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Abstract: We argue that two distinct points on the potential energy 

curve (PEC) of a pairwise interaction, the zero-energy crossing point 

and the point where the stretching force constant vanishes, allow to 

anticipate the range of possible distances one can expect between 

two atoms in diatomic, molecular moieties and crystalline systems. 

We show that these bond stability boundaries are unambiguously 

defined and correlate with topological descriptors of electron density-

based scalar fields, and we put forward a practical method to calculate 

them easily using generic PECs. Chemical databases and quantum-

mechanical calculations are used to analyze a full set of diatomic 

bonds of atoms from the s-p main block. Emphasis is placed on the 

effect of substituents in C-C covalent bonds, concluding that distances 

shorter than 1.14 Å or longer than 2.0 Å are unlikely to be achieved, 

in agreement with ultra-high-pressure data and transition state 

distances, respectively. Presumed exceptions, often due to changes 

in the reference state or ill-defined dissociation energies (e.g. O2
2+), 

are used to place our model in the correct framework and to formulate 

a conjecture for chained-interactions, which offers a first explanation 

for the multimodal histogram of O-H distances reported for hundreds 

of chemical systems.  

Introduction 

Bond distances are recognized as one of the main parameters to 

describe chemical interactions. Their relationship with bond 

dissociation energies, bond orders or bond strengths reflects the 

well-known correlation between atomic level configurations and 

macroscopic observable properties [1,2]. Surprisingly, while 

equilibrium distances have been comprehensively studied, 

characterized, and tabulated, bond breaking (or formation) 

distances have been marginally explored, even though finding a 

meaningful relationship between bond properties and bond-

breaking distances could provide valuable insights for designing 

new synthetic routes or improving certain catalytic processes. But 

characterization of bond breaking distances and its relationship 

with equilibrium parameters is a challenging task, since 

instabilities generally occur in short periods of time, making their 

experimental detection extremely difficult [3-5]. In addition, from the 

point of view of theoretical chemistry, bond breaking (or formation) 

points require an accurate description of multireference states [6,7] 

which sometimes are not easily accessible. Although approaches 

based on the topological analysis of the electron density [8] and 

tailored mechanochemical experiments [9] have avoided these 

limitations and have quantified the rupture distances of several 

bonds in particular molecules, the question At which interatomic 

distance a chemical bond disappears? is still controversial [10,11], 

despite of being crucial to understand and define the extent of 

chemical interactions and reactivity [12-14]. 

Thus, the definition of the limits of stability of a bond requires 

finding a general criterion that relates an energetically unstable 

state with some genuine structural parameter at the molecular 

level. In this regard, all the energetic states characterizing a 

certain chemical bond are intrinsically linked to its potential energy 

curve (PEC), which should reflect the stability constrains. The 

open question is whether the critical distances associated with the 

occurrence of an energetically unstable state can be 

unambiguously defined and accurately determined on the basis 

of the physical and chemical information contained in the PEC. 

Here, we arrive at a practical route to calculate these bond critical 

distances. The rationale behind our model is the existence of a 

formally generic analytical function -sometimes referred to as 

universal[15-17] -for describing the PEC of a pairwise interaction 

reference molecule (either in its neutral or charged state). The 

remarkable simplicity of our model stems from the fact that only 

energetic and mechanical parameters (dissociation energy and 

force constant) of a certain chemical bond at its equilibrium 

configuration need to be known, as we demonstrate through a 

critical examination of more than 80 diatomic and polyatomic 

molecules. Examples are worked out to demonstrate convincingly 

(i) the range of distances in which stable single C-C and O-O 

bonds can exist -irrespective of the charges and substituents 

involved or the external stimuli applied- and (ii) the multimodal 

distribution found in the O-H distance histogram reflecting 

changes in the nature of the covalent O-H bond caused by the 
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occurrence of hydrogen bonding or van der Waals interactions 

with the surrounding atoms. 

Results and Discussion 

Let us consider a diatomic molecule, the paradigmatic example of 

a bond PEC. In this case, the bond energy depends only on the 

interatomic distance. At equilibrium, the bond has a potential 

energy minimum and is in a stable configuration defined by its 

equilibrium distance (re) and its dissociation energy (De). When 

the bond is compressed, the energy steeply increases up to the 

zero-energy crossing point, where it changes from negative to 

positive (see Figure 1). In as much as stable interactions must 

have a negative potential energy, this point can be considered as 

the compression stability limit of the bond. In analogy with well-

known hard sphere thermodynamic potentials, we will name from 

now on this zero-energy crossing distance, the hard sphere 

distance (rhs). It can be interpreted as the closest interatomic 

distance at which the two atoms of a bond can approach. On the 

other side, when the bond distance is increased, the potential 

energy goes to zero asymptotically up to the infinite internuclear 

distance, where it reaches this value. This point is usually 

considered as the breaking condition of the bond because no 

interaction between the atoms exits. Nonetheless, this is not an 

unstable point in the PEC, but a stable configuration between two 

non-interacting atoms. Indeed, bond ruptures occur at finite 

interatomic distances. Hereof, the stretching bond instability must 

occur somewhere in between the equilibrium point and the point 

of infinitely separated atoms. Its determination requires a 

separate discussion.  

To be more general, suppose that two bonded atoms of a larger 

chemical system experience a tensile force along its internuclear 

distance by means, for instance, of an AFM tip, electronegative 

substituents or an attractive chemical interaction. We assume that 

these stimuli exert a negligible effect on the chemical nature of 

the diatomic bond, as we move from the equilibrium position in 

the potential energy curve up to a distance r > re , always fulfilling 

the condition of a positive definite energy-hessian. In our pairwise 

model, the latter condition implies that the second derivative of 

the energy with respect to the distance, the stretching force 

constant k(r), must be positive (see Figure 1). k(r) decreases with 

r up to the inflexion/turning point of the PEC, where its value 

becomes zero. This distance represents the limit where the 

attractive interactions cannot balance the external tensile effects 

and, consequently, the breaking process of the bond begins. The 

condition of zero stretching force constant must be understood as 

the mechanical stability limit between the stable and unstable 

stretching regimes. In resemblance with the thermodynamic 

realm, where the mechanical stability limit defined by the condition 

of infinity compressibility is known as the spinodal locus[18], we will 

refer to this diatomic rupture energy and distance as the spinodal 

energy, Esp, and the spinodal distance, rsp, respectively. 

It is worth to mention that the notion of bond rupture through the 

condition of zero second derivative has been highlighted in the 

literature in different contexts such as in reaction force analysis 
[19-21], in the study of compliance and adiabatic force constants 
[11,22] or in the determination of the maximum force produced in 

mechanochemical studies[23,24]. 

 

Figure 1. Potential energy curve of a generic A-B diatomic bond. Hard sphere 

(rhs) and spinodal (rsp) points are represented by red and green dots, 

respectively, whereas the equilibrium distance (re) is represented with a blue 

point. The stability region of the bond is displayed by the blue shaded area. 

The performance of the above defined hard sphere and spinodal 

limits in seventy diatomic molecules was analyzed using their 

potential energy curves determined from spectroscopic 

parameters according to the Rydberg–Klein–Rees (RKR) 

procedure [25-29]. These data include single, multiple, polar 

covalent and ionic bonds, as well as different ground state 

multiplicities. All the computed data along with the parameters 

used in the RKR potentials are collected in the supporting 

information (SI) file (see Table S1). In spite of the broad range of 

critical parameters displayed by our set of molecules in the variety 

of bond types included in our study, it is striking to see that the 

calculated Esp, rsp, and rhs limits show quite uniform values when 

normalized with the corresponding equilibrium parameters. 

Energy and distance values and uncertainties are, respectively, 

Esp = (-0.73 ± 0.03)De, rsp = (1.27 ± 0.07)re, and rhs = (0.73 ± 0.07)re. 

Similar results are obtained when a separated examination of 

diatomics involving noble gas atoms is carried out (see Figure S1 

in the SI file). 

The fact that our normalized boundary parameters (Esp/De, rsp/re, 

and rhs/re) present low fluctuations has not to be associated with 

any merit of our analysis, but with a natural consequence of the 

general shape of pairwise interaction curves. Indeed, the claim of 

a pairwise universal binding energy relationship (UBER) was 

previously disclosed in the seminal papers of Rose and coworkers 
[15-17], where they demonstrate that a Rydberg type PEC describes 

pairwise binding properties in molecules, covalent and ionic 

crystals, metals, and chemisorbed species. Specifically, the 

proposed UBER reads: 

 

𝐸/𝐷𝑒 = −(1 + 𝑎∗)𝑒−𝑎∗
 (1) 

where 𝑎∗ is a scaled distance defined in terms of the dissociation 

energy, 𝐷e, and the equilibrium stretching force constant 𝑘e: 

 

𝑎∗ =
𝑟 − 𝑟𝑒

(𝐷𝑒/𝑘𝑒)1/2
 (2) 

 

In this analytical potential, the hard sphere and spinodal 

conditions are evaluated through the particularly simple 

conditions 𝑎∗ = −1 and 𝑎∗ = +1, respectively, and are easily  
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Figure 2. Difference between spinodal (rsp) and the hard−sphere distances (rhs) 

against the (De/ke)1/2 scaling parameter of the UBER potential for several 

diatomic molecules: Al2, AlCl, AlF, AlH, AlO, AlS, B2, BCl, BeCl, BeF, BeH, BeO, 

BeS, BF, BH, BN, BO, BS, C2, CCl, CF, CH, Cl2, ClF, ClH, ClLi, ClO, ClSi, CN, 

CO, CP, CS, F2, FH, FLi, FMg, FN, FNa, FO, P2, FS, FSi, H2, HLi, HMg, HN, 

HNa, HO, HP, HS, LiNa, Mg2, MgO, MgS, Na2, N2, NO, NP, NS, NSi, O2, OP, 

OS, OSi, P2, Si2, S2 and SSi The straight line corresponds to the equation 

(rsp − rhs) = (2.06 ± 0.03) (De/ke)1/2. Colored symbols highlight diatomic 

molecules with rupture distances closer to their equilibrium values and are 

displayed in the inset. 

derived just requiring the energy and the second derivative of the 

energy with respect to the distance, to be zero. Accordingly, Esp 

and the difference and the sum between rhs and rsp can be 

expressed as: 

 

𝐸𝑠𝑝 = −𝐷𝑒2𝑒−1 = −0.736𝐷𝑒 (3a) 

𝑟𝑠𝑝 − 𝑟ℎ𝑠 = 2 (
𝐷𝑒

𝑘𝑒
)

1/2

 (3b) 

𝑟𝑠𝑝 + 𝑟ℎ𝑠  =  2𝑟𝑒 (3c) 

 

Not fortuitously, the UBER potential predicts a multiplicative factor 

of −0.736 for the ratio between Esp and De, within our average 

−0.73  0.03 value range obtained from the spectroscopic data. It 

is not the first time that the constancy of the Esp/De ratio is 

highlighted as a noteworthy feature of the PEC. Using the term 

activation energy of the bond instead of our spinodal energy, 

Politzer and Murray et al. arrived at a similar result in their study 

of the reaction force along the diatomic bond rupture[30,31]. 

A word of caution is needed here to avoid misunderstandings 

concerning the validity of the above relationships. First, the 

interatomic potential is accurately described not only in terms of 

the UBER curve but also with other standard analytical equations 

as, for example, the Morse or the Lenard-Jones potentials (see SI 

file). And second, this description assumes that the dissociation 

path does not involve crossing states nor is meaningfully affected 

by electron reorganization effects. In the set of neutral sp-type 

diatomic molecules selected in our analysis, the dissociation 

energy corresponds closely to the intrinsic dissociation energy 

defined by Cremer et al.[32]. This means that most of our 

molecules keep the nature of the interaction along the dissociation 

path as they have at equilibrium and, thus, the fulfillment of Eq. 3 

is expected. However, in those cases where the dissociation state 

leads to an apparent or effective dissociation energy, which 

necessarily differs from the intrinsic dissociation energy, as in 

some transition metal diatomic molecules or in highly charged 

species (like the O2
2+ cation that we discuss later), the evaluation 

of bond length limits could not be so straightforward. 

Regarding rsp and rhs distances, our UBER analysis leads to an 

expression (Eq. 3b) that only depends on equilibrium parameters 

of the bond (ke, De, and implicitly re). This is graphically verified in 

the plot of Figure 2. An illustrative linear correlation between our 

calculated bond limits and the empirical (De/ke)
½ values is 

obtained with a slope of (2.06 ± 0.03), very close to the formal 

value of 2 in Eq 3b. Under this view, bond ruptures reveal to occur 

at particular distances that depend on bond equilibrium features. 

Indeed, ke, and De have been usually considered chemical 

descriptors of the bond strength [33]. Both parameters are widely 

used across the literature to explain bond length-bond strength 

correlations[34], although which one has to be used is also a matter 

of debate[2]. However, as emphasized by Kaupp et al.[2], an 

operative definition of bond strength would recall in its capacity to 

predict how easy a chemical process progresses as a result of a 

change in bond lengths. In this regard, our results evidence that 

bond ruptures depend on the combination of both parameters. 

The dissociation energy measures the cost to separate the atoms, 

whereas the equilibrium force constant, the curvature of the PEC, 

represents the rate in the increasing energy as the bond is 

distorted. 

Accordingly, those rigid bonds with high stretching force 

constants that have low dissociation energies should display 

rupture distances close to their equilibrium values. From this point 

of view, a connection between the Hammond postulate[35] and the 

spinodal stability limit is provided since the particular bonds 

identified in this postulate are detected in our model. We realize 

that in our set of diatomic molecules the smaller differences 

between the spinodal and the hard sphere distances, or 

equivalently the smaller (De/ke)
1/2 ratios, are found in those 

molecules with multiple and halogen bonds such as F2, NO, FO, 

N2, O2, CN, and C2 (highlighted in Figure 2). In as much as these 

results are independent of the diatomic potential used (other 

potential energy functions can be easily checked to provide an 

equivalent plot), we can use the bond stability limits as a reference 

to define bond ruptures along chemical processes. 

Our next step concerns whether a relationship between the 

energetic-mechanical instability and the electronic structure 

associated with a bond rupture can be provided. To do that, we 

examine the topology of two popular scalar fields, the electron 

density (ρ) [36,37] and the electron localization function (ELF) [38,39], 

frequently used to characterize bond breaking processes, 

chemical reactions[8,40,41], and phase transitions in solid state[42,43].  

During the rupture of a covalent bond, shared electrons migrate 

from the internuclear axis to the respective atoms giving as a 

result two interacting but not bonded radicals[8]. In the same way, 

when the molecule is compressed up to the limit where the 

electronic repulsion dominates, the bonding electrons suffer a 

strong confinement in a really tiny space, the cores began to repel 

with each other and, formally, the bond disappear forming an 

inner valence shells interaction. The activation of the core 

electrons at the hard sphere point would have a deep impact in 

the ionization potential or in the electronegativity of the atoms, as 

previously noticed in the high-pressure field [44-47]. 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.24 0.28
0.44

0.48

0.52

0.56

0.60

C
2

CO

N
2

O
2

FO
NO

r s
p
- 

r h
s
 (
Å

)

(D
e
/k

e
)

1/2
 (Å)

F
2

r s
p
- 

r h
s
 (
Å

)

(D
e
/k

e
)
1/2

 (Å)

10.1002/anie.202102967

A
cc

ep
te

d 
M

an
us

cr
ip

t

Angewandte Chemie International Edition

This article is protected by copyright. All rights reserved.



RESEARCH ARTICLE    

4 

 

It is known that the electron density along the internuclear region 

of homonuclear diatomics usually experiences a transition from a 

first-order saddle point (bonding point) to a non-nuclear maxima 

(NNM) under compression [48]. In our calculations in several 

homonuclear bonds, this signature change of ρ at the bond critical 

point precisely appears at distances never higher than ± 0.15 Å of 

our predicted rhs values (see Table S2 and Figure S2).  

The confirmation of this mechanical-electronic correlation cannot 

be extended to heteronuclear diatomic bonds since, as discussed 

by Pendás et al.[48] and others[49], the occurrence of NNMs in 

these cases is less likely. However, the expected core effects at 

the rhs limit should be produced in a similar way as in homonuclear 

bonds. Thanks to the ELF, a quantitative account of this situation 

can be also disclosed. Taking as an example the C-O bond in 

ethanol, we illustrate in Figure 3 how the ELF C-O bond attractor 

suffers a cusp catastrophe in the compressed state transforming 

into a saddle point and two new attractors. Furthermore, each of 

these new ELF basins yields 0.8 e-. These topological changes in 

the index of the ELF bond attractor and concomitant increasing of 

the e- populations when the C-O bond is squeezed from its 1.45 

Å equilibrium distance to 0.8 Å along the bond axis, are also 

representative of what happens in the heteronuclear bonds of our 

study. In spite of the reduced number of selected bonds and that 

no more exhaustive analysis were carried out with alternative 

descriptors (HOMO-LUMO gaps[50], natural bond orbital electron 

populations[51], the effective number of unpaired electrons[52], etc.), 

we dare to conclude that the emergence of both, NNMs and the 

ELF topological singularities, are electronic evidence of the 

mechanical-energetic hard sphere limit.  

Figure 3. ELF isosurfaces in beige for CH3OH (ELF isovalue 0.78) along with 

bond attractors represented as small purple spheres identified by arrows at C-

O distances of (a) 1.45 Å and (b) 0.95 Å. White, grey, and red balls stand for H, 

C, and O, respectively. 

The connection between bond stability limits and special electron 

density topological features becomes more difficult to carry out in 

the analysis of the rupture distances. We are aware that static 

correlation effects are important when the shared electrons of a 

bond have to be distributed into the two dissociation fragments. 

The monodeterminantal description is not enough and an 

electronic complete active space (CAS) involving orbitals of the 

two fragments should be at least incorporated in the 

calculations[53-55]. Such calculations are out of the scope of this 

work, requiring a separate analysis elsewhere. Nevertheless, the 

use of ELF topological signatures points toward a (likely 

fortuitous) correlation between mechanical and electronic 

descriptors at the distance where the rupture is predicted in sigma 

covalent bonds. Results in molecules computed at a CCSD level 

are shown in Table S2 and Figures S2 and S3 of the SI file. The 

difference between the distance rBET, where the ELF bond 

disynaptic basin disappears (a cusp or fold catastrophe according 

to the bonding evolutionary theory, BET) [56-58], and rsp is usually. 

Scheme 1. Molecules and C-C bonds (marked in green) studied in this work. 

Table 1. Mechanical (rhs, rsp) and electronic rupture (rNNM, rBET) distances for the 

C-C bonds of the molecules summarized in Scheme.1. All units are in Å. rNNM 

stands for non-nuclear maxima distance and rBET stands for the distance where 

the ELF-BET catastrophe occur. 

C-C Bond rhs rNNM rsp (Å) rBET (Å) 

Ethane 1.08 1.10 1.99 2.00 

Cyclohexene 1.15 1.10 1.96 1.95 

4−acetylcyclohexene 1.09 1.10 1.98 2.00 

(F3C)2 1.13 1.20 1.99 2.00 

Cyclobutane 1.11 1.10 1.99 1.95 

(TercC)2 1.16 1.10 2.03 2.05 

(Cl3C)2 1.13 1.15 2.03 2.10 

(Et2MeC)2 1.17 1.15 2.05 2.05 

(Et3C)2 1.15 1.15 2.08 2.10 

diamantane−diamantane 1.22 1.20 2.13 2.15 

 

smaller than 0.05 Å. Overall, we find that the spinodal distances 

are in very good agreement with the BET cusp catastrophe ones. 

According to these results, covalent interactions could not be 

extended far beyond their unique bond spinodal distances 

because they are both mechanically an electronically unstable.  

We now seek the application of our scheme to the determination 

of the limit distances at which  C-C covalent bonds in stable 

compounds can be found. On this basis, we have calculated using 

the B3LYP-DFT approach (see details and Figure S4 in the SI file) 

the pure stretching potential energy curves for selected C-C 

bonds in a series of organic molecules (see scheme 1) and we 

have determined the distances at which mechanical and 

electronic instability occur (see Table 1). While it is true that the 

equilibrium bond electronic properties are modified by the 

substituents, our electron density and ELF analysis reveal that the 

 C-C bond rupture mechanism proceed in a similar fashion. 

Despite of the presence of huge inductive and negative 

hyperconjugation effects, highly strained bonds or dispersive 

interactions, the limiting distances, rhs and rsp, show small 

deviations with average values of 1.14 ± 0.04 Å and 2.02 ± 0.05 
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Å, respectively. If we focus on the C-C  covalent bond of the 

reference ethane molecule similar values are obtained. Notice 

also that the average NNM and BET distance (1.13 ± 0.04 Å and 

2.03 ± 0.06 Å, respectively) make all the data to be consistent with 

each other.  

As regards the upper limit, several sources point to a value never 

higher than 2.2 Å. See for example the C-C distance histogram of 

Isea [59] collecting all the C-C bonds contained in the Cambridge 

Structural Database [60]. It is also remarkable that, in the study of 

the Diamino-o-carborane compounds which contain the longest 

C-C bond synthesized to date [61], the authors claimed the 

existence of a bond path between the longest C-C bonds that 

disappeared also at 2 Å. Likewise molecular dynamics, time 

resolved ultrafast spectroscopy, and electron density studies 

have shown that in Diels-Alder reactions both symmetrical and 

unsymmetrical transition states involve constant C-C bond 

distances distributions between 1.9 to 2.2 Å[62-64]. These different 

criteria indicate that  C-C covalent interactions are broken or 

formed at a similar distance (~2 Å) and constitute an empirical 

proof of the plausibility of our predicted C-C high-rupture spinodal 

limit. 

The lower limit brings into the discussion the possibility of 

considering C-C bond types other than the  covalent bond of the 

reference ethane molecule. We notice that even ultra-short C-C 

single bonds produced by confinement and van der Waals 

(repulsive) forces [65] (1.3 Å) or in molecules with double (~1.3 Å) 

and triple (~1.2 Å ) bonds, C-C distances are never found lower 

than our rhs limit (1.14 ± 0.04 Å). This boundary could be used to 

predict the stability limit of diamond at ultra high-pressure. Up to 

now, experiments carried out by Occelli et al.[66] at 140 GPa have 

reported that the C-C distance in diamond at this pressure is 

about 1.43 Å. Likewise, computer simulations find that the lowest 

C-C distance before the transition of diamond to the bC8 structure 

at 1 TPa is 1.23 Å[67], again above our rhs limit. 

A particular situation that is detailed in the SI file (Figure S5) may 

appear if charge or substituents induce a change in the 

mechanical properties of the chemical interaction considered. In 

this case, the bond stability limits and, consequently, the 

corresponding spinodal and hard sphere distances may be 

modified when compared to those obtained for σ covalent C-C 

bonds. We observe that bond stability limits derived from a 

reference molecule (e.g. ethane for σ(C-C) covalent bonds) are 

unique for that specific bond type. In contrast, any change in the 

bonding nature of a given compound (e.g. charge-induced in the 

ethane cation radical discussed in the SI file), alters the 

mechanical properties of the bond and the potential energy 

function and their bond stability limits are accordingly modified. 

However, and this is quite relevant, such modified limits do exist 

and are also unique for those bonds displaying the same type of 

interaction. 

As we have anticipated, the O2
2+ cation represents another 

challenging example, since the energy associated with the 

dissociation state differs from the intrinsic dissociation energy; 

here the strong Coulombic repulsion of this chemical species 

prevents a continuous dissociation path keeping the same 

electronic organization as in the equilibrium bonding state. 

Therefore, defining the associated hard sphere state from such 

dissociation energy reference is meaningless. However, the fact 

that the bond dissociation energy is ill-defined does not mean that 

a reference hard sphere point does not exist. It is an intrinsic 

characteristic of a PEC displaying a minimum, as demonstrated 

by Wang[68] and corroborated by our results. In the case of O2
2+, 

the hard sphere point can be estimated using the equilibrium and 

spinodal distances, which are barely influenced by the 

dissociation path or the dissociation reference state. 

Using the data provided by F. Fantuzzi et al.[69], we have 

numerically computed the energy second derivative as a function 

of the internuclear distance for O2
2+. This curve presents a 

spinodal point at 1.31 Å evidencing the rupture of the O2
2+ bonding 

interaction at this distance. When this value and the equilibrium 

distance (1.06 Å) enter Eq. (3c), a value around 0.81 Å is 

estimated for the hard sphere distance, and an intrinsic 

dissociation energy of about 200 kcal mol-1 is obtained. All these 

results are shown in the Figure S6 of the SI file. As it can be seen 

in this figure, using the estimated intrinsic bond dissociation 

energy as a reduction parameter, the O2
2+ curve overlaps quite 

well with those corresponding to prototypical molecules as O2, 

F2O2 and H2O2, at least in the meaningful distance range of O-O 

stability. This is defined by the calculated hard sphere and 

spinodal points that occur at similar values in re reduced units 

(0.766 and 1.28, respectively). Since the O2
2+ cation displays the 

shortest bond length among molecules not containing H or He[70], 

it is a good example to verify if it can be accounted for by our 

model. The stability limits of the neutral O2 molecule (calculated 

form the RKR data showed in the SI file as a reference) is used 

to construct the diagram of distances depicted in Figure 4. One 

can see that charged molecules, such as the O2
2+, O2

+, O2
-, and 

others substituted, like F2O2 or O2H2, show the expected trend in 

bond lengths with values all falling within the limits predicted by 

our model. 

Figure 4. Diagram comparing the hard sphere (red line) and the spinodal (green 

line) distances of the O2 molecule with equilibrium distances found in different 

σ(O-O) bonds (vertical arrows) 

Up to now we have demonstrated that single covalent bonds 

display chemical meaningful bond limits. However, can these 

criteria be generalized to define the boundaries of other different  

types of interactions? It is reasonable to suppose that the nature 

of interactions between two atoms at a given distance can be 

revealed by clear features of the electronic density. For instance, 

Espinosa et al. [71,72] demonstrated in a series of works that 

interatomic interactions can be grossly classified according to 

three different scenarios. The covalent regime appears at short 

interatomic distances where the valence shells are shared. It is 

characterized by a negative value of the Laplacian of the electron 

density. At higher distances, the beginning of the electrostatic 

regime corresponds with the point where the Laplacian of the 

electron density displays a positive value at the bonding critical 

point, evidencing that valence shells are separated. Espinosa et 

al found that this signature is maintained at longer distances, but 

when the electronic kinetic energy density overcomes the value 

of the potential energy density at the bonding critical point then 
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the regime of weak dispersive or van der Waals interactions 

between pure closed shells starts[71].  

H-bonds deserve a separate discussion as they are the focus of 

continuous debate and controversy (see for example references 
[73-75] and references therein). Moreover, we will specifically deal 

with this interaction in our example below. Grabowski et al.[73] 

studied the distance interval of a covalent O-H interaction and 

determined this range to occur up to distances of 1.25 Å. 

Distances at which pure O-H covalent interactions extend, were 

also pointed out by Dominiak[76] and Espinosa[71,72]. Interactions 

with positive values of the Laplacian of the electron density and 

both negative and positive energy densities have been associated 

to strong and weak hydrogen bonds, respectively. In those cases, 

an electrostatic contribution dominates the bonding due to the 

closed shell nature of the atoms displayed by the electron density 

distribution but with a substantial covalent degree if the energy 

density is negative. Typically, strong and weak hydrogen bonds 

have been classified to occur up to distances of 2.4 Å. 

From a chemical point of view, each of the above regimes has its 

own energetic and mechanical properties, and therefore each 

must be represented by a different PEC. Combining this 

reasoning within our scheme of highs and lows in bond lengths, 

we conjecture about the occurrence of chained-interactions of 

varying nature and strength. This scenario would open up the 

possibility of widening our scheme to crystalline systems 

dominated by covalent, H-bond or van der Waals interactions. 

To check this idea, we have analyzed the three scenarios in which 

O-H interactions [76,77] (covalent, H-bond and van der Waals) are 

commonly involved. Accordingly, we assume that when a 

covalent O-H bond elongates towards its spinodal point, the H-

bond interaction (O···H) comes into play. If we now consider the 

(O···H) interaction compressed towards its hard sphere limit, the 

instability must coincide with the covalent spinodal limit, since the 

covalent and H-bond interactions are concatenated. A similar 

reasoning can be applied to the transition between the (O···H) 

interaction and the subsequent van der Waals-like interaction. 

Figure 5 (top panel) renders a schematic picture of our conjecture 

for chained O-H interactions. In analogy with reactive schemes, 

where the crossing between two PECs defines a transition state, 

we refer to these distances as bonding transition regions.  

The profound implications of our model are evident by analyzing 

a statistically significant number of O-H interactions over a wide 

distance sampling interval, as depicted in Figure 5 (bottom panel), 

where we observe a well-defined pattern of maxima and minima 

identifying the three different types of O-H interactions. Ultimately, 

our model of chained interactions provides more than a 

satisfactory interpretation of the multimodal distribution of the 

histogram of number of O-H contacts as a function of the distance 

for all the compounds included in the Cambridge crystallographic 

database [56]. For ease of discussion, we have differentiated 

covalent bonds (black boxes) from non-covalent interactions (blue 

and green boxes). 

Now, solving equation (2) for a*=1 (rsp) and a*=-1 (rhs), we obtain 

explicit expressions for the two critical distances: 

 

𝑟𝑠𝑝 = 𝑟𝑒 + (𝐷𝑒/𝑘𝑒)1/2 
(4) 

𝑟ℎ𝑠 = 𝑟𝑒− (𝐷𝑒/𝑘𝑒)1/2 

 

The consistent values of (De/ke)
1/2 discussed earlier for a wide 

range of compounds allows us to calculate rhs and rsp for the three 

O-H interactions (covalent, H-bond and van der Waals) assuming 

a common (De/ke)
1/2 value of 0.39 Å. For instance, in the water 

molecule, De and ke are 500 kJ mol-1 and 6.1 N·cm-1, respectively 

((De/ke)
1/2 = 0.37 Å), whereas in the water dimer the corresponding 

values associated with the hydrogen bond interaction are 20 kJ 

mol-1 and 0.197 N·cm-1 ((De/ke)
1/2= 0.42 Å).  

Accordingly, using re= 0.97 Å, which corresponds to the sum of 

the O and H covalent radii provided by Pyykkö [78], equation 4 

yields rhs,cov = 0.58 Å and rsp,cov =1.36 Å for the covalent interaction.  

Figure 5. (Top panel) Schematic representation of the chained interaction 

conjecture. In black, the covalent bonding, blue and green represents the 

electrostatic and van der Waals interaction regimes, respectively. Notice how 

the spinodal limit corresponds to the hard sphere distance of the next interaction. 

(Bottom panel) Distance histogram for the O-H interaction, bin width = 0.05 Å. 

Covalent, H-Bond and van der Waals contacts have been represented as black, 

blue, and green bins respectively. Dash—dotted lines correspond to rsp,covalent= 

rhs,H-bond = 1.36 Å and rsp,H-bond = rhs,vdW = 2.14 Å.  

As the chained-interaction conjecture implies that rsp,covalent= rhs,H-

bond, a value for the re,H-bond and rsp,H-bond can be straightforwardly 

obtained by rearranging equations 4a and 4b (re,H-bond= 1.75 Å, 

rsp,H-bond = 2.14 Å). Following the same procedure, we obtain re,vdW 

= 2.53 Å and rsp,vdW = 2.92 Å. 

Since our covalent reference distance was determined from the 

Pyykkö radii, it coincides with the first maximum in the distribution. 

More interestingly is the position of the first minimum. It occurs in 

a range between 1.2 and 1.4 Å. Our predicted covalent spinodal 

distance of 1.36 Å clearly lies in this interval and is also in good 

agreement with the values of Grabowsky et al.[73] and Espinosa et 

al.[71]. The number of contacts produced at this distance is less 

than 20 units in more than 1000 compounds. Moreover, this 

distance is not a statistically favored one neither for covalent nor 

for electrostatic interactions. To the best of our knowledge the 
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empirical presence of such a minimum in the histogram has not 

been theoretically justified yet. Here, we realize that such a 

distance corresponds to the covalent spinodal limit or equivalently 

to the hard sphere boundary of the H-bond interaction. Our model 

is revealing that these mechanically unstable geometries are not 

favored, and therefore few compounds are expected with O-H 

distances around 1.36 Å. 

Concerning the H-bond interaction, we observe that the maximum 

in the histogram (1.75-1.85 Å) occurs close to our predicted H-

bond equilibrium length (1.75 Å). Notice that we have calculated 

this value only from the O-H covalent equilibrium distance and a 

constant value for (De/ke)
1/2. As regard the second minimum in the 

multimodal distribution around (2.1-2.4 Å), we again find that our 

model predicts a H-bond-van der Waals transition within this 

range (2.14 Å). Finally, our model predicts another maxima and 

rupture distance for a van der Waals interaction. The latter it is not 

observed in the distance diagram mainly because, as it has been 

pointed out by several authors [79,80], it includes a monotonically 

increasing non-contact distance distribution which modify the 

statistics of this regimen. However, it is worth to highlight that our 

chained interaction model predicts a van der Waals spinodal 

distance of 2.92 Å, only 0.08 Å lower than the sum of the O and 

H van der Waals radii predicted by Alvarez et al. [79] and 0.33 Å 

larger than the estimations provided by electron density analysis 
[81]. 

These results provide a first demonstration that the bonding 

characteristics of two atoms evolve with the distance in a chained 

fashion, as imposed by the stability conditions of the 

corresponding interaction. From this point of view, covalent bonds, 

hydrogen bonding and dispersive interactions behave formally in 

the same way with respect to the occurrence of critical distances 

(hard sphere, equilibrium and spinodal). 

Conclusions 
The analysis of the inherent mechanical and energetic 

characteristics of a generic PEC allowed us to discuss the 

minimum (hard sphere) and maximum (spinodal) distances at 

which a given chemical bond can be considered stable. A first 

attempt to validate this new framework has been provided by a 

combined analysis of spectroscopic data and electronic structure 

calculations in more than 80 diatomic and molecular species. 

Changes in topological descriptors of scalar fields related to the 

electron density around bond stability boundaries have been 

observed, although more accurate and rigorous calculations are 

still needed to demonstrate this fully conclusively. For practical 

purposes, we have devised a simple method for calculating the 

limiting bond distances which only resorts to the bond strength 

parameters (ke and De). Our model does not depend on the 

particular PEC function (UBER, Morse, Lennard-Jones, etc.) 

since only assumes a bonding shape of the pairwise interaction. 

When applied to C-C and O-O covalent bonds, we found that 

bond lengths reported so far in different experiments and 

computational simulations lie within the boundaries predicted by 

our model. We also address the difficulties related to bonds with 

ill-defined dissociation energies, which, however, can be 

accounted for in our model considering intrinsic bond dissociation 

energies as we discussed in the O2
2+ dication. 

Within this framework, we introduce a chained-interactions 

conjecture that we checked in the ubiquitous O-H pair interaction. 

We suggest that bond ruptures are concatenated, thus defining a 

covalent/H-bond/van der Waals sequence that successfully 

explains the maxima and minima found in the O-H histogram of 

distances observed experimentally. Histograms of interatomic 

distances have been used to generate covalent radii[82], but it is 

the first time that they are interpreted in terms of stability limits.  

These results could be used as a guide to determine the distances 

that will be unreachable (unstable) in the laboratory and anticipate 

restrictions to the synthesis of novel compounds (either molecules 

or crystals).  
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Bonds cannot be compressed or elongated at will. Two bond-length keepers watch for the stability of chemical bonds by imposing limits 

that cannot be exceeded. At short distances, the hard-sphere boundary prevents the interaction to be positive. At long distances, the 

spinodal condition avoid the bond force constant to be negative. Both are intrinsic consequences of the bond length at equilibrium. 
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