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Summary

The standard description of a quantum algorithm consists in three steps. First, encod-
ing the data in a suitable initial quantum state. Second, driving such a state by a
convenient sequence of unitary transformations until a final quantum state is reached.
Third, measuring the final state and use such a measurement to solve the problem the
quantum algorithm was designed for. An alternative description is provided by the
stabilizer formalism, that was originally introduced in connection with quantum error
correcting codes. In this paradigm, the focus is on the subgroup of elements of the
Pauli group stabilizing the initial quantum state, and the transformations that such a
subgroup experiments along the algorithm. In this work, we provide an explanation of
two foundational quantum algorithms (Bernstein-Vazinari and Deustch-Josza) based
on such a quantum stabilizer formalism. Doing so, we provide a better understanding
and insight into both procedures which yield to see Bernstein-Vazirani as a particu-
lar case of Deustch-Josza, and to introduce a generalized version of Deustch-Josza
algorithm.
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1 INTRODUCTION

The standard description of a quantum algorithm (following the seminal ideas of1,2,3,4) consists in three steps. First, encoding
the data in a suitable initial quantum state. Second, driving such a state by a convenient sequence of unitary transformations until
a final quantum state is reached (that can be implemented by quantum gates, resembling the microdesign of classical algorithms
from logical states5). Third, measuring the final state and use such a measurement to solve the problem the quantum algorithm
was designed for. For instance, in Grover6 and Shor7 algorithms (the most well-known quantum algorithms), the initial state is
a uniform superposition of computational basis states. It encodes the elements of the unsorted database to look for, in the first
case, and a representation of an approximation to the inverse of the period of an element in the residual group of units modN ,
whereN is the integer to factor, in the second case. The sequence of unitary transformations in those algorithms is an iterative
composition of the oracle function (which encodes the elements of the data base to be found) and the diffusion operator (Grover’s
algorithm), or a sequence of controlled powers of a unitary operator (which encodes the modular multiplication by the element
of the residual of units modN) followed by an inverse quantum Fourier transform (Shor’s algorithm). The measurement of the
final state of Grover’s algorithm provides (with probability approaching to one as the size of the database increases) a desired
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element in the database, whereas the measurement of the final state of Shor’s algorithm can be used to approximate the order
on an invertible element modN , which can be used to factorN (under certain circumstances).
An alternative description of quantum algorithms is provided by the stabilizer formalism5. In this paradigm, the focus is on

the subgroup of elements of the Pauli group stabilizing the initial quantum state, and the transformations that such a subgroup
experiments along the algorithm. Originally introduced in connection with quantum error correcting codes8,9, it can be also
used to provide alternative description and understanding of some quantum algorithms.
In this work, we provide an explanation of two classical quantum algorithms (Bernstein-Vazinari (BV)10 and Deutsch-Josza

(DJ)4) based on such a quantum stabilizer formalism. Doing so, we provide a better understanding and insight into both
procedures which yield to see BV as a particular case of DJ, and to introduce a generalized version of DJ algorithm.
The outline of this paper is as follows. Preliminaries on the quantum stabilizer formalism are collected in Section 2. Section

3 is devoted to the explanation of the BV and DJ algorithms under the quantum stabilizer formalism. In Section 4, we consider a
possible extension of these problems, based on the understanding provided by the stabilizer paradigm. Finally, conclusions and
future directions of research can be found in Section 5.

2 THE STABILIZER FORMALISM

In this preliminary section, we introduce notation, and collect well-known facts of quantum computing.

Computational quantum states
In this paper, (ℂ2)⊗n ≅ ℂ2n will be a 2n−dimensional Hilbert space of n ≥ 1 qubits, with a computational basis B = {|i⟩ ∶
i ∈ F n2 } (here F2 denotes the Galois field of two elements ℤ∕2ℤ = {0, 1}11). Elements in (ℂ2)⊗n, written |x⟩, are given by the
ℂ−linear combinations of the elements in B, i.e., |x⟩ =

∑

i∈F n2
�i|i⟩. The coefficients �i are called “amplitudes”, and the element

is assumed to be normalized, i.e., of complex norm equal to one: ‖x‖ =
√

⟨x|x⟩ (here ⟨x| denotes the transpose conjugate of
the element x, i.e., ⟨x| =

(

∑

i∈F n2
�i|i⟩

)T
). Normalized quantum states are the states used in quantum computation.

Evolution of the quantum states
A complex 2n × 2n−invertible matrix U = (Ukl)1≤k,l≤n ∈ GL(2n,ℂ) will be called “unitary” if U ⋅ U † = U † ⋅ U = I2n , where
U † = (Ulk)1≤k,l≤n denotes its conjugate transposed matrix. These matrices represent the set of possible transformations that
can be driven by a quantum computation, which has a group structure under multiplication, denoted U (2n) and called “unitary
group”. Another important class of matrices is given by the Hermitian ones, i.e., thoseH ∈ U (2n) such thatH = H†. The set
of Hermitian matrices is a 2n(2n+1)

2
−dimensional complex vector space, which is related to the unitary group via the Schrödinger

equationH(t)|x(t)⟩ = iℏ d
dt
|x(t)⟩, whereH(t) denotes the Hamiltonian driving the time-dependent quantum state |x(t)⟩, i is the

complex unity, and ℏ is Planck reduced constant5, 2.2.2. Such a Hamiltonian is given by a Hermitian matrix, and the solution to
such an equation is U (t)|x(0)⟩, where U (t) = e−i

H(t)
ℏ is a unitary matrix.

Measurements
Measures of a quantum state |x⟩ are given by a set of “measurement operators” {Mm}m∈� ⊆2n(ℂ), where � ∈ ℕ, satisfying
the “completeness equation” I2n =

∑

m∈�M†
mMm. The output of such a measure on |x⟩ is probabilistically the vectorMm|x⟩,

suitably normalized by the square of p(m) = ⟨x|Mm|x⟩ (i.e., ⟨x|Mm ⋅ x⟩). The number p(m) represents the actual probability
of such a measure. Usually, measures are carried over the computational state basis, and so the measurement operators are
{|i⟩⟨i|}i∈F n2 . In this case, the probability of obtaining |i⟩ after measurement of the quantum state

∑

i∈F n2
�i|i⟩ is |�i|2 = �i ⋅ �i.

The Pauli group
A particular important set of 2 × 2−matrices, both unitary and Hermitian, are the Pauli matrices:

{

X =
(

0 1
1 0

)

, Y =
(

0 −i
i 0

)

, Z =
(

1 0
0 −1

)}

The subgroup G1 of U (2) generated by such matrices has 16 elements, and can be written as

G1 =
{

ikXaZb
| 0 ≤ k ≤ 3 , a, b ∈ F2

}
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BecauseXZ = −iY , the set {I2 , X , Z , XZ} is a ℂ− basis of2(ℂ). The n− tℎ tensor product of G1 is known as the Pauli
Group Gn, that can be written as

Gn =
{

ikX(a)Z(b) | 0 ≤ k ≤ 3 , a, b ∈ F n2
}

≤ U (2n)

where X(a) = Xa1
1 ⊗⋯⊗Xan

n =
⨂n

l=1X
al
l , and Z(b) = Zb1

1 ⊗⋯⊗Zbn
n =

⨂n
l=1Z

bl
l . This subgroup has order 2

2n+2, and the
subfamily B = {X(a)Z(b) | a, b ∈ F n2 } of elements with trivial global phase (i.e, with k = 0), is a complex basis of the vector
space2n(ℂ). Moreover, such a basis is orthonormal with respect to the Hermitian inner product ⟨A|B⟩ = 1

2n
Tr(A† ⋅B), for all

A,B ∈ 2n(ℂ) (Tr ∶ 2n(ℂ) → ℂ denotes the trace function, i.e., the sum of elements on the main diagonal of matrix).

Centralizer of subgroups of the Pauli group
If for any U = ikX(a)Z(b) ∈ Gn, we denote w(U ) = (a|b) ∈ F 2n

2 , then the group commutator [ikX(a)Z(b) , ilX(c)Z(d)] is
equal to (−I2n)(a|b)⋆(c|d), where (a|b) ⋆ (c|d) = a ⋅ d + b ⋅ c is a nondegenerate bilinear symplectic form on F 2n

2 (here ⋅ denotes
the standard inner product in F n2 ). This means that:

• ⋆ is linear in both arguments: (�1a1+�2a2|�1b1+�2b2)⋆(c|d) = �1((a1|b1)⋆(c|d))+�2((a2|b2)⋆(c|d)), and (a|b)⋆(�1c1+
�2c2|�1d1+�2d2) = �1((a|b)⋆ (c1|d1))+�2((a|b)⋆ (c2|d2)), for all �1, �2 ∈ F2, a1, a2, a, b1, b2, b, c1, c2, c, d1, d2, d ∈ F n2 )

• (a|b) ⋆ (a|b) = 0, for all a, b ∈ F n2

• For all nonzero (a|b) ∈ F 2n
2 , there exists (c|d) ∈ F 2n

2 such that (a|b) ⋆ (c|d) ≠ 0

From here, it follows that if S is a nonempty subset of Gn, then its centralizer CGn(S) is equal to {U ∈ Gn | w(U ) ⟂
w(T ), for all T ∈ S}. It will be denoted by S⟂. In particular, the center of Gn isZ(Gn) = {ikI2n | 0 ≤ k ≤ 3}, a cyclic group of
order 4, andw ∶ Gn∕Z(Gn) → F 2n

2 is a well-defined group isomorphism (from a multiplicative group to an additive group). The
“quantum weight” of an element U ∈ Gn, is defined as the number of 1 ≤ i ≤ n such that ai ≠ 0 or bi ≠ 0, wherew(U ) = (a|b).

2.1 The main theorem of the stabilizer formalism
The following result is the fundamental basis of the stabilizer formalism.

Theorem 1. Let S be a subgroup of Gn. Then, the set VS = {|x⟩ | U |x⟩ = |x⟩ , ∀U ∈ S} is nonzero if and only if −I2n ∉ S.
In such a case:

1. The map w|S ∶ S → F 2n
2 is a group monomorphism.

2. S is an elementary abelian 2−subgroup of dimension 1 ≤ n − k ≤ n (i.e., S isomorphic to the additive group F n−k2 ) and,
correspondingly, w(S) is a totally isotropic subspace of (F 2n

2 , ⋆) (i.e., (a|b) ⋆ (c|d) = 0, for all (a|b), (c|d) ∈ w(S)).

3. ℂ⊗n can be decomposed in 2n−k eigenspaces of dimension 2k, which can be indexed by the multiplicative characters of S
according to the map

{multiplicative characters of S} →  = {eigenspaces of ℂ2n}
� → J� = {|x⟩ | U |x⟩ = �(U )|x⟩ , ∀U ∈ S}

so that VS is indexed by the trivial character.

4. If T ∈ U (2n), then (TST †)(T |x⟩) = T |x⟩, for all |x⟩ ∈ (ℂ2)⊗n. In particular, if Cn denotes the normalizer of Gn in U (2n)
(i.e., the “Clifford group”), then T |x⟩ ∈ VTST † , for all |x⟩ ∈ VS and T ∈ Cn.

5. More generally, Gn acts on the set  (via T ⋅ J� = {T |x⟩ | |x⟩ ∈ J�}), so that the stabilizer subgroup of VS (i.e., the
elements T of Gn such that T ⋅ VS = VS) is S⟂, and S is the subgroup of Gn stabilizing VS elementwise.

Proof. It can be found in5, 10.5 and12, but we stated it here for completeness. The condition −I2n ∉ S is clearly necessary (as
such an operator does not fix any quantum state). Let us now assume that −I2n ∉ S. We shall verify items 1 to 5 while proving
that VS ≠ 0.
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• Items 1 and 2: Since−I2n ∉ S, then any nonidentity element inGn has order 2. This is because ((ik)X(a)Z(b))4 = In2 , and
so the possible orders for nonidentity elements are 2 or 4. But, ((ik)X(a)Z(b))2 = i2kIn2 , which is −In2 , unless k = 0, 2,
i.e., unless the element has order 2. Now, S must be abelian, because all the elements in S are self-invertible (they are
either the identity, or they have order 2), and so for all U, T ∈ S we have

ST = ST ⋅ ST ⋅ TS = (ST )2 ⋅ (TS) = In2 ⋅ (TS) = TS

Incidentally, this proves the first part of item 2, for some dimension 0 ≤ n − k ≤ n. Moreover, because of the hypothesis,
the restrictionw|S is clearly a group monomorphism, since in S there can only exist at most one represent of each class of
Gn∕Z(Gn) (namely, Z(a)Z(b)), and the map is straightforwardly an homomorphism. This proves item 1, and also gives
us the second part of item 2, because of the relation between the commutator of two operators, and the corresponding
bilinear form ⋆.

• Items 3, 4 and 5: Now, assuming that S1,… , Sn−k is a F2−basis of S, we shall see item 3, by induction on n − k. As a
consequence, we deduce VS ≠ 0.

– The case n− k = 1 is straightforward, since S1 has order 2, which forces its eigenvalues to be ±1, and its trace to be
zero. This makes 2n−1 eigenvalues equal to 1, and 2n−1 eigenvalues equal to −1, which is the base case of induction
(there are two 2n−1−dimensional eigensubspaces, indexed by the trivial character and its opposite).

– Now, assume that the case n − k − 1 is true, and let us prove the case n − k. By induction, ⟨S1,… , Sn−k−1⟩ decom-
poses (C2)⊗n in 2n−k−1 eigenspaces of dimension 2k+1, indexed by the multiplicative characters of ⟨S1,… , Sn−k−1⟩,
with V

⟨S1,…,Sn−k−1⟩ indexed by the trivial character. Let J� be one of such eigenspaces indexed by the character � of
⟨S1,… , Sn−k−1⟩. Let us prove that Sn−k leaves invariant J� .
Namely, for all |x⟩ ∈ J� , and for all U ∈ ⟨S1,… , Sn−k−1⟩, since Sn−k commutes with S1,… , Sn−k−1, it commutes
with ⟨S1,… , Sn−k−1⟩, and so

USn−k|x⟩ = Sn−kU |x⟩ = Sn−k�(U )|x⟩ = �(U )Sn−k|x⟩

Observe that �(U ) ∈ ℂ, because S in an abelian group. This means that Sn−k|J� ∶ J� → J� is an isomorphism of
vector spaces.
Now, since w|S ∶ S → F 2n

2 is a monomorphism, and ⋆ is nondegenerate, there exists T ∈ Gn such that w(T ) ⋆
w(Si) = �i,n−k, i.e., such that T anticommutes withSn−k, and commutes with the otherSi. Therefore, for all |x⟩ ∈ J� ,
we have

SiT |x⟩ = (TSiT †)T |x⟩ = TSi|x⟩ = T �(Si)|x⟩ = �(Si)T |x⟩
for all 1 ≤ i ≤ n − k − 1, i.e., T |x⟩ ∈ J� , observe that the same technique can be used to prove items 4 and 5.
Now, if |x⟩ ∈ J� is an eigenvector of Sn−k with eigenvalue �, then

Sn−kT |x⟩ = (−TSn−kT †)T |x⟩ = −TSn−k|x⟩ = −T�|x⟩ = −�T |x⟩

that is, T |x⟩ ∈ J� is an eigenvector of Sn−k with eigenvalue−�. So, the eigenvalues of Sn−k|J� come in pairs {1,−1}
(one corresponding to an eigenvector |x⟩, the other one corresponding to the eigenvector T |x⟩), and so each J� is
decomposed as two eigenspaces of dimension 2k: J+

� , and J
−
� .

The set of 2n−k eigenspaces of dimension 2k, is indexed by the multiplicative characters of ⟨S1,… , Sn−k⟩, namely
J� = J�(Sn−k)�

⟨S1 ,…,Sn−k−1⟩
(i.e., the multiplicative character � is equal to �, when restricted to ⟨S1,… , Sn−k−1⟩, and it is

�(Sn−k) = ±1). The trivial character clearly indexes V
⟨S1,…,Sn−k⟩, which is so nonzero.

This theorem states that, up to a global phase, there is a correspondence between certain quantum states of (ℂ2)⊗n and
elementary abelian 2−subgroups of Gn of dimension n. Moreover, any quantum computation carried out by operators of the
Clifford group on one of those states is directly translated into a conjugation operation in the Pauli group. So, certain quantum
algorithms that involve circuits containing quantum gates from the Clifford group can be classically simulated (efficiently) by
tracking conjugates of n elements of the Clifford group. This fact, along with the corresponding efficiency in the measures
described in5, 10.5.3, is known as the “Gottesman-Knil theorem”13.

Example
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FIGURE 1 Example quantum circuit

Let us illustrate the stabilizer paradigm with the circuit of Figure 1.
The initial state is |'0⟩ = |0⟩⊗ |0⟩, with stabilizer subgroup S0 generated by Z1 = I ⊗ Z, and Z2 = Z ⊗ I . Application

of the Hadamard gate in the first qubit transforms |'0⟩ into |'1⟩ = |0⟩+|1⟩
√

2
⊗ |0⟩. The corresponding subgroup is obtained by

conjugation of ⟨Z1, Z2⟩ by the elementH ⊗ I , i.e., it is S1 = ⟨X1 = X ⊗ I,Z2⟩. The control NOT gate yields the (Bell) state
|'2⟩ =

|0⟩⊗|0⟩+|1⟩⊗|1⟩
√

2
, and the corresponding stabilizer subgroup S2 = ⟨X1⊗X2, Z1⊗Z2⟩. Right before the measurement, we

have the quantum state |'3⟩ =
|0⟩⊗|0⟩−|1⟩⊗|1⟩

√

2
(another Bell state), whose stabilizer group is S3 = ⟨−X1 ⊗X2, Z1 ⊗Z2⟩. Table

1 contains a summary of the quantum states and the stabilizer subgroups corresponding to the circuit of Figure 1.

Stage Quantum state Stabilizer subgroup
0 |0⟩⊗ |0⟩ ⟨Z1, Z2⟩

1 |0⟩+|1⟩
√

2
⊗ |0⟩ ⟨X1, Z2⟩

2 |0⟩⊗|0⟩+|1⟩⊗|1⟩
√

2
⟨X1 ⊗X2, Z1 ⊗Z2⟩

3 |0⟩⊗|0⟩−|1⟩⊗|1⟩
√

2
⟨−X1 ⊗X2, Z1 ⊗Z2⟩

TABLE 1 Quantum states and stablizer subgroups in the example

This formalism explains straighforwardly the familiy of quantum error correcting codes known as “stabilizer codes”5, 10.5.5. In
this context, certain 2k−dimensional quantum error correcting codes VS are described by the corresponding elementary abelian
2−subgroups S of Gn of dimension n − k, known as “error group”. The errors with no effect on the quantum state are those
effected by elements of S, where as the undetectable errors are those in S⟂⧵S, since they transform the quantum state in another
one belonging to the code. The correctable errors are subsets E of Gn such that whenever T , U ∈ E, then T −1U ∉ S⟂ ⧵ S.
This set is usually taken as those elements of the Pauli group of quantum weight not greater than ⌈ d−1

2
⌉, where d is minimum

quantum weight of the elements in S⟂ ⧵ S 12.

3 BV AND DJ ALGORITHMS

In this section we explain BV and DJ algorithms with the stabilizer formalism introduced above. Both algorithms have quantum
access to a binary function f ∶ F n2 → F2 by an oracle O ∶ (ℂ2)⊗(n+1) → (ℂ2)⊗(n+1), in the standard way O(|x⟩|y⟩) = |x⟩|x ⊕
f (y)⟩, where |x⟩ ∈ (ℂ2)⊗n, and |y⟩ ∈ ℂ2. As usual, this oracle is managed in its phase oracle version, i.e., since O(|x⟩|−⟩) =
(−1)f (x)|x⟩|−⟩, for the single qubit element |−⟩ = |0⟩−|1⟩

2
, the auxiliary last qubit is dropped and the corresponding oracle is

Of |x⟩ = (−1)f (x)|x⟩, for all |x⟩ ∈ (ℂ2)⊗n.
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3.1 BV
The goal of the BV algorithm is to determine a linear function f ∶ F n2 → F2 from its evaluations. That is, a certain function f
is given under the promise that f (x) = x ⋅ s, for some binary unknown array s ∈ F n2 (here again ⋅ denotes the standard inner
product in F n2 ). Clasically, this problem requiresO(n) evaluations of f (that yield the solution of the corresponding linear system
of equations). However, BZ only uses a single (quantum query) evaluation of f . The algorithm, whose quantum circuit can be
found in Figure 2, is as follows.

BV algorithm

INPUT: A linear function f ∶ F n2 → F2, with f (x) = x ⋅ s, for all x ∈ F n2
OUTPUT: A vector s
Set the initial quantum state |0⊗n⟩

Apply the Walsh-Hadamard transform5, 1.4.2 H⊗n, whereH = 1
√

2

(

1 1
1 −1

)

is the Hadamard gate

Apply the phase oracle Of
Apply the Walsh-Hadamard transformH⊗n

If the measurement of the final state in the computational basis is |s⟩, RETURN “s”

It can be proved that, with probability one, the final measurent gives the quantum state |s⟩, for the desired unknown value s.
Let us prove this fact under the stabilizer formalism, in a straightforward way.

FIGURE 2 Quantum circuit of the BV algorithm

Since |0⟩ is an eigenvector of the Pauli matrix Z (with eigenvalue 1), it is clear that the initial sate |0⊗n⟩ is stabilized by

any matrix of the form Z(ei), where ei = (0…0
(i
1 0…0) is an element in the standard basis of F n2 . The subgroup S of Gn

generated by those n matrices is abelian, since the elements {ei}ni=1 are pairwise orthogonal, with respect to the bilinear form ⋆
(i.e., F n2 × {0} is a totally isotropic subspace of (F 2n

2 , ⋆)).
Since HZH† = X, we have that application of the Walsh-Hadamard transform H⊗n on the initial state, is equivalent to

applying the conjugation by H⊗n on each of the matrices Z(ei), and so the stabilizer subgroup is generated by the n matrices
{X(ei)}ni=1.
Now, it follows the application of the phase oracle Of . Observe that, for all 1 ≤ i ≤ n, and si ∈ F2, the operator Zsi

i
transforms the quantum state |x⟩ of the computational basis, into (−1)si⋅xi |x⟩ (when xi = 0, the state remains the same, and it
takes an opposite global phase when xi = 1). Therefore, because of linearity Of |x⟩ = (−1)f (x)|x⟩ = (−1)x⋅s|x⟩ = (−1)x1⋅s1 ⋅
⋯ ⋅ (−1)xn⋅sn |x⟩ = Z(s)|x⟩, for all |x⟩ ∈ ℂ⊗n. Hence, the action of the phase oracle on the quantum state is translated into
conjugation by the element Z(s), i.e., since ZXZ† = −X, those 1 ≤ i ≤ n with si = 0 have an unmodified X(ei) as generator
of the stabilizer subgroup, whereas those with si = 1 provide by conjugation the generator −X(ei). Summarizing, the stabilizer
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subgroup is generated by {(−1)siX(ei)}ni=1. Incidentally, notice that the oracle Of , is an element of the Pauli group (and so in
particular of the Clifford group), so the algorithm can be efficiently realised via the Gottesman-Knill theorem.
A second application of the operator H⊗n, because of the relation HXH† = Z, yields that the stabilizer subgroup finally

achieved is generated by the n matrices {(−1)siZ(ei)}ni=1.
Since the Z matrix stabilizes the qubit |0⟩, and −Z stabilizes the qubit |1⟩, we have that, for all 1 ≤ i ≤ n, and a ∈ F2, the

matrix (−1)aZ stabilizes the quantum state |a⟩. Therefore, the state stabilized by the last subgroup is exactly |s⟩, and so the
final measure of the algorithm gives |s⟩ with probability one. A summary of the quantum states and the stabilizer subgroups
corresponding to BV algorithm, can be found in Table 2.

Stage Quantum state Stabilizer subgroup
0 |0⊗n⟩ ⟨Z1,… , Zn⟩

1 1
√

2n
∑

x∈F n2
|x⟩ ⟨X1,… , Xn⟩

2 1
√

2n
∑

x∈F n2
(−1)s⋅x|x⟩ ⟨(−1)s1X1,… , (−1)snXn⟩

3 |s⟩ ⟨(−1)s1Z1,… , (−1)snZn⟩

TABLE 2 Quantum states and stablizer subgroups in the BV algorithm

3.2 DJ
The goal of the DJ algorithm is to determine if a function f ∶ F n2 → F2 is constant or balanced. That is, a certain function f is
given under the promise that it is constant (i.e., f = 0 or f = 1) or balanced (i.e.,M = #{x ∈ F n2 | f (x) = 1} = 2n−1. Clasically,
this problem requires O(2n−1) evaluations of f (half plus one evaluations are needed in the worst case to distinguish a constant
or balanced function). However, DJ only uses a single (quantum query) evaluation of f . The algorithm, whose quantum circuit
can be found in Figure 3, is as follows. Observe that, except for the decision taken after the final measurement, the steps of the
BV and DJ algorithms are the same. This explains why Figure 2 and 3 are the same.

Deutsch-Josza algorithm

INPUT: A boolean function f ∶ F n2 → F2, promised to be either constant or balanced
OUTPUT: “f CONSTANT” or “f BALANCED”
Set the initial quantum state |0⊗n⟩

Apply the Walsh-Hadamard transformH⊗n, whereH = 1
√

2

(

1 1
1 −1

)

is the Hadamard gate

Apply the phase oracle Of
Apply the Walsh-Hadamard transformH⊗n

If the measurement of the final state in the computational basis is |0⊗n⟩, RETURN “f CONSTANT”.
Else, RETURN “f BALANCED”

It can be proved that, with probability one, the final measurement gives the quantum state |0⊗n⟩ if and only if f is constant.
When f is balanced, it gives other element of the computational basis. The first two steps in DJ are those of BV, and so the
stabilizer subgroup is generated by the n matrices {X(ei)}ni=1 after them.
Observe that the quantum circuit of DJ is just like that of BV.
Now, it follows the application of the phase oracle Of . An alternative formulation of this operator is the following one:

Of = I2n − 2
∑

x∈M |x⟩⟨x|, because Of |x⟩ = |x⟩ if and only if x ∉ M (i.e., iff f (x) = 0), and Of |x⟩ = −|x⟩, when x ∈ M .
Because B = {X(a)Z(b) | a, b ∈ F n2 } is is an orthonormal basis of 2n(ℂ) with respect to ⟨A|B⟩ = 1

2n
Tr(A† ⋅ B), it is

straightforward to write Of as a linear combination of the elements in B (the coefficients are given by ⟨Of |X(a)Z(b)⟩, for all
a, b ∈ F n2 ). When f is constant, then Of = ±In2 , and so Of = ±X(0n)Z(0n), where 0n is the zero vector of F n2 . When f is
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FIGURE 3 Quantum circuit of the DJ algorithm

balanced, notice first that, for all a ∈ F2, X|a⟩ = |a⟩ (here a is the complement of a mod 2), that I2n |a⟩ = ±Z|a⟩ = |a⟩. Also,
observe that Tr(X) = Tr(XZ) = 0, so consequently Tr(X(a)Z(b)) = 0 if a ≠ 0n. Hence, for all a, b ∈ F n2 ,

2n ⋅ ⟨Of |X(a)Z(b)⟩ = Tr(O†
f ⋅X(a)Z(b)) = Tr

((

In2 − 2
∑

x∈M
|x⟩⟨x|

)

⋅X(a)Z(b)

)

= Tr

(

X(a)Z(b) − 2

(

∑

x∈M
|x⟩⟨x|X(a)Z(b)

))

= Tr(X(a)Z(b)) − 2
∑

x∈M
Tr (|x⟩⟨x|X(a)Z(b)) = Tr(X(a)Z(b)) − 2

∑

x∈M
⟨x|X(a)Z(b)|x⟩

and we have two particular cases:

• a = b = 0n, where 2n ⋅ ⟨Of |X(0n)Z(0n)⟩ = Tr(In2) − 2
∑

x∈M⟨x|x⟩ = 2n − 2 ⋅
∑

x∈M 1 = 0

• a ≠ 0n, where 2n ⋅ ⟨Of |X(a)Z(b)⟩ = Tr(X(a)Z(b)) − 2
∑

x∈M⟨x|X(a)Z(b)|x⟩ = 0 − 2 ⋅
∑

x∈M 0 = 0

Hence, Of can be expressed as a nontrivial complex linear combination of the elements in the set {Z(b) | b ∈ F n2 ⧵ {0
n}}.

Remember, from the analysis of BV, that the elements in this set correspond to phase oracles of nonzero linear functions.
However, unlike BV, this oracle might not correspond to an element of the Clifford group (and as a consequence the algorithm
might not be efficiently realisable via the Gottesman-Knill theorem). A measurement of the realizability of the algorithm is the
“stabilizer rank”14, which in this case is upper bounded by the number of nonzero coefficients of Of as a linear combination of
the elements in the set {Z(b) | b ∈ F n2 ⧵ {0

n}}.
Coming back to the stabilizer formalism analysis of DJ, we have that Of = ±In2 , when f is constant, and that Of =

∑

b∈F n2
�bZ(b), for certain complex numbers �b = ⟨Of |Z(b)⟩ (with �0n = 0), when f is balanced. Hence, the action of the

phase oracle on the third step of DJ, is translated into conjugation by either ±In2 , or by a nontrivial linear combination of
operators Z(b), with b ≠ 0. In the first case, the stabilizer group after this step is again the one generated by {X(ei)}ni=1.
In the second case, since Z(b)X(ei)Z(b′)† = (−1)biX(ei)Z(b ⊕ b′), the stabilizer subgroup is Of ⟨X(e1),… , X(en)⟩O

†
f =

⟨

X(ei)
(

∑

b,b′∈F n2
�b�b′(−1)biZ(b ⊕ b′)

)⟩n

i=1
(where⊕ denotes addition in F n2 ).

The second application of the operator H⊗n, yields in the first case a stabilizer subgroup generated by the
n matrices {Z(ei)}ni=1, and the corresponding stabilized state is |0⊗n⟩, which is to be measured with probability
one. In the second case, the n elements generating the stabilizer subgroup are H⊗nOf ⟨X(e1),… , X(en)⟩O

†
fH

⊗n =
⟨

Z(ei)
(

∑

b,b′∈F n2
�b�b′(−1)biX(b ⊕ b′)

)⟩n

i=1
. This subgroup stabilizes the quantum state

∑

b∈F n2
�b|b⟩, because

H⊗n
⎛

⎜

⎜

⎝

∑

b∈F n2

�b|b⟩
⎞

⎟

⎟

⎠

=
∑

b∈F n2

�bH
⊗n
|b⟩ =

∑

b∈F n2

�b
∑

x∈F n2

(−1)x⋅b
√

2n
|x⟩ =

∑

b∈F n2

�b
∑

x∈F n2

Z(b)
√

2n
|x⟩
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=
⎛

⎜

⎜

⎝

∑

b∈F n2

�bZ(b)
⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

∑

x∈F n2

|x⟩
√

2n

⎞

⎟

⎟

⎠

= OfH
⊗n
|0⊗n⟩

and soH⊗nOfH⊗n
|0⊗n⟩ =

∑

b∈F n2
�b|b⟩. The result is derived from Theorem 1 (item 4).

Finally, since �0 = 0, the measurement yields with probability one |0⊗n⟩ if and only if f is constant. A summary of the
quantum states and the stabilizer subgroups corresponding to DJ algorithm, can be found in Table 3.

Stage Quantum state Stabilizer subgroup
f constant f balanced f constant f balanced

0 |0⊗n⟩ ⟨Z1,… , Zn⟩

1 1
√

2n
∑

x∈F n2
|x⟩ ⟨X1,… , Xn⟩

2 ± 1
√

2n
∑

x∈F n2
|x⟩ ± 1

√

2n
∑

x∈F n2
(−1)f (x)|x⟩ ⟨X1,… , Xn⟩ Of ⟨X1,… , Xn⟩O

†
f

3 ±|0⊗n⟩
∑

b∈F n2
�b|b⟩ ⟨Z1,… , Zn⟩ H⊗nOf ⟨X1,… , Xn⟩O

†
fH

⊗n

TABLE 3 Quantum states and stablizer subgroups in the DJ algorithm

4 BEYOND THE KNOWN ALGORITHMS: GENERALIZED DJ

In this section, we consider a possible extension of the BV and DJ algorithms, based on the understanding provided by the
stabilizer paradigm of the previous section. First, we remark is that the BV algorithm can be seen (except by its output), as
a particular case of the DJ algorithm. Namely, in both algorithms, all the steps except for the last one are exactly the same.
Moreover, being linear any promised function for the BV algorithm, such a function must be either f = 0 or balanced (the set
F n2 ⧵{x ∈ F n2 | f (x) = 1} is the kernel of the F2−linear function f , and so its cardinality is

2n

2
, because its image is F2). Therefore,

when measured with probability one, the output state |0⊗n⟩ occurs if and only if f is constant (i.e., f = 0). In any other case,
the function is balanced. Moreover, in the case n = 1, the two balanced functions are the only nonzero linear ones (with oracle
Of = Z(1)), and its complementary function (with oracle Of = −Z(1)). So, BV is exactly the same as DJ (which in this case
is called “Deutsch Algorithm”15).
Secondly, we want to remark on the nature of the DJ oracle, that is expressed as

∑

b∈F n2
�bZ(b). This expression is not exclusive

of the oracle of balanced or constant functions, but of any arbitrary boolean function, too. If we consider the analysis of the
DJ algorithm, the condition “f balanced” is only used to deduce that �0n = 0, so such an expression is valid for any function
f ∶ F n2 → F2. So, if we apply any of the two algorithms to an arbitrary boolean function f , the final measurement would be |b⟩,
one of the states of the computational basis that appears in the description of the corresponding oracle Of . The probability of
such a measurement is exactly ||

|

1
2n
Tr(O†

f ⋅Z(b))||
|

2
.

Finally, from the point of view of the connections with quantum error correcting codes and the stabilizer formalism, we can
“see” BV and DJ as the decoding procedure of errors introduced by the “perturbations”Z(b) involved in the linear combination
of the oracle Of . The measurement |s⟩ is, therefore, one of the possible syndromes induced by such perturbations. This lead us
to introduced a generalization of the DJ problem, for each possible syndrome s ∈ F n2 .

Generalized DJ problem:

Given a vector s ∈ F n2 , and a boolean function f ∶ F n2 → F2, with the promise that the function f ⊕ s is either constant or
balanced, determine which is the case.

A solution of this problem is given by the:

Generalized DJ algorithm:



10 E.F. Combarro ET AL

INPUT: A vector s ∈ F n2 , and a boolean function f ∶ F n2 → F2, with the promise that the function g = f ⊕s is either constant
or balanced
OUTPUT: “g CONSTANT” or “g BALANCED”
Set the initial quantum state |0⊗n⟩

Apply the Walsh-Hadamard transformH⊗n, whereH = 1
√

2

(

1 1
1 −1

)

is the Hadamard gate

Apply the phase oracle Of
Apply the Walsh-Hadamard transformH⊗n

If the measurement of the final state in the computational basis is |s⟩, RETURN “g CONSTANT”.
Else, RETURN “g BALANCED”

This algorithm gives the right answer to the Generalized DJ problem, with probability one. The reason is that, since for all
x ∈ F n2 , we have Og|x⟩ = (−1)g(x)|x⟩ = (−1)s⋅x(−1)f (x)|x⟩ = (−1)s⋅xOf |x⟩ = Of (−1)s⋅x|x⟩ = OfZ(s)|x⟩. Therefore, the
algorithm returns “g BALANCED” if and only if the final measurement is not |s⟩, if and only if 1

2n
Tr(O†

f ⋅Z(s)) is zero, if and
only if Tr(O†

g) = 0, if and only if g is really balanced (because g =
∑

0≠b∈F n2
�bZ(b), with �b = Tr(O†

g ⋅Z(b)), since �0n = 0).

5 CONCLUSIONS AND FUTUREWORK

In this paper, we have presented an explanation of the correctness of the BV and DJ algorithms based on the stabilizer formal-
ism. This paradigm was initially introduced in connection to quantum error correcting codes, but it is useful to provide a better
understanding of other techniques in quantum computation, like the ones considered here. Inspired by this link, we have intro-
duced a generalised version of the DJ problem, and the corresponding algorithm that solves it. In the process, we have seen that
the phase oracle of any boolean function can be expressed as a linear combination of tensor products of Z gates. And that the
probability of measurement of a certain element in the computational basis, by the algorithms under study, is directly related to
the coefficients of such a linear combination. Further inspired by this facts, we intend to explore a familiy of problems, that we
call “quantum exact promise problems”, in which a certain subset of boolean functions is partitioned into a collection of subsets
which have to be distinguished from each other.
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