WFD. (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. OJ L 327, 22.12.2000, pp 1- 51.
- Yan, J., Sui, J., Xu, Y., Li, X., Wang, H., & Zhang, B. (2020). Assessment of the benthic ecological status in adjacent areas of the Yangtze River Estuary, China, using AMBI, M-AMBI and BOPA biotic indices. *Marine Pollution Bulletin*, 153, 111020.
- Yu, S., Hong, B., Ma, J., Chen, Y., Xi, X., Gao, J., ... & Sun, Y. (2017). Surface sediment quality relative to port activities: A contaminant-spectrum assessment. *Science* of the Total Environment, 596, 342-350.
- Zacharias, I., Liakou, P., & Biliani, I. (2020). A Review of the Status of Surface European Waters Twenty Years after WFD Introduction. *Environmental Processes*, 1-17.

Supplementary Information

Supplementary Figure 1. Rarefaction plots of the metabarcoding results and the additional sampling points employed in the Blue gNIS index testing process. (a) The port of Gijon, (b) Asturian ports (Borrell et al., 2017), (c) the Cantabrian Sea (Miralles et al., 2019) and (d) Asturian estuaries (Borrell et al 2018).

Supplementary Figure 2. Sheppard plot showing the correlation of the similarity distances between original (target rank) and modified (obtained rank) data.

Species	Number of assigned sequences
Perforatus perforatus	583
Clibanarius erythropus	367
Paracentrotus lividus	1629
Magallana gigas	52
Patella depressa	506
Patella vulgata	7847
Gibbula umbilicalis	44
Mytilus galloprovincialis	0
Pollicipes pollicipes	0
Lepomis gibbosus	439
Micropterus salmoides	1653
Carassius auratus	4879
Leuciscus idus	3207
Pseudorasbora parva	1177
Gambusia holbrooki	6271
Platichthys flesus	12045
Oncorhynchus mykiss	5811
Ameiurus melas	2502
Silurus glanis	12173
Total assigned sequences	61185

Supplementary Table 1. List of species employed in the positive control and the number
of assigned sequences with 90% of minimum identity and E-value of 1e-50.SpeciesNumber of assigned sequences

gAMBI or Blue-gNIS value	Dominating Ecological Group	Benthic community health	Site Pollution Classification	Ecological status
0.0 <bi≤0.2< td=""><td>1</td><td>Normal</td><td>Unpolluted</td><td></td></bi≤0.2<>	1	Normal	Unpolluted	
0.2 <bi≤1.2< td=""><td>T</td><td>Impoverished</td><td>onponuteu</td><td>High status</td></bi≤1.2<>	T	Impoverished	onponuteu	High status
1.2 <bi≤3.3< td=""><td>1</td><td>Unbalanced</td><td>Slightly Polluted</td><td>Good status</td></bi≤3.3<>	1	Unbalanced	Slightly Polluted	Good status
3.3 <bl≤4.3< td=""><td></td><td>Transitional to pollution</td><td></td><td>Moderate</td></bl≤4.3<>		Transitional to pollution		Moderate
3.350124.3	4-5		Meanly Polluted	status
4.3 <bi≤5.0< td=""><td></td><td>Polluted</td><td></td><td>Poor status</td></bi≤5.0<>		Polluted		Poor status
5.0 <bi≤5.5< td=""><td>5</td><td>Transitional to heavy pollution</td><td>Heavily Polluted</td><td>POOLSIGIUS</td></bi≤5.5<>	5	Transitional to heavy pollution	Heavily Polluted	POOLSIGIUS
5.5 <bi≤6.0< td=""><td>5</td><td>Heavily polluted</td><td>Heavily Polluted</td><td>Bad status</td></bi≤6.0<>	5	Heavily polluted	Heavily Polluted	Bad status
Azoic (7.0)	Azoic	Azoic	Extremely Polluted	Dau Status

Supplementary Table 2. Summary of Biotic Index (BI) values and their equivalences. Modified from Borja et al. (2003a).

Supplementary Table 3. Localization of the additional Metabarcoding samples employed for Blue-gNIS testing and the scores obtained with different biotic indices estimated with presence/absence data (p/a) and quantitative data (q). Water Framework Directive (WFD) ecological status is shown in parenthesis: High (H), Good (G), Moderate (M), Poor (P) and Bad (B).

		C						Biotic ind	lex scores			
Area	Reference	Sample	Latitude	Longitude	gAMBI	gAMBI	Blue gNIS	Blue gNIS	Bentix	Bentix	ALEX	ALEX
		name		-	(p/a)	(q)	(p/a)	(q)	(p/a)	(q)	(p/a)	(q)
		A Coruña	43°36'77''N	8°39'69''W	1.219 (G)	0.845 (H)	1.950 (G)	2.321 (G)	5.500 (H)	5,720 (H)	0.375 (H)	0,743 (H)
		Vigo	42°23'15''N	8°73'76''W	1.200 (G)	1.499 (G)	2.000 (G)	1.550 (G)	6.000 (H)	6,000 (H)	0.316 (H)	0,050 (H)
Cantabrian	Miralles et	IEO	43°46'82''N	3°75'77''W	0.750 (H)	0.199 (H)	1.091 (H)	0,288 (H)	5.556 (H)	5,543 (H)	0.167 (H)	0,056 (H)
Sea	al. 2019	Santander	43°42'95''N	3°81'41''W	1.050 (H)	1.069 (H)	1.500 (G)	1.005 (H)	6.000 (H)	6,000 (H)	0.238 (H)	0,008 (H)
Sea	al. 2019	Pedreña	43°44'86''N	3°77'06''W	2.250 (G)	2.883 (G)	3.900 (M)	3.173 (G)	4.000 (G)	2,312 (P)	0.611 (H)	0,030 (H)
		Santurtzi	43°32'89''N	3°02'86''W	1.200 (G)	0.336 (H)	1.350 (G)	0.527 (H)	4.800 (H)	5,882 (H)	0.285 (H)	0,236 (H)
		Bayona	43°52'59''N	1°50'41''W	7.000 (B)	2.994 (G)	5.250 (P)	4.409 (P)	6.000 (H)	0,000 (B)	0.667 (H)	0,036 (H)
		Eo	43°53'98''N	7°03'63''W	1.800 (G)	2.672 (G)	1.800 (G)	2.672 (G)	5.000 (H)	4,000 (G)	0.000 (H)	0,000 (H)
		Luarca	43°54'66''N	6°53'23''W	1.500 (G)	1.500 (G)	1.500 (G)	1.500 (G)	0.000 (B)	0,000 (B)	0.000 (H)	0,000 (H)
		Cudillero	43°56'72''N	6°14'84''W	0.750 (H)	0.063 (H)	0.750 (H)	0.063 (H)	6.000 (H)	6,000 (H)	0.000 (H)	0,000 (H)
Ports of	Borrell et	Aviles	43°56'19''N	5°92'11''W	1.500 (G)	1.500 (G)	2.250 (G)	1.714 (G)	6.000 (H)	6,000 (H)	5.000 (B)	0,001 (H)
Asturias	al., 2017	Gijon	43°56'36''N	5°68'85''W	1.500 (G)	2.917 (G)	1.000 (H)	2.917 (G)	4.667 (H)	2,073 (P)	0.000 (H)	0,000 (H)
		Villaviciosa	43°52'56''N	5°38'93''W	0.000 (H)	1.200 (G)	0.000 (H)	1.200 (G)	6.000 (H)	6,000 (H)	0.000 (H)	0,000 (H)
		Ribadesella	43°46'35''N	5°06'28''W	1.200 (G)	1.500 (G)	0.750 (H)	1.500 (G)	5.000 (H)	5,984 (H)	0.000 (H)	0,000 (H)
		Llanes	43°42'03''N	4°75'32''W	2.667 (G)	3.520 (M)	3.000 (G)	3.704 (M)	3.500 (G)	2,694 (M)	1.000 (H)	0,013 (H)
		VC	43°51'81''N	5°39'95''W	1.333 (G)	1.582 (G)	2.700 (G)	2.700 (G)	5.111 (H)	5.428 (H)	0.636 (H)	0.197 (H)
Estuarias	Dorrall at	VI	43°51'03''N	5°41'41''W	1.250 (G)	1.203 (G)	2.357 (G)	2.013 (G)	5.333 (H)	5.435 (H)	0.706 (H)	0.379 (H)
Estuaries	Borrell et	EO	43°52'82''N	7°02'65''W	0.857 (H)	1.274 (G)	2.625 (G)	2.034 (G)	5.500 (H)	5.642 (H)	0.560 (H)	0.398 (H)
of Asturias	al., 2018	EP	43°53'73''N	7°02'75''W	0.857 (H)	0.804 (H)	2.625 (G)	2.294 (G)	5.429 (H)	5.792 (H)	0.850 (H)	0.483 (H)
		EU	43°53'98''N	7°03'63''W	3.833 (M)	1.551 (G)	4.550 (P)	1.927 (G)	5.556 (H)	5.430 (H)	0.810 (H)	0.350 (H)

Supplementary Table 4. Environmental DNA concentrations obtained from water and sediment samplings inside the Port of Gijon, Bay of Biscay and used for posterior Metabarcoding analyses.

Station	Point	Replicate	Sampling Depth (m)	Original DNA concentration (ng µL-1)	Libraries DNA concentration (ng µL- 1)
		Water	Surface	14.73	74.23
	1	Water	Surface	13.68	70.93
	1	Sediment	6	15.00	3.15
Station		Sediment	6	12.50	40.03
А		Water	Surface	9.25	72.29
	2	Water	Surface	11.61	67.87
	Z	Sediment	16.2	12.62	15.73
		Sediment	16.2	9.47	7.37
		Water	Surface	2.46	58.20
	1	Water	Surface	14.89	69.56
	1		8	13.01	0.11
Station		Sediment	8	10.97	1.05
В		Water	Surface	10.17	73.56
	2	Water	Surface	13.58	70.90
	Z	Sediment	14	6.62	36.51
		Sediment	14	10.32	32.43
		Water	Surface	14.30	73.71
	1	Water	Surface	8.92	71.86
	1	Sediment	19	6.49	13.55
Station		Sediment	19	5.68	16.55
С		Water	Surface	15.07	73.91
	2	Water	Surface	10.37	71.38
	2	Sediment	20	4.17	15.45
		Sediment	20	2.09	9.71
		Water	Surface	1.61	70.87
	1	Water	Surface	2.13	71.37
	1	Sediment	25	14.84	74.15
Station		Sediment	25	11.21	52.47
D		Water	Surface	8.00	73.86
	2	Water	Surface	8.36	74.31
	2	Sediment	27.7	11.70	64.13
		Sediment	27.7	10.99	45.50
		Water	Surface	9.71	76.82
	1	Water	Surface	12.07	75.82
	1	Sediment	3.3	9.98	0.21
Station		Sediment	3.3	10.86	0.01
E		Water	Surface	7.73	79.79
	2	Water	Surface	5.14	80.55
	-	Sediment	5.3	7.98	62.44
		Sediment	5.3	12.33	59.57

Supplementary Table 5. Number of reads obtained for each taxon detected in the five stations of the port of Gijon. Species employed for Blue gNIS calculations are shown in bold. Species classified as NIS in the study region are shown with an asterisk and IAS are marked with double asterisk. The ecologic group assigned to each of the species employed for Blue-gNIS estimation is shown.

Class	species	Ecologic group	station A	station B	station C	station D	station E
Clitellata	Tubificoides diazi	5	0	0	0	0	1026
Polychaeta	Capitella capitata	5	0	0	332	139	0
Polychaeta	Euclymene sp.	-	107	0	0	0	0
Polychaeta	Maldane glebifex	1	0	0	464	135	0
Polychaeta	Polychaeta	-	223	0	0	0	0
Polychaeta	Paradoneis ilvana	3	7672	13853	3665	5811	0
Polychaeta	Gyptis propinqua	2	0	0	478	0	0
Polychaeta	Syllidia armata	2	860	500	622	0	164
Polychaeta	Nephtys sp.	2	32	0	0	723	0
Polychaeta	Eumida ockelmanni	2	0	14422	0	0	0
Polychaeta	Eumida sanguinea	2	0	0	512	0	0
Polychaeta	Pterocirrus macroceros	1	0	0	124	0	0
Polychaeta	Spirobranchus triqueter	2	0	14	0	0	0
Polychaeta	Chaetopterus sp.	1	248	2508	410	58	39
Polychaeta	Spiochaetopterus costarum	1	0	1129	0	0	0
Polychaeta	Magelona minuta	1	0	50	0	0	0
Polychaeta	Dipolydora capensis*	4	89	181	590	0	0
Polychaeta	Spionidae	3	0	111	0	0	0
Polychaeta	Sternaspis scutata	3	2	0	8	0	32
Branchiopoda	Evadne spinifera	3	0	34	23	0	0
Branchiopoda	Evadne sp.	3	0	1394	0	41	0
Hexanauplia	Acartia clausii	-	1842	5638	2879	2081	124
Hexanauplia	Acartia margalefi	-	0	121	0	104	5952
Hexanauplia	Paracartia grani	-	0	0	0	0	313
Hexanauplia	Calanus helgolandicus	-	214	455	0	0	0
Hexanauplia	Centropages typicus	-	59	718	947	1669	0
Hexanauplia	Clausocalanus jobei	-	751	464	0	49	0
Hexanauplia	Pseudocalanus elongatus	-	0	666	0	0	0
Hexanauplia	Paracalanus parvus	-	431	2855	2529	1418	42
Hexanauplia	Paracalanus quasimodo*	4	4967	10944	5745	12132	0
Hexanauplia	Paracalanus sp.	-	0	45	1479	0	0
Hexanauplia	Euterpina acutifrons	-	0	75	0	0	0
Hexanauplia	Harpacticus flexus	-	0	0	0	0	329
Hexanauplia	Ditrichocorycaeus anglicus	-	0	0	0	255	45
Hexanauplia	Oncaea waldemari*	4	47	0	0	73	27
Hexanauplia	Perforatus perforatus	-	1572	130	0	817	607
Hexanauplia	Chthamalus stellatus	1	102	156	496	3528	0
Hexanauplia	Verruca stroemia	1	0	295	2493	0	0
Malacostraca	Phtisica marina	1	0	0	0	0	83

Malacostraca	Monocorophium acherusicum	3	60	0	0	0	0
Malacostraca	Pilumnus hirtellus	1	63	0	0	0	0
Malacostraca	Pisidia longicornis	1	0	0	8035	0	0
Malacostraca	Porcellana platycheles	1	23	0	0	0	0
Bacillariophyceae	Nitzschia sp.	-	8	0	0	0	8
Bacillariophyceae	Psammodictyon panduriformis	-	0	40	15	0	0
Bacillariophyceae	Pseudo-nitzschia sp.	-	0	3	5	0	0
Bacillariophyceae	Haslea sp.	-	0	162	0	0	0
Bacillariophyceae	Pleurosigma strigosum	-	0	0	17	0	0
Bacillariophyceae	Fallacia sp.	-	132	74	0	0	1012
Bacillariophyceae	Chaetoceros sp.	-	81	60	149	0	18
Bacillariophyceae	Skeletonema marinoi	-	31	5	21	0	17
Bacillariophyceae	Bacillariophyta	-	7598	669	1393	149	0
Gymnolaemata	Bugula neritina**	5	0	0	0	141	0
Gymnolaemata	Electra pilosa	2	0	222	0	0	0
Gymnolaemata	Amathia sp.	2	300	0	0	0	0
Actinopterygii	Trachurus mediterraneus	-	0	0	5	0	0
Actinopterygii	Umbrina canariensis	-	0	0	0	3	0
Actinopterygii	Thunnus alalunga	-	0	51	0	0	0
Actinopterygii	Dentex dentex	-	5	0	0	0	0
Anthozoa	Anthopleura elegantissima	2	0	0	47	0	0
Anthozoa	Metridium senile	1	116	334	3882	0	2146
Anthozoa	Epizoanthus illoricatus	1	0	0	1894	0	0
Anthozoa	Nanozoanthus harenaceus	1	52	246	0	0	0
Hydrozoa	Bougainvillia muscus	1	0	74	0	0	0
Hydrozoa	Lizzia blondina	1	0	0	0	268	0
Hydrozoa	Clytia gregaria*	4	0	0	18	0	0
Hydrozoa	Clytia sp.	1	0	15	54	0	648
Hydrozoa	Obelia geniculata	2	0	0	673	843	0
Hydrozoa	Obelia sp.	2	4	2022	36	0	531
Hydrozoa	Campanulariidae	-	0	0	0	439	0
Hydrozoa	Eutima gracilis	1	0	0	0	8	0
Hydrozoa	Leptothecata	1	0	0	47	0	0
Hydrozoa	Hydrozoa	1	0	0	43	0	0
-	Cnidaria	1	250	4658	348	0	0
Asteroidea	Marthasterias glacialis	1	234	193	0	0	0
Echinoidea	Brissopsis lyrifera	1	0	0	702	0	0
Echinoidea	Echinocardium cordatum	1	474	0	277	0	277
Ophiuroidea	Amphiura filiformis	2	0	0	416	0	0
Ophiuroidea	Ophiothrix fragilis	1	1364	726	93	0	0
Bivalvia	Corbula gibba	4	0	20	0	0	0
Bivalvia	Hiatella sp.	1	0	358	197	122	0
Bivalvia	Mytilus sp.	3	617	1981	2	0	0
Bivalvia	Nucula nitidosa	1	0	18	11	9548	0

Bivalvia	Ostrea edulis	1	1138	0	132	0	4
Bivalvia	Rocellaria dubia	1	228	116	0	24	0
Bivalvia	Spisula subtruncata	1	0	55	0	0	48
Gastropoda	Haminoea orteai	2	0	403	0	0	0
Gastropoda	Patella vulgata	1	741	0	51	0	0
Gastropoda	Mangelia attenuata	2	0	0	0	0	7
Gastropoda	Tritia incrassata	2	0	63	0	0	0
Gastropoda	Nassarius sp.	2	261	105	0	0	0
Gastropoda	Tritia reticulata	2	38	0	0	0	666
Gastropoda	Aeolidia papillosa	1	0	0	1202	0	0
Gastropoda	Doto sp.	1	0	1483	0	0	0
Gastropoda	Favorinus branchialis	-	0	0	0	958	0
Polyplacophora	Acanthochitona crinita	-	0	5	33	0	0
Dinophyceae	Azadinium caudatum	-	0	134	0	0	0
Dinophyceae	Protoceratium reticulatum	-	550	650	190	108	130
Dinophyceae	Symbiodinium sp.	-	122	885	484	132	0
Florideophyceae	Acrochaetium moniliforme	-	0	48	0	0	82
Florideophyceae	Acrochaetium secundatum	-	0	0	0	0	9
Florideophyceae	Rhodochorton	-	0	0	13	0	0
Florideophyceae	Asparagopsis armata**	5	48	116	193	0	681
Florideophyceae	Bonnemaisonia hamifera**	5	1743	236	0	0	57
Florideophyceae	Ceramium ciliatum	-	0	2142	0	0	10
Florideophyceae	Pterothamnion	-	0	0	7	0	0
Florideophyceae	Dasysiphonia japonica**	5	0	74	0	0	12
Florideophyceae	Delesseriaceae	-	93	0	76	0	0
Florideophyceae	Polysiphonia paniculata	-	131	489	0	0	0
Florideophyceae	Rhodomelaceae	-	0	101	0	0	0
Florideophyceae	Corallina caespitosa	-	37	88	81	0	0
Florideophyceae	Gelidium corneum	-	0	0	6	0	0
Florideophyceae	Gelidium microdonticum*	4	0	46	122	0	0
Florideophyceae	Caulacanthus ustulatus	-	264	9126	1998	0	0
Florideophyceae	Chondracanthus acicularis	-	0	55	246	0	0
Florideophyceae	Peyssonnelia atropurpurea	-	0	0	325	0	0
Florideophyceae	Grateloupia imbricata*	4	0	0	0	8	0
Florideophyceae	Mesophyllum expansum*	3	660	16	62	0	0
Florideophyceae	Phymatolithon calcareum	-	0	133	0	0	0
Florideophyceae	Schizymenia dubyi	-	189	0	0	0	0
Florideophyceae	Plocamium lyngbyanum	-	160	0	0	0	14
Florideophyceae	Neogastroclonium subarticulatum*	4	45	142	171	0	0
Florideophyceae	Botryocladia wrightii**	5	107	0	0	0	0
Florideophyceae	Rhodymenia pseudopalmata	-	0	0	22	0	0
Phaeophyceae	Feldmannia globifera	-	0	45	0	0	0
Phaeophyceae	Hincksia hincksiae	-	0	0	0	0	2
Phaeophyceae	Chordariaceae	-	0	0	0	0	82

Phaeophyceae	Planosiphon zosterifolius	-	0	78	209	0	0
Phaeophyceae	Scytosiphon lomentaria	-	8361	0	0	0	0
Chromadorea	Neochromadora poecilosomoides	3	0	0	43	0	0
Chromadorea	Terschellingia longicaudata	3	13	0	0	0	82
Enoplea	Trefusia sp.	3	0	46	0	0	0
Hoplonemertea	Tetrastemma candidum	3	0	0	10	0	0
Piliophora	Tenuilineus albocinctus	3	0	0	691	153	0
Piliophora	Hubrechtella dubia	3	0	695	96	633	0
Demospongiae	Cliona sp.	1	117	165	0	0	0
Demospongiae	Halisarca sp.	1	511	0	0	0	0
Demospongiae	Hymeniacidon gracilis*	3	33	0	0	0	0
Demospongiae	Suberites sp.	2	37	23	261	107	0
NA	Philactinoposthia sp.	-	8	213	23	0	0

	Station A water	Station A sediment	Station B water	Station B sediment	Station C water	Station C sediment	Station D water	Station D sediment	Station E water	Station E sediment
STATION A water	-	0.0007	0.1722	0.0001	0.2337	0.0001	0.0798	0.0001	0.0001	0.0081
STATION A sediment	-	-	0.0012	0.8559	0.0052	0.4499	0.0214	0.5722	0.0284	0.0277
STATION B water	-	-	-	0.0001	0.4562	0.0001	0.5656	0.0001	0.0001	0.0283
STATION B sediment	-	-	-	-	0.0001	0.4026	0.0002	0.3493	0.0018	0.0272
STATION C water	-	-	-	-	-	0.0001	0.2255	0.0001	0.0003	0.0001
STATION C sediment	-	-	-	-	-	-	0.0001	0.3164	0.0001	0.0289
STATION D water	-	-	-	-	-	-	-	0.0001	0.0277	0.0001
STATION D sediment	-	-	-	-	-	-	-	-	0.0002	0.0287
STATION E water	-	-	-	-	-	-	-	-	-	0.0002
STATION E sediment	-	-	-	-	-	-	-	-	-	-

Supplementary table 6. Results of the PERMANOVA analysis for the samples taken in different stations and substrates in the port of Gijon. Statistically significant values after applying Bonferroni correction are indicated in bold.

Supplementary Table 7. Non-indigenous (NIS) and invasive species (IAS) detected in the port of Gijon in this study and previous/posterior reports indicating the presence of these species in the area.

Species	Status	Previous reports	Type of survey	Collected from	Localization
Botryocladia wrightii	IAS	Bárbara et al., 2008.	Morphological	Rocky bottom	Cantabrian Sea
Asparagopsis armata	IAS	Montes et al., 2016	Morphological and Molecular	Jetties	Port of Gijon
Bonnemaisonia hamifera	IAS	Bárbara et al., 2019	Morphological	Seagrass meadow	Cantabrian Sea
Dasysiphonia japonica	IAS	Bárbara et al., 2019	Morphological	Seagrass meadow	Cantabrian Sea
Bugula neritina	IAS	Miralles et al., 2020	Morphological	Rocky bottom	Port of Gijon
Paracalanus quasimodo	NIS	-	-	-	-
Oncaea waldemari	NIS	-	-	-	-
Clytia gregaria	NIS	-	-	-	-
Neogastroclonium subarticulatum	NIS	-	-	-	-
Hymeniacidon gracilis	NIS	-	-	-	-
Grateloupia imbricata	NIS	Montes et al., 2016	Morphological and Molecular	Jetties	Port of Gijon
Mesophyllum expansum	NIS	Bárbara et al., 2019	Morphological	Rocky bottom	Cantabrian Sea
Dipolydora capensis	NIS	Miralles et al., 2020	Morphological	Rocky bottom	Port of Gijon
Gelidium microdonticum	NIS	Montes et al., 2020	Morphological and Molecular	Jetties	Port of Gijon