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Abstract. Finding the shortest path for an autonomous robot in static
environments has been studied for many years and many algorithms exist to solve
that problem. While path finding in the static setting is very useful, it is very
limiting in real world scenarios due to collisions with dynamic elements in an
environment. As a result, many static path planning algorithms have been
extended to cover dynamic settings, in which there are more than one moving
objects in the environment. In this research, we propose a new implementation
of multi agent path finding setting through A* that emphasizes on the path finding
through a centralized meta-planner that operates on the base of Bag of Tasks
(BoT), running on the distributed computing platforms on the cloud or fog
infrastructures and avoiding dynamic obstacles during the planning. We also
propose a model to offer a “Multi-Agent A* path planning as-a-Service” to
abstract the details of the algorithm to make it more accessible.
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1 Introduction

Robot navigation is the process of finding and executing a path from the initial location
towards a target position while avoiding obstacles [1]. Based on the availability and the
knowledge of the environment, path planning is scoped at the local or global level [2].
While local level refers to modifications to a predefined path made by the robot based
on information gathered from the available sensors [1], the global level is responsible
for producing a valid path to each robot. When the obstacles are static and the start and
goal cells are known beforehand, we calculate the path (based on an ideal criterion such
as the “shortest” path), which is known as “global” path planning. However, this



method cannot help for scenarios where the obstacles are moving, or the goal is not
fixed. As will be seen in the next section, there are many existing solutions thar combine
local and global path planning [3].

This study analyses the hybridization of local and global planning in multirobot
environments, considering collision avoidance. From one viewpoint, our solution is
similar to the offline path planning as we use the prior environmental knowledge while
we also would like to consider other agents’ moves during the “planning” phase. Our
solution proposes implementing a central “meta-planner” module, running ultimately on
the cloud computing facilities to minimize the communication overhead between agents
while taking advantage of abundant processing power in the cloud computing to apply
the heuristic algorithms to avoid collisions. This research shows a proof of concept for
the meta-planner implementation as well as introducing the architecture of the cloud-
based solution. We propose a cloud native (CN) multi-agent (MA) A* path planner
(A*PP), in short (CNMA-A* PP).

The structure of the study is as follows. The next Section copes with the related work.
Sect. 3 completely describes the hybridized global multi-robot path planning. The
experimentation design and results are introduced in Sect. 4, including some discussion.
Finally, the conclusions are drawn.

2 Related Work on Multi-Robot Path Planning

Path planning is an important and essential issue for the navigation of autonomous
robots among many other use cases[4] . The studies of path planning started in the late
60s and many different algorithms have been proposed [5]. In this path different
frameworks to solve a multi-robot path planning have been proposed such as problem
reduction through answer set programming [6] and SAT [7]. In the Optimal Multirobot
Path Planning on Graphs[8], the problem of multi-robot path planning has been
discussed over four minimization objectives: the makespan (last arrival time), the
maximum distance (single-robot traveled), the total arrival time, and the total distance.
These objectives are pairwise distinct and NP-hard to optimize, as a result we can see
suggestions to solve optimal MPP by finding effective near-optimal algorithms[8]. The
solution proposed in [8] to tackle such multi-objective minimization problem is to create
a one-to-one mapping between MPP and that for a multicommodity network flow
problem by translation of the MPP problem into an integer linear programming (ILP)
model solvable using an ILP solver.

In operational research, these types of problems have been traditionally solved based
on linear and/or integer programming. Such approaches inevitably place restrictions on
the form of the objective function and/or the constraints by being linear. Other non-linear
solutions rely on the differentiability of the problem in its nature. Furthermore, such
traditional methods all assume deterministic quantities and have problems dealing with
any stochastic effects [9]. In more complex settings, swarm intelligence optimization
methods, such as Genetic Algorithms or Ant Colony Optimization among others, have
been successfully to find the shortest path in more complex settings[10]. The ACO-A*
is another proposal to use ACO metaheuristic to suggest the order of traveling and then
use A* to find the shortest path pair-wise between two cells[11]. Our solution is similar
to ACO-A* from this viewpoint that it has two phases however, we use heuristic than
meta-heuristic in our method as in our setting we do not face with stochastic and



unknown environment. Collision avoidance through danger immune algorithm [12] has
presented how different information systems such as global positioning system (GPS),
automatic identification system (AIS) and Automatic Radar Plotting Aid (ARPA) is
widely used in collision avoidance system on most merchant ships. Our proposal is
different from this viewpoint that we do not have positional systems or real time sensors
to report the location of robot in real time. The proposed solution in the Concurrent Goal
Assignment and Collision-Free Trajectory Generation for Multiple Aerial Robots[13] is
very similar to our proposed solution with the exception that we use robots in the indoor
settings that aerial robots flying in different altitudes. The similarity comes from the fact
that Benjamin Gravell and et al.[13] suggest Constrained Collision Detection
Algorithm(CCDA) and Constrained Collision Detection Algorithm with Delay
Times(CCDA-DT) to resolve the collision which are similar to our approach to find the
collision by creating a matrix of time-moves and introducing the “wait” action to avoid
collision.

By far, graph-based algorithms are the most widely used methods in global path
planning [1] in order to find the shortest path. Examples of these algorithms include
[14]: breadth-first and depth-first search, the Dijkstra’s algorithm, the Bellman-Ford
algorithm or the Floyd-Warshall algorithm. Nevertheless, one of the most competitive
algorithms is the A*, which solves the single-source shortest path problem for
nonnegative edge costs. Our solution has extended the implementation of the A*
algorithm in the in the Artificial Intelligent book [15] and implemented by the simpleai
[16]library. The idea of simultaneous task assignment and planning (STAP) problem
[17] sounds a promising approach to extend our solution to a more dynamic and
unpredictable approach with randomly assigned costs to each path in a graph route.
However, the approach in STAP different from our solution provided that, each robot
has a local reactive collision detector to avoid collision with dynamic obstacles. In our
proposed solution we do not use local sensors and we do have dynamic assignment of
the robots to destinations, like the way STAP works.

2.1  A* Algorithms

In the informed search algorithms such as A*, we rely on a function called the
“heuristic function”, to help the algorithm to pick the next cell to explore based on its
“closeness” to the goal state in the entire path-finding process. A heuristic function is all
about the trade-off between its accuracy and its speed [18]. One example is to try to
estimate the “best heuristic” and then incorporate that into the A*. This method works if
the search process is not time sensitive. For example, one can make use of the output
generated by the backtracking techniques mentioned in [19] as heuristic values. The
backtracking technique is useful when we do not have much knowledge about the
topology of the environment, and we would like to find the state values by reinforcement
learning and trials and errors. This technique is based on the optimization of the Markov
decision-making process and tweaking the model’s hyper-parameters. This technique
approximates the real distance from the goal and as a result, the evaluation function
produces the successors for the optimal path, obviating entirely the need for search[20].

A* algorithm pitfalls
The A* algorithm has the following shortcomings or limitations: 1) slow search in
large scale path search. For example to get the optimal path in a 100*100 grid, at least



513 nodes need to be searched of [18] 2)The A* is only useful when there is some
domain knowledge about the environment 3) Finding the right estimate for the heuristic
function is tricky and it impacts the performance of the algorithm drastically 4) In large
space searches, the algorithm needs lots of memory and 5) A* algorithm assumes one
node is moving at a specific point in time. That is not a suitable algorithm for multi-node
and dynamically changing environments.

The above issues, specifically the last one, motivates the researches to think about
making a better version of A* algorithms, that it is the subject of the next section.

3 Solution Design Approach and Features

This study proposes utilizing the A* algorithm in a multi-agent setting in order to obtain
a multi-robot path planning, that is, simultaneously obtaining a collision free path
planning for each of the robots. We use the principle of Bag of Tasks (BoT) [21], where
each agent runs the A* algorithm independently (the Agent’s planning phase) and after
all the agents are done with their planning, a module that we call it “meta-planner”
starts modifying the results of independent tasks (the refinement phase) to create
(synthesizing phase) a cohesive plan that works for all agents, in this case, a collision
free path for each agent. Figure 1 shows the block diagram of this idea. Moreover, this
procedure has been designed and implemented “as-a-service”, finding a collision free
path for multi-agent systems.

Fig. 1. The phases of a meta-planner to realize a multi-robot path with no
collision.

Due to the need for a path planning for each robot, we need to perform A* for each
of them and then analyze the results. Actually, the planning and the refine stages could
be integrated by synchronizing the different A* running in parallel. To do so, several
modifications to the A* algorithm are needed. Moreover, our implications to design a
solution “as-a-service” suggested moving to a different solution path.

Alternatively, we opted to run each A* independently, merging their result and
running the following stages afterwards This solution makes use of a distributed
container scheduling open source project called Kubernetes, which has been successfully
used in different initiatives like Cloud manufacturing [22] and distributed containerized
serverless architectures[23]. Kubernetes is one of the well- adopted platforms when it
comes to Cloud Native Applications (CNAs). It is the path to make a cloud based
solution that is elastic, self-contained deployment, no lick-in to a cloud provider, cross
platform, automated infrastructure management and containerization[24] We extend the
idea of scheduling tasks in the fog computing by BoT [21] to run on Kubernetes and we
suggest a new cloud based service for a multi-robot A* path planning based on the CNA
principles. The categorization and taxonomy of distributed problem solving and
planning detailed [25] have been considered in this research. Moreover, we have
considered all the movements of the robots to take one slot of time and that all of them
have the same speed. The basic movements can be configured to be the main cardinal



directions or extended with the main diagonal as well. The complete solution steps to
run in the Kubernetes platform have been shown in Table 1.

Table 1. Multi-agent A* path planning as a service

1 Containerize the A* algorithm
2 Setup the YAML manifest files to describe the run-time environment
2-1 Set the maze configuration
2-2 Set the number of agents and their valid movements
3 Launch the Kubernetes components (Pods. ConfigMaps, ...) with A* containers in Step 1
4 For each agent run one A* algorithm
4-1 Run A* algorithm for each agent in a Pod
4-2 Store the shortest path for each agent in the shared storage
5 While the meta-planner has not done:
5-1 Unify the path lengths
5-2 Map the wait and time factors to the produced A* paths
6 For each item in the map:
6-1 Run the meta-planner Heuristics by:
6-1-1 Detecting the collisions by comparing tx:(X, y) of each agent
6-1-2 Introduce the wait action and shift the next moves accordingly whenever a collision
is detected
6-1-3 If the path is blocked by another agent then set the blocking agent to a lower
priority
7 Return the final paths

3.1 Refinement and Synthesize Phases

The first step in the refinement phase is to unify the length of the path to the same
number. To do so the length of the longest path is determined, then padding the shorter
paths with “no move” (step 5-1 in Table 1). The next step is to represent the paths in
terms of cells and time slots. A path will be represented as a sequence of pairs like time:
(cell x, cell y) (step 5-2 in Table 1). Without losing generalization, the robots are
considered having the dimension of one cell. After all, in the synthesize phase the
collision detection tries (steps 6-1-1 and 6-1-2 in Table 1) to detect cells included in more
than one path at the same time units. In addition, in this phase, we detect the agents that
block other agents' paths (step 6-1-3 in Table 1). Both actions in the synthesizing phases
are achieved by the heuristic logic, implemented in the meta-planner module.

3.2 The heuristic of the meta-planner

To better understand how heuristics of the meta-planner works, we need to elaborate
on the details of its internal functions. The meta-planner injects three new elements to
the path produced by a pure A* algorithm: 1) the wait action 2) temporal element 3)
path-blocker detector. These tools are used in the meta-planner heuristic as they are
described in the following paragraphs:



- Ifacell is going to be taken by more than one agent at the same time, one of
them must wait. We introduce the “time-step” concept to the solution in the
refinement phase to make sure such a goal is achievable in the synthesize phase,
by making each “time unit” equal to each move. So, at timeslot 1 (t1), we have
n-move (where n is equal to the number of agents), and in t2 we have another
n-move, and so on. The agents need a different number of moves to reach their
destinations (as they have different start and destination cells). When all paths
are reported to the meta-planner, it unifies their sizes (practically by adding “no
move” action to the end of shorter paths). The selection of the agent to wait in
our solution is completely random but it could be based on a more advanced
priority system.

- There is a possibility that the destination cell of an agent blocks other agents’
paths. We do not manipulate or modify the decisions that are made by A*. The
reason is A* already has proved itself as one of the most efficient path planners.
We respect the A* quality in finding the shortest paths but we detect the blocking
moves and delay those moves in favour of other agents that need those cells. So
the path shapes in our solution are not changed.

3.3 Solution Architecture of CNMA-A* PP

The solution described in the previous subsections can be augmented using the
Kubernetes platform by extending the meta-planner and A* executions to a cloud-based
distributed service offering. We call this proposed solution as “CNMA-A*PP’ to
emphasize on its cloud-native nature, multi-agent A* path planning. The “CNMA-
A*PP’ converts a standalone A* single agent algorithm that works in static settings to
a cloud-based, configurable, multi-agent A* global planner. To do so, each agent is
mapped to one Kubernetes Pod to execute the A* algorithm independently (planning
phase of the meta-planner). The Pods run in parallel and in a distributed manner,
reducing the total service time. The results from each A* runs shall be saved in storage
that is shared among the Pods. The meta-planner running the refinement and
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Fig. 3. A scheme of the Cloud Native-based design for a multi-robot path
planner as-a-service

Shared

synthesizing processes also run in a Pod. Requesting such a service is realized entirely
in the form of Kubernetes manifest YAML files describing the environment maze



setup, number of agents, allowable moves, cost of moves, etc. The solution should
launch a set of infrastructure components such as Pod(s) or ConfigMaps to realize a
“multi-agent A* path finding-as-a-service”. The architecture of this solution is shown
in Figure 3. The “CNMA-A*PP’ agrees with the principle of composability that is about
employing the same architecture to deploy self-managing service compositions or
applications using the microservice architectural pattern [26]

4 Experiment and Results

In this section, we present a proof of concept (PoC) implementation of our idea, i.e.
CNMA-A*PP. The PoC is based on three agents, starting in different start points and
targeting to different end points. We have intentionally positioned the start and end
points to increase the chance of conflict to test our meta-planner performance and we
have purposefully set the end cell of one agent in the middle of another agent’s path to
block the path. Figure 2 shows the maze, as well as the initial and goal points. Three
agents are placed on it, each one with its starting points (0, a and ¢) and corresponding
endings (x, b, and d) points. The paths found for each robot using A* are shown in Figure
2. In the proposed path a few collisions exist.
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Fig. 2. Three agents generate their A* path independently in PoC.

The meta-planner instructs the priorities of agents if there is a blocker agent. As you
can see in the following outputs, agent3 has been set to a “lower” priority by meta-
planner due to the fact that the agent] needs to pass through a cell that is the destination
of the agent3 (that is where “d” is). Since the agent3 path has a lower number of moves
(18 moves) it will reach the destination sooner than agentl, hence it will block agent1’s
move. To avoid this situation, the meta-planner suggests delaying its move.

The agentl has no priority

The agent2 has no priority

The agent3 has low priority
number of steps in pathl is: 23
number of steps in path2 is: 16

number of steps in path3 is: 18



The other meta-planner heuristic we have implemented is to detect the colliding cells.
After executing the refinement and synthesizing phases of the meta-planner, the
following moves are generated. As you can see in the following output, the agent] has
been set to wait(w) in t2 (t2:w) in favour of agent2 as both of them wanted to take cell
(9,7) at t2.

Path for Agent 1 is:

t0:(7, 6) t1:(8, 6) t2:w t3:(9, 7) t4:(10, 8) t5:(11, 8) t6:(12, 8) t7:(13,
8) t8:(14, 8) t9:(15, 8) t10:(16, 8) t11:(17, 8) t12:(18, 7) t13:(19, 6) t14:(20,
6) t15:(21, 7) t16:(22, 7) t17:(23, 6) t18:(24, 5) t19:(25, 5) t20:(26, 5)
t21:(27, 5) t22:(28, 6)

Path for Agent 2 is:

t0:(7, 7) t1:(8, 7) t2:(9, 7) t3:(10, 8) t4:(11, 8) t5:(12, 8) t6:(13, 8)
t7:(14, 8) t8:(15, 8) t9:(16, 8) t1@:(17, 8) t11:(18, 7) t12:(19, 6) t13:(20, 6)
t14:(21, 7) t15:(22, 6) t16:0 t17:0 t18:0 t19:0 t20:0 t21:0 t22:0

Path for Agent 3 is:

t0:(6, 5) t1:(7, 6) t2:(8, 7) t3:(9, 8) td:w t5:(10, 8) t6:(11, 8) t7:(12, 8)
t8:(13, 8) t9:(14, 8) t1@:(15, 8) t1l:(16, 8) t12:(17, 8) t13:(18, 7) t14:(19,
6) t15:(20, 6) t16:(21, 5) t17:(22, 5) t18:(23, 6) t19:0 t20:0 t21:0 t22:0

5 Conclusions

This research is focused on collision avoidance multi-robot path planning. The aim of
this study is to extend the outcome of A* with a simple heuristic to avoid the collisions,
altogether designed and implemented in one of the latest state of the art distributed
scheduling system in the cloud (i.e. Kubernetes) and adding meta-planner to augment
A* to work in a multi-agent configuration.

The study represents a proof of concept and a standard maze used in path planning
has been used to evaluate the heuristic proposed in this research. The performance of
the heuristic has been found valid and the implementation with Kubernetes can be the
next step to realize the CNMA-A*PP. Our proposal is aligned with a new trends in
creating self-managed micro-services in the cloud [27]. In addition, in this paper we
implemented a PoC along with two heuristics for meta-planner. This meta-planner
heuristic can be upgraded to more advanced techniques such as the collision model that
is proposed in [28]. The proposed solution in this paper is also aligned with the idea of
Cloud4loT which is containerizing IoT functions and optimize their placement and on
the edge of network through fog computing [29].
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