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Abstract—This paper introduces an online method valid to
estimate the state of health of Li-ion energy storage systems
for grid-tied applications. For this propose, two methods are
evaluated. Firstly, a reduced-range incremental capacity analysis
(ICA) applied during the last phase of the charging period (above
60-100% approximated) is analyzed, and also, an implementation
strategy is proposed. This method has been successfully tested
using data gathered during the degradation process of six LFP
battery cells of 180 Ah and 100 Ah. However, it requires the
energy storage system to be operated up to full charge. For
overcoming that limitation, a second method based on adaptive
filtering techniques to estimate the impedance evolution at dif-
ferent operating points is also studied. The proposed impedance-
based method is analyzed using the data gathered from a cycling
test.

Index Terms—Lithium batteries, Adaptive estimation,
Impedance, Prognostics and health management

I. INTRODUCTION

Energy storage in stationary applications, particularly those
using battery-based storage systems, shows an increasing
interest [1]. Within the battery alternatives, LiFePO4 chemistry
(LFP) is a strong competitor for these kind of applications [2].
However, battery degradation due to high-demanding power
profiles has a strong impact on the overall system reliability
[3]–[5]. Considering that, a robust health indicator of the
battery, widely known as the state of health (SoH), is highly
acclaimed [6].

Several factors lead to battery degradation, where very
high/low temperature, state of charge (SoC) limits excess
and high current rates (Cr) have the highest contribution to
a shorten lifespan [6]. These factors boost the degradation
processes that take place in the inner cell, which mainly
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are loss of lithium inventory and loss of active materials
[7]. Focusing on the inner elements of a cell, the negative
electrode, usually made with graphite, becomes the one
that most suffers during the degradation process [8]. This
is mainly due to the solid electrolyte interphase (SEI)
formation, which is a film that covers the negative electrode,
generated when the electrode is exposed to the electrolyte
[6], [8]. Finally, battery degradation becomes noticeable in
its performance, and this deterioration results in a higher
impedance and capacity loss [6]–[8]. For SoH estimation,
these two parameters are of extreme interest.

This paper seeks to analyze the conditions to obtain an
accurate SoH estimation, which relates the current nominal
capacity (Qn) with the initial one (Qn ini). There is no
method capable to fulfill the performance requirements of
the battery model [9] and predict its life [8]. Several online
and offline methods have been proposed to estimate the SoH
and most of them require an accurate track of the inner
impedance [10]. This impedance tracking method has also
been used for SoC estimation proposes [11]. Unfortunately,
a battery has a very non-lineal performance and it results
difficult to determine the impedance rise due to degradation
since it is also coupled with temperature, current and state of
charge (SoC).

Under test conditions, incremental capacity analysis (ICA)
helps to understand the degradation process of the battery
[7]. This test analyzes the capacity increment (dQBAT ) with
the voltage increment (dVBAT ). An LFP cell has a set of
constant voltage ranges derived from the physical insertion
of the lithium ions into the graphite structure layers. These
constant voltage ranges result in peaks when analyzing the
correlation between dQBAT respect to dVBAT [5], [7], [12].
The peaks tend to vary with aging: they are displaced to the
right due to a higher impedance and the area of the peaks is



altered. However, the current rate affects the peak number:
five peaks can be observed under low constant currents rates
(Cr) [5], [7], whereas only three can be noticed at constant
Cr/3 charge [12]. This Cr is typical for the charging process,
making this method attractive for this application [12].

The present paper is structured as follows. In Section II,
the cycling test performed to different cells is explained
under detail. In Section III, the ICA analysis proposed and
its implementation is exposed. In Section IV, the results of
tracking the internal impedance are presented. Finally, the
main conclusions of the paper are summarized in Section V.

II. BATTERY CYCLING TEST

Firstly, the evolution of the SoH (1) under laboratory
conditions is analyzed. For that propose, three sets of cycles
have been performed for each of the two different types of cells
described in Table I. The tests proposed have been carried
out in Cegasa Energı́a company using the cycler Digatron
MCT 200-06-2 under the conditions gathered in Table II. The
battery cell is cycled from the minimum to the maximum
voltage value recommended in the datasheet, while the state
of charge (SoC) is measured by using Coulomb counting (2),
from the beginning (t0) to the end (tf ) of the cycle. Due to the
integration procedure, errors in Coulomb counting can become
noticeable with time. For tackling this issue, the SoC is reset to
zero when the cell reaches the minimum voltage. Fig. 1 depicts
a set of cycles for one of the example tests. The voltage,
current, and temperature profiles measured are depicted in Fig
1a,b,d, respectively. The SoC calculated is showed in Fig. 1c.
When the cell charge is completed, a cycle is counted as shown
in Fig. 1e.

SoH[%] =
Qn(25oC, 0.2Cr)

Qn ini
· 100 (1)

SoCBAT [%] =

∫ t0
tf
IBAT dt

Qn ini
· 100 (2)

Table I
TEST CHARACTERISTICS.

Qnom

[Ah]
Vn

[V ]
Z1000Hz

[m Ω]
Vmin-Vmax

[V]
Cr

dis/ch
Cycles
Cr = 0.3

180 3.2 0.6 2.5 - 3.65 0.3 2000
100 3.2 0.6 2.5 - 3.65 0.3 2000

Table II
CELL CHARACTERISTICS.

Test 100a 100b 100c 180a 180b 180c
C ch 0.5 0.75 1 0.5 1 1
C dis 0.5 0.75 1 1 1 1

T [◦ C] 40 40 40 40 40 20

At different stages of cycling, the test is stopped to eval-
uate the SoH. In order to avoid possible coupling effects of
temperature and current rate (Cr), the criteria of the SoH test
is the same one for all tests: a set of three cycles at a rate of
Cr/5 with a cell temperature of 25oC. The resulting SoH (1)
is the mean of the previous three cycles and the evolution for
the different cells is shown in Fig. 2. All of the tests have a
clear dependency with cycling, wherein this case is the main
contributor of aging.
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Figure 1. Time interval of Test 180c. Red crosses denotes when the resistance
is measured. Circles denotes when a cycle is counted.a) Voltage profile. b)
Current profile. c) SoC calculated. d) Temperature profile. e) Cycle counting.
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Figure 2. SoH evolution with cycling. a) 100 Ah case. b) 180 Ah case. The
asterisk denotes the corresponded cycle when the capacity was measured.

III. INCREMENTAL CAPACITY ANALYSIS - ICA

The ICA collects the relation between the increment of
capacity with the increment of voltage, as shown in (3),
along with the whole open-circuit voltage profile. A reduced
range ICA implementation is proposed to analyze the previous
cycling tests and it is valid for online implementation when



the battery is charged at this range. The target peak selected
is the one obtained from the ICA test at the last constant
voltage phase when charging the cell, which is likely to vary
more [12]. Fig. 3a represents the charge evolution depending
on the voltage. This constant voltage phase is reduced with
aging, as shown in the highlighted rectangle, thus resulting
in a reduced peak. The ICA correlation (3) of this example
is represented in Fig. 3b, where the area of the target peak
(Pa) becomes smoother as the constant voltage phase vanishes.
Furthermore, this peak is displaced to the right due to the
impedance variation. By tracking the peak displacement due
to the impedance fluctuation [5], [7], it can be omitted their
coupling effects in the resulting Pa, leading to an enhanced
SoH estimation.

ICABAT [Ah/V ] =
∆QBAT

∆VBAT
(3)
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Figure 3. ICA curve evolution for the 100a Test. a) QBAT during a set of
charge cycles. The section of the curve corresponding to the target peak is
shown in a box. b) ICA curve evolution. The zoom shows the Pa for the
target peak.

The Pa corresponded to the last charging peak has been
tracked following the scheme proposed in Fig. 4. Initialization
of the algorithm is done by looking for the Ix point, which
is initially located in the vicinity of 60% SoC. Following,
QBAT and VBAT are filtered with a 2nd order zero-phase low
pass filter (LPF) and a cutoff frequency 0.1 times the Nyquist
frequency (fN), as shown in Fig. 4-1. In the second step (Fig.
4-2), both variables are re-sampled so evenly-spaced voltage
data curves are obtained. Next, the ICA curve (3) is obtained
filtered with the same previous filter (ICAf ), which is the one
used for tracking the Pa as shown in the flowchart in Fig. 4.
The minimum Ix between the two main peaks is located. If
a minimum exists, then Ix is set to that point. If this peak
vanishes due to aging, there is no local minimum anymore
and the search is changed to look for the first inflection point
to the right of the main peak, which will be considered as a
valid Ix. Finally, Pa is calculated, which corresponds to the
shaded area of the ICABAT curve in Fig 4-2.
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Figure 4. Signal processing proposed for the ICA implementation.

For the 100 Ah case, the test has been performed under the
same temperature but different Cr. It is observed in Fig. 5, that
the higher the current, the more shifted to the right the ICA
curve. This is due to the voltage drop in the inner impedance,
which increases with Cr. Besides, it can be observed how the
target Pa decrements with aging in all cases. On the other
hand, the 180 Ah cell is cycled at different temperatures and
Cr which also results in a shift on the ICA curve.
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Figure 5. ICA results. Each plot has the capacity and the ICA curve evolution
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cycle number

Figure 6. Relation of Pa with SoH for all cases. The red line represents the
linear trend with coefficients gathered in Table III and the black lines shows
the 2σ boundary. The data color reflect the number of cycle following the
relation of the right bar.

Besides the ICA shifting, it has to be observed how the Pa

varies with aging. As shown in Fig. 6, the evolution of Pa is
lineal with SoH. Thus, a linear approach can be taken for all
cases, which coefficients are defined in Table III. For the 100
Ah case, the Pa-SoH relation is quite similar for all situations.
The same conclusions have been obtained for 180 Ah test
cases, although the relation is different from the 100 Ah case.
Good sensibility and analogous slopes for each capacity test
are obtained. Thus, the proposed linear relationships can be
used as a reference value each time the battery has a full
charge and the ICA curve is calculated. For the ICA method
to work accurately, mitigating the voltage drop disturbance at
the internal impedance, the maximum recommended Cr for
charging both battery cells is 0.5. In the shown tests, the Cr

value has been always kept below that limit.

Table III
COEFFICIENTS OF THE SOH APPROXIMATION: Pa=m SOH +b

Test m b
100 a 1.1 -86
100 b 0.9 -56
100 c 0.9 -53
180 a 1.6 -95
180 b 1.7 -106
180 c 1.8 -107

IV. ONLINE IMPLEMENTATION

For the online implementation, it is proposed to use the
internal resistance evolution with SoH as a figure of merit
and see the coupling effects regarding the temperature. Two
methods are proposed to analyze the estimated series resis-
tance. The first method performs a linear regression (LR) of
the last data recorded and does not have a forgetting factor.

This method requires of extra memory in the online imple-
mentation. The second method uses a recursive least square
(RLS) filter which does not require to record a data window
due to the forgetting factor (λ). This filter is implemented as
presented in Algorithm 1.

Algorithm 1. Proposed RLS method.

1: λ0; . Initial forgetting factor
2: P0 = [v1 0; 0 v2]; . Initial gain matrix
3: x1 = SoH; . Input data
4: y1 = R;
5: for k = 1, 2, 3...Rsamples do
6: yk = y1(k);
7: X = [1x1(k)];
8: ek = ŷk[1, 1] −Wk−1RLSXRLS ;
9: gk = Pk−1XRLS [λ+XT

RLSPk−1XRLS ];
10: Pk = λ−1Pk−1 − gkX

T
RLSλ

−1Pk−1;
11: wRLS = Wk−1RLS + ekgk;
12: Pk−1 = Pk;
13: Wk−1 = Wk;

The resistance is measured every time there is a step in the
current profile greater than 0.3Cr, by dividing the voltage by
the current, at the points indicated in Fig 1a-b. The cycling
test has a sampling time (Ts) of 5s. Unfortunately, this Ts

is not enough to include frequency dynamics in the response.
The internal resistance will also include some of the dynamics
at the low-frequency range (< 0.5 Hz) where the diffusion
processes are dominant [14].

During the cycling tests, the currents steps occur at low
and high SoH. Fig. 7 presents the different evolution of Rs

for both cases of test 180c. It can be shown that the internal
resistance not only varies with aging, but also with SoC and
temperature. The rising resistance evolution with a lower SoH
is more clear in the low SoC side. Besides, the temperature has
an slight impact on the resistance, where for this temperature
range is less appreciable than the aging impact.

Fig. 8 shows the relation of the resistance with SoH and
temperature of the previous example. A first-order approxi-
mation fit (4) is performed to check the different trends. The
coefficients of (4) for both SoC cases are collected in Table
IV. In order to track the impedance, it would be better to use
the resistance at low SoC since the SoH sensibility is higher
and the temperature has a lower impact.

Rfit [mΩ] = b1SoH + b2T + b0 (4)

Table IV
COEFFICIENTS OF THE RESISTANCE FITTING: Rfit=B1 SOH +B2T + B0

Test b0 b1 b2

RLowSoC 1.4104 -0.0098 -0.0036
RHighSoC 0.1718 -0.0014 0.0021

Usuario
Resaltado
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Figure 8. Relation of Ra with SoH and temperature of test 180c. a) Low
SoH case. b) High SoH case.

Once the relation between the resistance and the temperature
has been obtained, its effect can be decoupled by subtracting
the temperature relation of (4). Fig. 9a shows the resistance
(R1) without temperature effects. The two tracking techniques
are used to find the coefficients of the resistance evolution
using the theoretical SoH and R1 as an input. For the LR,
a window of the last 200 resistance samples are used. The
RLS filter uses a λ of 0.999 and a gain matrix (P), with initial
variance coefficients v1 and v2 set to 103 and 106, respectively.

Once the temperature relation is founded, their effects can
be decoupled by subtracting the linear temperature relation

gathered in Table. IV. Fig. 9a has the new resistance (R1)
without temperature effects. The two tracking techniques are
used to find the coefficients of the resistance evolution using
the SoH and R1 as an input. For the LR, a window of the last
200 resistance samples are used. The RLS filter uses a λ of
0.999 and a gain matrix (P), with initial variance coefficients
v1 and v2 set to 103 and 106, respectively.

In Fig. 9b-c, it can be observed the improvement in the
coefficient tracking when using the RLS filter. The reference
coefficients (Ref) correspond to the ones gathered in Table IV
for the low SoC case. Notice the RLS filter performs better and
smoother estimations. The LR technique does not start until
the data window is completely full. The estimated resistance
tracking is compared with the real one in Fig. 9d. If it is
considered the estimated coefficients with the input resistance,
the SoH can be estimated as shown in Fig. 9e. The RLS
filter becomes a better estimator than the LR one, although
it requires acquiring resistance measures to let the coefficients
properly converge.
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The inverse relation of SoH in terms of R using the fit
vector is shown in (5). However, this inner resistance has to
be characterized for each cell case which makes the resistance
tracking complicated to generalized when compared to the



first ICA method. Here, actual research efforts are directed
to obtain a combination of both ICA and impedance-based
methods to enhance the SoH estimation.

SoH180c = −101.7135R[mΩ] + 143.4541 (5)

V. CONCLUSIONS

In the present work, two different forms of aging identi-
fication have been evaluated. ICA method has obtained very
good results with different currents rates usually above the
limited ones, and a similar aging trend has been found when
analyzing the peak of the ICA curve at the last stage of
the charge. Thus, the method could be applied in real-time
applications considering variable load profiles. However, if the
charging process does not cover the 60-100% charge stage
with limited current derivatives, the ICA curve cannot be
evaluated anymore. Thus, a method based on the internal
resistance has been also proposed. Two main conclusions
are drawn: 1) the internal resistance is very susceptible to
temperature variation and 2) it has a higher sensibility to SoH
variations at lower SoC, making this range more interesting for
the implementation. The resistance temperature dependency
has been decoupled based on the gathered lab data, and
the decoupled resistance estimation has been used as the
input of two different tracking online techniques: the linear
regression and a RLS filter. The second technique results
in a better option due to a smaller memory footprint and a
lower error in the estimation. However, the resistance track
needs for a previous commissioning process at the different
cells, showing a lower generalization than the ICA alternative.
Fusion methods using both techniques are currently a field of
active research by the authors.
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[16] I. Peláez, P. Garcı́a, G. Villa, and S. Saheed, “Li-ion batteries parameter
estimation using converter excitation and fusion methods,” in 2019 IEEE
Energy Conversion Congress and Exposition (ECCE), Sep. 2019, pp.
2491–2498.




