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           Silicon carbide (SiC), zinc oxide (ZnO), graphite and molybdenum disulfide (MoS2) 

attract much interest as materials with technological applications for the development of new 

electronic devices, in particular the new generation of semiconductors known as Power 

Semiconductor Devices (PSDs) or Field Effect Transistors (FETs). One of the biggest 

challenges is to understand the mechanical failure that occurs in the manufacturing   process 

of these materials as a result of the stresses induced during the heating cycles to which they 

are subjected. Therefore, the fundamental objective of this thesis is the evaluation and 

analysis in chemical-physical terms of the stress-strain relationships. From these relationships, 

the limit of mechanical stability of these systems can be determined. Computational 

simulation allows accessing to these relationships in a quantitative way, thus providing 

information that is sometimes difficult to reach experimentally. In this study, we present 

results from first-principles density functional theory calculations that quantitatively account 

for the response of selected covalent, ionic and layered materials to general stress conditions. 

In particular, we have evaluated the ideal strength along the main crystallographic directions 

of 3C and 2H polytypes of SiC, hexagonal ABA stacking of graphite, ZnO and 2H-MoS2. 

Transverse superimposed stress on the tensile stress was taken into account in order to 

evaluate how the critical strength is affected by these multi-load conditions. In general, 

increasing transverse stress from negative to positive values leads to the expected decreasing 

of the critical strength. Few exceptions found in the compressive stress region correlate with 

the trends in the density of bonds along the directions with the unexpected behavior. In 

addition, we propose a modified spinodal equation of state able to accurately describe the 

calculated stress–strain curves. This analytical function is of general use and can also be 

applied to experimental data anticipating critical strengths and strain values, and for providing 

information on the energy stored in tensile stress processes. 

            The first part of this Doctoral Thesis will be devoted to the presentation of the 

theoretical and methodological bases of the computational tools that are used in the 

simulations of the mechanical behavior that will be investigated in these materials. In the 

second part, stress-strain relationships are evaluated along relevant crystallographic 

directions, the ideal strength is calculated and the results are interpreted and explained in 

terms of the chemical bond and the thermodynamic stability limit using the spinodal equation. 

The thesis will conclude with a summary of the most relevant contributions of this study.      
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INTRODUCTION 

 This thesis is the result of four years of theoretical and computational work aimed at 

the development and application of chemical and physical models that bridge the gap between 

the outcome of quantum mechanical electronic structure methodologies and the observed 

stress-strain phenomena in solids. Stress (σ) along with temperature (T), electromagnetic 

radiation and chemical agents are the genuine elements of alteration of the properties and 

functionality of bulk materials systems. They participate in a multitude of phenomena and 

processes of interest for many areas of knowledge, essential for scientific and technological 

progress. This is one of the main reasons to have undergone the current investigation. 

 This fundamental character has ensured, in tune with the advances in modern 

science, a development of specific research lines focused on both basic and applied aspects of 

the interaction of these elements on various chemical-physical systems. This is the case of the 

expansion experienced in the field of High Pressure (HP), whose boom in the last decades has 

been strongly favored the Physics of Condensed Matter, the Sciences of the Materials, the 

Sciences of Earth and the Planets and even the food sciences [1]. 

 Research on various aspects related to High Pressure is currently carried out 

routinely in many laboratories due to the development of advanced experimental techniques 

capable of achieving pressures in the mega bar regime (10
2 

GPa), particularly thanks to the 

improvement in methods based on diamond anvil cells (DAC) combined with new generation 

sources of synchrotron radiation and other spectroscopic (infrared and Raman), electrical and 

magnetic techniques. On the other hand, the increase of the power of the computers together 

with the greater precision of the calculation programs, where more robust and rigorous 

theoretical methodologies have been codified, now allow reliable simulations and with 

predictive character of the response of the materials to various mechanical conditions [2]. 

 The character of the essential role of stress (and particular its hydrostatic 

representative pressure) is reflected in its ability to correlate the microscopic and macroscopic 

visions of the matter providing capacity to control and access different geometrical 

configurations in solids, modifying interatomic distances and angles of bonds. Its 

effectiveness is higher than that of temperature. In crystalline solids, for example, the 

volumetric changes vary from a few units to a few tens of percent depending on whether the 

maximum temperatures or the maximum pressures attainable in the laboratories are applied, 
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respectively. In the most common experiments, the decrease in volume and the consequent 

increase in density experienced by a solid sample when subjected to pressure within the DAC 

are quantified through the variable compressibility. In practice, its inverse is evaluated, which 

is called the modulus of compression (bulk modulus), and at zero pressure it is represented by 

B0. This magnitude and its pressure derivative, also evaluated at zero pressure (B'0), are the 

fundamental parameters of the equation of state (EOS) isotherm of the material system 

contained in the DAC.  

 When increasing the hydrostatic pressure, it is observed that the stability range of a 

sample in a certain crystalline structure is finite and, normally, a transformation takes place 

towards another structure where the packing of its atoms is more effective. A phase transition 

induced by pressure is therefore produced. This change affects the nature of the bonding 

chemical network of the solid which can induce for example polymerization processes, as in 

molecular solids. In addition, it usually increases the hardness and incompressibility and can 

lead to new magnetic arrangements. The study of polymorphism has, therefore, a great 

importance in basic aspects such as the understanding of the cohesion of solids, but also in the 

field of technological applications where, for example, potentially super hard materials have 

been synthesized by means of induced transitions by pressure [3]. 

 The observable properties of solids are, ultimately, determined by the electronic 

structure, which, in turn, is governed by the laws of quantum mechanics. The calculations of 

first principles provide the ideal complement to experimental work. They allow the support, 

confirmation and interpretation of measurements and experiments. They also may have a 

predictive character and can provide information about regions that are not experimentally 

accessible. The use of quantum-mechanical methodologies of the electronic structure in solids 

to study the effects of stress on crystalline structures has experienced an extraordinary growth 

in recent years, mainly due to the high reliability of its results and the interdisciplinary nature 

of High Pressure [2]. 

This thesis aims to contribute to the understanding of the behavior of crystalline solids when 

they are subjected to varying conditions of stress, with emphasis on regions of uniaxial 

tensions rather than hydrostatic compressions. This is the essential contribution of this 

investigation which differentiates from others carried out in the same group. The fundamental 

objective that arises in this thesis is the generation of interpretative theoretical models aimed 

at the understanding of properties, phenomena and processes that exhibit crystalline solids 
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subjected up to limiting stability conditions of uniaxial tensions with and without 

superimposed loads. To do this, we resort to first principles quantum-mechanical 

methodologies for the resolution of the electronic structure, non-empirical algorithms for 

obtaining equations of state (EOS), and theoretical algorithms for evaluating elastic constants. 

These computational tools allow us to access fundamental properties of matter (structural, 

elastic, etc.) and compare with the observed behavior in the form of general trends in order to 

propose simple models for their description.  

 In order to rationalize the study while keeping also a practical implementation of the 

investigation, a selection of crystalline systems has been performed. We focus on materials 

with important and current technological applications in fields as electronics, solar cells and 

lubricants. For example, in the development of new electronic devices, particularly the last 

generation of semiconductors known as PSDs (Power Semiconductors Devices) [4] and 

prototype FFTs (Field Effect Transistors) [5..8], one of the biggest challenges is to understand 

the mechanical failure that occurs in the manufacturing processes of these materials as a result 

of the stress induced during the heating cycles to which they are subjected. The ideal strength, 

defined as the maximum tension that a crystal can support in the absence of defects in a 

certain direction, constitutes one of the most important mechanical properties to provide 

reliable information on this behavior due to the role it plays in the description of these 

phenomena during the production process. One way to access this fundamental property, both 

experimentally and theoretically, is through the study of stress-strain relationships. 

Understanding how these relationships affect the mechanical properties of PSDs and 

prototype FETs is therefore crucial to optimize their manufacturing processes and the 

clarification of the types of polymorphic transformations induced by pressure these materials 

can undergo.  

 First principles computational simulations based on the density functional theory 

(DFT) allow the quantitative evaluation of stress-strain relationships in any crystallographic 

direction, thus providing information that is difficult to access experimentally. Although 

studies of these relationships exist in particular crystalline systems, limited mostly to a small 

set of directions, it would be also desirable to investigate the general theoretical fundaments 

of the stress-strain relationships and to systematically address the assessment and analysis of 

the elastic stability of at least some family of compounds using these relationships and 

following a computational strategy. 
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 We aim to use theoretical and computational methodologies from Quantum and 

Physical Chemistry to calculate structural, stability and elastic properties of 2H and 3C 

polytypes of silicon carbide (SiC), graphite, zinc oxide(ZnO) and molybdenum disulfide 

(MoS2). Due to the particular bi-dimensional and three-dimensional atomic arrangements of 

their crystalline structures, the behavior of these solids is shown to be highly anisotropic. This 

fact constitutes both, a challenge and an attractive research scenario to our computational 

approach. The fundamental objective is the determination of the stability limits of these 

systems when they are subjected to controlled uniaxial and biaxial stresses along the most 

relevant crystallographic directions. The fulfillment of this objective entails the detailed 

exploration of tension-deformation curves. For detailed analysis we mean that it is required (i) 

the interpretation of these relationships in terms of the different chemical bonding networks 

present in each material, (ii) to establish the correspondence of these curves with the elastic 

behavior of the materials and (iii) to find the relationship of the calculated critical strengths 

with the stability limit evaluated by means of the so-called spinodal equation of state (SEOS) 

[9]. This analytical function was designed to describe the high-pressure behavior of 

condensed matter using as a reference state the onset of elastic instability. It has been 

successfully applied not only to the description of experimental and theoretical pressure-

volume data, but also to the pressure evolution of one dimensional unit cell parameters [10] 

 The computational codes used in this Thesis can be divided into two groups 

according to the tasks they perform: (i)-quantum-mechanical methods of solving the 

crystalline electronic structure and (ii)-equation of state and thermal models to access stability 

limits and thermodynamic properties of crystalline materials at static and finite temperatures.  

                The calculation of the electronic structure can be made with different methodologies 

according to the characteristics of the system and the problem to be treated. For example, in 

clearly ionic systems, the aiPI method is a good option [11,12]. It solves the Hartree-Fock 

equations of the solid by splitting the crystal wave function into localized group functions 

using a crystal-consistent procedure. For other systems, different methodologies framed 

within the approach of the density functional theory can be proposed. The choice of one or the 

other lies fundamentally in the problem to be dealt with. Thus, all electron electronic density 

can be obtained with the CRYSTAL code [13], which approximates the wave functions by a 

linear combination of localized orbitals of Gaussian type (LCAO). This procedure has on the 

other hand certain undesired characteristics (linear pseudo dependency problems, base 

superposition errors, etc.). The immediate alternative is the use of plane waves as base 
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functions, since they constitute a universal, orthogonal and in principle complete set. This is 

the strategy implemented in the codes ABINIT [14], PWSCF [15] and VASP [16], which also 

use the pseudo potential approach, according to which the strong potential of coulomb and the 

core electrons are replaced by an effective pseudo potential much weaker, and the valence 

wave functions, which oscillate rapidly in the core region, by pseudo-wave functions, which 

vary more smoothly in this region and coincide with the real wave functions outside it. This 

reduces the complexity of the problem. First, by not considering the core electrons explicitly, 

the number of wave functions to be calculated is smaller. Second, since the potential no 

longer diverges to  -∞  and the valence wave functions are softer within the core region, fewer 

flat waves are needed to describe the valence wave functions. Within the presented methods, 

the ABINIT method is the one chosen for the study of our crystalline systems. 

 On the other hand, the GIBBS code [17] deals numerically and analytically with 

energy-volume (E-V) points calculated in order to deduce pressure-volume relations (p-V) and 

parameters of the EOS (compressibility module and its derivative with respect to pressure) in 

static conditions (zero temperature and neglecting the vibrational contributions of zero point). 

The code used also a non-empirical Debye-type model to give an approximate account of the 

thermal contributions. In given conditions of P and T, the evaluation of the Gibbs function 

allows to identify the thermodynamically stable phase. In our work, we have used 

computational strategies implemented in the GIBBS code to describe energy-strain curves 

computed with ABINIT.  

 The first block of the two in which this document is organized introduces the 

fundamentals of the methodologies used in the Thesis. We have also divided it into two parts 

according to the static or dynamic character of the properties studied. In the first place, we 

consider the crystalline structure and the electronic structure (chapters 1 and 2). This part 

contains the bases that allow us the study of the fundamental observables of the solids and 

also those of prototypical access from the computational point of view. In the second part we 

consider the response of the crystalline system to forces on the cell or on the atoms (chapter 

3). We consider only the linear response. We let the cell to change in shape (not only in size) 

and the atoms to move. We briefly study the concepts and procedures for calculating 

elasticity.  

 The second block of the document collects and discusses the results of quantum- 

mechanical simulations in a collection of selected crystalline solids. We have divided it into 
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one single chapter dealing with the four materials under study, SiC, ZnO, Graphite and MoS2.. 

They are organized in similar sections presenting: (i)-description of the crystal structure, (ii)-

computational details in total energy calculations including the convergence study (bases, k-

points, exchange-correlation functional, weak interactions corrections, etc.), (iii)-results and 

discussion. This last section is further divided into subsections containing our discussion of 

(1)-observable structural, EOS and elastic constants, (2)-evaluation of ideal strength with and 

without transverse stress effects, and (3)-analysis beyond the stability limit: phase transition 

and bond breaking.   

 The Thesis ends with a compilation of the general and particular conclusions of the 

investigation. At the end of them we have compiled the manuscript that has already been 

published in the Nanomaterials  journal. 
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1.1  CRYSTALLOGRAPHY 

 Point symmetry and periodicity are perhaps the most fascinating and genuine 

characteristics of crystalline systems. These attributes allow to distinguish crystals from other 

forms of matter. In the context of group theory, point symmetry is described using point 

groups and periodicity by means of translation groups, with the global symmetry of the crystal 

governed by the space groups. 

 The correlation between the symmetry of the crystal and its observational properties 

is clear according to the Neumann principle that states that all physical property of a crystal 

must possess at least the same symmetry as the symmetry of its point group. The crystalline 

symmetry manifested by real solids is, therefore, of vital importance for the understanding of  

the electronic structure, the polymorphism, the compressibility, the elasticity and the 

crystalline vibrations. All these phenomena and properties will be object of study in the 

present memory. 

1.1.1 CRYSTALLOGRAPHIC LANGUAGE 

1.1.1.1  unit cell 

 The crystals are objects in the three-dimensional (3𝐷) physical space. 𝐴 model for 

its mathematical treatment is point space. Known in crystallography as a direct space. In this, 

the structures of the finite real crystals are idealized as infinite and perfect crystalline 3𝐷 

structures, which for most applications is an excellent approach. 

 A vector space 𝑉𝑛  (𝑛 = 3) connected to the point space can also be considered. 

Thus, the crystalline structures are described in the point space, since the vectors normal to 

the faces, the translational vectors and the reciprocal lattice are elements of the vector space. 

 The connection between the vector space 𝑉𝑛 and the point space 𝐸𝑛  transfers the 

metric and the dimension of 𝑉𝑛  to the point space 𝐸𝑛 so that the distances and angles in the 

point space can be calculated. The translational periodicity implies the existence of translation 

symmetry operations defined by the set of vectors {𝑇𝑖}: 

                                        𝑇⃗ i =𝑢𝑖,1𝑎 1+𝑢𝑖,2𝑎 1 + 𝑢𝑖,3𝑎 1;    𝑢𝑖,𝑗∊𝑍                                           (1.1) 
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 Such that set of points at the ends of the translation vectors (nodes) forms a 3𝐷 

network. The three base vectors define a parallelepiped called the unit cell. In this way, the 

3𝐷network is perfectly described by the lengths 𝑎, 𝑏 𝑎𝑛𝑑 𝑐, of the base vectors (𝑎 1, 𝑎 2, 𝑎 3) 

and by the three inter axial angles α, β, and 𝛶, this set constituting the so-called parameters 

metrics of the structure. Another description of the base can be given through the scalar 

products of all pairs of base vectors. The set of these scalar products obeys the rules of the 

second rank covariant tensors and can be written through a 3x3 matrix, called the metric 

tensor, 𝐺, with elements  𝑔𝑖𝑘 = 𝑎 𝑖.𝑎 𝑘;  𝑖, 𝑘 = 1,2,3. 

 The different types of unit cells are characterized by the number of network points 

they have. Thus, primitive cells contain a lattice point, while those containing two or more 

lattice points are designed as multiple or centered. The distinction between these two types of 

cells can be transferred to the vector space. Thus, if the coefficients of all the vectors with 

respect to the crystallographic basis are integers, the base is primitive, whereas if rational 

coefficients appear, the base is non-primitive. A unit cell commonly used is the Wigner-Seitz 

cell. This cell is constructed by choosing as origin any point of the lattice 𝑂 and drawing 

planes that bisect perpendicularly the lines that join 𝑂 with its closest neighbors. Due to the 

fact that crystals are anisotropic systems it is necessary to identify directions and planes in 

which specific properties are observed. In this sense, the directions and planes determined by 

two or three lattice points are called directions and crystallographic planes, respectively. To 

facilitate the realization of calculations and to allow the interpretation of the physical 

properties of the glass, the use of the reciprocal space is convenient. Thus, if the base vectors 

of the real lattice are 𝑎 1, 𝑎 2 𝑎𝑛𝑑 𝑎 3, it is possible to define a set of vectors of the reciprocal 

lattice 𝑏⃗ 1, 𝑏⃗ 2 𝑎𝑛𝑑 𝑏⃗ 3, where 𝑏⃗ 𝑖 . 𝑏⃗ 𝑗 = 2𝜋𝛿𝑖𝑗  (𝑖, 𝑗 = 1,2,3), so that 𝑏⃗ 1, 𝑏⃗ 2 𝑎𝑛𝑑 𝑏⃗ 3 can be written 

explicitly as: 

                                    𝑏⃗ 1 =
2𝜋(𝑎⃗ 2𝑥𝑎⃗ 3)

𝑎⃗ 1.(𝑎⃗ 2𝑥𝑎⃗ 3)
,  𝑏⃗ 2 =

2𝜋(𝑎⃗ 3𝑥𝑎⃗ 1)

𝑎⃗ 2.(𝑎⃗ 3𝑥𝑎⃗ 1)
, 𝑏⃗ 3 =

2𝜋(𝑎⃗ 1𝑥𝑎⃗ 2)

𝑎⃗ 3.(𝑎⃗ 1𝑥𝑎⃗ 2)
                              (1.2) 

Thus, any vector of the reciprocal lattice can be written as a function of 𝑏⃗ 1, 𝑏⃗ 2𝑎𝑛𝑑 𝑏⃗ 3 and, by 

analogy, with equation (1.1): 

                                          𝑣 𝑖= 𝑣𝑖,1𝑏⃗ 1 +𝑣𝑖,2𝑏⃗ 2+ 𝑣𝑖,3𝑏⃗ 3 ;  𝑣𝑖,𝑗∊ Z                                            (1.3) 
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While in real space 𝑥, 𝑦, 𝑧 are used as coordinates for any vector  𝑟 , in the reciprocal space 

𝑘𝑥, 𝑘𝑦 𝑎𝑛𝑑 𝑘𝑧 are used as coordinates, since any vector in the reciprocal space it is usually 

designated by 𝑘⃗ . 

             As in the real space the unit cell is defined, in the reciprocal space the first zone of    

Brillouin is defined, which is, essentially, a unit cell of the reciprocal lattice. Conventionally, 

the Wigner-Seitz unit cell of the reciprocal lattice is chosen.  Another unit cell that is useful to 

consider is the primitive unit cell, which is the parallelepiped centered on 𝑘⃗  = 0⃗  and with 

vertices parallel and equal in magnitude to 𝑏⃗ 1, 𝑏⃗ 2 𝑎𝑛𝑑 𝑏⃗ 3, where  𝑏⃗ 1, 𝑏⃗ 2 𝑎𝑛𝑑 𝑏⃗ 3 are the base 

vectors of the reciprocal lattice. The volume of the first Brillouin zone is then given by: 

                                                           𝑏⃗ 1. (𝑏2
⃗⃗⃗⃗ 𝑥𝑏⃗ 3) =  

8𝜋3

𝑉
                                                      (1.4) 

𝑉 being the volume of the real primitive unit cell. 

1.1.1.2  Symmetry operations 

 To understand the periodic and ordered nature of the crystals, it is also necessary to 

know the rest of the operations, apart from the translation, by which the repetition of the basic 

unit is obtained and which leave the metric tensor invariant. An operation of any symmetry is 

represented by an augmented matrix formed by a 3x3 matrix, 𝑊, called the linear part (it is 

the part that defines the rotation) and a column matrix (3x1) that describes the translation in 

the movement (ω). Thus, any movement of x to its image 𝑥̃can be represented by: 

                                                                 𝑥̃ = (𝑊,𝜔) = 𝑊𝑥 +𝜔                                                    (1.5) 

Considering the properties of the augmented matrix, three movements can be defined: 

 ▪ translation. In this case 𝑊 = 𝐼, where 𝐼 is the unit matrix and the vector 

  𝜔⃗⃗ = 𝜔1𝑎 1 +𝜔2𝑎 2+ 𝜔3𝑎 3 is the translation vector. 

 ▪ Movements with at least one fixed point. They are divided into their own   

movements or rotations if det(𝑊) = +1. Within the improper operations can be inversions if  

𝑊 = −1, reflections if  𝑊2 = 𝐼 and 𝑊 = −1 and rotor inversions in the rest of the cases. 
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 ▪ Movements without fixed points and that are not translations (or non-simorphic 

operations). They are divided into helical rotations if det(𝑊) = +1 and reflections with slip if 

det(𝑊) = −1 . 

 The geometries (points, axes or planes) around which the symmetry operations take 

place and which correspond to the geometric place of the points that remain for such 

operations are called elements of symmetry. Not all elements of symmetry are compatible 

with the periodic nature of space, which imposes restrictions on the type and possible 

combinations of elements of symmetry. The set of all the symmetry operations of an object 

forms a group, the symmetry group. 

1.1.1.3  Space groups and point groups 

 In crystallography, the symmetry groups are called space groups and there are 230 

types. Classification in types reveals the common symmetry properties of all space groups 

belonging to a type. Algebraically, the space groups 𝐺 and 𝐺 ' belong to the same type of 

space group if there exists a matrix 𝑃 of dimensions (n + 1) × (n + 1) with det(𝑃) = ± 1 and 

column 𝑝 conformed by real numbers such what : 

                           𝑊 ′ = 𝑃−1𝑊𝑃                                                                  (1.6) 

where the matrix part of 𝑃  describes the translation from the primitive basis of 𝐺  to the 

primitive basis of 𝐺′and the column 𝑝  of 𝑃  indicates the possibility of a different origin 

choice for the operations of 𝐺 and 𝐺′. Recall that 𝑊 represents an operation of any symmetry 

of group 𝐺 . Thus the 219 types of related space groups are obtained. In practical 

crystallography, however, we want to distinguish the orientation of the helicoidal rotations 

and we do not want to  change the orientation of the coordinate system, so we add the 

additional condition det(𝑃) = ±1  to the equation 1.6, such that 11 types of space groups 

divide themselves, originating the 230 space groups collected in the International Chart of 

Crystallography [1]. 

 Let's see now how the point groups are defined. If we consider that 𝐻 is a subgroup 

of the space group 𝐺 and 𝑔𝑗 an element of 𝐺 not contained in 𝐻, 𝐺 can be decomposed with 

respect to 𝐻 in the following way: 𝐺 = 𝐻𝑈𝑔𝑗𝐻𝑈𝑔𝑘𝐻𝑈 ...., where𝑔𝑗𝐻 and 𝑔𝑘𝐻 form a coset 

on the left and on the right of 𝐻 respectively. Furthermore, if the above decompositions result 

in the same cosets, except for the order of the elements in each coset, the subgroup 𝐻 is called 
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the normal subgroup. An example of a normal subgroup present in all space groups is the 

translation subgroup. If we call the normal group of translation ξ and decompose the space 

group 𝐺 with respect to that: 

                                                        𝐺=ξ𝑈𝑊𝑖ξ𝑈𝑊𝑗ξ𝑈                                                           (1.7) 

it can be shown that there is a unique correspondence between cosets and matrices 𝑊𝑗. As a 

consequence, if the symmetry operations of 𝐺 are described by the matrices (𝑊,𝜔), the cosets 

can be represented alternatively by the matrices  𝑊𝑗. These matrices form a group of finite 

order, known as group point β of group 𝐺. Likewise, it is possible to define the group, 𝐺 𝑇⁄ , 

formed by a finite number ( h ≤ 48) of own, improper and non-simorphic operations, where 

the translational vectors  𝜏  = 𝑞1𝑎 1+𝑞2𝑎 2+𝑞3𝑎 3 are restricted to the unit cell:  0 ≤ 𝑞1, 𝑞2, 𝑞3 <

1. The space group is obtained as a direct product of the factor and translation groups: 

𝐺 = (
𝐺

𝑇
)⨂𝑇. It is always possible to establish an isomorphism between the factor group and a 

crystallographic point group. Both will have the same operations and their multiplication table 

will be equivalent. 

 The point groups are polar or not depending on whether or not there is a polar 

direction, without equivalent directions by symmetry, such that a permanent dipole electrical 

moment appears along this direction. 

 The set of crystalline structures with the same point group constitute a crystalline 

class, there being, therefore, 32 crystalline classes in 3𝐷  space. Algebraically, two space 

groups 𝐺 and 𝐺′ belong to the same crystalline class if the matrix representation 𝑊 and 𝑊′ of 

their point groups are equivalent, there is an actual matrix 𝑃 such that the equation 𝑊′  = 

𝑃−1𝑊𝑃 is verified. The name comes from the mathematical definition according to which is a 

group of symmetry operations that act on a point 𝑂 leaving all the distances and angles in 3𝐷 

space invariant. 

 A crystallographic point group must satisfy the extra requirement of being 

compatible with the translational symmetry of crystalline solids, which reduces the possible 

operations to identity, inversions, reflections in certain planes and rotations around axes of 

order 1,2,3,4 or 6. The combination of these operations leads to 32 crystallographic point 

groups. These can be classified into 7 crystalline systems (syngonies) according to the order 

of the main axis. There are 5 crystal systems for point groups with a single major axis of order 
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1,2,3,4 or 6 called triclinic, monoclinic, trigonal, tetragonal and hexagonal crystalline 

systems, respectively. There are 2 more systems, the orthorhombic with 3 axes of rotation of 

order 2 mutually perpendicular and the cubic system with 4 axes of rotation of order 3 

directed towards the vertices of a regular tetrahedron. 

 In a given crystalline system, the point group that contains the greatest number of 

symmetry operations is called the holosimetric point group of the system. It is also possible to 

assign each of the 14 Bravais networks (possible arrangements of identical points in 3D space 

such that the environment of each is identical) to one of the 7 crystalline systems. Through the 

combination of the 32 point groups with the 14 Bravais networks, the 73 simorphic space 

groups are obtained, while the remaining 157 groups require the substitution of proper or 

improper symmetry axes and of reflection planes by sliding axes of the same order and by 

sliding plans, respectively. 

1.1.1.4  Unit cell and symmetry 

 Normally, crystallography usually chooses unit cells that clearly exhibit the 

symmetry of the crystal, which is done by selecting vector vectors along symmetry directions 

and origin at a network point. This leads to so-called cell conventions that are not necessarily 

primitive, although it is possible to obtain primitive cells from them. In the reciprocal space 

the choice of the unit cell of Wigner-Seitz in front of others is due to the fact that this unit cell 

exhibits the symmetry of the point group of the reciprocal lattice. However, for crystals that 

belong to crystalline systems of low symmetry (monoclinic, triclinic) its construction is very 

tedious and the primitive unit cell is used. On the other hand, the usefulness of the primitive 

cells in the reciprocal space is crucial in the calculations of electronic structure (developed in 

chapter 4). Thanks to them it is possible to simplify the mathematical expressions, and that 

allow to transform an infinite system (the crystalline cell) into a finite one (the cell of Wigner-

Seitz or first zone of Brillouin). The integrals thus have finite limits and, making use of the 

translational symmetry, the calculations are facilitated. 

 Given a zone of Brillouin and a point 𝑘 of this zone there are certain elements of  𝑃, 

the point holosimetric group of the corresponding crystalline system, which transform 𝑘 into 

itself or at some equivalent point 𝑘′. These elements form a subgroup of 𝑃 that is denoted by 

𝑃(𝑘) and is called the symmetry group of  𝑘 . Based on this, points, lines and planes of 

symmetry can be defined. Thus, 𝑘 is a point of symmetry if there exists a neighborhood  𝑁 of 
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𝑘  in which no point except 𝑘  has the symmetry group 𝑃(𝑘).  On the other hand, if in a 

sufficiently small neighborhood  𝑁 of 𝑘 there is always a line (plane) passing through 𝑘 such 

that all its points have the same group of symmetry of  𝑘, then 𝑘 is said to be a line (plane) of 

symmetry. 

1.1.2 CHARACTER TABLES 

The isomorphism between operations of symmetry, 𝑅̂ and matrices allows to represent the 

operations by means of matrices of transformation of coordinates in the base𝑓 , 𝐷(𝑓)( 𝑅̂), 

whose order corresponds with the dimension of the representation. However, the matrix 

representation of the operations of the symmetry is not unique, but different representations of 

a group can be obtained through a base change by means of a transformation of similarity, 

𝐷(𝑔)( 𝑅̂) = 𝐴𝐷(𝑓)( 𝑅̂)𝐴−1 where 𝐴 is the matrix that relates the bases 𝑓𝑎𝑛𝑑 𝑔. when there 

exists the matrix 𝐴 that transforms by the previous similarity relation all the matrices of the 

representation 𝛤(𝑓) = {𝐷(𝑓)( 𝑅̂)} in those of the representation 𝛤(𝑔) = {𝐷(𝑔)( 𝑅̂)}, 𝛤(𝑓) and  

𝛤(𝑔)  are equivalent representations. A representation can be reduced if a new coordinate 

system is found in which each matrix has non zero blocks in the main diagonal and blocks of 

zeroes outside it (blocked matrices). That is, where 𝐷(𝑎)( 𝑅̂) and 𝐷(𝑏)( 𝑅̂) are matrices n1xn1 

and n2xn2,, respectively, and  n1,n2< n; n1+n2 = n. When this reduction is possible, we say that 

the representation 𝛤(𝑓) is the right sum of the representations 𝛤(𝑎)= {𝐷(𝑎)( 𝑅̂)} and  𝛤(𝑏) = 

{ 𝐷(𝑏)( 𝑅̂) }, 𝛤(𝑓) = 𝛤(𝑎) ⨂𝛤(𝑏) . On the other hand, we say that 𝛤(𝑘) is an irreducible 

representation if there is no matrix 𝐴 capable of converting all the matrices of 𝛤(𝑘)  in an 

identical block. The enormous advantage of examining the irreducible representations of a 

group is that:  

  ▪ A finite group has only a small number of non-equivalent irreducible 

representations. 

 ▪ Similarity transformations keep some properties of the matrices (determinant, 

trace) invariant. 

 Since the symmetry operations that are part of an equivalence class are also 

transformed by equivalence relations, the matrices of the operations  𝑅̂ and 𝑆̂ that belong to 

the same class will also have an identical trace and determinant. This allows us to construct a 

unique table for the group (Table of characters), in which the rows are labeled by non-
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equivalent irreducible representations and the columns mediate the equivalence classes of 

operations. Thus, class i of the irreducible representation 𝛤(𝑓) corresponds to the trace of the 

matrices 𝐷(𝑓)( 𝑅̂)  ( 𝑅̂ ∈  to class 𝑖 ) also called character. The last two columns list basic 

functions of the irreducible representations. In the first column, translational and rotational 

movements appear along and around the 𝑥, 𝑦, 𝑧 axes (𝑇𝑥, 𝑇𝑦, 𝑇𝑧 and  𝑅𝑥, 𝑅𝑦, 𝑅𝑧), while in the 

second, the six components of the polarizability are listed.  

 The character tables provide essential information for the study of the vibrations of a 

solid, both for its determination through the factor group analysis, as well as for the 

assignment of Raman or IR activities. Traditionally, the Mullikan notation is used for 

irreducible representations. According to this, the irreducible representations of dimension 1 

are called 𝐴 or 𝐵 depending on whether or not they are symmetric with respect to the rotation 

around the main axis of symmetry. Moreover, the subindices 1 or 2 depending on whether or 

not they are symmetrical with respect to the rotation around the axis 𝐶2 perpendicular to the 

main axis or to the perpendicular plane of reflection. The letter 𝐸 designates an irreducible 

representation of dimension 2, while the letter 𝐹 denotes an irreducible representation triple-

degenerated. For pooled groups containing an operation 𝜎ℎ single and double primes are used, 

indicating the first symmetry and the second antisymmetry with respect  to 𝜎ℎ. When there is 

a center of symmetry  𝑖, the symbols 𝑔 and 𝑢 are used to designate irreducible representations 

that transform symmetrically and antisymmetrically with respect to 𝑖. 

One of the results of group theory that has deeper consequences is the Great Orthogonality 

Theorem (𝑇𝐺𝑂), according to which if  𝛤(𝑓) and 𝛤(𝑔)are two irreducible representations of   

group 𝐶, then: 

                                                   ∑ 𝐷𝑖𝑗
(𝑓)

Ȓ (𝑅)𝐷𝑘𝑙
(𝑔)

(𝑅−1) = 
ℎ

𝑑𝑓
𝛿𝑓𝑔𝛿𝑖𝑙𝛿𝑗𝑘                                 (1.8) 

Where the sum runs through all the symmetry operations of the group, ℎ is the order of  𝐺, 𝑑𝑓 

the dimension of  𝛤(𝑓) and 𝛿𝑖𝑗 = 0, unless 𝑖 = 𝑗. Among the consequences of the 𝑇𝐺𝑂 are: 

 ▪ The number of non-equivalent irreducible representations matches the class 

number of the group. 

 ▪ The sum of the squares of the dimensions of all irreducible representations not 

equivalent to the order of the group. 
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 ▪ Any two rows of the table of characters are orthogonal to each other: 

If  ∑ 𝜒(𝑓)(𝑅)𝜒(𝑔)∗(𝑅)𝑅 = h𝛿𝑓𝑔 =∑ 𝜂𝑖𝜒𝑖
(𝑓)

𝜒𝑖
(𝑔)∗

𝑖  where the second summation crosses classes 𝑖 

and 𝜂𝑖 is the order of class 𝑖. 

 ▪ Any two columns of the table of characters are also orthogonal:    

  ∑ 𝜒𝑖
(𝑓)∗

𝜒𝑗
(𝑓)

𝑓 = 
ℎ

𝜂𝑖
𝛿𝑖𝑙. 

 ▪ An arbitrary representation  𝛤 with characters {𝑋( 𝑅̂)}𝑅 is irreducible if and only if   

∑ |𝜒( 𝑅̂)|2𝑅 = ∑ 𝜂𝑖𝑖 |𝜒𝑖|
2ℎ 

 As a consequence of the theorems seen and the obtaining of the matrices as diagonal 

blocks, the trace of an irreducible representation is obtained as a sum of diagonal elements in 

which it can be decomposed. We can write the reducible representation as a direct sum of the 

irreducible representations, that is  𝛤 = ∑ 𝑎𝑓𝛤
(𝑓)

𝑓  where 𝑓 go through the irreducible 

representations and 𝑎𝑓  indicates the number of times the irreducible representation 𝛤(𝑓)  is 

contained in  𝛤. 

 If this equation is transferred to the characters of each representation, we can 

determine the coefficients 𝑎𝑓  as a consequence of the orthogonality between rows of the 

character table, such that: 

                                         𝑎𝑔= 
1

ℎ
∑ 𝜒(𝑅)𝜒(𝑔)∗(𝑅) =𝑅

1

ℎ
∑ 𝜂𝑖𝜒𝑖𝜒𝑖

(𝑔)∗
𝑖                                    (1.9) 

1.1.3   INTERNATIONAL CRYSTALLOGRAPHY TABLES 

 The description of the 230 space groups is included in the International 

Crystallography Tables [1]. These include notation, equivalent point diagrams by symmetry 

and arrangement of elements of symmetry, information about the origin, the symmetry 

operations, the symmetry generators, the Wyckoff positions, the symmetry of space 

projections and maximum and minimum subgroups. For our purposes, the crystalline structure 

of a compound is specified from (i)-the space group (selecting the appropriate origin), (ii)-the 

values of the network parameters, and (iii)-the positions occupied by the atoms in the unit cell 

with the particular values of these positions for the compound (also called Wyckoff 

positions). 
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 The positions occupied by the atoms can be general or especial. A point 𝑋 is said to 

be a point of general position with respect to a space group 𝐺  if there is no symmetry 

operation of 𝐺  (apart from the identity operation) that leaves 𝑋  fixed. The set of all the 

symmetry operations of the space group 𝐺 that leave point 𝑋 invariant form a finite group, the 

point group 𝐺(𝑋) of 𝑋 with respect to the space group. 

 In the International Tables of Crystallography, information appears about the 

multiplicity, the letter of Wyckoff [2], the point symmetry, the coordinates and conditions of 

reflection. Multiplicity is the number of equivalent points per unit cell; for primitive cells, the 

multiplicity of the general position is equal to the order of the point group of the space group. 

For centered cells, it is equal to the product of the order of the point group by the number (2, 

3, 4) of network points per cell. Thus, the multiplicity of a special position is always a divisor 

of the multiplicity of the general position. The letter of Wyckoff is, simply, a scheme of code, 

in alphabetical order of greater to lesser symmetry. The coordinate triplets of a general 

position can be interpreted as a form of the matrix representation of the symmetry operations 

of the space group. Its sequence is based on the generators and represent the coordinates of 

the 𝑀  equivalent points (atoms) in the unit cell. In the case of space positions, there are 

specific restrictions on coordinates. The number of Wyckoff positions other than each space 

group is finite. 

 Another classification of points in the point space with respect to the space group 𝐺 

is the subdivision of all the points in sets of equivalent points by symmetry, called 

crystallographic orbits, according to the following definition: the set of all the points that are 

equivalent by symmetry at a point 𝑋  with respect to a space group 𝐺  called the 

crystallographic orbit of 𝑋 with respect to 𝐺. The crystallographic orbits are infinite sets of 

points due to the infinite number of translations in a space group. Any one of its points can be 

the generating point of the crystallographic orbit, and represent, therefore, the total 

crystallographic orbit. Because the point groups of the different points of the same 

crystallographic orbit are conjugated subgroups of  𝐺 , a crystallographic orbit consists of 

points of general position or points of space position. Therefore, one can speak of 

crystallographic orbits of general position or special crystallographic orbits. The points of 

each crystallographic general orbit of a space group 𝐺 present a one-to-one correspondence 

with the symmetry operations of  𝐺.  
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 This one-to-one correspondence is the reason why the coordinates listed for the 

general position in the space group tables can be interpreted as the coordinates of the 𝑋 image 

points or as a notation for the pairs (𝑊,𝜔) of the 𝑊 symmetry operations. Such one-to-one 

correspondence does not exist for special crystallographic orbits where each point 

corresponds to a complete coset of decomposition in cosets of the space group with respect to 

the point group 𝐺(𝑋) of 𝑋. 

 A concept of great relevance in crystallography is that of normalizer. The normalizer 

𝑁 of a space group 𝑉 in the group 𝑈 of all the affine transformations is the set of those fine 

transformations that transform 𝑋 into itself. The space group 𝐺 is a subgroup of  𝑁, where 𝑁 

is a subgroup of 𝑈. Thanks to this concept, the Wyckoff set can be defined with respect to 𝐺 

as all the points 𝑋 for which the point groups are conjugated subgroups of 𝑁. 

 In analogy with the shapes of the faces of the crystalline polyhedra, Paul Niggli 

introduced the concept of lattice complexes to characterize relationships between dot patterns 

with space group symmetry. Thus, a network complex is defined as the set of all the 

crystallographic orbits that can be generated within a type of Wyckoff sets. Different space 

groups of the same type have their corresponding Wyckoff sets, and we can talk about types 

of Wyckoff sets. Thus, if the space groups 𝐺 and 𝐺′ belong to the same type of space group, 

the Wyckoff 𝐾  sets of 𝐾′  and 𝐺′  belong to the same type of Wyckoff sets if the fine 

transformations that transform 𝐺  into 𝐺′ also transform 𝐾  into 𝐾′. All the crystallographic 

orbits belonging to the same network complex can be found following procedure: 

   ▪ Take all the crystallographic orbits of a particular Wyckoff position in a particular 

space group. Mathematically, their point groups are conjugated subgroups of the space group. 

 ▪ Take all the crystallographic orbits of Wyckoff positions belonging to the same set 

of Wyckoff (their point groups are conjugated subgroups of the normalizing space group in 

the affine group). 

 ▪ Take all the crystallographic orbits of Wyckoff sets from all space groups of the 

same type of affine space group. Each isomorphism, transforming two space groups of the 

same type one into another, simultaneously transforms the point groups of the points from the 

crystallographic orbits of the corresponding Wyckoff sets. 
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 Thus, since the crystalline forms of a particular type can be found in different types 

of point groups, the same network complex can occur in different types of space groups. 

Accordingly, two Wyckoff positions are assigned to the same network complex. Their space 

groups belong to the same crystal family and there is an adequate transformation that 

commutes the crystallographic orbits of the two Wyckoff positions. By this criterion, the 

Wyckoff positions of all space groups are assigned only to 402 network features. 

 The concept of network complex is important to reconnect structural relationships in 

connection with relationships between subgroups and, therefore, in the proposal of 

mechanisms of phase transitions. For geometric studies it is sufficient to consider only a 

representative Wyckoff position by network complex. 

1.1.4 RELATIONS IN CRYSTALLOGRAPHY 

 Relationships between crystalline structures simplify relationships between their 

groups that can be expressed through group-subgroup relationships. A set of symmetry 

operations {𝐻𝑖} of a space group 𝐺  is called subgroup 𝐻  of 𝐺  if {𝐻𝑖} satisfies the group 

conditions. A subgroup 𝐻  is called maximum symmetry or maximal if there is no own 

subgroup 𝑀  such that H is a subgroup of  𝑀 :𝐻 < 𝑀 < 𝐺  . In this case, 𝐺  is called a 

supergroup of minimal symmetry of  𝐻. The International Tables of Crystallography [1] lists 

the contingent subgroups in each space group. The diminution of symmetry in these 

subgroups can take place essentially in three ways: (i)-by reduction of the order of the point 

group, that is, by eliminating all point symmetry operations of a type. (ii)-for loss of 

translations, (iii)-by combination of (i) and (ii). The subgroups of the first type are called t-

subgroups (or subgroups with equivalent translation), and that the groups of translation of 𝐺 

and 𝐻 are the same  𝑇(𝐻) = 𝑇(𝐺), although the subgroup 𝐻 loses rotation operations with 

respect to 𝐺 and, therefore, the point group of  𝐻 is smaller than that of 𝐺: 𝑃(𝐻) < 𝑃(𝐺). 

 The subgroups of the second uncle are called 𝑘 -subgroup (or subgroups with 

equivalent point group). These present the same point group as the group from which they 

come: 𝑃(𝐻) = 𝑃(𝐺), decrease in the order of the translation group 𝑇(𝐻) < 𝑇(𝐺). Finally, in 

subgroups of the third type, both the translation group and the point group have a lower order 

than those of the original group: 𝑇(𝐻) < 𝑇(𝐺), 𝑃(𝐻) < 𝑃(𝐺) 

 Fortunately, Herman's theorem states that a subgroup of maximum symmetry of a 

space group must necessarily be a subgroup 𝑡 or 𝑘. The index of a transformation in a group-
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subgroup relationship (𝐻 < 𝐺) can be factored into two parts: 𝑖 = 𝑖𝑘. 𝑖𝑡 . In the formula, 𝑖𝑘 is 

the index 𝑘, which coicides with the multiplication of the cell in the subgroup in the case of 

primitive cells and it (the index of translation), is equal to the quotient between the orders of 

the point groups 𝐺  and 𝐻  In the 𝑡-subgroup: 𝑖𝑘 = 1 and  𝑖𝑡 = 𝑖, while in the 𝑘-subgroups: 

𝑖𝑡 = 1  and 𝑖𝑘 = 𝑖 . Formally, the index associated with a group-subgroup relationship of 

general type is given by: 

                                  𝑖= 𝑖𝑘 . 𝑖𝑡 =
𝑍(𝐻)

𝑍(𝐺)
 . 

𝑃(𝐺)

𝑃(𝐻)
                                                     (1.10) 

where 𝑃(𝐺) and 𝑃(𝐻) are the orders of the point groups of the space groups 𝐺 and 𝐻 and 

𝑍(𝐺) and 𝑍(𝐻) the number of forulas unit per unit unit of the two structures with groups of 

symmetry 𝐺 and 𝐻. In the general case in which 𝐻 is not a subgroup of maximum symmetry 

of 𝐺, it is possible to represent its relationship through an intermediate maximal subgroup: 

𝐺 > 𝑍1 >. . . . > 𝑍𝑛 > 𝐻. The index of 𝐻 in 𝐺 equals the index product of the intermediate 

steps. Through a tree diagram it is possible to show the intermediate groups that connect 𝐺 

and 𝐻 with a certain index. 

 A particular application is the cross-search of subgroups common to the symmetries 

of the two structures involved in solids-solid transformation. Although we later discuss the 

different types of transitions, we can advance that in a reconstructive transition there is no 

group-subgroup relationship between the initial and final phases. However, we can find a 

subgroup 𝐺 common to the space groups of symmetry of the two phases that allows us to 

describe the structural change of the transition 𝐺1 → 𝐺2, being 𝐺1 the initial space group and 

𝐺2 the end. 

 Several procedures have been proposed to find these common subgroups imposing 

limitations for the cell size and a determined maximum distortion [3, 4, 5]. For the proposal of 

transition mechanisms, Stokes and Hatch only consider subgroups of maximum symmetry, 

with the addition that the initial and final atomic positions are compatible. In the specific case 

of the transition 𝐵1 → 𝐵2and using cells up to four times the size of the primitive cells of the 

two groups involved (with 𝑍 = 1), they obtained the 12 subgroups of maximum symmetry 

that appear in Table 1.1. 

Table 1.1. : Subgroups common to structures 𝐵1 and 𝐵2 according to [5]. 𝑛 is the number of 

molecules per unit cell. 
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𝑛    
1 2 

 

4 

𝐺 
𝑅3𝑚 𝐶2(2), 𝐶𝑚𝑐21, 𝑃𝑚𝑚𝑛 

𝑃 2 𝑐⁄ (2), 𝑃 21 𝑚,⁄ 𝑃𝑐𝐶 2 𝑐,⁄  

𝑃1,   Iba2 

 

 Transformations of coordinate systems are very useful when considering 

unconventional unit cell descriptions of a crystalline structure. For example, to understand the 

possible relationships between the structures of the polymorphs of a compound, in the 

proposal of mechanisms of phase transitions  and in group-subgroup relations. 

 It will then be assumed that while the coordinate system and the unit cell are 

changed, the crystal structure remains unchanged. A point 𝑋  of a crystal is defined with 

respect to the base that make up the vectors 𝑎 , 𝑏⃗ , 𝑐  and the origin 𝑂  by the coordinates 

(𝑥, 𝑦, 𝑧) of the position vector  𝑟 . This same point, with respect to the new coordinate system 

of base vectors 𝑎 ′, 𝑏⃗ ′, 𝑐 ′and origin  𝑂′, will be described by the vector: 

                                     𝑟 ′ = 𝑥’𝑎 ′ + 𝑦′𝑏⃗ ′ + 𝑧′𝑐 ′                                                 (1.11) 

The related transformation that relates both position vectors is composed of the matrix 𝑃 and 

the column  𝑝, which contains the components of the displacement vector 𝑝  and define the 

transformation unequivocally. This is represented, according to the Seitz notation, by (𝑃, 𝑝 ). 

The matrix 𝑃 implies a change in the orientation, or both of  𝑎 , 𝑏⃗ ,𝑐 : 

                                     (𝑎 ′𝑏′  𝑐 ′) = (𝑎 𝑏⃗ 𝑐 ) 𝑃 = (𝑎 𝑏⃗ 𝑐 ) (
𝑃11 𝑃12 𝑃13

𝑃21 𝑃22 𝑃21

𝑃31 𝑃32 𝑃33

).                        (1.12) 

 For a pure linear transformation the displacement vector (𝑝 ) is zero and the symbol 

of the transformation is (𝑃, 0⃗ ). The determinant of 𝑃 should be positive. Otherwise, the right-

handed coordinate system is transformed into a sinister. If the determinant is zero, the new 

base is linearly dependent, so it does not complete the space. A displacement of the origin is 

defined by the vector 

                                                             𝑝 = 𝑝1𝑎 + 𝑝2𝑏⃗ + 𝑝3𝑐                                               (1.13) 
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Where the vectors of the new coordinate system are born at the origin𝑂′, of coordinates 

𝑝1, 𝑝2, 𝑝3 according to the old coordinate system. In the case of a displacement of pure origin, 

the base vectors do not change their orientation or length, so the transformation matrix 𝑃 is 

the unit matrix𝐼, and the global displacement symbol is (𝐼, 𝑝 ). 

The inverse matrix of 𝑃 and the opposite vector of 𝑝 : 

                                                              𝑄= 𝑃-1
,   𝑞 = −𝑃-1 𝑝 .                                            (1.14) 

the matrix 𝑄 is formed with the components of the vector 𝑞 , which refers to the coordinate 

system 𝑎 ′, 𝑏⃗ ′, 𝑐 ′: 

                                             𝑞 = 𝑞1𝑎 ′ + 𝑞2𝑏⃗ ′ +𝑞3𝑐 ′                                         (1.15) 

the transformation of the components of a vector 𝑟  of the direct space is given by: 

                                       (
𝑥′
𝑦′

𝑧′

) = 𝑄 (
𝑥
𝑦
𝑧
) + 𝑞                                                     (1.16) 

If there is no displacement at origin (𝑝 = 𝑞 = 0⃗ ) , the position vector of point 𝑋 will be given 

by: 

                              𝑟 ′ = (𝑎 ′𝑏⃗ ′𝑐 ′)𝑃𝑄 (
𝑥′

𝑦′

𝑧′

)=(𝑎 𝑏⃗ 𝑐 ) 𝑃𝑄 (
𝑥
𝑦
𝑧
) = (𝑎 𝑏⃗ 𝑐 ) = 𝑟                          (1.17) 

in this case 𝑟 ′ = 𝑟 , that is to say the position vector remains invariant, although its 

components change. 

The volume of the 𝑉𝑐𝑒𝑙 unit cell also changes with the transformation: 

                                         𝑉𝑐𝑒𝑙
′ = │𝑃│𝑉𝑐𝑒𝑙 = |

𝑃11 𝑃12 𝑃13

𝑃21 𝑃22 𝑃21

𝑃31 𝑃32 𝑃33

| 𝑉𝑐𝑒𝑙                                     (1.18) 
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2.1.    THE PROBLEM OF MANY BODIES  

 The microscopic description of the matter requires a theoretical model in accordance 

with the laws of quantum mechanics. In the solids, the electrons move around the nuclei that 

are in determined positions, according to the symmetry operations of the crystal. The 

chemical-physical properties of solids are governed by the behavior of electrons, so that the 

understanding of a significant part of the behavior of condensed matter could be achieved if 

its electronic structure could be determined exactly. 

 The basic equation used to describe quantum systems is the Schrödinger equation 

dependent on time, proposed by Schrödinger in 1926, 

                                                   Ĥ𝜓(𝑟 , 𝑡) = 𝑖ħ 𝜓(𝑟 , 𝑡)                                                          (2.1) 

The separation of the wave function 𝜓(𝑟 , 𝑡)  in terms of its variables 𝑟  and  𝑡, 

𝜓(𝑟 , 𝑡) =  𝜓 (𝑟  ) 𝑓(𝑡),  allows to use the non-relativistic and time-independent Schödinger 

equation, Ĥ𝜓𝑘 = 𝐸𝑘𝜓𝑘  to determine the properties of the stationary states of a system.  Ĥ,  

𝜓𝑘(𝑟 1, ...., 𝑟 𝑁, 𝑅⃗ 1, ......, 𝑅⃗ 𝑀) and  𝐸𝑘 are the Hamiltonian, the wave functions and the energies 

of the stationary states of the system, where 𝑟 𝑖 and 𝑅⃗ 𝐴 are the electronic and nuclear variables, 

respectively. 

 The Hamiltonian can be expressed as:  

                                                      𝐻̂ = 𝑇̂𝑒+𝑇̂𝑛+ 𝑈̂  + 𝑉̂𝑒𝑛+  𝑉̂𝑛𝑛,                                             (2.2) 

 Being the contributions to the kinetic energy of electrons and nuclei (in atomic 

units): 

                                                       𝑇̂𝑒 = - ∑
𝛻𝑖

2

2

𝑁
𝑖=1 ,   𝑇̂𝑛 = - ∑

𝛻𝐴
2

2
𝑀
𝐴=1                                        (2.3) 

and  the  coulomb electron-electron, nucleon-electron and nucleon-nucleon interactions: 

          𝑈̂=∑ ∑
1

2│𝑟 𝑖−𝑟 𝑗│

𝑁
𝑗≠𝑖

𝑁
𝑖 ,   𝑉̂𝑒𝑛=∑ ∑

𝑍𝐴

2│𝑟 𝑖−𝑅⃗ 𝐴│

𝑁
𝑖=1

𝑀
𝐴=1 ,  𝑉̂𝑛𝑛=∑ ∑

𝑍𝐴𝑍𝐵

2│𝑅𝐵−𝑅⃗ 𝐴│

𝑀
𝐵≠𝐴

𝑀
𝐴=1                (2.4) 

 The wave form  𝜓𝑘(𝑟 1, ...., 𝑟 𝑁, 𝑅⃗ 1, ......, 𝑅⃗ 𝑀) of the ground state contains the basic 

information we wish to determine. Although all the variables involved in the Schödinger 
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equation are known, their exact resolution is, in general, invariable in systems with an 

arbitrarily large number of electrons. Efforts to make the quantum problem of many bodies 

treatable are centered on finding intelligent approximations to the Hamiltonian H and the 

wave function 𝜓 that conserve the correct physics and are computationally feasible. 

 The first simplification of this problem is due to Born and Oppenheimer [1]. Under 

its approach, the movement of nuclei and electrons can be separated due to the large 

difference in mass between the both. It can be considered, therefore, that the solid is 

constituted by a skeleton of atomic nuclei whose positions are decoupled from the electronic 

movement. The electronic structure is then resolved for frozen nuclear geometries. In this 

sense, the global Schrödinger equation is simplified into two equations, one electronic and the 

other nuclear. In the electronic Schrödinger equation the term 𝑇̂𝑛 does not intervene and 𝑉̂𝑛𝑛 is 

a constant that we can omit: 

                                                      𝐻̂𝑒𝑙𝑒𝑐 = 𝑇̂𝑒+ 𝑉̂𝑒𝑛  + 𝑉̂𝑒𝑒                                                      (2.5)  

Such that, 

                                                        𝐻̂𝑒𝑙𝑒𝑐
𝑖 𝜓𝑒𝑙𝑒𝑐

𝑖  = ϵ𝑖𝜓𝑒𝑙𝑒𝑐
𝑖                                                       (2.6) 

where  𝜓𝑒𝑙𝑒𝑐
𝑖  are the electronic wave functions that depend explicitly on the positions and spin 

coordinates of the electrons and parametrically on the coordinates of the nuclear 

positions.ε𝑖are the energies of the electronic levels of the system. The nuclear repulsion is 

usually included in this term:  𝐸𝑒𝑙𝑒𝑐
𝑖 = ε𝑖 + 𝑉𝑛𝑛.  If we consider only the fundamental state 

we can dispense with the term  𝐸𝑒𝑙𝑒𝑐  from the superindice and call the nuclear potential 

because it acts as a potential to which the nuclear movement is subjected: 

                                          𝐻̂𝑛𝑢𝑐𝑙𝛷𝑛𝑢𝑐𝑙 =  𝐸𝛷𝑛𝑢𝑐𝑙 ,  𝐻̂𝑛𝑢𝑐𝑙 = 𝑇̂𝑛 + 𝐸𝑒𝑙𝑒𝑐                               (2.7) 

where  𝐸  is the total energy of the system and  𝛷𝑛𝑢𝑐𝑙𝜓𝑒𝑙𝑒𝑐 =  𝜓 . In the so-called static 

approximation, which we will frequently use, we consider the immobile nuclei (𝑇 =  0𝐾 and 

negligible zero-point vibrations) and, therefore, we only have to worry about solving the 

electronic Schödinger equation. Despite considering thisapproach, the problem continues to 

be very difficult to solve, since in a solid the number of interacting electrons is at the 

macroscopic level of the order of 10
23

, which entails an intractable task even considering the 

punctual and translational symmetry of the crystalline system. 
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2.2.    THE HARTREE-FOCK METHOD (𝑯𝑭) 

 The Hartree-Fock theory ( 𝐻𝐹 ) [2] is one of the simplest and most efficient 

approximate theories to solve the problem of N electrons. It is based on an approximation to 

the true 𝜓 of many bodies. According to this, the electronic wave function 𝐻𝐹 (𝜓𝐻𝐹) of a 

system of 𝑁  electrons are constructed as an anti-symmetric product of spinorbitals (𝜓𝑖 ) 

through a Slater determinant of the form, 

                                                    𝜓𝐻𝐹  = 
1

√𝑁!
|
𝜓1(𝑥 1)…𝜓𝑁(𝑥 1)
……………………
𝜓1(𝑥 𝑁)…𝜓𝑁(𝑥 1)

|                                           (2.8) 

where the variables  𝑥  include  the coordinates of space and spin. This approach to wave 

function 𝜓 captures much of the physical memory to obtain successful solutions from the 

Hamiltonian. More importantly, the wave function 𝜓𝐻𝐹  is antisymmetric with respect to an 

exchange of 2 electronic positions, thereby fulfilling Pauli's exclusion principle: 

                         𝜓(𝑥 1, 𝑥 2, … , 𝑥 𝑖 , … , 𝑥 𝑗 , … , 𝑥 𝑁) = −𝜓(𝑥 1, 𝑥 2, … , 𝑥 𝑗 , … , 𝑥 𝑖 , … , 𝑥 𝑁).                  (2.9) 

 The 𝐻𝐹  method tries to obtain the best monodeterminantal approximation to the 

exact wave function 𝜓 through the variational principle. Thus: 

                                                  𝐸𝐻𝐹 = 〈𝜓𝐻𝐹│𝐻̂𝑒𝑙𝑒𝑐│𝜓𝐻𝐹〉 ≥ 𝐸                                        (2.10) 

𝐸 being the energy of the ground state. The variations are made by varying the shape of the 𝑁 

spinorbitals and conserving the orthonormality ⟨𝜓𝑖|𝜓𝑗⟩ = δ𝑖𝑗  until reaching the lowest 

possible energy. The resulting equations that lead to the best orbitals, called Fock equations 

                                       𝑓(1)𝜓𝑖(1) = [ℎ̂(1) + 𝑢̂(1) ] 𝜓𝑖(1) = 𝜖𝑖𝜓𝑖(1)       𝑖 = 1, 𝑁              (2.11) 

where the operator ℎ̂ is defined as: 

                                                           ℎ̂ (𝑟 1) = −
1

2
𝛻2

 + 𝑉̂𝑒𝑛(𝑟 1)                                            (2.12) 

And the operator 𝑢̂ is defined as: 

                                𝑢̂(𝑟 1) =∑ ∫𝜓𝑗
∗(𝑟 2) 

1

r12
 (1 −  𝑃̂12) 𝜓𝑗(𝑟 2)d𝑟 2

𝑁
𝑗=1                                  (2.13) 
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where  𝑃̂12 is a permutator that changes electron 1 to 2 and vice versa. The resolution of the 

Fock equations requires a self-consistent iterative procedure, since the operator 𝑓 depends on 

its eigen functions 𝜓𝑖 through 𝑢̂. These eigenfunctions are fictitious monoelectric operators, 

which include the kinetic energy and nuclear attraction (ℎ̂) and an approximate repulsion 

averaged (𝑢̂) exerted by the rest of electrons. 

       Once the orbitals have been calculated, it only remains to obtain the total electronic 

energy of the system, that is: 

                                  𝐸𝐻𝐹 =  〈𝜓𝐻𝐹│𝐻̂│𝜓𝐻𝐹〉 = ∑ 〈𝜓1│ℎ̂(1)│𝜓1〉
𝑁
𝑗=1  + 

1

2
〈𝑖𝑗 ∥ 𝑖𝑗〉              (2.14) 

where  〈𝑖𝑗 ∥ 𝑖𝑗〉 is the sum of the terms of coulomb and change: 

                  〈𝑖𝑗 ∥ 𝑖𝑗〉 = ∫d𝑟 1d𝑟 2
𝜓𝑖

∗(1)𝜓𝑖(1)𝜓𝑗
∗(2)𝜓𝑗(2)

r12
− ∫d𝑟 1d𝑟 2

𝜓𝑖
∗(1)𝜓𝑗(1)𝜓𝑗

∗(2)𝜓𝑖(2)

r12
             (2.15) 

the first term represents the coulomb repulsion of electron 1 in the orbital 𝜓𝑖 with the electron 

2 in the orbital 𝜓𝑗 and the last one, the integral of exchange, arises as a consequence of the 

antisymmetry of the Hartree-Fock wave function. This nonlocal term cancels the self-

interaction, or Coulomb repulsion without physical meaning of an electron with it, assuring 

that  〈𝑖𝑖 ∥ 𝑖𝑖〉 = 0. The exchange interactions also introduce the correlation associated with the 

Fermi hole, that is, the physical impossibility that two electrons of the same spin occupy a 

certain volume. However, the Hartree-Fock theory, assuming a mono-determinantal form for 

the wave function, does not include the correlation between electrons of different spin. The 

electrons are subject to an average nonlocal potential generated by the other electrons, which 

leads in general to a poor description of the electron structure. 

 The limitations of the Hartree-Fock method can be reduced by going beyond the 

approximation of a mono-determinantal wave function. The wave function is expressed as a 

linear combination of Slater determinants in which a set of spinorbitals occupied by virtual 

ones have been replaced by electronic excitations of a different nature. Basically, there are 

two ways of dealing with the problem of the electronic correlation: through the theory of 

perturbations and through the variational principle. Although these post-HF methods, such as 

interaction of configurations, coupled-cluster and Moller-Plesset theory have been developed 

extensively in the field of quantum chemistry, they have only recently begun to be used in the 

preliminary way in the study of solids [3], due to the rapid increase in computational cost 
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associated with the size of the system. For this reason, in this thesis we have opted to estimate 

and correct a correlation error a posteriori by using functionalities of the electron density 

suitable in the cases in which we have resorted to 𝐻𝐹  formalism in the resolution of the 

electronic structure of the crystalline system. 

2.3.    DENSITY FUNCTIONAL THEORY (𝑫𝑭𝑻) 

 An alternative to the conventional ab initio methods of introducing the effects of 

electronic correlation in the resolution of the electronic Schrödinger equation is the density 

functional theory (𝐷𝐹𝑇) [4], in which the basic variable is electron density instead of the 

wave function. The advantage is obvious since the density only depends on 3 spatial 

coordinates and the spin, while the wave function depends on 3𝑁 variables (4𝑁 if the spin is 

included), where 𝑁  is the number of electrons. Unlike traditional chemistry-quantum 

methods, in the 𝐷𝐹𝑇 formalism it is not treated with the 𝑁-interacting electron system but 

with a dynamically equivalent system of 𝑁  non-interacting fictive electrons that have the 

same density as the real system. In this way, formalism does not lead to a multielectronic 

wave function, although the algebraic implementation of the 𝐷𝐹𝑇 theory through the Kohn-

Sham equations [5] is monoelectronic and shares many similarities with the Hartree-Fock 

formulation. 

 Formally, it is an exact theory. However, in practice it is necessary to resort to 

approximations, which does not prevent the accuracy of the calculations from being 

surprisingly good. On the other hand, the methods developed in light of 𝐷𝐹𝑇 are substantially 

simpler and potentially capable of providing results of similar or even greater precision than 

methods based on wave function with much lower computational cost. 

 Therefore, the choice of computational methods based on the 𝐷𝐹𝑇  theory to 

approach the study of solids has been predominant in recent years. 

2.3.1.    THEOREMS OF HOHENBERG AND KOHN 

 The density functional theory was formulated by Hohenberg and Kohn in 1964 [6], 

following the spirit of the electron-sea model of Tomas-Fermi [7,8] (in which the electronic 

contributions to the kinetic energy and to the classical electrostatic interactions are obtained 

using a uniform electron gas), and the subsequent correction of Dirac that includes the energy 

of electron exchange. 
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 The first theorem states that the expected value of any observable of a fundamental 

non-degenerate steady state can be calculated, in principle exactly, from the electron density 

of this fundamental state. That is, the expected value of any observable can be written as a 

functional of the electron density of the ground state, 𝑂[ρ] = 〈𝜓[ρ]│𝑂̂│𝜓[ρ]〉. Thus, in an 

electron system under an external potential𝑣(𝑟 ), the potential is only determined by the 

electron density. Since electron density determines the number of electrons, 𝑁 = ∫ 𝜌(𝑟 )𝑑𝑟 , 

and fix 𝑣(𝑟 )according to the first theorem of Hohenberg and Kohn, it is concluded that the 

density determines the Hamiltonian (except in an additive constant) and the wave function of 

the fundamental state. Consequently, the electronic density fixes all the observable properties 

of the ground state, including the kinetic energy of the electrons, the potential energy and the 

total energy. 

 Thus, the energy of the ground state is a unique functional of the electronic density, 

                                             𝑣(𝑟 )=  𝐹𝐻𝐾[𝜌]  + 𝑉𝑒𝑛[𝜌] + 𝑉𝑛𝑛),                                            (2.16) 

Where𝐹𝐻𝐾[𝜌] =  𝑇 [𝜌]  +  𝑈 [𝜌] is a universal functional density and  𝑇 [𝜌] 𝑎𝑛𝑑 𝑈 [𝜌] kinetic 

and potential contributions to it. 

 This demonstration is only valid for 𝑣-representable density, that is, for electron 

densities associated with the antisymmetric wave function of the obtained fundamental state 

of a Hamiltonian that includes the external potential 𝑣(𝑟 ). However, not all densities are 𝑣-

representable. The restricted Levy formulation [9] eliminates the requirement that the density 

be 𝑣-representable. Part of the set of functions, 𝜓ρ0
 that integrate ρ0 (the exact density of the 

fundamental state, with wave function  𝜓0). According to the variational  principle. 

            〈𝜓ρ0
│𝑇̂ + 𝑈̂│𝜓ρ0

〉+∫ρ0(𝑟 )𝑣(𝑟 )𝑑𝑟 > 〈𝜓0│𝑇̂ + 𝑈̂│𝜓0〉  +  ∫ ρ0(𝑟 )𝑣(𝑟 )𝑑𝑟          (2.17) 

 This expression is immediately reduced to the inequality: 

                                       〈𝜓ρ0
│𝑇̂ + 𝑈̂│𝜓ρ0

〉 > 〈𝜓0│𝑇̂ + 𝑈̂│𝜓0〉                                      (2.18) 

being the terms of electron-core interaction on each side of the identical inequality. Thus, 

                                            𝐹𝐻𝐾[ρ]  =   𝑀𝑖𝑛│𝜓〉⇾ │𝜓0〉
〈𝜓│𝑇̂ + 𝑈̂│𝜓〉                                (2.19) 
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where the universal functional of the electronic density is searching among all the wave 

functions that generate the electron density  ρ0(𝑟 ). And selecting the one that minimizes the 

expected value   𝑇̂ + 𝑈̂, which is none other than the function wave of the fundamental state. 

It is, therefore, possible to determine  𝜓0 only from the knowledge of  ρ0, through a restricted 

minimization within the set  𝜓ρ0
 of the value of  𝑇̂ + 𝑈̂. Consequently, it is shown that there is 

a biunivocal correspondence between ρ0  and 𝜓0  without the need to consider the external 

potential 𝑣(𝑟 ) 

 The restricted Levy formulation also eliminates the requirement that the 

fundamental states must be non-degenerate, since in the restricted search we limit ourselves to 

one of the degenerate functions, which corresponds to the density that interferes with us. 

 Unfortunately, the demonstration of the first theorem of Hohenberg and Kohn is 

only of existence and does not provide information of the form of the functional 𝐸[𝜌]  so it is 

necessary to resort to approximations. 

 The second theorem (known as the variational principle) states that the exact 

electron density of a non-degenerate ground state minimizes the functional of the total energy 

𝐸[𝜌], from which the variational equation follows: 

                                                            
𝛿𝐸[𝜌]

𝛿𝜌
−  𝜇 = 0                                                         (2.20) 

where  μ is a Lagrange multiplier that ensures that the functional of the energy is determined 

by the normalized electron density  𝐸, ρ. 

 

2.3.2.    THE KOHN-SHAM FORMULATION 

 Unfortunately, the Euler equation that determines the energy function has no 

practical meaning for computational purposes. Taking into account the decomposition of 

𝐸[𝜌], the need for an explicit functional form for both the kinetic energy functional and the 

electron-electron repulsion is clear. Kohn and Sham devised in 1965, an ingenious procedure 

to avoid the difficult problem of the functional of kinetic energy, the Kohn-Sham (𝐾𝑆) 

method, which converts the 𝐷𝐹𝑇  theory into a more practical computational scheme. The 

idea is based on introducing, in the style of the traditional chemical-quantum methods, 
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orbitals in the problem and invoking a fictive system of independent electrons whose density 

is equivalent to that of the real one. The total functional energy can then be decomposed as 

follows: 

                                𝐸[ρ] =  𝑇𝑠[ρ] + ∫ ρ(𝑟 )𝑣(𝑟 )𝑑𝑟   + ∫d𝑟 𝑑𝑟 ′ 
ρ(𝑟 )ρ(𝑟 ′)

│𝑟 −𝑟 ′│
   +  𝐸𝑥𝑐[ρ]           (2.21) 

 The first term 𝑇𝑠[ρ]is the kinetic energy of the non-interacting electrons, although it 

should be noted that it is functional of the electron density of the interacting electrons. The 

second term is the energy contribution of the external potential. The third term, which we will 

call𝐽[ρ], represents the classic Coulomb repulsion of the electronic cloud including the self-

interaction energy. The fourth term is called exchange-correlation energy. This term includes 

the self-interaction as well as the rest of nonclassical effects of the electron-electron quantum 

interaction: the energy of exchange, the correlation energy and the kinetic energy with respect 

to the reference system: 

 𝐸𝑥𝑐[ρ] = [𝑇[ρ] − 𝑇𝑠[ρ]] + [𝑈[ρ] − 𝐽[ρ] =  𝑇𝐶[ρ] + 𝑊𝑋𝐶[ρ] = ∫ ρ(𝑟 )𝑣𝑋𝐶(𝑟 )𝑑𝑟 .              (2.22) 

 Re-perceiving equation 2.19 in terms of an effective potential 𝑣𝑒𝑓𝑓(𝑟 )we get that: 

                                                               
δ𝑇𝑠[ρ]

δρ(𝑟 )
+ 𝑣𝑒𝑓𝑓(𝑟 ) =  μ                                            (2.23)  

where the monoelectronic effective potential of Kohn-Sham is defined by: 

                                        𝑣𝑒𝑓𝑓(𝑟 ) =𝑣(𝑟 )  +  ∫  
ρ(𝑟 ′)𝑑𝑟 ′

│𝑟 −𝑟 ′│
    +  𝑣𝑥𝑐(𝑟 )                                     (2.24) 

With: 

                                                        𝑣𝑥𝑐(𝑟 )=  
𝜕𝐸𝑥𝑐[ρ]

𝜕ρ(𝑟 )
 .                                                          (2.25) 

 Interestingly, if we considered non-interacting electrons moving in an external 

potential 𝑣𝑒𝑓𝑓(𝑟 )they would generate the same equation 2.22. The problem of minimizing the 

density ρ(𝑟 ) is reduced, then, to solving the monoelectronic Schödinger equation: 

                                  ℎ̂𝐾𝑆𝜓𝑖  = ϵ𝑖𝜓𝑖, ℎ̂𝐾𝑆 =  −
1

2
𝛻𝑖

2 + 𝑣𝑒𝑓𝑓(𝑟 ), 〈𝜓𝑖│𝜓𝑗〉  = δ𝑖𝑗                  (2.26) 
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 These equations (called Kohn-Sham equations) are similar to the 𝐻𝐹 equations. The 

orbitals that are obtained are called Kohn-Sham orbitals and allow the immediate calculation 

of the electronic density, 

                                                             ρ(𝑟 ) = ∑ │𝜓𝑖(𝑟 )│
2𝑁

𝑖                                               (2.27) 

 However, the 𝐾𝑆 orbitals do not simulate the orbitals of the system, nor the 𝐾𝑆 

autovalues are the orbital energies, nor the determinant function 𝜓(1,𝑁) that we can build 

with the 𝐾𝑆 orbitals has explicit relation with the multielectronic function of the real system, 

nothing more than generating both the same density. In spite of this, the 𝐾𝑆 orbitals obtained 

in solid calculations are often very similar to the 𝐻𝐹 orbitals and have been used in many 

cases to describe electronic excitations. 

 As in the 𝐻𝐹  method, the resolution procedure is self-consistent, due to the 

dependence of the effective potential with the electron density defined as a function of the 

occupied spinorbitals 𝜓𝑖(𝑟 ) through equation 2.26, being in the case of Fock's equations the 

dependency with the solutions 𝜓𝑖 explicit of the Coulomb and exchange operators. 

 The energy of the fundamental state can be extracted from the solutions obtained in 

the 𝐾𝑆 equations, through the equation: 

                          𝐸0 =  ∑ ϵ𝑖𝑖 − 
1

2
∫ d𝑟 𝑑𝑟 ′ 

ρ(𝑟 )ρ(𝑟 ′)

│𝑟 −𝑟 ′│
  +  𝐸𝑥𝑐[ρ] − ∫ 𝑣𝑋𝐶(𝑟 )𝑑𝑟                        (2.28) 

where the sum is over all the occupied states. 

 This is an exact expression for the total energy. The problem is that we do not know 

the exact form of 𝐸𝑥𝑐 . The practical development of  𝐷𝐹𝑇  is based, then, on finding 

approximations to the functional 𝐸𝑥𝑐 sufficiently simple and precise and to the later resolution 

of the Kohn-Sham equations. 

2.3.3.    EXCHANGE AND CORRELATION APPROACHES 

2.3.3.1.    LDA 

 The oldest approach to the energy of exchange and correlation is due to Kohn and 

Sham. According to this,  𝐸𝑥𝑐[ρ]  could be expressed as: 



53 
 

                                    𝐸𝑥𝑐[ρ]  =   ∫ρ(𝑟 )ϵ𝑋𝐶[ρ]𝑑𝑟  +  0(𝛻│ρ(𝑟 )│2)                                  (2.29) 

 Considering only the first term of the expansion, the approximation is called the 

local density approximation(𝐿𝐷𝐴). The functional ϵ𝑥𝑐[ρ]is the energy density of exchange 

and correlation of a uniform electronic gas, although the constant density of the homogeneous 

gas (ρ0) is replaced by the local density (ρ(𝑟 )of the interacting and not homogenous real 

system. 

 Its extension to magnetic systems leads to the approximation of local spin density 

(𝐿𝑆𝐷𝐴): 

                       𝐸𝑥𝑐
𝐿𝑆𝐷𝐴[ρ𝛼(𝑟 ), ρ𝛽(𝑟 )] =  ∫ρ(𝑟 )ϵ𝑥𝑐

𝐿𝑆𝐷𝐴[ρ𝛼(𝑟 ), ρ𝛽(𝑟 )]𝑑𝑟  ,                              (2.30) 

where  ρ𝛼(𝑟 )  and ρ𝛽(𝑟 )  are the spin densities 𝛼  and 𝛽  respectively. The 𝐿𝐷𝐴  approach 

(𝐿𝑆𝐷𝐴) is, without a doubt, the simplest since it does not consider the nonlocal character of 

the exchange and correlation functional, ϵ𝑥𝑐[ρ] , therefore, it is a function that depends 

exclusively on density. To simplify the problem, contributions to correlation and exchange are 

usually treated separately: 

                                              ϵ𝑥𝑐
𝐿𝐷𝐴[ρ] =ϵ𝑥

𝐿𝐷𝐴[ρ] +ϵ𝑐
𝐿𝐷𝐴[ρ].                                                  (2.31) 

 For the part corresponding to the exchange, the Dirac functional is usually used, 

while the term of correlation is determined through different interpolation formulas that 

connect the known limits to the high and low density of ϵ𝑥 . Within the existing 

parametrizations, in our calculations we have restricted ourselves to the parameterization of 

the Monte-Carlo results of  Ceperley and Alder [10] by Perdev and Zunger [11]. 

 Despite its simplicity, the success of the 𝐿𝐷𝐴 has been great, even in systems very 

far from the formal limits of its applicability, that is, in systems with abrupt variations of the 

electronic density, such as atoms, molecules and even crystals, where the charge density 

experiences a sharp change in the vicinity of the nuclei. Physically, this is attributed to two 

facts. In the first place, it satisfies the rule of addition for the hole of exchange and 

correlation. That is, an electron located in 𝑟  creates a hole around it, a charge deficit, being the 

charge that displaces exactly the same as that of a positive electron. Second, the energy of 

exchange and correlation depends only on the spherical average of the gap of exchange and 
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correlation. Therefore, although 𝐿𝐷𝐴 does not give the correct form for the gap of exchange 

and correlation if it provides a spherical average that is very close to the real one. 

 Despite the obvious successes of this approach in the prediction of macroscopic 

structures and properties (in general, 𝐿𝐷𝐴 gives reasonable results for geometries, vibration 

frequencies and elastic constants), it also has limitations. Among these are the 

underestimation of the band gap in semiconductors and insulators, the tendency to 

overestimate the link energy (underestimating the lattice parameters), the erroneous 

determination of magnetic fundamental states and the treatment of strongly correlated systems 

and weak van des Waals interactions.  

2.3.3.2.    GGA 

 The limitations noted above were attributed to the local character of the exchange-

correlation functional. Equation 2.28 suggests a natural method of improvement, through the 

inclusion of terms of order greater than zero order (corresponding to the 𝐿𝐷𝐴 approximation) 

in the Taylor expansion of the exchange and correlation functional versus density. However, 

the inclusion of the first order gradient of the density in the expansion was a complete failure 

for atoms and molecules. The origin of the problems was later associated with the fact that the 

gap of exchange and correlation associated with the truncated expansion of equation 2.28 

violated the physical rules that must be met, that is, the rule of addition and the requirement of 

no exchange gap positivity, if fulfilled in 𝐿𝐷𝐴 . Despite this, the gradient expansion 

approximation (𝐺𝐸𝐴 ) [12] provides the base for the generalized gradient approximation 

(𝐺𝐺𝐴) [13]. It is a semilocal approach, in which the functional exchange and correlation 

depends not only on the density of the electrons but also on their local gradients: 

                                               𝐸𝑥𝑐
𝐺𝐺𝐴[ρ] =∫ 𝑓(ρ𝛼, ρ𝛽 , 𝛻ρ𝛼

, 𝛻ρ𝛽
)𝑑𝑟  ,                                       (2.32) 

 Due to the lack of knowledge of the exact form of function 𝑓, it is necessary to use 

approximations. The design of these has sought that the energy of exchange and correlation 

present an adequate asymptotic behavior and properties of correct scaling, as well as that the 

rules of addition for the gap of exchange and correlation are not violated. 

 Within the different approaches, in our calculations we have used Becke's semi-

empirical generalized gradient correction to the exchange energy [14], according to which a 

term of correction is added to the 𝐿𝐷𝐴 expression for the Slater exchange. The explicit form 
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of the functional was chosen so that it presented the exact asymptotic behavior of the energy 

density of exchange and the density of spin. It also includes a parameter that comes from the 

adjustment of least squares to the exact exchange energy of Hartree-Fock of noble gases 

calculated with orbitals of the Clementi-Roetti type [15]. 

 Another of the functional used, has been the 𝑃𝑊91 [16]. In this functional the gap 

energies of exchange and correlation are those of the expansion to first order of the equation 

2.28, including abrupt cutoffs in the real space to eliminate the contributions of long range 

without physical sense, fulfilling so the rule of sum and the requirement of not positivity for 

the gap of exchange. Likewise, for the correlation function, a cutoff is introduced into the 

reciprocal space to force the correlation gap to satisfy its exact sum rule. 

 For the correlation, the functional Lee, Yang and Parr (𝐿𝑌𝑃) have also been used 

[17]. This has its origin in the Colle and Salveti model [18] according to which the electronic 

correlation is obtained by approximating the density of real electron pairs by the density of 

non-interacting pairs multiplied by a correlation factor that includes the electron density, the 

density of electron-electron coalescence and the Laplacian density of pairs, together with four 

constants that fit the Hartree-Fock helium orbitals. Later, Lee, Yang and Parr expressed the 

density of non-interacting pairs in terms of density and first order density matrix. In this way, 

the correlation energy can be assigned a form that only involves the electron density and the 

kinetic energy of the non-interacting system. A gradient expansion of the density of the latter 

allows expressing the correlation energy as a functional density and its gradient. 

 These different types of functional have been quite successful in the correlation of 

some of the deficiencies of 𝐿𝐷𝐴 . Its main improvements are the correction of the 

overestimation of the cohesion of the 𝐿𝐷𝐴 method, generating higher lattice parameters and 

cohesion energy than that (the overestimation of the compressibility module is of the order of 

10% while in the 𝐿𝐷𝐴 method the underestimation was close to 20%), and the prediction of 

the correct magnetic fundamental state of certain metals, such as Fe. However, they still 

present problems in the description of Van der Waals systems. 

2.3.3.3.    Hybrid methods 

 These functionals were fundamentally developed in the decade of the 1990s by 

Becke [19]. The existence of hybrid methods in which an exact exchange is partially included 
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from a 𝐻𝐹  calculation can be justified through the adiabatic connection formula for the 

correlation-exchange energy: 

                                                   𝐸𝑥𝑐[ρ] =∫ 𝑊𝑋𝐶
𝜆 [ρ]𝑑𝜆

1

0
                                                       (2.33) 

where  𝑊𝑋𝐶
𝜆 [ρ] is the potential contribution of a system whose bielectronic interaction has 

been scaled by the parameter  𝜆.  𝜆 = 0 corresponds to the Kohn-Sham system and 𝜆 = 1 to 

the real physical system. It can be shown that for  𝜆 = 0, 𝑊𝑋𝐶
𝜆 [ρ] is the exact exchange 

energy, that is, the Hartree-Fock exchange, which justifies the emergence of hybrid methods. 

Within the existing methods, we have chosen the 3-parameter method of Becke or 𝐵3𝐿𝑌𝑃 

[20], so-called because it includes 3 parameters that fit a set of experimental thermochemical 

data. 

2.3.4.    BASIS FUNCTIONS 

 In both 𝐻𝐹 and  𝐷𝐹𝑇, the effective potential is defined in terms of the solutions  𝜓𝑖 

of the Fock and  Kohn-Sham equations, respectively. This common characteristic imposes a 

self-consistent resolution procedure. If the searched orbitals are expressed as linear 

combinations of a base  χ={χ1,…,χm} of known functions  𝜓𝑖=∑ χ𝑘
𝑚
𝑘=1 C𝑘𝑖, where  C𝑘𝑖 is an 

element of the matrix of the coefficients unknown, the system of integrodifferential equations 

in partial derivatives are transformed into a homogeneous algebraic system: 

                                                          ∑ [ℎ𝑖𝑗 − ϵ𝑘𝑆𝑗𝑘]𝑗 =0                                                     (2.34) 

where  ℎ𝑖𝑗 and  𝑆𝑗𝑘  are, respectively, elements of the Fock (Kohn-Sham) and overlap matrices 

and ϵ𝑘 are the eigenvalues. 

2.4.    ELECTRONIC STRUCTURE IN SOLIDS 

2.4.1.    CLUSTER-NETWORK APPROACH 

   Probably, the most intuitive way to approach the study of solids is the application 

of quantum-mechanical molecular methods. This is the foundation of the approach known as 

cluster-lattice, according to which the solid is formed by an active part or cluster and is 

perturbed by the rest of the infinite system. The case limit in which the cluster is reduced to a 

single center (atom or ion) coupled to the crystalline lattice through a self-consistent quantum-
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mechanical cluster-lattice is the origin of the method ab initio Perturbed Ion, 𝑎𝑖𝑃𝐼, [21,22] 

developed in the laboratory of our research group at the Oviedo University. 

 This method is based on the Electronic Separability Theory (𝑇𝑆𝐸) of Mc Weeny 

and Huzinaga [23]. Within this formalism, the 𝐻𝐹 equations of solids are resolved in a Fock 

space localized by the division of the crystal into weakly interacting groups, each of which 

contains an arbitrary number of electrons and a single nucleus. The total wave function is an 

antisymmetric product of the optimal local wave functions, strongly orthogonal to each other. 

The energy of system 𝐸 is given by the sum of the net energies of each group 𝐸net  and the 

sum, extended to all possible pairs of groups, of the energy of interaction between them, 𝐸𝑖𝑛𝑡
𝑅  

                                                      E =∑ 𝐸𝑛𝑒𝑡
𝑅

𝑅 +∑ ∑ 𝐸𝑖𝑛𝑡
𝑅

𝑆˃𝑅𝑅                                              (2.35) 

 The local wave functions are obtained through the restricted variational principle, 

that is, by minimizing the effective energy of the group in the field of the crystal lattice. The 

effective energy of each group 𝐴 is defined as: 

                                             𝐸𝑒𝑓𝑓
𝐴  =𝐸𝑛𝑒𝑡

𝐴 +∑ 𝐸𝑖𝑛𝑡
𝐴𝑆

𝑆≠𝐴    =  𝐸𝑛𝑒𝑡
𝐴 + 𝐸𝑖𝑛𝑡

𝐴                                   (2.36) 

 The second sum is the expected value, in the space of the cluster of an operator that 

contains the effective potential of the network (nuclear attraction and electronic parts of 

Coulomb not local exchange) and a projection operator that seeks the fundamental condition 

of ion-lattice orthogonality. The best ionic wave function is used in the re-computation of the 

effective potential and the projection operator until self-consistency is achieved.  𝐸𝑒𝑓𝑓
𝐴  

contains all the terms of  𝐸 in which group 𝐴 intervenes, so that the electronic structure of 

group 𝐴  that minimizes both magnitudes is the same. Therefore, to obtain the global 

minimum it is necessary to successively apply the restricted variational principle to each of 

the groups, until consistent local wave functions are achieved for all the groups and, 

consequently, the best total wave function compatible with the initial hypothesis of 

separability. Although effective group energies are fundamental magnitudes in the  𝑇𝑆𝐸, with 

them it is not possible to regenerate the total energy of the system. To achieve this, the so-

called group additive energy is defined, which contains the net energy of the group and half of 

the energy of interaction with the rest of the groups:  

                                         𝐸𝑎𝑑𝑑
𝐴  =𝐸𝑛𝑒𝑡

𝐴 +
1

2
∑ 𝐸𝑖𝑛𝑡

𝐴𝑆
𝑆≠𝐴    =  𝐸𝑛𝑒𝑡

𝐴 + 𝐸𝑖𝑛𝑡
𝐴                                     (2.37) 
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 With this definition, the total energy of the system is simply the sum of the additive 

energies of each group. If the system is assumed to consist of 𝑎equivalent groups of type𝐴, 𝑏 

groups𝐵, ..., the total energy of the system will be: 

                                             𝐸(𝐴𝑎𝐵𝑏 …) = 𝑎𝐸𝑎𝑑𝑑
𝐴 + 𝑏𝐸𝑎𝑑𝑑

𝐵  + …                                      (2.38) 

 This is the energy that must be minimized to obtain the optimal geometry of the 

crystal. The current implementation of the model includes additional hypotheses, for reasons 

of simplicity and speed of calculation. In the first place, it is required that the quantum 

mechanical groups maintain the spherical symmetry, characteristic of the free ions, inside the 

crystal. This approximation is quite restrictive, since the only allowed mode of adaptation of 

the group to its environment is reduced to the radical relaxation of the density (isotropic 

deformation). To try to overcome this limitation, a semiclassical model of electronic 

polarization that considers the existence of dipolar terms has been adapted to this method. 

2.4.2.    BLOCH'S THEOREM 

 Another way to approach the study of solids is to explicitly consider the infinite 

nature and the translational symmetry of these. Both in the 𝐻𝐹 formalism and in the 𝐷𝐹𝑇 

formalism, it is assumed that the electrons are subjected to an effective monoelectronic 

potential, which requires translational symmetry. According to Bloch's theorem [24], the 

eigenstates  𝜓(𝑟 )of a monoelectronic Hamiltonian 𝐻̂(𝑟 ) = ∇𝑖
2  + 𝑈̂( 𝑟 ), where  𝑈̂( 𝑟 + 𝑅⃗ ) =  

𝑈̂( 𝑟 )for all the vectors  𝑅⃗  of the Bravais lattice, can be written as a product of a plane wave 

and a function with the periodicity of the lattice: 

                                                           𝜓𝑛𝑘⃗ (𝑟 ) = 𝑒𝑖𝑘⃗ 𝑟 𝑢𝑛𝑘⃗ (𝑟 )                                                (2.39) 

where  𝑢𝑛𝑘⃗ (𝑟 + 𝑅⃗ ) = 𝑢𝑛𝑘⃗ (𝑟 )for all vectors 𝑅⃗  of the Bravais lattice. The number 𝑛 is the band 

index and labels the independent stations for a given wave vector 𝑘⃗ . Since 𝜓𝑛𝑘⃗ (𝑟 )is periodic 

because it is the Hamiltonian and 𝑢𝑛𝑘⃗ (𝑟 )also, the theorem can also be stated in the form: 

                                                      𝜓𝑛𝑘⃗ (𝑟 + 𝑅⃗ ) = 𝑒𝑖𝑘⃗ 𝑅⃗ 𝑢𝑛𝑘⃗ (𝑟 )                                             (2.40)  

 Which shows that each vector of the periodic Hamiltonian corresponds to a vector of 

the reciprocal lattice  𝑘⃗ . In the language of band theory, 𝑘⃗  labels one of the infinite, one-

dimensional, irreducible representations of the abelian translation group and 𝜓𝑛𝑘⃗  is a basic 
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function of representation. To define the irreducible representation unequivocally, one must 

limit the value of 𝑘⃗  to the Brillouin zone (𝐵𝑍), since any vector  𝑘⃗ ′outside it can be written as  

𝑘⃗ ′ = 𝑘⃗  +𝐾⃗⃗  where  𝑘⃗  is inside of the  𝐵𝑍 and  𝐾⃗⃗  is a vector of the reciprocal lattice, fulfilling 

that  𝑒𝑥𝑝(𝑖𝑘⃗ ′. 𝑅⃗ ) = 𝑒𝑥𝑝(𝑖𝑘⃗ . 𝑅⃗ ). The introduction of the periodic contour conditions of Born-

Von Karman, expressed as: 

                                            𝜓𝑛𝑘⃗ (𝑟 + 𝑁1𝑎 1 + 𝑁2𝑎 2 + 𝑁3𝑎 3) = 𝜓𝑛𝑘⃗ (𝑟 )                             (2.41) 

where 𝑁1, 𝑁2, 𝑁1, 𝑎 1, 𝑎 2, 𝑎 3 correspond respectively to primitive cells and vectors in each 

dimension of a finite arbitrary crystal  𝑁 = 𝑁1𝑁2𝑁1, it leads to the electronic states being 

allowed only in a certain group of points 𝑘 of the primitive cell of the reciprocal lattice. The 

number of these is equal to 𝑁 the number of unit cells and their density is proportional to the 

volume of the solid. 

 Also, the form of  𝜓𝑛𝑘⃗  specified by Bloch's theorem transforms the Schrödinger 

equation: 

                                                             𝐻̂( 𝑟 )𝜓𝑛𝑘⃗ (𝑟 ) =𝐸𝑛𝜓𝑛𝑘⃗ (𝑟 )                                       (2.42) 

 In the equation of eigenvalues of the periodic function  𝑢𝑛𝑘⃗ (𝑟 ): 

                                       [(−𝑖𝛻⃗  + 𝑘⃗ )
2 

+ 𝑈̂( 𝑟 )] 𝑢𝑛𝑘⃗ 
(𝑟 ) =  𝐸𝑛(𝑘⃗ )𝑢𝑛𝑘⃗ (𝑟 )                         (2.43) 

 This equation is subject to the periodic condition  𝑢𝑛𝑘⃗ 
(𝑟 ) = 𝑢𝑛𝑘⃗ (𝑟 + 𝑅⃗ ), which is 

equivalent to confining the solutions in a primitive cell of the crystal. In this way, the problem 

of solving the Schrödinger equation for an infinite system is reduced to that of solving it for a 

finite volume, that of the primitive cell of the  𝐵𝑍. This confinement implies an infinite set of 

solutions  𝑢𝑛𝑘⃗ (𝑟 ) with eigenvalues  𝐸𝑛(𝑘⃗ ) discretely distributed, and which, when containing 

𝑘⃗  as a parameter, depend on it in a continuous mode. The fact that 𝑘⃗  appears as a continuous 

variable does not go against the contour condition of Born-Von Karman, and that at the limit 

of an infinite lattice (and therefore, also for a finite and macroscopic one), density of points  𝑘 

(the number of which matches the number of solutions) increases, transforming a𝑘 into a 

continuous variable that can take all possible values within the 𝐵𝑍. 
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 Bloch's theorem, then, replaces the problem of calculating an infinite number of 

electron wave functions by calculating a finite number of electronic functions in an infinite 

number of points 𝑘. The information contained in the functions  𝐸𝑛(𝑘⃗ ) is the structure of 

bands of the crystal. For each value of 𝑛, the function  𝐸𝑛(𝑘⃗ )is the 𝑛 band of electronic 

energy of the system. The periodicity of  𝐸𝑛(𝑘⃗ )in the reciprocal space requires that the band 

have upper and lower limits, that is, that the energy is bounded. The call of the bands is made 

according to Pauli's exclusion principle. The energy of the highest occupied state is known as 

Fermi energy and is defined by  𝑁 = ∫ 𝐷(𝐸)𝑑𝐸
𝜖𝐹

−∞
, where 𝑁 is the number of electrons and 

𝐷(𝐸) the density of electronic states (𝐷𝑂𝑆) or number of states per unit of energy with 

energy between  𝐸 and  𝐸 + 𝑑𝐸. The surface of Fermi is the surface of the space 𝑘 of constant 

energy and equal to the energy of Fermi, 𝐸𝐹. This surface separates the occupied electronic 

states from the voids at 𝑇 = 0𝐾. The electronic occupation of the states |𝑘⃗ 〉,with two electrons 

of different𝑚𝑠, can give rise to two basic types of filling, in the first, a series of bands are 

completely filled and the rest are empty. An interbanded energetic spacing (bandgap) then 

arises between the roof of the occupied band of higher energy and the bottom of the empty 

band of lower energy. This type of filling appears typically in systems with an even number of 

electrons per primitive cell, since the number of states |𝑘⃗ 〉 is equal to the number of cells and 

each |𝑘⃗ 〉admits two electrons with different 𝑚𝑠 . In the second type of filling are partially 

occupied bands. The Fermi level then appears in the energy range of one or several of these 

bands. For each partially occupied band, there is a surface in space 𝑘  that separates the 

occupied levels from the gaps. The set of these surfaces forms the surface of Fermi. 

2.4.2.1    Sampling of points 𝒌 

 The integration of functions of 𝑘⃗  in the first zone of Brillouin is a very important 

aspect of ab-initio calculations in periodic structures. The problem appears in each cycle of 

the self-consistent process, when the energy of Fermi is obtained, the density matrix is 

reconstructed and, after achieving self-consistency, the density of states and the observable 

quantities are calculated. In principle, it is possible to perform the integration through a 

standard numerical technique, but in practice this requires the evaluation of the integrand in a 

very large number of wave vectors, which is linked to a high computational cost. For 

sufficiently smooth functions, one can take advantage of the fact that the functions do not 

change appreciably in small distances of space 𝑘 and approximate the integral by a heavy sum 
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of values 𝐹(𝑘⃗ ) in a discrete set 𝐾 of sample points 𝑘⃗ 𝑖(𝑖 = 1,… 𝐼) carefully selected to ensure 

convergence. Thus any integrand 𝑓(𝑟 ) (density, total energy) can be calculated through: 

                                                     ∫
𝐵𝑍

𝐹(𝑘⃗ )𝑑𝑘⃗ =
1

𝛺
∑ 𝜔𝑗𝐹(𝑘⃗ 𝑗)

𝐼
𝑗=1                                          (2.44) 

where 𝐹(𝑘⃗ ) is the Fourier transform of 𝑓(𝑟 ), 𝛺 is the volume of the cell and 𝜔𝑗  are weight 

factors. For each Bravais lattice and for each pontual group there are several sets of special 

points. In our calculations we have chosen the Monkhorst-Pack method [25] to perform the 

sampling. This method generates a homogeneous distribution of points  𝑘 through space in 

rows and columns parallel to the vectors of the reciprocal lattice. The zone of Brillouin is 

broken down into small polyhedra in the same way as this one. The subdivisions along each 

vector of the reciprocal lattice necessary to generate this polyhedral decomposition are called 

contraction factors (𝑆1, 𝑆2, 𝑆3). In the original scheme, the coordinates of the sample points 𝑘 

with respect to the base vectors   
𝑏⃗ 1

𝑆1
,
𝑏⃗ 2

𝑆2
 𝑎𝑛𝑑 

𝑏⃗ 3

𝑆3
 are given by: 

                                 𝑘⃗ 𝑖 = 
𝑖1+

1

2

𝑆1
𝑏⃗ 1 + 

𝑖2+
1

2

𝑆1
𝑏⃗ 1 + 

𝑖3+
1

2

𝑆3
𝑏⃗ 1 ;              0 ≤ 𝑖𝑗 < 𝑆𝑗                      (2.45) 

which is equivalent to placing a single point 𝑘 in the center of each polyhedron. The set 𝐾 

contains  𝐼 = 𝑆1𝑆2𝑆3 elements. It is convenient that the contraction factors be multiples of 2 

or 3, according to the order of the main axis of the crystalline punctual group. The number of 

non-equivalent sampling points is obtained by dividing 𝐼 (product of contraction factors) by 

the order of the punctual group. In systems of high symmetry it can be considerably smaller, 

because many points are placed on planes or axes of symmetry. In the selection of 𝐾 for non-

centrosymmetric crystals, the symmetry𝐸𝑛(𝑘⃗ ) = 𝐸𝑛(−𝑘⃗ ) is exploited. All this produces a 

small subset of the set  𝐾, with points located in the irreducible part of the 𝐵𝑍. The values of 

the weight factors are adjusted according to this set of points 𝑘. This leads to a reduction in 

the time of calculation. 

 In the case of non-cubic cells, the estimation of the values of the contraction factors 

must also take into account the dimensions of the vectors in the real lattice. Thus, the smallest 

vector in the real network corresponds to the largest vector in the reciprocal network and 

therefore, to a contraction factor necessarily greater than that of the other two reciprocal 

lattice vectors. The grid of points 𝑘 must belong to the same kind of lattice of bravais as the 
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𝐵𝑍 . Moreover, the symmetry of the grid 𝑘  can lead to grids that cannot be divided into 

polyhedra (at least by the conventional division schemes implemented in the calculation 

programs). This occurs, for example, in certain Bravais lattices with low symmetry. One 

possible solution is to center the Monkhorst-Pack grid on 𝛤(𝑘 = 0), such that the coordinates 

of the sample points 𝑘⃗ 𝑖 with respect to the base vectors  
𝑏⃗ 1

𝑆1
,
𝑏⃗ 2

𝑆2
 𝑎𝑛𝑑 

𝑏⃗ 3

𝑆3
  are given by:  

                                      𝑘⃗ 𝑖 = 
𝑖1

𝑆1
𝑏⃗ 1 + 

𝑖2

𝑆1
𝑏⃗ 1 + 

𝑖3

𝑆3
𝑏⃗ 1 ;              0 ≤ 𝑖𝑗 < 𝑆𝑗                          (2.46) 

 This is, for example, necessary in the hexagonal cells, in which the grids generated 

according to the original Monkhorst-Pack scheme do not have total hexagonal symmetry. It is 

also possible to carry out other displacements of the grid of points  𝑘, but in our calculations 

we have not used them. Choosing a grid of sufficiently dense points is crucial for the 

convergence of results and is, therefore, one of the main objectives when conducting 

convergence tests. However, it is also necessary to point out that there is no variational 

principle that governs the convergency with respect to the grid of points 𝑘, so that the total 

energy does not  necessarily show a monotonous behavior when the density of points 𝑘 

increases. For insulators, 100 𝑘 points per atom in the total 𝐵𝑍 are, in general, sufficient to 

reduce the energy error to less than 10 meV. The metals require 1000 (including 5000 some 

transition metals) points 𝑘  to obtain the same precision. These numbers are considerably 

reduced in the irreducible part of the 𝐵𝑍(𝐼𝐵𝑍).  In fact, the precision of the grid is normally 

directly proportional to the number of points 𝑘 in the 𝐼𝐵𝑍, but not to the number of divisions.     

 The previous procedure allows integrations of well-behaved functions (with Fourier 

transform that decay rapidly in real space) over the first Brillion zone by selecting sampling 

points in the reciprocal space. This does not pose problems in semiconductors and insulators, 

but in metals, where it is necessary to integrate the Fermi distribution function, discontinuous 

when 𝐸 = 𝐸𝐹  and with Fourier transform not located in real space. We want to evaluate: 

                                                    𝑓=̅
1

𝛺𝐵𝑍
∫𝛩(𝐸𝐹 − 𝐸(𝑘⃗ ))𝑓(𝑘⃗ )𝑑𝑘⃗                                       (2.47)   

where  𝐸𝐹 is the Fermi energy and  𝛩(𝑥) is the Dirac step function. In accordance with the 

sampling techniques: 

                                                         𝑓=̅∑𝑁𝐾 𝜔𝑖𝛩(𝐸𝐹 − 𝐸𝑛(𝑘⃗ 𝑖))                                       (2.48)   
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This sum converges very slowly with the number of points  𝑘, except in semiconductors and 

insulators where the bands are completely full or empty and the recording of the band index 𝑛 

is limited to the occupied bands. Moreover, with a small change in the value of the 𝐸𝐹, a point 

𝑘 can enter or leave the surface of Fermi, resulting in a discontinuous change of the values of  

𝑓̅. This pathology can create a numerical instability in the self-consistent process of the 

electronic structure codes. A method to avoid these problems is the linear tetrahedron method 

[26], in the term 𝐸(𝑘⃗ ) is linearly interpolated between two points 𝑘. Blöchl [27] eliminated 

the quadratic errors of the method and assigned effective weights for each band and point 𝑘. 

This method was, in general, chosen in semiconductors and insulators, and for calculations of 

total energy without relaxation in metals. 

 In the study of relaxation in metals, it is opted for approximations of fictive 

temperature. Among these are the smearing methods [28], in which the step function of Dirac 

is replaced by a function 𝑓({𝐸𝑛(𝑘⃗ )}) soft (Dirac, Gaussian function). In these, it is necessary 

to replace the total energy with the generalized free energy 𝐹 = 𝐸 − ∑ 𝜔𝑘⃗ 𝜎𝑆(𝑓𝑛𝑘⃗ 𝑛𝑘⃗ ), so that 

the calculated forces are now derived from this free  𝐹 . According to the Fermi-Dirac 

statistics, free energy could be interpreted as the free energy of electrons at finite temperature 

= 𝑘𝐵𝑇, but the physical meaning is not the case of Gaussian smearing. Despite this problem, it 

is possible to obtain a precise extrapolation for (𝜎 ⇾ 0) = 𝐸0 = 
1

2
(𝐹 + 𝐸). In this way, we 

obtain a 'physical' quantity of a calculation at finite temperature. 

 However, two problems appear. In the first place, the forces calculated by the 

computational programs are derived from the free electronic energy,  𝐹. Therefore, they can 

not be used to obtain the fundamental state of equilibrium, corresponding to the minimum 

energy. In spite of this, the error in the forces is generally small and adaptable. Second, the 

parameter 𝜎 must be chosen carefully. If 𝜎 is large the integral in the  𝐵𝑍 converges with a 

small number of points 𝑘, but in general leads to an erroneous result. If 𝜎 is smaller, the 

integral tends to the correct result but to express of a greater number of points 𝑘. The only 

way to obtain a good 𝜎 is to perform several calculations with different grid of points 𝑘 and 

different values for𝜎. These problems can be solved by adopting a slightly different form for  

𝑓({𝐸𝑛(𝑘⃗ )}). This is possible by transforming the step function into a complete orthonormal 

set of functions (Methfessel and Paxton method) [29]. The Gaussian function is the first 

approximation (𝑁 = 0) to the step function. Subsequent approximations (𝑁 = 1,2) are easily 
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obtained. As with the Gaussian method, energy is replaced by free energy, but, unlike the 

Gaussian term, the entropic term is small for reasonable values of 𝜎 and gives an estimate of 

the error between free energy and physical energy (𝐸(𝜎 ⇾ 0)). In this way 𝜎 is increased 

until the error takes a certain value. 

2.4.2.2    Basis functions 

 As previously mentioned, it is necessary to express the orbitals as a linear 

combination of a known basis of functions. Thus, the crystalline orbitals  𝜓𝑛𝑘⃗ (𝑟 ) are 

expressed as a linear combination of Bloch functions, so that the generated orbital  𝜓𝑛𝑘⃗ 
(𝑟 ) =

 ∑ 𝑐𝜇𝑘⃗ 𝜇 𝛷𝜇𝑘⃗ 
(𝑟 ) also satisfies the Bloch theorem and therefore reflects the translational 

periodicity of the system. There are two basic types of Bloch functions (𝐵𝐹s) used in the 

expansion. 

 First, functions located in the positions of the nuclei (χ𝑚𝑢): 

𝛷𝜇𝑘⃗ =
1

𝑉
∑ 𝑒𝑖𝑘⃗ 𝑅⃗ χ𝜇𝑅⃗ (𝑅⃗ 𝑟 − 𝑟 𝜇 − 𝑅⃗ ), where  𝑟 𝜇 is the position value of the atom  𝜇 with respect 

to the origin of its cell and  𝑅⃗  the vector of the Bravais lattice corresponding to the origin of 

the cell. The generating functions  χ𝜇𝑅⃗ (𝑟 − 𝑟 𝜇 − 𝑅⃗ )are centered on the atomic nuclei, hence 

they are called atomic orbitals (𝐴𝑂s). Normally, 𝐴𝑂s  are expressed as a linear combination of 

𝐺𝑇𝑂s, with preference over 𝑆𝑇𝑂s due to their analytical properties, despite the fact that they 

imply a bad description of nuclear cuspids. Likewise, each 𝐺𝑇𝑂  is expressed as a linear 

combination of Gaussians centered on the same nucleus and with identical quantum angular 

numbers. In this context, Gaussians are called primitive functions and 𝐴𝑂s are contracted 

functions. The use of such contracted sets allows to reduce the number of basic functions to 

build a given crystalline orbital (𝑂𝐶), especially when considering the more internal ones, 

which have to simulate the core 𝐴𝑂 s. However, and as a counterpart to its chemical 

suitability, this basic choice has four undesirable characteristics: (i)-it is not a universal set, in 

the sense that it depends on the positions of the atoms in the unit cell and their nature, (ii)-it 

does not form orthogonal sets, and the overlapping terms must be included explicitly in the 

calculation, (iii)-despite its incompleteness, linear pseudo-dependence problems can be 

generated between the most diffuse valence 𝐴𝑂s and (iv)-it does not reproduce the self-

functions monoelectronics of free electron gas and, therefore, there are justified doubts in 

their use in metals. 
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 Second, plane waves: 𝛷𝐾⃗⃗ 𝑘⃗ 
(𝑟 ) = 𝑒𝑖𝑟 (𝑘⃗ +𝐾⃗⃗ ). Plane waves are the ideal base functions 

for the study of periodic systems. They constitute a universal set (they do not depend on the 

naturalization of the atoms or their position in the unit cell), orthonormal, with correct 

asymptotic behavior and, in principle, complete. Since the use of an infinite set of plane 

waves in the expansion of the electronic wave functions is impossible, a cutting or cutoff 

energy is introduced that truncates the base of plane waves, in such a way that the plane 

waves with kinetic energy (
1

|𝑘⃗ +𝐾⃗⃗ |
) greater than the cutting energy are excluded from the base. 

The truncation leads to an error in the total energy.The value of the cutting energy must, 

therefore, be increased until the convergence in the total energy is reached. One of the 

difficulties associated with the use of a plane wave base is that the number of base deaths 

changes discontinuously with the cutting energy for the different points𝑘. Furthermore, at a 

fixed cutting power, the change in the size and/or shape of the unit cell also causes 

discontinuity in the base. One method to solve this problem is to use a denser grid of points  

𝑘, so that the weight associated with the base functions is smaller. The plane waves involve a 

very simple algebraic treatment, being convenient to perform the calculations in the 

representation of moments. However, they present a serious problem when a large number of 

plane waves are necessary to reproduce the local waveforms, specifically the cusps in the 

nuclear positions. The most usual way to overcome it is to perform a core-valence separation. 

In this sense, the electrons of the core are described by pseudopotentials and those of valence 

by a sum of plane waves. 

2.5.    COMPUTATIONAL METHODS 

2.5.1.    LINEAR COMBINATION OF ATOMIC ORBITALS (𝑳𝑪𝑨𝑶) 

 The term 𝐿𝐶𝐴𝑂 means that each crystalline orbital is a linear combination of Bloch 

functions defined in terms of local functions (atomic oribitals). Within this approach and 

under the 𝐻𝐹 formalism the 𝐶𝑅𝑌𝑆𝑇𝐴𝐿 program [30] is suitable for calculations. 

 In this, and as has been mentioned in the previous section, atomic orbitals are, in 

turn, mixtures of Gaussian-type functions, called primitives, whose exponents and coefficients 

are defined in the input. The atomic orbital belonging to a given atom are grouped in shells. 

Each shell contains all the OAs with equal 𝑛 𝑎𝑛𝑑 𝑙 quantum numbers (shells 3s, 2p, 3d) or all 
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OAs with the same main quantum number 𝑛, if the number of GTOs and their corresponding 

exponents are the same for all of them (sp shells) . 

 The expansion coefficients of the Bloch functions  c𝜇𝑛𝑘⃗  are obtained by independent 

resolution of the Hartre-Fock matrix equations at each point 𝑘⃗  of the first Brillouin zone: 

                                             𝐹(𝑘⃗ )𝐶(𝑘⃗ ) = 𝑆(𝑘⃗ )𝐶(𝑘⃗ )𝐸(𝑘⃗ ),                                                (2.49) 

where  𝑆(𝑘⃗ ) is the matrix overlapping between Bloch functions, 𝐸(𝑘⃗ )is the diagonal energy 

matrix and 𝐹(𝑘⃗ ) is the Fock matrix in the reciprocal space:   𝐹(𝑘⃗ ) = ∑ 𝐹𝑅⃗ 𝑒𝑖𝑘⃗ 𝑅⃗ 
𝑅⃗ . 

This is possible thanks to the structure in diagonal blocks of the matrices (the matrices 

between crystalline orbitals that differ in 𝑘⃗  are null according to the Bloch theorem). The 

dimensions of the matrices are equal for each 𝑘⃗  and equal to the number of atomic orbitals in 

the elementary cell. The matrix elements of  𝐹𝑅⃗ , the Fock matrix in the direct space, can be 

written as a sum of monoelectronic and bielectronic contributions in the base of 𝐴𝑂s: 

                                                       𝐹𝜇𝜈
𝑅⃗ = 𝐻𝜇𝜈

𝑅⃗ + 𝐵𝜇𝜈
𝑅⃗                                                           (2.50) 

where the monoelectronic contribution includes the kinetic terms and the nuclear attraction 

𝐻𝜇𝜈
𝑅⃗ = 𝑇𝜇𝜈

𝑅⃗ + 𝑍𝜇𝜈
𝑅⃗  and the term bielectronic is the sum of the contributions of Coulomb and 

exchange 𝐵𝜇𝜈
𝑅⃗ = 𝐶𝜇𝜈

𝑅⃗ + 𝑋𝜇𝜈
𝑅⃗ . The Coulomb interactions are individually divergent, since the 

summations on vectors of the direct lattice include infinite terms. It is necessary, therefore, to 

group the different contributions to eliminate the divergence. The exchange integrals that are 

combined with small elements of the density matrix are suppressed. Threshold parameters are 

also introduced for the overlap between the contracted 𝐺𝑇𝑂s with the object of truncating the 

summations. This approach introduces very severe restrictions on the number and spatial 

extent of the basic functions used. For this reason, high-quality molecular bases cannot be 

used in 𝐶𝑅𝑌𝑆𝑇𝐴𝐿 calculations, and medium or low quality bases must be adopted whose 

more diffuse exponents, especially in the case of anions, have to be reoptimized in each 

crystal. The elements of the density matrix in the direct space and in the base of 𝐴𝑂s are 

calculated by integrating on the volume of the first zone of Brillioun: 

                                 𝑃𝜇𝜈
𝑅⃗ =

1

𝜔𝐵
∫

𝛺𝐵
𝑒−𝑖𝑘⃗ 𝑅⃗ 𝑑𝑘⃗ ∑ 𝑎𝜇𝑖

∗ (𝑘⃗ )𝑎𝑖𝜈(𝑘⃗ )𝛩(𝐸𝐹 − 𝐸𝑖(𝑘⃗ ))𝑖                    (2.51) 
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where the sum extends to the 𝑖 eigenvalues. The total electronic energy per cell, not including 

the term of internuclear repulsion, can be written in terms of the density matrix as: 

                                                        ε=
1

2
∑ 𝑃12

𝑅⃗ (𝑅⃗ ,𝜈,𝜇 𝐻12
𝑅⃗ + 𝐵12

𝑅⃗ )                                         (2.52) 

 To calculate the Fermi energy and the density matrix, Monkhorst-Pack grids are 

used. In the case of metals, denser grids (Gilat grids) [31] are used, with an analogous 

definition to the first ones. The new subdivisions divide the first Brillion area into mini-cells. 

In them, linear or quadratic interpolations are made for the periodic functions in  𝑘⃗ , so that the 

integral is calculated approximately as a sum of integrals over the individual.  

2.5.2.    PSEUDOPOTENTIAL-PLANE WAVES METHOD (𝑷𝑷-𝑷𝑾) 

 As previously discussed, wave functions can be represented on a plane wave basis: 

                                                        𝜓𝑖𝑘⃗ = ∑ 𝑐𝑛𝑘⃗ (𝐶)𝐾 𝑒𝑖(𝑘⃗ +𝐾⃗⃗ )𝑟                                          (2.53) 

where  the sum recovers the vectors of the reciprocal lattice  𝐾⃗⃗  and the  cnk⃗⃗ (K⃗⃗
 )are the 

expansion coefficients. The substitution of Equation 3.53 in the Kohn-Sham equations leads, 

after its integration, to the secular equation: 

    ∑ [|𝑘⃗ + 𝐾⃗⃗ |
2
𝛿𝐾⃗⃗ 𝐾’⃗⃗  ⃗ + 𝑣(𝐾⃗⃗ − 𝐾⃗⃗ ’) + 𝑣𝐻(𝐾⃗⃗ − 𝐾⃗⃗ ’) + 𝑣𝑥𝑐(𝐾⃗⃗ − 𝐾⃗⃗ ’)]𝑐𝑛,𝑘⃗⃗⃗ +𝐾’⃗⃗  ⃗ =𝐾 𝜖𝑛𝑐𝑛,𝑘⃗⃗⃗ +𝐾’⃗⃗  ⃗      (2.54) 

 According to this expression, the representation in the reciprocal space of the kinetic 

energy is diagonal and the different potentials (local in real space) can be described in terms 

of their Fourier transforms. Fourier transformations can be done very efficiently with the 𝐹𝐹𝑇 

technique (Fast Fourier Transform), which reduces the computational cost of the calculation 

to 𝑀log𝑀 (𝑀 = number of plane waves in the base). The traditional methods to solve the 

Kohn-Scham equations are based on the diagonalization of the Hamiltonian matrix whose 

elements  𝐻𝑘⃗ +K⃗⃗ ,𝑘⃗ +K⃗⃗ ’are given by the terms in the brackets from equation 2.54. The size of the 

matrix is determined by the cutoff energy  
1

2|𝑘⃗ +K⃗⃗ c|
2 and is enormous, even in the simplest 

systems. Therefore, it is necessary to resort to the approximation of the pseudopotential and to 

the application of numerical techniques different from the conventional diagonalization 

techniques. 
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2.5.2.1.    Pseudopotentials 

 The computational cost derived from the inclusion of all the electrons of a system is 

prohibitive using a plane wave base. The rapid oscillations of the functions of valence waves 

in the region near the nucleus, originated by the orthogonality condition with the wave 

functions of the core, according to the principle of exclusion, and the fact that the electron-

nucleus potential varies as  −
1

𝑟
 , so that it diverges when 𝑟 ⇾ 0  leads to large kinetic 

energies, and therefore makes a large number of plane waves necessary. Furthermore, 

describing the core wave functions also requires a large number of plane waves. 

 These problems can be avoided by using the pseudopotential approach. This arises 

from two observations from the study of the chemical-physical properties of matter. First of 

all, the core electrons of different atoms are not, to a large extent, affected by the surrounding 

environments. Second, only valence electrons participate actively in the interactions between 

atoms. Therefore, most of the observable properties are determined by the valence electrons. 

For a large number of atoms, there is a clear distinction between the electrons that can be 

considered part of the core, and the valence electrons that determine the atomic 

characteristics. Even if it is not, a reasonable division is possible. 

 The pseudopotential approach substitutes the strong Coulomb potential and the core 

electrons for an effective pseudopotential that is much weaker, and the valence wave 

functions, which oscillate rapidly in the core region, for pseudo-wave functions, which vary 

more smoothly in the core region and coincide with the real wave functions outside the core 

region. This reduces the complexity of the problem. First, by not considering the core 

electrons explicitly, the number of wave functions to be calculated is smaller. Second, since 

the potential no longer diverges to −∞ and the valence wave functions are softer within the 

core region, fewer plane waves are needed to describe the valence wave functions. 

 The introduction of pseudopotentials appears as a natural development of the 

orthogonalized plane wave method. If we describe the electronic structure of the atom through 

the monoelectronic Hamiltonian ℎ̂, we can write the equations of eigenvalues in the form: 

                                               ℎ̂|𝑣〉 =  𝑒v|𝑣〉ℎ̂|𝑐〉 =  𝑒c|𝑐〉                                                   (2.55) 
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where |𝑣〉 and |𝑐〉 are, respectively, valence and core electronic states and 𝑒c  and  𝑒v their 

corresponding eigenvalues. Since |𝑣〉 do not contain core contributions, we can construct a 

softer base pseudostate |𝑣〉 defined by: 

                                                    |𝑣〉 = |𝑣̅〉 − ∑ |𝑐〉𝑐 〈𝑐|𝑣̅〉                                                  (2.56)  

if we act with the effective monoelectronic Hamiltonian on transformation equation 2.56, we 

find, 

                                       [ℎ̂ + ∑ |𝑐〉𝑐 (𝑒v − 𝑒c)〈𝑐|]|𝑣̅〉 =  𝑒v|𝑣̅〉                                          (2.57) 

which shows that the transformed vectors |𝑣〉are eigenvectors of the transformed Hamiltonian 

ℎ̂𝑇 = ℎ̂ + ∑ |𝑐〉𝑐 (𝑒v − 𝑒c)〈𝑐|, with identical eigenvalue to which they have the true |𝑣〉with ℎ̂. 

The additional potencial 𝑉̂𝑛𝑙 = ∑ |𝑐〉𝑐 (𝑒v − 𝑒c)〈𝑐|, whose effect is located in the core, is 

repulsive since  𝑒v − 𝑒c >  0and cancels part of the strong attractive Coulomb potential  𝑉̂(𝑟 ) 

resulting in a softer pseudopotential  𝑉̂𝑃𝑃(𝑟 , 𝑟 
′) = 𝑉̂(𝑟 ) + ∑ |𝜓c(𝑟 )〉𝑐 (𝑒v − 𝑒c)〈𝜓c(𝑟 

′)|. Since 

the wave functions of core  |𝑐〉 are exhausted at relatively small distances from the nucleus, 

the pseudo-wave valence functions  |𝑣〉 suffer, at higher distances, a very similar nominal 

potential  𝑉̂(𝑟 ) and result, in that range of distance, very similar to the true wave functions  

|𝑣〉. At smaller distances, the valence wave pseudo-functions |𝑣〉 suffer a Coulomb potential 

screened by the core components. This shielding is responsible for the non-singularity of the 

pseudopotential  𝑉̂𝑃𝑃(𝑟 , 𝑟 
′) at the origin. 

Pseudopotentials norm-conserving 

 There is no single procedure for the construction of pseudopotentials, although a 

valid pseudopotential should be transferable, smooth and the pseudo-wave function should 

generate identical charge density to that of the real wave function outside the region of core 

with the object to obtain a correct description of the exchange and correlation terms. The 

transferability of the pseudopotential indicates its ability to describe valence electrons in 

different chemical environments, while the softness of the pseudopotential is related to the 

inclusion of few plane waves in the expansion of the valence wave pseudo-functions, so that 

the cost computational data associated with the calculation is as low as possible. Therefore, 

traditionally its generation has been guided by the fulfillment of four properties: 
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 ▪ The eigenvalues of the pseudo-wavefunction and the all-electron wavefunction 

must coincide for a given atomic configuration. 

 ▪ The pseudo-wavefuncion must be equal to the all-electron wavefunction from a 

radius of core 𝑟c . 

 ▪ The charge within 𝑟c must be equal for the two wave functions (conservation of the 

norm). This condition guarantees the coincidence of the all-electron wavefunction and the 

pseudo-wavefunction outside the core region. 

 ▪ The logarithmic derivatives of the pseudo-wavefunction and the all-electron wave 

function and their first derivatives with the energy must coincide for 𝑟 > 𝑟c . 

 The last two properties are fundamental to ensure the transferability of the 

pseudopotential in a variety of different chemical environments. The third property guarantees 

that the Coulomb interaction between the atoms is calculated correctly, since the correct core 

charge is available. For its part, the fourth property ensures that the effect of scattering 

(derived from logarithms) is the same as the original potential in the proximity of eigenvalues 

(although, in general, occurs throughout the energy interval of the valence bands). Both 

properties are related by a simple identity and the generated pseudopotentials are called norm-

conserving. Usually, the procedure for generating pseudopotentials consists of a series of 

steps: 

 ▪ Obtaining  the all-electron solution of the free atom. 

 ▪ Choice of a cutting radius 𝑟c , from which the pseudo-valence wave function and 

the pseudopotential coincide with the wave function of real valence and potential. The choice 

is determined by the compromise between transferability (lower 𝑟c ) and smoothness (greater 

𝑟c ). In general, to obtain good reproducibility of the charge distribution, and therefore a good 

transferability, 𝑟c should be close to the maximum of the all-electron wave function, which for 

elements with orbitals strongly localized leads to huge bases of plane waves. 

 ▪ Parametrization of the wave function in𝑟 < 𝑟c requiring a softjunction in  𝑟c with 

the all-electron wave function and the conservation of the norm. 

 ▪ Inversion of the Schrödinger equation to obtain the pseudopotential that 

reproduces the pseudowavefuncion. 
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 ▪ Unscreening by subtracting Hartree's contributions and exchange-correlation. 

 ▪ Verification of transferability and smoothness. 

 The wave functions and eigenvalues are different for different angular moments, 

which implies that the pseudopotential must also depend on the angular momentum. In 

general, we can express the non-local pseudopotential in the semilocal form: 

                                             𝑉̂𝑝𝑠 = 𝑉̂𝑙𝑜𝑐 + ∑ ∑ |𝑙𝑚〉𝛿𝑉̂𝑙〈𝑙𝑚|𝑙
𝑚=−𝑙𝑙                                       (2.58) 

where |𝑙𝑚〉  denotes the spherical harmonic  𝑌𝑙𝑚 . The choice of the local potential 𝑉̂𝑙𝑜𝑐 is 

arbitrary, but in general the sum over 𝑙 is truncated to a small value (for example, 𝑙 = 2) in 

such a way that the local part represents the potential that acts on components at the moment 

angular greater.  𝛿𝑉̂𝑙 is the angular momentum component 𝑙 of the pseudopotential acting on 

the wave function. It is a semilocal term, which is given by:  𝛿𝑉̂𝑙 = 𝑉̂𝑝𝑠,𝑙 − 𝑉̂𝑙𝑜𝑐. This form 

presents the problem of being very costly computationally, since the number of elements of 

the matrix goes with the square of the number of basis functions. The most common solution 

to this problem is the use of the separable form of Kleinmen-Bylander (𝐾𝐵) [32], in which the 

semilocal term is transformed into a non-local separable term: 

                                              𝑉̂𝐾𝐵 = 𝑉̂𝑙𝑜𝑐 + ∑
|𝛿𝑉𝑙𝛷𝑙𝑚〉〈𝛷𝑙𝑚𝛿𝑉𝑙|

〈𝛷𝑙𝑚|𝛿𝑉𝑙|𝛷𝑙𝑚〉𝑙𝑚                                          (2.59)  

where  |𝛷𝑙𝑚〉 is an eigenfunction of the atomic pseudo-Hamiltonian calculated with 𝛿𝑉̂𝑙. 

 This operator acts on a state of reference in a way identical to the original semi local 

operator 𝑉̂𝑝𝑠 , but the number of projections scales only linearly with the number of basis 

functions. An artifact of the non-local form of 𝐾𝐵 is the appearance of ghost states without 

physical sense close to valence states with physical sense. Formally, the 𝐾𝐵 form can be 

generalized to a serial expansion of a non-local pseudopotential that avoids ghost states by 

projection in additional reference states. In practice, it is possible to achieve transferable 

pseudopotentials without ghost states through a correct choice of the local component of the 

potential and  𝑟c . 

 An alternative to the pseudopotential type 𝐾𝐵 are the pseudopotential 𝐻𝐺𝐻  [33], 

which we have used in our calculations. Its form is analytical, so it is not necessary to store 

the projectors in numerical form in dense radial grids (as in the 𝐾𝐵 type pseudopotentials), 
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but only a small number of parameters need to be specified. They consist of a local part and a 

nonlocal contribution. The nonlocal part is a sum of separable terms that include projectors 

with the product form of a Gaussian by a polynomial. A characteristic property of these 

pseudopotentials is that the same form is maintained in the reciprocal space. Because of this, 

pseudopotentials have optimal decay properties in both real and reciprocal space, which 

allows the nonlocal potential to be located in a small region around the atom and the 

pseudopotential to be reasonably smooth, avoiding the use of a very narrow grid dense, 

respectively. 

 The construction procedure differs from the traditional method, since the 

pseudopotential parameters are determined through a setting of least squares, in which the 

function to be minimized includes the differences of eigenvalues and charges within an 

atomic sphere of the atom all electron and the pseudoatom, instead of producing pseudo-

wavefuntions identical to the electron beyond 𝑟c . These pseudopotentials also allow the 

explicit consideration of semiconductor electrons, although the precision required for the 

eigenvalues and the charges of the pseudo-wavefunctions is smaller than that of the pseudo-

valence wave functions. The use of pseudopotentials with semiconductor wave functions, 

despite the greater computational cost associated with containing a greater number of 

electrons, is very important in those systems in which there is a non-negligible overlap 

between the wave functions of core and valence. Another way used in other pseudopotentials 

to solve the problem is the inclusion of non-linear core corrections, which consider the 

contribution of the core charge to the potential for exchange and correlation. 

Pseudopotentials ultasoft (US) 

 The determination of the 𝑟c of an arbitrary pseudopotential is governed by two 

general rules. First, to allow an adequate representation of the logarithmic derivatives, it 

should not exceed the value of half the distance between first neighbors 𝑑𝑁𝑁 : 

                                                             𝑟𝑐,𝑚𝑎𝑥 ≈
1

2
𝑑𝑁𝑁                                                        (2.60) 

 Secondly, and only for the norm-conserving pseudopotentials, the spatial region 

where the real solutions are replaced by pseudo-solutions has to be restricted to a region 

where the Hamiltonian remains close to the reference Hamiltonian for any chemical 

environment, since the equation 2.60 together with the rule conservation requirement, only 



73 
 

guarantees a correct description of the logarithmic derivatives of the wave functions for the 

Hamiltonian, or reference. The general recommendation is that the peak of highest charge 

density associated with a certain orbital, this is the most external maximum of the all electron 

wave function should be reproduced correctly, so: 

                                                            𝑟c,max ≈ 𝑅𝑒𝑥𝑡                                                            (2.61) 

where 𝑅𝑒𝑥𝑡 is the value of the radius for the most external maximum of the wave function. 

Equation 2.61 leads to the existence of strong limitations for the description of systems with 

strongly localized orbitals ( 3𝑑 transition metals, rare earths with 𝑓 orbitals) since in these 

cases 𝑅𝑒𝑥𝑡 is significantly smaller than 0.5 𝑑𝑁𝑁 , which makes a large number of plane waves 

per atom (a <𝑟c >𝐾c ). The calculation is also expensive in systems that combine large atoms 

with small atoms (elements of the first row), since the 𝑅𝑒𝑥𝑡 of the latter can be significantly 

smaller than 0.5 𝑑𝑁𝑁  (for example, molecular phases of  𝑁,𝑂). 

 The main idea of the ultrasoft pseudopotentials proposed by Vanderbilt in 1990 

[34], is that the relaxation of the conservation requirement of the standard can be used to 

generate much smoother potentials, so that the size of the plane wave basis set can be 

substantially less. In this scheme, the forms of the pseudo-wavefunctions are forced to be 

equal to the all electronfunctions out of  𝑟c  (like the concept of conservation of norm) but they 

are allowed to be much softer inside, as a consequence of the elimination of the requirement 

of the norm. As the fulfillment of the equation 2.61 is not necessary, 𝑟c  can be considerably 

greater, which reduces the number of plane waves needed in the calculation. 

 With the elimination of the requirement of conservation of the norm, the problem of 

standard eigenvalues: 

                                                  (𝑇̂ + 𝑉̂𝐿𝑂𝐶 + 𝑉̂𝑁𝐿 − 𝜖)|𝛷〉 = 0                                         (2.62) 

where 𝑇 is the kinetic energy operator, 𝑉̂𝐿𝑂𝐶 and 𝑉̂𝑁𝐿 the local and non-local components of 

the pseudopotential, 𝜖 the eigenvalue and |𝛷〉 the pseudofuncion of angular momentum  𝑙𝑚, 

is transformed to generalized eigenvalues problem: 

                                                (𝑇̂ + 𝑉̂𝐿𝑂𝐶 + 𝑉̂𝑁𝐿 − 𝜖𝑆)|𝛷〉 = 0,                                       (2.63) 
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in which an overlapping operator appears as a consequence of the use of non-orthogonal wave 

functions: 

                                                      𝑆 = 1 + ∑ 𝑄i,j𝑖𝑗 |𝛽𝑗〉〈𝛽𝑗
|                                                (2.64) 

in such a way that the normalization of the solutions in the generalized problem takes the 

form: 

                                                             〈𝛷𝑛𝑘⃗ |𝑆|𝛷𝑛′𝑘⃗ 
〉 = 𝛿𝑛𝑛′                                              (2.65) 

 On the other hand, the expression for the totally separable non-local pseudopotential 

is: 

                                                               V𝑁𝐿
′ = ∑ 𝐷𝑖,𝑗𝑖𝑗 |𝛽𝑗〉〈𝛽𝑗

|                                         (2.66) 

    The functions of increase 𝑄𝑖,𝑗(𝑟 ) are given by: 

                                                      𝑄𝑖,𝑗(𝑟 ) = ψ𝑖
∗(𝑟 )ψ𝑗(𝑟 ) − Φ𝑖

∗(𝑟 )Φ𝑗(𝑟 )                           (2.67) 

where  ψ𝑖(𝑟 )  and  Φ𝑖(𝑟 )are the all electron wave functions and ultrasoft, respectively. 

Therefore, the conservation requirement of the standard  𝑄𝑖,𝑗(𝑟 ) = 0 is eliminated and the 

only restriction is that the pseudo-wavefuntions are continuous and with first and second 

derivatives equal to those of the all electron wavefunctionin 𝑟c  . |𝛽𝑗〉 are localized projectors, 

dual to |Φ𝑖
𝑈𝑆〉 , 〈𝛽

𝑗
|Φ𝑖

𝑈𝑆〉 = 𝛿𝑖𝑗 and the coefficients 𝐷𝑖,𝑗 determine the importance of each 

contribution in  V𝑁𝐿
′ . It opens the possibility to the use of more than one reference energy 𝜖 by 

quantum state 𝑙 (in general, the number of projectors is reduced to two) in the construction of 

ultrasoft pseudopotentials, which guarantees good transferability of them in a specified 

energetic range  even at 𝑟c  large. Another important aspect is the electron density deficit of 

valence that appears in the core region, as a consequence of the elimination of the requirement 

of conservation of the norm in the construction of the pseudo-wavefunction. Thus, in the self-

consistent calculation, the electron density originated by the square of the modulus of the 

pseudo-wavefunctions has to be increased in the region of core, in order to recover the total 

density. The electronic density appears subdivided, then, in a smooth contribution that extends 

throughout the unit cell and a hard contribution located in the regions of core, according to the 

expression: 
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                                      ρ𝑣(𝑟 ) = ∑ Φ
𝑛𝑘⃗ 
∗ (𝑟 )𝑛𝑘⃗ Φ𝑛𝑘⃗ 

(𝑟 ) + ∑ ρ𝑖,𝑗𝑄𝑖,𝑗(𝑟 )𝑖,𝑗                             (2.68) 

where 

                                                      ρ𝑖,𝑗 = ∑ 〈𝛽
𝑖
|Φ𝑛𝑘⃗ 

〉〈Φ𝑛𝑘⃗ |𝛽𝑗〉𝑛𝑘⃗                                         (2.69) 

 To calculate the increase part of the charge density (second term in equation 2.68) it 

is convenient to substitute the  𝑄𝑖,𝑗(𝑟 )for the functions  𝑄𝑖,𝑗
𝑃𝑆(𝑟 ).To do this, all electron 

functions in equation 2.67 are replaced by norm-conserving function homologs |Φ𝑁𝐶〉. 

 The main advantage of the ultrasoft pseudopotential scheme, although 

mathematically more complicated, is evident from equation 2.68. The pseudo-charge defined 

by the ultrasoft wave functions lacks physical significance, being the only relevant quantity 

the total electronic density obtained after the increase. For this reason, the 2.61 restriction is 

only relevant for the norm-conserving wave function that defines the increase of charges. For 

the ultrasoft wave pseudofunction, the only restriction is 2.60. From this expression it is also 

deduced that the quality of the calculation will be determined by the presence of charges of 

high quality increase, that is, with r𝑐sufficiently small. 

 In the construction scheme of pseudopotentials of type 𝑅𝑅𝐾𝐽 [35], the  pseudo-

wavefunctions belonging to an angular momentum 𝑙 and energy ε are expanded in spherical 

Bessel functions within the region of the core defined by the radius 𝑅𝑝𝑠(𝑟 ≤ 𝑅𝑝𝑠) 

Φ𝑙𝜖
𝑃𝑆(𝑟 ) = ∑ 𝛼𝑖

𝑛
𝑖=1 𝑟𝑗𝑙,  (𝑞𝑖𝑟)                                           (2.70) 

where wave vectors 𝑞𝑖  are chosen in such a way that the Bessel functions have the same 

logarithmic derivatives in 𝑟 = 𝑅𝑝𝑠that the wave functions all electron: 

𝜕

𝜕𝑟
[𝐿𝑛Φ𝑙𝜖

𝐴𝐸(𝑟 )]|𝑟=𝑅𝑝𝑠
=

𝜕

𝜕𝑟
{𝐿𝑛[𝑟𝑗𝑙(𝑞𝑖𝑟)}|𝑟=𝑅𝑝𝑠

                                (2.71) 

 The expansion coefficients  𝛼𝑖 are determined according to the requirement that the 

wave function is continuously differentiable up to order 2 and without nodes. The basis of 

function of Bessel presents the advantage of being orthogonal and for (𝑟 ⇾ ∞) complete. 

 This scheme is used both in the construction of the ultrasoft wave functions and in 

the norm-conserving functions, with which  𝑅𝑝𝑠 is identified with the cutting radius of each of 

them. In the model used, two functions of Bessel for the construction of ultrasoft wave 
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functions are produced, extending the number to 3 (even to 4) in the norm-conserving wave 

functions, in order to guarantee compliance with the conservation of the rule. 

 

2.5.2.2.    Electronic minimization 

 The traditional procedure to perform a calculation of total energy under the 

approximation of the pseudopotential begins with the determination of the electron-electron 

potential and the construction of the Hamiltonian matrices for each of the points 𝑘 included in 

the calculation (assuming equation 2.54) from an electronic density test. Diagonalize, then, 

the Hamiltonian matrices and lower eigenvectors in energy are occupied. These eigenvectors 

will, in principle, generate a charge density and electron-electron potential different from the 

initial ones, so that the process is repeated until it reaches self-consistency. In practice, the 

new density (or the new potential) is not simply the density (potential) generated in the 

previous iteration, but it is necessary to perform an averaging of the densities (potentials) of 

input and output to avoid oscillations in the process. According to this original scheme, the 

maximum number of plane waves in the calculation is restricted to 1000, as a consequence of 

the limitation of memory and computational speed, so taking into account that to represent the 

orbitals in a calculation of this type it is needed a number of 100 plane waves per atom, a 

system of 10 atoms represented the largest system to treat. 

 It is necessary, therefore, to resort to iterative algorithms, in which the explicit 

calculation and storage of the Hamiltonian matrix (𝑁𝑝𝑙𝑤. 𝑁𝑝𝑙𝑤)  (𝑁𝑝𝑙𝑤 = number of plane 

waves) is avoided, allowing the use of very large bases (𝑁𝑝𝑙𝑤 ≈ 10000). 

 They are distinguished within these: 

1. Methods to determine the minimum energy functional of Kohn-Sham directly (direct 

methods). 

2. Iterative methods for the diagonalization of the Hamiltonian 𝐾𝑆 in conjunction with an 

iterative (mixed) improvement of the charge density (𝑆𝐶 methods). 

 The direct methods were proposed by Car and Parrinello [36] and are based on the 

fact that the functional Kohn-Sham (𝐸𝐾𝑆) is minimal in the electronic ground state, so the 

minimization with respect to the degrees of vibrational freedom leads to a suitable scheme for 
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the calculation of the electronic ground state. Its biggest problem lies in the difficulty in 

maintaining orthogonal wave functions. 

 In contrast to the direct methods, the 𝑆𝐶 methods [37] divide the problem of the 

evaluation of the fundamental state of 𝐾𝑆 into two parts, on the one hand, the determination 

of the 𝑠𝑒𝑙𝑓 − 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 charge density (or potential) and, on the other hand, the 

diagonalization of the Hamiltonian 𝐾𝑆 for a fixed potential. 

 Traditionally, SC methods are used in spite of being mathematically less effective 

than direct methods (self-consistent minimization of functional 𝐾𝑆 is replaced by independent 

improvement of eigenfunctions and charge density). The reasons are simpler implementation 

and the inclusion of the mixed charge density, allowing to retain information of previous 

steps, avoiding the occurrence of charge oscillation problems. On the other hand, the 

advantages of the 𝑆𝐶 methods over the direct diagonalization of the Hamiltonian are clear: 

 ▪ The use of only 𝑁𝑏 test wave functions (𝑁𝑏 ≤ 𝑁𝑝𝑙𝑤)representing all occupied 

eigenstates and some gaps. 

 ▪ The rapid evaluation of the action of 𝐻̂ on the electronic wave functions, through 

the transformation of the wave functions of the reciprocal space to the real one and vice versa 

through 𝐹𝐹𝑇. 

 ▪ The inclusion of iterative methods within the self-consistent calculation, with 

which the optimization of charge density and wave functions can be performed almost 

simultaneously. 

 A common feature of all iterative methods is that they start from a set of basis 

functions, to which correction vectors are added in each iteration. This allows obtaining an 

approximate improvement to the eigenvalues and eigenvectors, through the Rayleigh-Ritz 

scheme [37,38] in which  𝐻̂  is diagonalized in the subspace of the expansion set and a 

problem of eigenvalues is solved.The result is the 𝑚  eigenvectors associated with the 𝑚 

lowest eigenvalues in energy. The main difference lies in whether the optimization is done 

simultaneously, adding in each step 𝑁 new vectors (blocked methods) or sequentially band by 

band so that in each iteration a single correction value (non-blocked methods) is added. These 

last ones are the ones included generally in the calculation codes since in spite of being 

considered slower than the blocked algorithms they do not need to store 2𝑁𝑏 vectors in each 
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iteration. On the other hand, they also allow a greater number of iterations so they are more 

efficient. An important amount within the iterative methods is the Rayleigh quotient or 

expected value of the Hamiltonian for a specific band: 

                                                                    ϵ𝑎𝑝𝑝 =
〈φ𝑚|H|φ𝑚〉

〈φ𝑚|S|φ𝑚〉
                                             (2.72) 

 Its variation with respect to 〈φ𝑚| leads to a residual vector: 

                      |R(φ𝑚)〉 = (𝐻 − ϵ𝑎𝑝𝑝) |φ𝑚〉𝑠𝑖𝑛〈φ𝑚|S|φ𝑚〉 = 1                            (2.73) 

The residual vector rule 〈𝑅|𝑅〉  measures the error in the eigenvector. Formally, a good 

approximation to the difference between the approximate eigenvector and the exact one is 

given by the expression: 

                                                      |𝛿φ𝑛〉 =
1

𝐻−ϵ𝑎𝑝𝑝
|𝑅〉.                                                      (2.74)  

 However, the difficulty of evaluating the term (𝐻 − ϵ𝑎𝑝𝑝)
−1, requires an 

approximate treatment. Thus, the step that calculates the approximate error of the residual 

vector is called preconditioned and the matrix 𝐾 that multiplies the residual vector in order to 

obtain |𝛿φ𝑛〉  is called a preconditioned matrix |𝛿φ𝑛〉 = 𝐾|𝑅〉 . A preconditioned matrix 

usually used with slight modifications is the one proposed by Teter et al [39]. 

 In sequential methods it is convenient to restrict the search vector to the orthonormal 

subspace to the wave functions under study. Thus, to ensure that the orthogonality between 

the bands is maintained, Lagrange multipliers are introduced, so that the gradient vector takes 

the form: 

                                𝑔(𝜑𝑚) = |𝑔𝑚〉 = (1 − ∑ |𝑆|𝜑𝑛〉𝑛 〈𝜑𝑛|) × 𝐻|𝜑𝑛〉                               (2.75) 

and the preconditioned search vector is given by: 

                             |𝑝(𝜑𝑚)〉 = |𝑝𝑚〉 = (1 − ∑ |𝜑𝑛〉𝑛 〈𝜑𝑛|𝑆) × 𝐾(𝐻 − ϵ𝑎𝑝𝑝)|𝜑𝑚〉              (2.76) 

 The different sequential methods differ in the way that this correction vector is 

analogous to the wave functions. The iterative methods used in our calculations are the 

Davidson method [40], the conjugate gradient method ( 𝐶𝐺 ) [41] and the residual 

minimization method with direct inversion in the iterative subspace (𝑅𝑀𝑀-𝐷𝐼𝑆) [42]. In the 
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Davidson method, we start with a test vector  |𝜑𝑚
0 〉to which the preconditioned gradient  |𝑝𝑚

0 〉  

is added. The optimal eigenvector in each iteration is calculated, then, through the Rayleigh-

Ritz scheme. After a band has been optimized several times it is passed to the next one. 

Finally, when all bands have been optimized, the optimal wave functions in the subspace of 

the 𝑁𝑏 test functions (rotation in the subspace) are determined. 

 In the conjugate gradient method, the new direction |𝑓𝑀〉 for the iteration 𝑀  is 

conjugated (independent) to the previous directions and is given by: 

                                               |𝑓𝑀〉 = |𝑝𝑚
𝑀〉 +

〈𝑝𝑚
𝑀|𝑔𝑚

𝑀〉

〈𝑝𝑚
𝑀−1|𝑔𝑚

𝑀−1〉
|𝑓𝑀−1〉                                      (2.77) 

 The optimal wave function |𝜑𝑚
𝑀+1〉  is determined from the set   { |𝜑𝑚

𝑀〉/

|𝑓𝑀〉}through the Rayleigh-Ritz scheme. The only drawback associated with this method is 

the need for an explicit ortonomalization of the preconditioned residual vector to the set of 

test wave functions. This is a disadvantage in large systems since a single vector has to be 

orthonormal to a large number of vectors in each iteration. The solution proposed by Wood 

and Zunger is to minimize the residual vector rule instead of the Rayleigh-Ritz quotient. 

 Thus, orthonormalization is not necessary when presenting the minimum residual 

vector rule in the eigenvectors. This is the origin of the residual minimization method with 

direct investment in the iterative subspace ( 𝑅𝑀𝑀 -𝐷𝐼𝑆 ). This method is based on the 

evaluation of the preconditioned residual vector for a band 𝐾|𝑅𝑚
0 〉. A fraction of steb is 

analogous to the starting wave function |𝜑𝑚
0 〉originating the new wave function |𝜑𝑚

1 〉 = |𝜑𝑚
0 〉 

+𝜆𝐾|𝑅𝑚
0 〉,, and the new residual vector |𝑅𝑚

1 〉 is evaluated. A combination of the initial wave 

function |𝜑𝑚
0 〉 is then generated and the test |𝜑𝑚

1 〉, |𝜑𝑚
𝑀〉 = ∑ 𝛼𝑖

𝑀
𝑖=1 |𝜑𝑚

𝑖 〉 (𝑀 = 1), in which 

the parameters 𝛼𝑖  are those that minimize the residual vector rule. This minimization is 

known as the direct investment in the iterative subspace (𝐷𝐼𝐼𝑆). The next step starts from 

|𝜑̅𝑀〉at the direction𝐾|𝑅̅𝑀〉 .In each iteration 𝑀 , a new wave function |𝜑𝑚
𝑀〉 = |𝜑̅𝑀−1〉 +

𝜆𝐾|𝑅̅𝑀−1〉 and a new residual vector |(𝑅𝜑𝑚
𝑀)〉is addedto the iterative subspace. The main 

drawback of this method is that it always finds the vector closest to the initial test vector, so it 

can lead to false fundamental states (absence of eigenvectors in the final solution). To avoid 

this, initialization has to be done carefully, starting with a set of random test vectors and 

sweeping over all the bands. These sweeps involve a rotation in the subspace in addition to 

the steps in the direction of residual vectors preconditioned by bands. Finally, after the sweeps 
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on all the bands, the final vectors reorthonormalize. Although, in principle, the 𝑅𝑀𝑀-𝐷𝐼𝑆 

method should converge without explicit rotation in the subspace or explicit 

orthonormalization, these operations allow to improve the convergence and ensure the 

obtaining of the ground state (especially if the spacing between eigenvalues is small). 

 The wave functions optimized in the different iterative methods allow to calculate a 

new charge density. This leads to the next part of the problem where self-consistency with 

respect to the input charge density must be achieved, i.e. the residual charge density vector  

𝑅[ρ𝑖𝑛] = ρ𝑜𝑢𝑡 − ρ𝑖𝑛has to be canceled. It is also possible to consider the self-consistency for 

the potential, since the convergence of the potential and the charge density are equivalent. The 

direct iteration  ρ𝑖𝑛
𝑛+1 = ρ𝑜𝑢𝑡

𝑛 leads to problems of charge oscillations, with which the 

algorithm diverges. To avoid these oscillations and facilitate convergence, different methods 

have been designed. The simplest is the linear mixing in which a linear combination of the 

input and output density generate the starting density of the following iteration: 

                                                  ρ𝑖𝑛
𝑚+1 = (1 − 𝛼)ρ𝑖𝑛

𝑚 + 𝛼ρ𝑜𝑢𝑡
𝑚                                              (2.78) 

 An extension of this method is the Anderson method [43], in which information 

from a greater number of previous iterations is included. It presents, however, the problem of 

the appearance of linear dependencies. Other more efficient mixtures are those attributed to 

Pulay [44] and Broyden [45]. In the first, the optimal input charge density is obtained as a 

linear combination of the input density of all the previous steps  ρ𝑖𝑛
𝑜𝑝𝑡 = ∑ 𝛼𝑖ρ𝑖𝑛

𝑖
𝑖 . The optimal 

𝛼𝑖  are obtained by minimizing the residual vector rule 〈R[ρ𝑖𝑛
𝑜𝑝𝑡]|𝑅[ρ𝑖𝑛

𝑜𝑝𝑡]〉  under the 

requirement  ∑ 𝛼𝑖 = 1𝑖  and assuming the linearity of the residual vector with respect to to the 

input density R[ρ𝑖𝑛
𝑜𝑝𝑡] = ∑ 𝛼𝑖R[ρ𝑖𝑛

𝑖
𝑖 ].  The quasi-Newton algorithms proposed by Broyden 

assume that the residual vector can be linearized close to the minimum: 

                                                    𝑅[ρ] = R[ρ𝑖𝑛
𝑚 ] − 𝐽𝑚(ρ − ρ𝑖𝑛

𝑚)                                         (2.79) 

Where  𝐽𝑚 is an approximation to the Jacobian matrix. Imposing that 𝑅[ρ∗] = 0 we obtain the 

optimal charge density that makes the vector zero: 

                                                       ρ∗ = ρ𝑖𝑛
𝑚 + (𝐽𝑚)−1R[ρ𝑖𝑛

𝑚]                                           (2.80) 

 In each iteration an approximation is constructed for the Jacobean matrix from 

which a new charge density is obtained. The algorithms differ in the way in which  𝐽𝑚 is 
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generated in each iteration. For some of its parameters this method is reduced to the Pulay 

method. 

2.5.2.3.    Geometric optimization 

 The objective of the geometrical optimization is to find the optimal structure (cell 

constants and internal parameters) of the crystal from an arbitrary state. For this, it is 

necessary to calculate the forces acting on the atoms. Through the Hellmann-Feynman 

theorem [46], the force 𝐹𝐼 on an atom 𝐼 in the position 𝑅⃗ 𝐼 is given by 𝐹𝐼 = −
𝜕𝐸

𝜕𝑅𝐼
, where 𝐸 is 

the energy and 𝑅𝐼 the position atomic. Once the forces on the atoms have been calculated, the 

atomic equilibrium structure of the system is achieved considering the total energy as a 

function of the atomic coordinates. 

 Within the planewave-pseudopotential approximation the forces are very simple to 

calculate and inexpensive computationally. In fact, the application of the Hellmann-Feynman 

theorem is strictly valid in the case of a plane wave base, since they are floating (they do not 

belong to a determining atom) and represent all regions of space with the same precision. 

Thanks to this, the Pulay forces coming from the derivation of the basis functions with respect 

to the nuclear coordinates cancel out. Within the algorithms used in the geometrical 

optimization, we highlight conjugated gradient methods [41] and quasi-Newton methods 

(𝑅𝑀𝑀- 𝐷𝐼𝑆[44], 𝐵𝐹𝐺𝑆 [47]). These methods are fast and efficient if the starting point is 

close to a local minimum, but they fail if this is not the case. 

2.5.3.    PAW method 

 The main problem represented by the ultrasoft pseudopotentials is their difficulty in 

construction, since by including many parameters (several cutting radii), many tests have to 

be carried out to prove their accuracy and transferability. This problem is solved partially 

through the method 𝑃𝐴𝑊 (Blöchl) [48,49], which combines the versatility of the method of 

linear increased plane waves (𝐿𝑃𝐴𝑊) with the approximation of  𝑃𝑃. The fundamental idea is 

that the true wave function (𝜓) and a well-behaved pseudo-wave function (𝜓) are related by a 

linear transformation (𝜓 = 𝑇𝜓). This allows to easily calculate all the physical properties in 

the pseudo-space of the pseudo-wave function (computationally more manageable than the 

all-electron wave function). Thus, the original Hamiltonian 𝐻𝐾𝑆is transformed, virtue to the 

linear transformation that relates the real wave function and the pseudo-wavefuncion, into a 
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pseudo-Hamiltonian  H̃𝐾𝑆  easier to solve: 𝑇+𝐻𝐾𝑆𝑇 = H̃𝐾𝑆 .The strategy (typical of the 

augmented wave method) consists in dividing the crystal into an augmentation region, formed 

by spheres in which the atoms and an interstitial region (the rest of the crystal) are located. 

The radius of the spheres must be small enough so that the spheres do not overlap, but at the 

same time large enough for the electron density of the core to remain within the spheres. 

 Frequently, it is chosen equal to the value of half the distance between first 

neighbors. According to this division, the total wave function expands in plane waves in the 

interstitial region and in atomic wave functions centered on the atoms in the augmentation 

region. On the one hand, the plane wave part provides flexibility to the description of the tail 

region of the wave functions, but, by requiring a prohibitive number of basis functions to 

correctly describe the oscillations of the wave functions near the nucleus opts for expansions 

in atomic orbitals to correctly describe the nodal structure of the wave functions near the 

nucleus. 

 The transformation operator 𝑇 is given by the sum of the identity operator and the 

sum of atomic contributions 𝑇 = 1 + ∑ 𝑆𝑅𝑅 (𝑅 = atomic positions), which shows that modifies 

the pseudo-wavefuncion within the atomic region in order to generate the correct nodal 

structure. 

 Thus, the construction of a potential 𝑃𝐴𝑊  requires, first of all, an all-electron 

calculation for the reference atom. Generally, for each angular quantum number 𝑙𝑚  two 

reference energies are chosen, whose solutions are the partial waves |𝜑𝑖(𝑟)〉. The next step is 

the introduction of pseudoatomical wave functions and projector functions in order to have a 

practical approach that ensures that the complete wave function is continuous and 

differentiable across the interstitial augment-area surface, and to cancel the part of plane 

waves of the full wave function within the spheres of increase. Pseudoatomical wave 

functions are functions of the 𝐾𝑆 equations for an isolated pseudoatom, identical to the atomic 

wave functions outside the augmented sphere and with eigenvalues equal to those. 

 Within the spheres of magnification, the wave function and the pseudofunction 

wave take the form: 

                                       𝜓(𝑟 ) = ∑ 𝛷𝑖(𝑟 )𝑐𝑖𝑖 𝜓̃(𝑟 ) = ∑ 𝛷̃𝑖(𝑟 )𝑐𝑖𝑖                                    (2.81) 

From these 2 equations it follows that 
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                                              |𝜓〉 = |𝜓̃〉 − ∑ 𝛷̃𝑖(𝑟 )𝑐𝑖𝑖 + ∑ 𝛷𝑖(𝑟 )𝑐𝑖𝑖                                    (2.82) 

 As the linear 𝑇  tranformation, the coefficients 𝑐𝑖  must be linear functions of the 

pseudo-wave functions. They are given by the integral overlap between the pseudo-

wavefuncion and projector functions 〈𝑝𝑖|ψ̃〉. Projector functions are mathematical constructs 

that connect the augmentation and interstitial regions. Within the increase region, the 

condition is met: 

                                                                ∑ |𝛷̃𝑖〉〈𝑝𝑖|𝑖 = 1                                                     (2.83) 

which implies that 〈𝑝𝑖|𝛷̃𝑗〉 = 𝛿𝑖𝑗, that is, they are dual to atomic pseudofunctions. 

        The combination of the above equations allows to determine the general form of the 

transformation operator 𝑇: 

                                                          𝑇 = 1 + ∑ (|𝛷𝑖〉 − |𝛷̃𝑖〉)〈𝑝̃𝑖|𝑖                                      (2.84) 

with which the all-electron wave function is obtained from the corresponding pseudo-

wavefunction through the relationship: 

                                                  |𝜓〉 = |𝜓̃〉 + ∑ (|𝛷𝑖〉 − |𝛷̃𝑖〉)〈𝑝̃𝑖|𝜓̃〉𝑖 .                                 (2.85) 

 Like the wave function  |𝜓〉 , most observables, including total energy, can be 

divided into three conditions: one from the plane wave part and a pair of expansions in atomic 

orbitals in each atom. On the other hand, the contributions coming from the atomic orbitals 

are divided in turn into contributions of each atom, so that there are no overlapping terms 

between atomic orbital in different positions. 

 The final expression for energy takes the form: 

                                                       𝐸(𝑟 ) = 𝐸̃(𝑟 ) + 𝐸1(𝑟 ) − 𝐸̃1(𝑟 )                                    (2.86) 

 The term 𝐸̃ is calculated in a regular grid, while 𝐸1 and 𝐸̃1 are calculated in radial 

grids centered on the atoms. The decomposition in a regular grid is complete, so it is not 

necessary to calculate the crossing terms between the grids. During the linearization of the last 

two terms, it is possible to derive the 𝑈𝑆 pseudopotential from the 𝑃𝐴𝑊 potentials. The main 

difference between 𝑃𝐴𝑊  and 𝑈𝑆 -  𝑃𝑃 comes from the increase charges. In the 𝑈𝑆 -𝑃𝑃 

approach, the 'distorted' magnification charges are represented in a regular grid. In order to 
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accurately represent the load distribution of the all-electron wave function, the cut-off radius 

is close to the maximum of the all-electron wave function, which leads to contracted and 

localized magnification loads, with the consequent associated computational cost. The 𝑃𝐴𝑊 

method avoids this problem, through the introduction of radial grids, in which the increase 

loads are quite extended (they are softer). 

 In general, 𝑃𝐴𝑊 potentials are more suitable than ultrasoft pseudopotentials. There 

are two reasons for this. First, the 𝑟𝑐 are smaller than 𝑟𝑐 used in the ultrasoft pseudopotentials 

and second, they reconstruct the exact valence wave function with all the nodes in the core 

region. The only disadvantage is given by the fact that 𝑟𝑐 is smaller, which makes the 𝐸𝑐𝑢𝑡𝑜𝑓𝑓 

slightly larger. 

2.6.    CODES USED IN THE THESIS 

2.6.1   ABINIT package 

      We use ABINIT program [50] for the total energy and electronic structure 

calculations. All calculations were performed using the GGA exchange-correlation functional 

of  Perdew-Burke-Ernzerhof  [51] and the so-called FHI atomic plane wave pseudo potentials 

[52] are adopted. The geometrical optimization was performed at pressure via Broyden-

Fletcher-Goldfarb-Shanno minimization technique [53]. To ensure the stability of the 

structure during successive deformations, the lattice parameters and the atomic positions for 

each deformation are taken from the output of the previous deformation. We print the cif.file 

for visualizing the bond length. The script-job allows an automatic run using the input-initial 

as a template. At the end we get the results (stress-strain) using the script-extract. 

2.6.1.1 Script-job for strain (2H-MoS2)    
   #! /bin/csh 

####################################################################### 

foreach ee(0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40) 

#foreach ee(0.15 0.16 0.17 0.18 0.20 0.21 0.22 0.23) 

gawk 'BEGIN 

{key=not;nn1=1000;nn=1000;mm=1000;p1="1.0";p2="0.0";p3="0.0";p4="0.0";p5="1.0";p6=

"0.0";p7="0.0";p8="0.0";p9="1.0"} \\ 

     /-outvars: echo values of variables after computation  --------/  {nn1=NR}\\ 

    /acell/ {AA=$2;BB=$3;CC=$4} \\ 

     / rprim/ {if(NR>nn1) {p1=$2;p2=$3;p3=$4;nn=NR;key="yes"}} \\ 

     {if (NR==nn+1 && key=="yes"){p4=$1;p5=$2;p6=$3}  \\ 

     if (NR==nn+2 && key=="yes"){p7=$1;p8=$2;p9=$3}}  \\ 

        /xred/  {mm=NR} \\ 

     /xred/ {x1=$2;x2=$3;x3=$4;mm=NR} \\ 
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    {if (NR==mm+1) {x4=$1;x5=$2;x6=$3} \\ 

       if (NR==mm+2) {x7=$1;x8=$2;x9=$3} \\ 

       if (NR==mm+3) {x10=$1;x11=$2;x12=$3} \\ 

       if (NR==mm+4) {x13=$1;x14=$2;x15=$3} \\ 

       if (NR==mm+5) {x16=$1;x17=$2;x18=$3} \\ 

       if (NR==mm+6) {x19=$1;x20=$2;x21=$3} \\ 

       if (NR==mm+7) {x22=$1;x23=$2;x24=$3} \\ 

       if (NR==mm+8) {x25=$1;x26=$2;x27=$3} \\ 

       if (NR==mm+9) {x28=$1;x29=$2;x30=$3} \\ 

       if (NR==mm+10) {x31=$1;x32=$2;x33=$3} \\ 

       if (NR==mm+11) {x34=$1;x35=$2;x36=$3}} \\ 

    END {e=('$ee'+0.05); rprim11=(1+('$ee'+0.05)); bb=(BB*p5); cc=(CC*p9); printf "%s %s 

%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s 

%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %3.2f %15.8f 

%15.8f %15.8f\n", 

AA,BB,CC,p1,p2,p3,p4,p5,p6,p7,p8,p9,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15

,x16,x17,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,e,

rprim11,bb,cc}' filename.out_$ee > parametrosPAR 

####################################################################### 

set par=(`cat parametrosPAR`) 

########################################################################set 

#set aa = `echo "$par[1]` 

#set bb = `echo "$par[2]` 

#set cc = `echo "$par[3]` 

#set mat11 = `echo "$par[4]` 

#set mat12 = `echo "$par[5]` 

#set mat13 = `echo "$par[6]` 

#set mat21 = `echo "$par[7]` 

#set mat22 = `echo "$par[8]` 

#set mat23 = `echo "$par[9]` 

#set mat31 = `echo "$par[10]` 

#set mat32 = `echo "$par[11]` 

#set mat33 = `echo "$par[12]` 

#set x1 = `echo $par[13]` 

#set y1 = `echo $par[14]` 

#set z1 = `echo $par[15]` 

#set x2 = `echo $par[16]` 

#set y2 = `echo $par[17]` 

#set z2 = `echo "$par[18]` 

#set x3 = `echo $par[19]` 

#set y3 = `echo $par[20]` 

#set z3 = `echo $par[21]` 

#set x4 = `echo $par[22]` 

#set y4 = `echo $par[23]` 

#set z4 = `echo "$par[24]` 

#set x5 = `echo $par[25]` 

#set y5 = `echo $par[26]` 

#set z5 = `echo $par[27]` 

#set x6 = `echo $par[28]` 

#set y6 = `echo $par[29]` 
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#set z6 = `echo "$par[30]` 

#set x7 = `echo $par[31]` 

#set y7 = `echo $par[32]` 

#set z7 = `echo $par[33]` 

#set x8 = `echo $par[34]` 

#set y8 = `echo $par[35]` 

#set z8 = `echo "$par[36]` 

#set x9 = `echo $par[37]` 

#set y9 = `echo $par[38]` 

#set z9 = `echo $par[39]` 

#set x10 = `echo $par[40]` 

#set y10 = `echo $par[41]` 

#set z10 = `echo "$par[42]` 

#set x11 = `echo $par[43]` 

#set y11 = `echo $par[44]` 

#set z11 = `echo $par[45]` 

#set x12 = `echo $par[46]` 

#set y12 = `echo $par[47]` 

#set z12 = `echo "$par[48]` 

#set eenext = `echo "$par[49]` #Tensile strain e (contador para los nombre de los ficheros) 

#set rprim11-next =  `echo "$par[50]` #  Tensile extrain e+1 en que se mete en abinit 

#set bb-abinit =  `echo "$par[51]` # parametro b si rprim cambia b=bcell*(rprim-imput/rprim-

out) 

#set cc-abinit =  `echo "$par[52]` # parametro c si rprim cambia c=ccell*(rprim-imput/rprim-

out) 

####################################################################### 

sed -e "s/ee/$par[49]/g"   filename.files_initial  > filename.files_$par[49] 

####################################################################### 

sed -e "s/bred/$par[51]/g" -e "s/cred/$par[52]/g" -e "s/MAT11/$par[50]/g" -e 

"s/X1/$par[13]/g" -e "s/Y1/$par[14]/g"  -e "s/Z1/$par[15]/g"  -e "s/X2/$par[16]/g"  -e 

"s/Y2/$par[17]/g"   -e "s/Z2/$par[18]/g"   -e "s/X3/$par[19]/g"   -e "s/Y3/$par[20]/g"   -e 

"s/Z3/$par[21]/g" -e "s/X4/$par[22]/g"   -e "s/Y4/$par[23]/g"   -e "s/Z4/$par[24]/g" -e 

"s/X5/$par[25]/g"   -e "s/Y5/$par[26]/g"  -e "s/Z5/$par[27]/g"  -e "s/X6/$par[28]/g"  -e 

"s/Y6/$par[29]/g"   -e "s/Z6/$par[30]/g"   -e "s/X7/$par[31]/g"   -e "s/Y7/$par[32]/g"   -e 

"s/Z7/$par[33]/g" -e "s/X8/$par[34]/g"   -e "s/Y8/$par[35]/g"   -e "s/Z8/$par[36]/g" -e 

"s/X9/$par[37]/g"   -e "s/Y9/$par[38]/g"  -e "s/Z9/$par[39]/g"  -e "s/x10/$par[40]/g"  -e 

"s/y10/$par[41]/g"   -e "s/z10/$par[42]/g"   -e "s/x11/$par[43]/g"   -e "s/y11/$par[44]/g"   -e 

"s/z11/$par[45]/g" -e "s/x12/$par[46]/g"   -e "s/y12/$par[47]/g"   -e "s/z12/$par[48]/g"  

vgrid_b4-rprim.in_initial  > vgrid_b4-rprim.in_00.0_$par[49] 

####################################################################### 

mpirun -np 8 abinit <  filename.files_$par[49]  >& log 

#el end del foreach 

end 

2.6.1.2 Script-job for transversal stress (2H-MoS2)   
#! /bin/csh 

####################################################################### 

foreach pgpa(00 10 20 30 40) 

gawk 'BEGIN 

{key=not;nn1=1000;nn=1000;mm=1000;p1="1.0";p2="0.0";p3="0.0";p4="0.0";p5="1.0";p6=

"0.0";p7="0.0";p8="0.0";p9="1.0"} \\ 
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     /-outvars: echo values of variables after computation  --------/  {nn1=NR}\\ 

    /acell/ {AA=$2;BB=$3;CC=$4} \\ 

     / rprim/ {if(NR>nn1) {p1=$2;p2=$3;p3=$4;nn=NR;key="yes"}} \\ 

     {if (NR==nn+1 && key=="yes"){p4=$1;p5=$2;p6=$3}  \\ 

     if (NR==nn+2 && key=="yes"){p7=$1;p8=$2;p9=$3}}  \\ 

        /xred/  {mm=NR} \\ 

     /xred/ {x1=$2;x2=$3;x3=$4;mm=NR} \\ 

    {if (NR==mm+1) {x4=$1;x5=$2;x6=$3} \\ 

       if (NR==mm+2) {x7=$1;x8=$2;x9=$3} \\ 

       if (NR==mm+3) {x10=$1;x11=$2;x12=$3} \\ 

       if (NR==mm+4) {x13=$1;x14=$2;x15=$3} \\ 

       if (NR==mm+5) {x16=$1;x17=$2;x18=$3} \\ 

       if (NR==mm+6) {x19=$1;x20=$2;x21=$3} \\ 

       if (NR==mm+7) {x22=$1;x23=$2;x24=$3} \\ 

       if (NR==mm+8) {x25=$1;x26=$2;x27=$3} \\ 

       if (NR==mm+9) {x28=$1;x29=$2;x30=$3} \\ 

       if (NR==mm+10) {x31=$1;x32=$2;x33=$3} \\ 

       if (NR==mm+11) {x34=$1;x35=$2;x36=$3}} \\ 

    END {pp=('$pgpa'+10);p=(pp/29421.033); aa=(AA*p1); bb=(BB*p5); cc=(CC*p9); printf 

"%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s 

%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %3.2f 

%15.8f  %15.8f %15.8f %15.8f\n", 

AA,BB,CC,p1,p2,p3,p4,p5,p6,p7,p8,p9,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15

,x16,x17,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,e, 

p,aa,bb,cc}' filename.out_$pgpa > parametrosPAR 

####################################################################### 

set par=(`cat parametrosPAR`) 

########################################################################set 

#set aa = `echo "$par[1]` 

#set bb = `echo "$par[2]` 

#set cc = `echo "$par[3]` 

#set mat11 = `echo "$par[4]` 

#set mat12 = `echo "$par[5]` 

#set mat13 = `echo "$par[6]` 

#set mat21 = `echo "$par[7]` 

#set mat22 = `echo "$par[8]` 

#set mat23 = `echo "$par[9]` 

#set mat31 = `echo "$par[10]` 

#set mat32 = `echo "$par[11]` 

#set mat33 = `echo "$par[12]` 

#set x1 = `echo $par[13]` 

#set y1 = `echo $par[14]` 

#set z1 = `echo $par[15]` 

#set x2 = `echo $par[16]` 

#set y2 = `echo $par[17]` 

#set z2 = `echo "$par[18]` 

#set x3 = `echo $par[19]` 

#set y3 = `echo $par[20]` 

#set z3 = `echo $par[21]` 

#set x4 = `echo $par[22]` 
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#set y4 = `echo $par[23]` 

#set z4 = `echo "$par[24]` 

#set x5 = `echo $par[25]` 

#set y5 = `echo $par[26]` 

#set z5 = `echo $par[27]` 

#set x6 = `echo $par[28]` 

#set y6 = `echo $par[29]` 

#set z6 = `echo "$par[30]` 

#set x7 = `echo $par[31]` 

#set y7 = `echo $par[32]` 

#set z7 = `echo $par[33]` 

#set x8 = `echo $par[34]` 

#set y8 = `echo $par[35]` 

#set z8 = `echo "$par[36]` 

#set x9 = `echo $par[37]` 

#set y9 = `echo $par[38]` 

#set z9 = `echo $par[39]` 

#set x10 = `echo $par[40]` 

#set y10 = `echo $par[41]` 

#set z10 = `echo "$par[42]` 

#set x11 = `echo $par[43]` 

#set y11 = `echo $par[44]` 

#set z11 = `echo $par[45]` 

#set x12 = `echo $par[46]` 

#set y12 = `echo $par[47]` 

#set z12 = `echo "$par[48]` 

#set pnext = `echo "$par[49]` #Tensile strain e (contador para los nombre de los ficheros) 

#set p-abinit =  `echo "$par[50]` 

#set aa-abinit =  `echo "$par[51]` #  parametro a si rprim cambia a=acell*(rprim-imput/rprim-

out) 

#set bb-abinit =  `echo "$par[52]` # parametro b si rprim cambia b=bcell*(rprim-imput/rprim-

out) 

#set cc-abinit =  `echo "$par[53]` # parametro c si rprim cambia c=ccell*(rprim-imput/rprim-

out) 

####################################################################### 

sed -e "s/ee/$par[49]/g"   filename.files_initial  > filename.files_$par[49] 

####################################################################### 

sed -e "s/ared/$par[51]/g" -e "s/bred/$par[52]/g" -e "s/cred/$par[53]/g" -e 

"s/PGPa/$par[50]/g" -e "s/X1/$par[13]/g" -e "s/Y1/$par[14]/g"  -e "s/Z1/$par[15]/g"  -e 

"s/X2/$par[16]/g"  -e "s/Y2/$par[17]/g"   -e "s/Z2/$par[18]/g"   -e "s/X3/$par[19]/g"   -e 

"s/Y3/$par[20]/g"   -e "s/Z3/$par[21]/g" -e "s/X4/$par[22]/g"   -e "s/Y4/$par[23]/g"   -e 

"s/Z4/$par[24]/g" -e "s/X5/$par[25]/g"   -e "s/Y5/$par[26]/g"  -e "s/Z5/$par[27]/g"  -e 

"s/X6/$par[28]/g"  -e "s/Y6/$par[29]/g"   -e "s/Z6/$par[30]/g"   -e "s/X7/$par[31]/g"   -e 

"s/Y7/$par[32]/g"   -e "s/Z7/$par[33]/g" -e "s/X8/$par[34]/g"   -e "s/Y8/$par[35]/g"   -e 

"s/Z8/$par[36]/g" -e "s/X9/$par[37]/g"   -e "s/Y9/$par[38]/g"  -e "s/Z9/$par[39]/g"  -e 

"s/x10/$par[40]/g"  -e "s/y10/$par[41]/g"   -e "s/z10/$par[42]/g"   -e "s/x11/$par[43]/g"   -e 

"s/y11/$par[44]/g"   -e "s/z11/$par[45]/g" -e "s/x12/$par[46]/g"   -e "s/y12/$par[47]/g"   -e 

"s/z12/$par[48]/g"  vgrid_b4-rprim.in_initial  > vgrid_b4-rprim.in_00.0_$par[49] 

####################################################################### 

mpirun -np 8 abinit <  filename.files_$par[49]  >& log 
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#el end del foreach 

End 

 

2.6.1.3 Input-initial for strain (2H-MoS2)  

#calculations of the atomic volumes (critic) 

# Unit cell  

acell    ared  bred 9.8280170035E+00      

rprim        1.0  0.0  0.0 

                 0.0 1.0  0.0 

                 0.0  0.0  MAT33 

# En P1 

nsym 1 

#symrel      1  0  0   0  1  0   0  0  1 

#tnons      0.0000000  0.0000000  0.0000000 

# Definition of the atoms  

ntypat 2 

znucl  42 8 

natom 12 

typat  1 1 1 1 2 2 2 2 2 2 2 2  

xred 

  X1  Y1 Z1 

  X2  Y2 Z2 

  X3  Y3 Z3 

  X4  Y4 Z4 

  X5  Y5 Z5 

  X6  Y6 Z6 

  X7  Y7 Z7 

  X8  Y8 Z8 

  X9  Y9 Z9 

  x10  y10 z10 

  x11  y11 z11 

  x12  y12 z12 

# exchange-correlation functional 

ixc 11 

#Definition of the self-consistency procedure 

diemac   9.0 # Model dielectric preconditioner 

nstep   200  # Maxiumum number of SCF iterations 

tolvrs 1d-18 

# ecut -> optimized, change it! 

ecut   40 

#Don't generate _DEN,_EIG,_WFK 

prtden 0 

prteig 0 

prtwf 0 

# kpts -> optimized, change it! 

kptopt  1 

ngkpt   11 10 6 

nshiftk   1             # Use one copy of grid only (default) 

shiftk   0.5 0.5 0.5    # This choice of origin for the k point grid 
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                        # preserves the hexagonal symmetry of the grid, 

                        # which would be broken by the default choice. 

# ficheros cif 

prtcif 1 

# symbreak 

chksymbreak 0 

# optimization 

ntime  50 

tolmxf  5.0d-5 

ionmov  2 

optcell 9 

# fix the pressure to transition pressure Pt=0.00, 20, 40 GPa dividirlo entre 29421.033 

#fix pressure######################################## 

strtarget   0.00  0.00  0.00  0.00  0.00  0.00 

######################################################################### 

ecutsm 0.5 

strprecon 0.5 

dilatmx 1.5 
    

2.6.1.4 Input-initial for transversal stress (2H-MoS2) 

#calculations of the atomic volumes (critic) 

# Unit cell  

acell    ared  bred cred      

rprim        1.0  0.0  0.0 

                 0.0 1.0  0.0 

                 0.0  0.0  1.0 

# En P1 

nsym 1 

#symrel      1  0  0   0  1  0   0  0  1 

#tnons      0.0000000  0.0000000  0.0000000 

# Definition of the atoms  

ntypat 2 

znucl  42 8 

natom 12 

typat  1 1 1 1 2 2 2 2 2 2 2 2  

xred 

  X1  Y1 Z1 

  X2  Y2 Z2 

  X3  Y3 Z3 

  X4  Y4 Z4 

  X5  Y5 Z5 

  X6  Y6 Z6 

  X7  Y7 Z7 

  X8  Y8 Z8 

X9  Y9 Z9 

 x10  y10 z10 

 x11  y11 z11 

 x12  y12 z12 
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# exchange-correlation functional 

ixc 11 

#Definition of the self-consistency procedure 

diemac   9.0 # Model dielectric preconditioner 

nstep   200  # Maxiumum number of SCF iterations 

tolvrs 1d-18 

# ecut -> optimized, change it! 

ecut   40 

#Don't generate _DEN,_EIG,_WFK 

prtden 0 

prteig 0 

prtwf 0 

# kpts -> optimized, change it! 

kptopt  1 

ngkpt   11 10 6 

nshiftk   1             # Use one copy of grid only (default) 

shiftk   0.5 0.5 0.5    # This choice of origin for the k point grid 

                        # preserves the hexagonal symmetry of the grid, 

                        # which would be broken by the default choice. 

# ficheros cif 

prtcif 1 

# symbreak 

chksymbreak 0 

# optimization 

ntime  50 

tolmxf  5.0d-5 

ionmov  2 

optcell 2 

# fix the pressure to transition pressure Pt=0.00, 20, 40 GPa dividirlo entre 29421.033 

#fix pressure######################################## 

strtarget   PGPa  PGPa 0.00  0.00  0.00  0.00 

######################################################################### 

ecutsm 0.5 

strprecon 0.5 

dilatmx 1.5 
     

2.6.1.5 Script extract (2H-SiC)    

#! /bin/csh 

foreach AA(0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40) 

gawk 'BEGIN {nn=1000;mm=1000;rr=1000} \\ 

    /(ucvol)/ {volume=$6} \\ 

    /Pressure=/ {pressure=$8} \\ 

   /Pressure=/ {rr=NR} \\ 

  {if (NR==rr+1) {sigma11=$4;sigma32=$7} \\ 

   if (NR==rr+2) {sigma22=$4;sigma31=$7} \\ 

   if (NR==rr+3) {sigma33=$4;sigma21=$7}} \\ 

     /-outvars: echo values of variables after computation  --------/  {nn=NR} \\ 
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     /acell/ {a=$2;b=$3;c=$4}\\ 

    /etotal/ {etotal=$2} \\ 

    /xred/ {mm=NR} \\ 

    /xred/ {x1=$2;x2=$3;x3=$4;mm=NR} \\ 

    {if (NR==mm+1) {x4=$1;x5=$2;x6=$3}\\ 

       if (NR==mm+2) {x7=$1;x8=$2;x9=$3} \\ 

       if (NR==mm+3) {x10=$1;x11=$2;x12=$3} \\ 

       if (NR==mm+4) {x13=$1;x14=$2;x15=$3} \\ 

       if (NR==mm+5) {x16=$1;x17=$2;x18=$3} \\ 

       if (NR==mm+6) {x19=$1;x20=$2;x21=$3} \\ 

       if (NR==mm+7) {x22=$1;x23=$2;x24=$3}} \\ 

    END {printf " %4.3f %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s 

%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s\n", 

'$AA',volume,pressure,sigma11,sigma22,sigma33,sigma32,sigma31,sigma21,a,b,c,etotal,x1,x

2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,x21,x22,x23,x24}' 

filename.out_00.0_$AA >> salida 

end 

awk '{printf " %4.3f %s %s %s %s %s %s\n",$1,$2,$4,$10,$11,$12,$13}' salida >> 

salidatotal 

 

2.6.1.6  .file-initial for transversal stress (2H-MoS2) 

filename.in_ee 

filename.out_ee 

filename_i_ee 

filename_o_ee 

filename_tmp_ee 

42-Mo.GGA.fhi 

08-O.GGA.fhi 

 

2.6.1.7  .file-initial for strain (2H-MoS2) 

filename.in_pgpa 

filename.out_pgpa 

filename_i_pgpa 

filename_o_ pgpa 

filename_tmp_pgpa 

42-Mo.GGA.fhi 

08-O.GGA.fhi 

 

2.6.1.8  .file-initial for strain-transversal stress (2H-MoS2) 

filename.in_pgpa_ee 

filename.out_pgpa_ee 

filename_i_pgpa_ee 

filename_o_ pgpa_ee 

filename_tmp_pgpa_ee 

42-Mo.GGA.fhi 

08-O.GGA.fhi 
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2.6.2 GIBBS program 

     The equation of state (EOS) is a thermodynamic equation describing properties of solids 

with respect to changes in the macroscopic variables (p,V,T). GIBBS [54] can analyses the 

output of electronic structure calculations using a set of energy-volume (E-V) data using a 

selected form of EOS. The equilibrium volume, bulk modulus (B0) and its pressure derivative 

(B0
′

 ), both evaluated at zero pressure, were obtained by fitting the 4
th  

order
  
static Birch-

Murnaghan EOS [55] to the calculated (E-V) data set. We applied this method to the (E-V) 

data obtained from the electronic structure calculations of crystals under hydrostatic pressure. 

   The 4
th  

order
  
static Birch-Murnaghan EOS takes the form 

       𝐸 = 𝐸0 +
3

8
 𝑉0𝐵0𝑓

2{(9𝐻 − 63𝐵0
′ + 143)𝑓2 + 12(𝐵0

′ − 4)𝑓 + 12} 

        𝑝 =
1

2
𝐵0(2𝑓 + 1)5/2{(9𝐻 − 63𝐵0

′ + 143)𝑓2 + 9(𝐵0
′ − 4)𝑓 + 6} 

        𝐵 =
1

6
𝐵0(2𝑓 + 1)5/2{(99𝐻 − 693𝐵0

′ + 1573)𝑓3 + (27𝐻 − 108𝐵0
′ + 105)𝑓2 +

6(3𝐵0
′ − 5)𝑓 + 6} 

     Where   𝐻 = 𝐵0𝐵0
′′ + 𝐵0

′2 and 𝑓 is the finite Eulerian strain in terms of a reference 

volume 𝑉𝑟 in our case the zero pressure volume. 

        𝑓 =
1

2
[(

𝑉𝑟

𝑉
)
2/3

− 1]. 
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3.1.    ELASTICITY IN SOLIDS: GENERAL IDEAS 

                 The classic theory of elasticity studies the mechanics of solid bodies, considered 

these as continuous media and homogeneous. It ignores, therefore, the microscopic atomic 

structure. The connection with the theory of lattice vibrations begins by considering that at 

low temperature only the vibrational levels of low frequencies, corresponding to the acoustic 

branches, are active. As the wavelengths are very large, they no longer depend on the 

microscopic behavior of the crystal and can thus be assumed that the vibrational behavior of 

the crystal is that of a continuous medium. Under the application of external forces, the 

bodies are deformed in a varied and complex manner. In particular, a material is called 

elastic if the deformations caused by the application of external forces disappear completely 

after the elimination of these. The elastic constants relate the applied external forces 

(described by the stress tensor) to the original deformation (described by the strain tensor). 

They are, therefore, a key factor when determining the strength of a material. They also 

provide information from a fundamental point of view on the nature of the interatomic forces 

responsible for the cohesion and geometrical characteristics of the crystalline structure, as 

well as on the characteristics of the bond between adjacent atoms and their anisotropic 

character. Thermodynamically, they are linked to the specific heat, thermal expansion, 

Debye temperature, melting point and Grüneisen parameters. On the other hand, the 

mechanical stability of a phase is subjected to the fulfillment of certain conditions for the 

elastic constants, fixed by the crystalline symmetry of the crystal under study. 

 The study of the elastic constants under pressure is undoubtedly fundamental to 

deepen the knowledge of the interatomic interactions, the mechanical properties (for 

example, the synthesis of superhard materials), the mechanical stability of the phases and the 

mechanisms of phase transitions. In this sense, the violation of the conditions involving 

elastic constants necessary for mechanical stability is related to the presence of ferro-elastic 

phase transitions. In particular, the existence of a certain elastic constant or linear 

combination of these becoming negative when increasing the pressure can allow knowing 

the symmetry associated with the instability, thus allowing to obtain the symmetry of the 

phase that would emerge as stable (or metastable).  

 Traditionally, the study of elasticity in crystals starts from considering these as 

homogeneous and anisotropic continuous media and assuming that the stress and 

deformation are homogeneous. 
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 The state of deformation of the crystal is given by the vector field 𝑢⃗ (𝑟 ) (the so-called 

displacement field): 

                                                              𝑢⃗ (𝑟 ) = 𝑟 ′ − 𝑟                                                         (3.1) 

which gives for each point within the solid the change between its position vectors before 

(𝑟 ) and after (𝑟 ′) the deformation. Also, since the deformation is homogeneous, the position 

vector   𝑟  and  𝑟 ′ are related by a linear transformation: 

                                                                 𝑟𝑖
′ = ∑ 𝛼𝑖𝑗𝑟𝑗

3
𝑗=1                                                       (3.2) 

Where the sub-indices 𝑖, 𝑗 represent Cartesian coordinates and take the values 𝑥, 𝑦, 𝑧 or 1, 2, 3 

and the  𝛼𝑖𝑗 =
𝜕𝑟𝑖

′

𝜕𝑟𝑗
  are constants (independent of their position on the crystal) since the 

deformation is homogeneous. If we define the displacement gradients  𝑢𝑖𝑗 =
𝜕𝑢𝑖

𝜕𝑟𝑗
 , the 

differentiation of the equation 3.1 expressed in its Cartesian components with respect to 

𝑟𝑗 compared with the definition of 𝛼𝑖𝑗  leads to the relationship between transformation 

coefficients and gradients displacement:  𝛼𝑖𝑗 = 𝛿𝑖𝑗 + 𝑢𝑖𝑗 , from which it is evident that the 𝑢𝑖𝑗 

are also constant in a homogeneous deformation. Equation 3.2 can, therefore, be rewritten as:  

𝑟𝑖
′ = ∑ (𝛿𝑖𝑗 + 𝑢𝑖𝑗)𝑟𝑗

3
𝑗=1 .  The elements  𝑢𝑖𝑗 constitute a tensor of second rank, the strain tensor  

𝑢. In general, the strain tensor 𝑢 can be decomposed into a sum of two tensors 𝑢 = 𝜀 + 𝜔, 

where 𝜀 is the symmetric tensor, 

                                                             𝜖𝑖𝑗 =
1

2
(𝑢𝑖𝑗 + 𝑢𝑗𝑖)                                                    (3.3) 

and 𝜔 is the antisymmetric tensor, 

                                                              𝜔𝑖𝑗 =
1

2
(𝑢𝑖𝑗 − 𝑢𝑗𝑖)                                                  (3.4) 

the tensor ω represents the rotation as a rigid body of the material, which is called rotation 

tensor. The physically relevant part of the deformation, compression (or dilatation) and shear 

deformation, is therefore found in the symmetric tensor ε, also known as an infinitesimal or 

Cauchy strain tensor [1], as it is only suitable for representing small deformations. 



101 
 

Another measure of the deformation is given by the change of distance between two points of 

the crystal. Thus, the relationship between the distances before and after the deformation is 

given by ,. 

                                             (𝑑𝑙′)2 = (𝑑𝑙)2 + 2∑ 𝜂𝑖𝑗𝑑𝑟𝑖𝑑𝑟𝑗
3
𝑖,𝑗=1                                           (3.5) 

where lagrangian deformation parameters [2] are: 

                           𝜂𝑖𝑗 =
1

2
(𝑢𝑖𝑗 − 𝑢𝑗𝑖 + ∑ 𝑢𝑘𝑖

3
𝑗=1 𝑢𝑘𝑗) =

1

2
(∑ 𝛼𝑘𝑖

3
𝑗=1 𝛼𝑘𝑗 − 𝛿𝑖𝑗)                    (3.6) 

and they constitute the tensor of lagrangian deformation 𝜂, symmetric by definition (𝜂𝑖𝑗 =

𝜂𝑗𝑖). Alternatively, assuming the deformed final state as the reference state, defined in this 

case, 𝑟𝑖 = ∑ 𝜉𝑖𝑗
3
𝑗=1 𝛼𝑗

′  and the displacement gradients 𝑢𝑖𝑗
′ =

𝜕𝑢𝑖

𝜕𝑟𝑗
′   the deformation can be 

defined as: 

                                          (𝑑𝑙′)2 = (𝑑𝑙)2 + 2∑ 𝑒𝑖𝑗𝑑𝑟𝑖𝑑𝑟𝑗
3
𝑖,𝑗=1                                              (3.7) 

what allows to define the eulerian deformation tensor [3]: 

                          𝑒𝑖𝑗 =
1

2
(𝑢𝑖𝑗

′ − 𝑢𝑗𝑖
′ + ∑ 𝑢𝑘𝑖

′3
𝑗=1 𝑢𝑘𝑗

′ ) =
1

2
(𝛿𝑖𝑗 − ∑ 𝜉𝑘𝑖

3
𝑗=1 𝜉𝑘𝑗)                       (3.8) 

 At the limit of small deformations, the non-linear terms of the Lagrangian and 

Eulerian tensors cancel out, so that both definitions are equivalent and are reduced to the 

Cauchy strain tensor. 

 The fundamental difference between the tensors ε and η is the dependence of the 

former with the relative orientation of the deformed and original lattice, as opposed to the 

dependence with the metric tensor of the deformed lattice for the second, 

                           𝜖 =
1

2
((𝑀̅′)−1𝑀̅ + 𝑀(𝑀′)−1 − 𝐼𝜂 =

1

2
𝑀(𝐺′ − 𝐺)𝑀̅                                (3.9) 

where 𝑀 and 𝑀′ are the matrices of orthonormalization of the original and deformed bases 

and 𝐺 and 𝐺′ the respective metric tensors. 

 When 𝜂  is related to a change in the metric tensor of the unit cell geometry, it 

corresponds to a purely homogeneous deformation of the crystalline structure, leaving the 

fractional atomic coordinates fixed (network deformation). However, these coordinates may 
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vary in addition to the deformation of the network. It arises, the internal deformation, defined 

by the coordinate changes ∆𝑥𝑖 for all the atoms in the asymmetry unit. The relaxation of the 

atomic positions minimizes the energy of the deformed network and is, therefore, a function 

of the deformation of the network. The change of the interatomic distance can be broken 

down into two separate effects: 

(𝑑𝑖𝑗
′ )

2
− (𝑑𝑖𝑗)

2
= (𝑥 𝑗 − 𝑥 𝑖)∆𝐺(𝑥 𝑗 − 𝑥 𝑖) + (𝑥 𝑗 − 𝑥 𝑖)𝐺

′(∆𝑥 𝑗 − ∆𝑥 𝑖) + 

                          +(∆𝑥 𝑗 − ∆𝑥 𝑖)𝐺′(𝑥 𝑗 − 𝑥 𝑖) + (∆𝑥 𝑗 − ∆𝑥 𝑖)𝐺′(∆𝑥 𝑗 − ∆𝑥 𝑖)                          (3.10) 

where 𝑑𝑖𝑗
′  and 𝑑𝑖𝑗are the distances between the atoms 𝑖 and 𝑗 before and after the deformation. 

The first term comes only from the deformation of the network, while the second from the 

internal deformation. 

 Another tensor necessary to define the elastic properties of the crystal is the stress 

tensor. The field of forces is presented by the vector 𝑝  (Force/Area), which is a function of the 

orientation of the surface element 𝑑𝑆 . Thus 𝑝 = 𝑝 (𝑛⃗ ) , where 𝑛⃗  is the unit vector 

perpendicular to 𝑑𝑆. Moreover, the dependence is linear and is given by: 

                                                        𝑝𝑖 = ∑ 𝜎𝑖ℎ
3
ℎ=1 𝜂ℎ                                                          (3.11) 

the coefficients 𝜎𝑖ℎ  are components of the second rank stress tensor 𝜎𝑖𝑗 , having a general 

component 𝜎𝑖𝑗 the physical meaning of a pressure oriented along the direction 𝑖 and acting on 

the surface 𝑑𝑆 normal to the Cartesian direction 𝑗. The diagonal values 𝜎𝑖𝑖 are called normal 

components, while the components outside the diagonal are the tangential components of the 

stress. On the other hand, the tensor σ is symmetric (𝜎𝑖𝑗 = 𝜎𝑗𝑖)and not involving rigid 

rotations. An important particular case of stress is that of isotropic pressure (hydrostatic), 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 that occurs when all eigenvalues (the stress tensor can be diagonalized and its 

eigenvalues are real) are equal (The sign-comes from the convention of considering negative 

compressions and positive tensions). 

 In its original form, Hooke's law establishes a linear relationship between the 

longitudinal deformation 𝜖  and the stress𝜎  of rods, 𝜎 = 𝐸𝜖 (E = Young's modulus). The 

generalization of Hooke's law to crystals (anisotropic solids) is based on considering that each 
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of the stress tensor components is a linear homogeneous function of the deformation 

components. Thus, 

                                                         𝜎𝑖𝑗 = ∑ 𝑐𝑖𝑗𝑘𝑙
3
𝑘,𝑙=1 𝜂𝑘𝑙                                                   (3.12) 

or, in the same way, 

                                                         𝜂𝑖𝑗 = ∑ 𝑠𝑖𝑗𝑘𝑙
3
𝑘,𝑙=1 𝜎𝑘𝑙                                                   (3.13) 

𝑐𝑖𝑗𝑘𝑙 has the physical meaning of the stress component 𝜎𝑖𝑗that must be applied to the crystal 

so that this deformation range is characterized by a unit value component 𝜂𝑘𝑙.Similarly, the 

physical meaning of 𝑠𝑖𝑗𝑘𝑙 is that of the deformation component 𝜂𝑖𝑗 resulting from the 

application of the unit stress𝜎𝑘𝑙. The coefficients 𝑐𝑖𝑗𝑘𝑙 and 𝑠𝑖𝑗𝑘𝑙are components of the fourth-

rank tensors 𝒄 and 𝒔. 𝒄 is denominated tensor of elastic constants or coefficients of stiffness, 

whereas 𝒔 is the tensor of the elastic modules or compliances. The two tensors are related by 

this generalized relationship: 

                                           ∑ 𝑐𝑖𝑗𝑚𝑛
3
𝑚,𝑛=1 𝑠𝑚𝑛ℎ𝑘 =

1

2
(𝛿𝑖ℎ𝛿𝑗𝑘 + 𝛿𝑖𝑘𝛿𝑗ℎ)                              (3.14)  

 In contrast with 𝜂  and 𝜎  which are field tensors, 𝒄  and 𝒔  are tensors dependent on the 

material and independent of the applied force field. As a consequence of the symmetry 

relations  𝜂𝑖𝑗 = 𝜂𝑗𝑖  and 𝜎𝑖𝑗 = 𝜎𝑗𝑖 for the tensors of strain and stress, respectively, the 

coefficients 𝑐𝑖𝑗𝑘𝑙  (𝑠𝑖𝑗𝑘𝑙) are invariant against the exchange of indices (𝑖𝑗), (𝑘𝑙) and (𝑖𝑗, 𝑘𝑙)  

(symmetry of Voigt[4], thus fulfilling the relations: 

                          𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑗𝑖𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘 = 𝑐𝑗𝑖𝑙𝑘 = 𝑐𝑘𝑙𝑖𝑗 = 𝑐𝑙𝑘𝑖𝑗 = 𝑐𝑘𝑙𝑗𝑖 = 𝑐𝑙𝑘𝑗𝑖                       (3.15)  

Thus, the number of independent elements is reduced from 81 to 21. It is also possible to 

condense the pair of Cartesian indexes 𝑖, 𝑗  by a single index 𝛼𝑖  according to the scheme:  

𝑥𝑥 ≡ 1, 𝑦𝑦 ≡ 1, 𝑧𝑧 ≡ 1, 𝑦𝑧(𝑧𝑦) ≡ 1, 𝑥𝑧(𝑥𝑧) ≡ 1 and 𝑦𝑥(𝑥𝑦) ≡ 1, the elastic constants thus 

defined forming a symmetric matrix. The elastic constants 𝑐𝑖𝑖  with 𝑖 ≤ 3 are called 

longitudinal elastic constants, the   𝑐𝑖𝑖 with 𝑖 ≥ 3 are the tangential elastic constants. Those 

𝑐𝑖𝑗 with 𝑖 ≠ 3are the non-diagonal constants and those 𝑐𝑖𝑗 with 𝑖 ≤ 3   and   𝑗 ≥ 3 , which 

measure the tangential deformation produced by a longitudinal stress are the elastic mixing 

constants 
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 The presence of crystalline symmetry further reduces the number of independent 

elastic constants. In principle, it is clear that certain constants will be equal to each other or 

will be related to being equivalent deformations in the crystal. In general, for each generator  

𝑅  of the point group of a given crystalline class (excluding the inversion centre, since the 

elasticity is a center−symmetric property), the components 𝑐𝑝𝑞are transformed into  𝑐𝑝𝑞
′ , and 

the condition must be fulfilled (by symmetry) 𝑐𝑝𝑞
′ = 𝑐𝑝𝑞, which forces the cancellation of 

certain elastic constants. 

 In particular, the number of independent elastic constants for hexagonal and cubic 

crystals (which will be treated in detail in our case) is reduced to 5 and 3, respectively. 

3.2.    ELASTIC CONSTANTS UNDER PRESSURE 

 The evaluation of elastic constants of materials under hydrostatic pressure [5] is not 

trivial. In fact, its description does not present a uniform nomenclature and the terminology 

used is confused. Thus, they can be defined as second derivatives of the internal energy 𝑈 

(adiabatic elastic constants) or free energy of Helmholtz (elastic isothermal constants) with 

respect to parameters of finite deformation 𝑢, homogeneous infinitesimal deformations 𝜖, or 

parameters of homogeneous finite deformation eulerians or lagrangians 𝜖 and 𝜂. They also 

correspond to the coefficients of transformation between stress and homogeneous deformation 

for the different definitions of homogeneous deformation, or to the coefficients of the 

equations of motion. Moreover, some authors postulate that the elastic constants under 

pressure are given by secondary derivatives of the Gibbs free energy with respect to eulerians 

homogeneous deformations  𝒆. All these definitions are equivalent to zero pressure, but they 

differ from non-zero pressures.  

 We focus on the traditional definition of elastic constants as second derivatives of 

internal energy versus lagrangians homogeneous deformations 𝜂𝑖 [6]. We start from a glass 

compressed by hydrostatic pressure 𝑝  to the density 𝜌1 . Before homogenous and small 

deformations each vector of the Bravais network  𝑅⃗  of the original network passes to the new 

position  𝑅⃗ ′ in the compressed or expanded network. 

                                                       𝑅𝑖
′ = ∑ (𝛿𝑖𝑗 + 𝜀𝑖𝑗𝑗 )𝑅𝑗                                                    (3.16)     
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Where 𝜀𝑖𝑗are independent constants of  𝑅⃗  (since the deformation is homogeneous), which 

satisfies that 𝜀𝑖𝑗 = 𝜀𝑗𝑖 ,  indicating the subindices 𝑖  and 𝑗  cartesian components, taking, 

therefore, values  1, 2 𝑎𝑛𝑑 3. The expansion of internal energy per unit of mass of the crystal 

in terms of the lagrangian strain tensor (rotation excluded), 

                                                        𝜂𝑖𝑗 = 𝜀𝑖𝑗 +
1

2
∑ 𝜀𝑖𝑘𝜀𝑘𝑗𝑘                                                  (3.17) 

leads to the expression: 

                   𝐸(𝜌1, 𝜂𝑚𝑛) = 𝐸(𝜌1, 0) +
1

𝜌1
∑ 𝑇𝑖𝑗𝜂𝑖𝑗𝑖𝑗 +

1

2
(∑ 𝐶𝑖𝑗𝑘𝑙𝜂𝑖𝑗𝑖𝑗𝑘𝑙 𝜂𝑘𝑙 + ⋯)               (3.18)    

Where𝐸(𝜌1, 𝜂𝑚𝑛)  is the energy of the deformed crystal (with relaxation of the atomic 

coordinates in the lattice of distorted Bravais lattice), the elements 𝑇𝑖𝑗are the components of 

the deformation tensor before the deformation: 

                                                         𝑇𝑖𝑗 = 𝜌1 [
𝜕𝐸(𝜌1,𝜂𝑚𝑛)

𝜕𝜂𝑖𝑗
]
𝜂𝑚𝑛

                                             (3.19) 

Which, in conditions of initial hydrostatic pressure are given by: 

                                                              𝑇𝑖𝑗 = −𝑝𝛿𝑖𝑗                                                           (3.20) 

and 𝐶𝑖𝑗𝑘𝑙are the elastic constants of the crystal at an arbitrary hydrostatic pressure  

𝑝:𝐶𝑖𝑗𝑘𝑙 = 𝜌1 [
𝜕2𝐸(𝜌1,𝜂𝑚𝑛)

𝜕𝜂𝑖𝑗𝜕𝜂𝑘𝑙
]
𝜂𝑚𝑛=0

. By expressing the deformation parameters 𝜀𝑖𝑗 as a function 

of an infinitesimal parameter𝛾, 

                                                             𝜀𝑖𝑗 = 𝑠𝑖𝑗𝛾 + 𝑒𝑖𝑗𝛾
2 + ⋯                                          (3.21) 

and include equations 3.17 and 3.20 in equation 3.18, this can be written as: 

                                                𝐸(𝜌1, 𝜂𝑚𝑛) = 𝐸(𝜌1, 0) + 𝐴𝛾 +
𝐷

2
𝛾2 + ⋯                           (3.22)    

where 

                          𝐴 =
𝑝

𝜌1
∑ 𝑠𝑖𝑖𝑖  and𝐷 =

1

𝜌1
∑ 𝐶𝑖𝑗𝑘𝑙𝑠𝑖𝑗𝑠𝑘𝑙𝑖𝑗𝑘𝑙 −

2𝑝

𝜌1
∑ (𝑒𝑖𝑘𝛿𝑖𝑘𝑖𝑘 +

𝑠𝑘𝑖

2

2
)             (3.23) 
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It is clear, then, that the derivatives of the total energy with respect to ϒ  lead to linear 

combinations of the elastic constants 𝐶𝑖𝑗𝑘𝑙: 

                               ∑ 𝐶𝑖𝑗𝑘𝑙𝑠𝑖𝑗𝑠𝑘𝑙𝑖𝑗𝑘𝑙 = 2𝑝∑ (𝑒𝑖𝑘𝛿𝑖𝑘 +
𝑠𝑖𝑘
2

2
)𝑖𝑘 + 𝜌1 [

𝜕2𝐸(𝜌1,𝛾)

𝜕𝛾2 ]
𝛾=0

               (3.24) 

 The equation is valid for any deformation, regardless of whether it retains the 

volume or not. It is clear, also, that under conditions of zero pressure, it is reduced to the 

traditional definition of elastic constants in the absence of pressure. Using the properties of 

symmetry of the matrices 𝑆 and 𝐶, the notation of Voigt: 𝑥𝑥 ≡ 1, 𝑦𝑦 ≡ 1, 𝑧𝑧 ≡ 1, 𝑦𝑧(𝑧𝑦) ≡

1, 𝑥𝑧(𝑥𝑧) ≡ 1 and 𝑦𝑥(𝑥𝑦) ≡ 1 and entering a parameter: 

𝜉𝛼 = {
1, 𝛼 = 1,2,3;
2, 𝛼 = 4,5,6.

 

Equation 3.18 is rewritten as: 

                    ∑ 𝜉𝛼𝜉𝛽𝐶𝛼𝑠𝛼𝑠𝛽𝛼𝛽 = 2𝑝∑ (2 − 𝜉𝛼)𝑒𝛼 + 𝑝∑ 𝜉𝛼𝑠𝛼
2 + 𝜌1𝛼𝛼 [

𝜕2𝐸(𝜌1,𝛾)

𝜕𝛾2 ]
𝛾=0

        (3.25)   

3.2.1. RELATIONSHIP BETWEEN THE COMPRESSIBILITY MODULUS AND THE 

ELASTIC CONSTANTS 

 The compressibility module of a crystal can be expressed as a certain linear 

combination of elastic constants. To obtain the relationship between the compressibility 

module and the elastic constants, it is only necessary to consider the application of hydrostatic 

pressure to the system. This leads to a homogeneous deformation of the type: 

                                                                 𝜀𝑖𝑗 = 𝑡𝑖(𝛾)𝛿𝑖𝑘                                                     (3.26) 

in which the value of the functions 𝑡𝑖(𝛾)is determined by the crystalline symmetry. Thus, in a 

hexagonal crystal, 𝑡1 = 𝑡2 = 𝛾  and 𝑡3 = 𝛽(𝛾) , the value of 𝛽(𝛾)being specified with the 

volume of the parameter 𝑐 𝑎⁄ . 

                                                            
𝑐

𝑎
=

1+𝛽(𝛾)

1+𝛾
𝜑(𝑉1)                                                      (3.27) 
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Where 𝜑(𝑉1)is the value of 𝑐 𝑎⁄  corresponding to the density 𝜌1 =
1

𝑉1
 to which the crystal has 

been compressed or expanded by the application of hydrostatic pressure. The value of 𝑐 𝑎⁄  

can then be expanded as a function of the specific volume V,  

                                       
𝑐

𝑎
= 𝜑(𝑉) = 𝜑(𝑉1) [1 +

𝜇

𝑉1
(𝑉 − 𝑉1) + ⋯ ]                                  (3.28) 

with 

                                                            𝜇 =
𝑉1

𝜑(𝑉1)
[
𝑑𝜑(𝑉)

𝑑𝑉
]
𝑉=𝑉1

                                               (3.29) 

 Comparing equations 3.27 and 3.28 and defining the volume associated with 

deformation 3.26 as a function of ϒ, 

                                                     𝑉 = 𝑉1(1 + ϒ)2(1 + 𝛽(ϒ))                                           (3.30) 

We obtain: 

                                                          𝛽(ϒ) =
(1−𝜇)(1+ϒ)

1−𝜇(1+ϒ)3−1
                                                   (3.31) 

 As the energy associated with deformation 3.26 only worked on the specific volume, 

we arrived, after the inclusion of the compressibility module definitions and the pressure: 

                                                       𝐵 = 𝑉
𝑑2𝐸

𝑑𝑉2     and     𝑝 = −
𝑑𝐸

𝑑𝑉
                                       (3.32) 

to the expression: 

                         𝜌1 [
𝑑2𝐸

𝑑ϒ
2]

ϒ=0
=

𝐵

𝑉1
2 [(

𝑑𝑉

𝑑ϒ
)
2

]
ϒ=0

−
𝑝

𝑉1
[
𝑑2𝑉

𝑑ϒ
2]

ϒ=0
=

9𝐵

(1−𝜇)2
− 6

(1+2𝜇)

(1−𝜇)2
𝑝             (3.33) 

As noted, in hexagonal crystals there are five independent elastic constants: 

𝐶11, 𝐶11, 𝐶13, 𝐶33 𝑎𝑛𝑑 𝐶44; the rest of the elastic constants are determined by symmetry: 

                         𝐶22 = 𝐶11, 𝐶13 = 𝐶23,  𝐶55 = 𝐶44,  𝐶66 =
1

2
(𝐶11 − 𝐶12)                           (3.34) 

or they are null. The first term of equality 3.33 is obtained through the substitution in equation 

3.25 of the parameters associated with deformation 3.25. 
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                           𝑠1 = 𝑠2 = 1, 𝑒1 = 𝑒2 = 0,  𝑠3 =
1+2𝜇

1−𝜇
𝑦𝑒3 =

(6𝜇+3𝜇2)

(1−𝜇)2
                            (3.35) 

These last two obtained by the Taylor series of 𝑡3 = 𝛽(ϒ) and after considering the equalities 

between elastic constants 3.34. The general expression of the relationship between elastic 

constants and the compressibility module in hexagonal crystals is thus reached: 

                 2𝐶11 + 2𝐶12 + 4
1+2𝜇

1−𝜇
𝐶13 + (

1+2𝜇

1−𝜇
)
2

𝐶33 =
9𝐵

(1−𝜇)2
− 3

1−4𝜇2

(1−𝜇)2
𝑝                       (3.36) 

that under conditions of zero pressure is reduced to: 

                                     2𝐶11 + 2𝐶12 + 4
1+2𝜇

1−𝜇
𝐶13 + (

1+2𝜇

1−𝜇
)
2

𝐶33 =
9𝐵

(1−𝜇)2
                        (3.37) 

 An alternative strategy to obtain the relation of the compressibility module with the 

elastic constants starts from equation 3.13. Before the application of hydrostatic pressure 

(𝜎𝑘𝑙 = −𝑝𝛿𝑘𝑙), this equation can be written as: 

                                                          𝜂𝑖𝑗 = −∑ 𝑝3
𝑘=1 𝑠𝑖𝑗𝑘𝑘                                                  (3.38)  

Since the tensor of the deformations is symmetrical and considering that these are small, the 

relative change of volume of the solid is given by the sum of the principal components of the 

deformation tensor: 

                                                        ∆= ∑ 𝜂𝑖𝑗
3
𝑖=1 = −∑ 𝑝3

𝑘=1 𝑠𝑖𝑗𝑘𝑘                                     (3.39) 

and, therefore, the compressibility  𝜅 =
−∆

𝑝
  is  ∑ 𝑠𝑖𝑗𝑘𝑘

3
𝑘=1 , corresponding, thus, the 

compressibility to the sum of the new coefficients in the upper left scheme of the compliances 

matrix. The compressibility module is obtained directly by being the reciprocal of the 

compressibility: 

                                               𝐵 =
1

𝜅
=

1

𝑠11+𝑠22+𝑠33+2(𝑠12+𝑠23+𝑠31)
                                       (3.40) 

and, in hexagonal crystals, because of the equalities between compliances it is reduced to: 

                                                     𝐵 =
1

2𝑠11+𝑠33+2𝑠12+4𝑠31
                                                    (3.41) 
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 Moreover, using the relations between elastic constants and compliances, the 

compressibility module can be rewritten as: 

                                                            𝐵 =
𝑐33(𝑐11+𝑐12)−2𝑐13

2

𝑐11+𝑐12+2𝑐33−4𝑐31
                                               (3.42) 

 The connection between equations 3.37 and 3.42 comes from the definition of the 

parameter 𝜇 (3.29). Developing the derivative, 

                                                  
𝑉1

(
𝑐

𝑎
)
1

[(
𝑑𝑐

𝑑𝑉
𝑎−𝑐

𝑑𝑎

𝑑𝑉

𝑎2 )]
𝑉1

= 𝑉1 [(
1

𝑐

𝑑𝑐

𝑑𝑉
−

1

𝑎

𝑑𝑎

𝑑𝑉
)]

𝑉1

                         (3.43) 

and, after including the dependency of the parameters with the pressure: 

                                      𝑉1 [(
1

𝑐

𝑑𝑐

𝑑𝑝

𝑑𝑝

𝑑𝑉
−

1

𝑎

𝑑𝑎

𝑑𝑝

𝑑𝑝

𝑑𝑉
)]

𝑉1

= 𝐵(𝜅𝑎 − 𝜅𝑐) = 𝐵(𝜅𝑐 − 𝜅𝑎)               (3.44) 

that is, the dependence on the quotient  
𝑐

𝑎
 is related to the difference between the lineal 

compressibilities along the 𝑎 𝑎𝑛𝑑 𝑐 (𝜅𝑎 𝑎𝑛𝑑 𝜅𝑐).Under pressure, the deformation of a line in 

the direction of the unit vector 𝑙 𝑖 is: 

                                                          𝜂𝑖𝑗𝑙 𝑖𝑙 𝑗 = −𝑝∑ 𝑠𝑖𝑗𝑘𝑘𝑙 𝑖𝑙 𝑗
3
𝑘=1                                         (3.45) 

and, therefore, the linear compressibility is: 

                                                             𝛽 = ∑ 𝑠𝑖𝑗𝑘𝑘𝑙 𝑖𝑙 𝑗
3
𝑘=1                                                    (3.46) 

in a hexagonal system, 

                                                   𝜅𝑎 = 𝑠11 + 𝑠12 + 𝑠13  and   𝜅𝑐 = 2𝑠13 + 𝑠33                   (3.47) 

or, depending on the elastic constants, 

                                    𝜅𝑎 =
𝑐33−𝑐13

𝑐33(𝑐11+𝑐12−2𝑐13
2 )

   and    𝜅𝑐 =
(𝑐11+𝑐12)−2𝑐13

𝑐33(𝑐11+𝑐12−2𝑐13
2 )

                        (3.48) 

the combination of equations  3.44, 3.42 and 3.48 allows the μ parameter to be rewritten as: 

                                                         𝜇 =
(𝑐11+𝑐12)−𝑐33−𝑐13

𝑐11+𝑐12+2𝑐33−4𝑐31
                                                  (3.49) 
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and, after its inclusion in equation 3.37, the equivalence with the equation 3.42 is checked. 

 If in equation 3.36 the requirement that  
𝑐

𝑎
 is independent of volume (μ = 0) is added, 

we arrive at: 

                                         𝐵 =
1

9
(2𝐶11 + 2𝐶12 + 4𝐶13 + 𝐶33 + 3𝑝)                                  (3.50) 

 This simple equation allows, therefore, to estimate the compressibility module in 

those systems in which  𝑐 𝑎⁄  does not change appreciably with the volume and to fix a limit 

superior to the same in those with substantial change in the quotient. 

 Equation 3.36 also allows to obtain the real relation between elastic constants and 

compressibility module for a cubic crystal, considering constant the relation  𝑐 𝑎⁄  (in a cubic 

crystal: 𝑎 = 𝑏 = 𝑐 ) and introducing the cubic crystals own relationships 𝐶33 = 𝐶11 and  

𝐶13 = 𝐶12. So we get to the expression, 

                                                        𝐵 =
1

3
(𝐶11 + 2𝐶12 + 𝑝)                                               (3.51) 

which allows to evaluate the compressibility module under pressure conditions. 

3.2.2. MECHANICAL STABILITY OF CRYSTALS UNDER HYDROSTATIC PRESSURE 

Equation 3.22 can be written as: 

                                            ∆𝐸 = 𝐸(𝜌1, ϒ) − 𝐸(𝜌1, 0) = −𝑝∆𝑉 + ∆𝐸𝑖𝑛                           (3.52) 

where  ∆𝑉  is the variation of the volume with the deformation: 

∆𝑉 = 𝑉1[|𝐼 + 𝜀| − 1] 

                      = 𝑉1ϒ(∑ 𝑠𝑖𝑖) +
𝑉1ϒ

2

2
[2(∑ 𝑒𝑖𝑖) +𝑖𝑖 (∑ 𝑒𝑖𝑖)𝑖

2
− ∑ 𝑠𝑖𝑗𝑖𝑗

2
]                                 (3.53) 

and 

 

∆𝐸𝑖𝑛 =
𝑉1ϒ

2

2
[𝑝 (∑𝑠𝑖𝑖

𝑖

)

2

− 2𝑝∑𝑠𝑖𝑗
2

𝑖𝑗

+ ∑𝑐𝑖𝑗𝑘𝑙

𝑖𝑗𝑘𝑙

𝑠𝑖𝑗𝑠𝑘𝑙] + ⋯ 
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                                  =
𝑉1ϒ

2

2
∑ {𝜉𝛼𝛼𝛽 𝜉𝛽𝐶𝛼𝛽 + 𝑝[(2 − 𝜉)(2 − 𝜉𝛼) − 2𝜉𝛼𝛿𝛼𝛽]} 𝑠𝛼𝑠𝛽 + ⋯ 

                                 =
𝑉1ϒ

2

2
∑ 𝐶𝛼𝛽𝛼𝛽 𝑠𝛼𝑠𝛽 + ⋯                                                             (3.54) 

and rewrite as: 

                                                          ∆𝐸𝑖𝑛 =
𝑉1

2
∑ 𝐶̃𝛼𝛽𝛼𝛽 𝜀𝛼𝜀𝛽                                             (3.55) 

where the 𝜀𝛼are infinitesimal eulerian deformations and the 𝐶̃𝛼𝛽form a symmetric matrix and 

depend on the traditional elastic constants (defined as second derivatives of the energy with 

respect to lagrangian deformations 𝜂𝑖). Unlike the latter, the new elastic constants 𝐶̃𝛼𝛽 do not 

have the exchange symmetry (𝛼𝛽) ↔ (στ), although they remain symmetric with respect to 

the exchanges (𝛼𝛽) ∨ (𝜎𝜏). Its relationship with the traditional elastic constants, extractable 

from Eq. 2.54, can be summarized in a set of expressions: 

𝐶̃𝛼𝛽 = 𝜉𝛼𝜉𝛼(𝐶𝛼𝛼 − 𝑝), 𝛼 = 1,2, … . ,6; 

𝐶̃𝛼𝛽 = 𝜉𝛼𝜉𝛽𝐶𝛼𝛽 , 𝛼 = 1,2,3, 𝛽 = 4,5,6; 

                                    𝐶̃12 = 𝐶12 + 𝑝, 𝐶̃13 = 𝐶13 + 𝑝, 𝐶̃23 = 𝐶23 + 𝑝; 

                                          𝐶̃45 = 4𝐶45, 𝐶̃46 = 4𝐶46, 𝐶̃56 = 4𝐶56.                                       (3.56) 

 An alternative approach to the problem of elasticity under  pressure consists of using 

the Gibbs free energy  𝐺(𝑝, 𝑇) = 𝐸(𝑝, 𝑇) + 𝑝𝑉(𝑝, 𝑇) instead of the energy to estimate the 

elastic constants. The reason given is that at fixed 𝑝 𝑎𝑛𝑑 𝑇, the structure in equilibrium is 

given by a minimum of  𝐺  and not of  𝐸.  The elastic constants thus defined (effective elastic 

constants) take, therefore, the form: 

                                                              𝐶̃𝛼𝛽 =
1

𝑉1
(

𝜕2𝐺

𝜕𝜀𝛼𝜕𝜀𝛽
)
𝑝=𝑐𝑡𝑒

                                          (3.57) 

where 𝜀𝛼 are Eulerian deformations. Formally, at 𝑇 = 0, the crystals subjected to deformation 

are not normally in equilibrium, so it is impossible to determine the free energy of Gibbs  𝐺  

or any other thermodynamic potential. It is resorted, then, to consider the function 

                                   𝐺(𝑝, 𝜀1, … , 𝜀6) = 𝐸(𝑝, 𝜀1, … , 𝜀6) + 𝑝𝑉(𝑝, 𝜀1, … , 𝜀6)                        (3.58) 



112 
 

which allows the effective elastic constants  𝐶̃𝛼𝛽 to be equivalent to the effective elastic 

constants  𝐶̃𝛼𝛽 defined in equation 3.55. Given that both definitions are equivalent, the motive 

after the use in the realized calculations of the energy  𝐸  instead of the free energy of Gibbs  

𝐺  is only of computational type, since it is easier to determine the equilibrium parameters of 

a structure crystalline from  𝐸   (at fixed  𝑉 , the minimum energy for the structure in 

equilibrium) than from  𝐺. Moreover, the calculations at fixed  𝑉 are simpler than those at 

fixed  𝑝. It should also be noted that the elastic constants  𝐶̃𝛼𝛽are equivalent to the previously 

defined stress-strain coefficients. 

 The requirement of crystalline mechanical stability [7] leads to the inequation   

∆𝐸𝑖𝑛 ≥ 0, which is fulfilled only if the symmetric matrix: 

 

𝐺̂ =

|

|

𝐶̃11 𝐶̃12 𝐶̃13

𝐶̃21 𝐶̃22 𝐶̃23

𝐶̃31 𝐶̃32 𝐶̃33

𝐶̃14 𝐶̃15 𝐶̃16

𝐶̃24 𝐶̃25 𝐶̃26

𝐶̃34 𝐶̃35 𝐶̃36

𝐶̃41 𝐶̃42 𝐶̃43

𝐶̃51 𝐶̃52 𝐶̃53

𝐶̃61 𝐶̃62 𝐶̃63

𝐶̃44 𝐶̃45 𝐶̃46

𝐶̃54 𝐶̃55 𝐶̃56

𝐶̃64 𝐶̃65 𝐶̃66

|

|

 

has a positive determinant. 

 This leads, in turn, to different stability criteria. Depending on the symmetry of the 

crystal and shows that the mechanical stability under pressure conditions is not only a 

property of the material, but depends on the applied pressure, reducing in the limit of  𝑝 = 0to 

the Born criteria, which involve only the traditional elastic constants. 

 Thus, in a cubic crystal, the eigenvalues of the matrix  𝐺̂  are: 

𝜇1 = 𝐶̃11 + 2𝐶̃12, 𝜇2 = 𝜇3 = 𝐶̃11 − 𝐶̃12 𝑎𝑛𝑑 𝜇4 = 𝜇5 = 𝜇6 = 𝐶̃44 

 Considering the fact that the annulment of the determinant implies mechanical 

instability, the criteria of mechanical instability, in terms of the traditional elastic constants, 

are: 

𝐶11 + 2𝐶12 + 𝑝 = 0,   𝐶11 − 2𝐶12 − 2𝑝 = 0 and 𝐶44 − 𝑝 = 0,  
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associated with the deformation eigenvectors: 

 (ϒ, ϒ,ϒ, 0,0,0); (ϒ𝑥𝑥, ϒ𝑦𝑦, ϒ𝑧𝑧, 0,0,0) ;ϒ𝑥𝑥 + ϒ𝑦𝑦 + ϒ𝑧𝑧 = 0  and   (0,0,0, ϒ, 0,0) 

 The interpretation of these criteria is clear, and is none other than the generalization 

under pressure conditions of the compressibility module and the two modules of transverse 

elasticity under conditions of zero pressure. 

 In this sense, the first criterion is related to a volumetric deformation as indicated by 

the associated eigenvector. The meaning of this instability is the de-cohesion of the net by 

pure dilatation. It is the spinodal instability since it involves the cancellation of the 

compressibility module, defined under pressure conditions such as:   

                                         𝐵𝑇 =
1

3
(𝐶̃11 + 2𝐶̃12) =

1

3
(𝐶11 + 2𝐶12 + 𝑝). 

 The second instability, known as Born's instability [8],  involves breaking symmetry 

with volume conservation. The modulus that is canceled in this case is the tetragonal 

transverse elastic modulus, defined under pressure conditions such as:   

                                        𝐺′ =
1

2
(𝐶̃11 − 𝐶̃12) =

1

2
(𝐶11 − 𝐶12 − 𝑝). 

 Finally, the third instability is the transverse deformation, with volume conservation, 

along one of the directions of symmetry, being in this case the module associated with the 

transversal elastic. The complexity of 𝐺 = 𝐶̃44 = 4𝐶44 − 𝑝stability condition increases in 

crystals of lower symmetry. Thus, in a hexagonal crystal the values of the determinant 𝐺̂  are: 

𝜇1 = 𝐶̃11 − 2𝐶̃12, 𝜇2 =
1

2
{(𝐶̃11 + 𝐶̃12 + 𝐶̃33) + [(𝐶̃11 + 𝐶̃12 − 𝐶̃33)

2
+ +8𝐶̃13

2 ]

1

2
},   

𝜇3 =
1

2
{(𝐶̃13

2 + 2𝐶̃12 + 𝐶̃33) − [(𝐶̃11 + 𝐶̃12 − 𝐶̃33)
2
+ 8𝐶̃13

2 ]

1

2
},  𝜇4 = 𝜇5 = 𝐶̃44  and  

𝜇6 = 𝐶̃66.For both  𝜇2  and 𝜇3  to be positive, it is a necessary condition that  𝜇2 + 𝜇3  and  

𝜇2𝜇3 are positive. The stability conditions are then:       

𝐶̃11 − 𝐶̃12 > 0  𝐶̃44 > 0  𝐶̃66 > 0, 

𝐶̃11 + 𝐶̃12 + 𝐶̃33 > 0(de  𝜇2 + 𝜇3 > 0) 

                                           and   (𝐶̃11 − 𝐶̃12)𝐶̃33 − 2𝐶̃13
2 > 0 (𝑑𝑒𝜇2𝜇3 > 0) 
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Expressions that can be simplified in the inequations: 

𝐶̃44 > 0, 𝐶̃11 > 𝐶̃12 𝑎𝑛𝑑 𝐶̃33(𝐶̃11 + 𝐶̃12) > 2𝐶̃13
2  

3.2.3.    EVALUATION OF ELASTIC CONSTANTS 

 For a given crystal, it is possible to calculate all  𝑀  independent elastic constants by 

imposing  𝑀  small deformations to the unit cell. Each one of the deformations is 

parameterized with a variable, (see equation 3.21). This allows estimating the total energy of 

the system for different variable values. The positions of the atoms must be redefined in each 

distorted configuration due to the appearance of internal deformation before the decrease in 

symmetry associated with the deformation. Assuming the validity of Hooke's law for small 

values of  ϒ, the numerical data  𝐸(ϒ)is adjusted to the expansion of the Taylor order of 

equation 2.22, where  𝑉1 =
1

𝜌1
 ,  𝐸(𝜌1, 0)   and  𝐶𝑖𝑗𝑘𝑙  are fitting parameters. Finally, the 

inclusion of the quadratic terms,  
𝜕2𝐸

𝑑ϒ
2 , in equation 3.25 allows access to a system of  𝑀  linear 

equations for the elastic constants, which allows extracting these.  

 In our case, we consider the calculation of the elastic constants of cubic (zinc 

benzene) phases of the SiC and ZnO, (NaCl) phase of ZnO, (CsCl) phase of ZnO and 

hexagonal (wurtzite) phases of the SiC and ZnO with the objective of examining its 

metastability. The parametrization of the deformations chosen in each case is shown in Table 

6.1. For each, we choose 11 values of ϒ in the interval [-0.05; 0.05] in order to remain in the 

elastic limit and avoid the contribution of terms of order higher than 2  in the expansion of the 

energy. Likewise, we relax the internal degrees of freedom in all cases where, by inducing a 

reduction in symmetry, the deformation causes the atoms to stop locating in special positions 

without free parameters, being, therefore, the optimization of these necessary. It should be 

noted that if the atoms are in inversion centers, these remain stable under small deformations. 

Then, it is unnecessary to relax the internal parameters in the deformed network, which 

greatly simplifies the calculations. It also ensures the convergence of energy versus the 

number of points 𝑘. We choose, thus, Monkhost-Pack grids with a number of points 𝑘 in the 

irreducible part of the Brillouin area of  280,  and  427  for the cubic zinc bende and 

hexagonal wurzite cells, respectively, extending this numbers in the structures of lower 

symmetry associated with deformations. We also verify the energetic convergence in ϒ = 0, 
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independently of the deformation and, therefore, of the different symmetries and grid points 

𝑘. 

 Although the calculation of the three independent elastic constants of the cubic 

networks would only require the application of three independent deformations, we have 

included in Table 3.1 two additional deformations for the purpose of analyzing the precision 

of the calculations. 

 The first and third deformations correspond to tetragonal distortions of the lattice. In 

the first, the value of the axes  𝑎 𝑎𝑛𝑑 𝑏  is modified in the same magnutid, keeping the fixed  

𝑐  axis, while in the third only the axis  𝑎  changes. From the combination of both we extract 

the value of the two independent constants 𝐶11  and  𝐶12 .. The second deformation is an 

orthorhombical transversal distortion, through which the constant  𝐶44 is accessed. It has the 

advantage, compared to the previous deformations, that in it the energy is an even function of 

the deformation  𝐸(ϒ) = 𝐸(−ϒ) so that the number of calculations made is reduced by half.  

On the other hand, the advantages of the fourth and fifth deformations on the other three come 

from the conservation of the volume  (𝑑𝑒𝑡 ∨ 𝐼 + 𝜀 ∨ 1)since it is the same as before the 

deformations. In the first place, this allows the elimination of the term  𝑝∆𝑉  in equation  

3.52, with which we obtain, directly, the elastic constants  𝐶̃𝛼𝛽. In second place, known the 

strong dependence of the energy with the volume, we avoid the separation of this contribution 

in the total energy. Thirdly, by keeping the volume we minimize the base changes and with it 

the computational uncertainties. In particular, the fourth deformation corresponds to an 

extension of the first deformation, to which is added the term of distortion  𝜀33 in order to 

maintain the volume. This leads to a tetragonal distortion in which the axes  𝑎 𝑎𝑛𝑑 𝑏 remain 

the same and different from the  𝑐  axis.  The meaning associated with the variations of the 

parameter  ϒ  is that of the modification of the quotient  𝑐 𝑎⁄ of the new tetragonal structure at 

constant volume, 
𝑐

𝑎
=

1

(+ϒ)3
 . The only difficulty associated with distortion is the need to 

expand the deformation component 𝜀33  in Taylor series to obtain the expansion values in 

powers of the infinitesimal ϒ,  𝑠33 = −2 ,  𝑒33 = 3.  The introduction of these in the equation 

3.2  leads to the linear combination of elastic constants shown in  Table 3.1, coinciding with  

6(𝐶̃11 − 𝐶̃12).  The fifth distortion is an ortho-mast cross-sectional distortion of the network, 

which makes it possible to obtain the transverse elastic modulus  𝐶̃44 directly. Using these last 
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two deformations and the relation 3.51, we obtain the three independent elastic constants, 

with a deviation of less than 3%  with respect to those previously obtained. 

 It is also important to note that although the distortions are applicable independently 

of the space group and the number of non-equivalent atoms of the cubic cell, they do have an 

influence on the symmetry of the distorted lattice. Thus, in the simple cubic 𝐴1  lattice, 

distortions  1, 3, and 4  lead to simple tetragonal lattices and distortions,  2 and 5  to 

orthorhombic networks centered in the base, while in 𝐴1 spinel type all distortions lead to 

body centered lattices, regardless of whether they are tetragonal or orthorhombic.  
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Table 3.1: Deformations used for the calculations of elastic constants in cubic and hexagonal 

structures. 

Symmetry            Deformation            Parameter                   𝜌1 [
𝜕2𝐸(𝜌1,ϒ)

𝜕ϒ
2 ]

ϒ=0
 

Cubic                          1                𝜀11 = 𝜀22 = ϒ                   2(𝐶11 + 𝐶12 − 𝑝) 

                                    2                𝜀13 = 𝜀31 = ϒ                     4𝐶44 − 2𝑝 

                                    3                𝜀13 = ϒ                                      𝐶11 − 𝑝 

                                    4                𝜀11 = 𝜀22 = ϒ, 

                                    𝜀13 = (1 + ϒ)−2                   − 16(𝐶11 − 𝐶12) − 12𝑝 

                                    5                𝜀11 = 𝜀22 = ϒ, 

                                                      𝜀13 = (1 − ϒ2)
−1

                      − 14(𝐶44 − 𝑝) 

 

Hexagonal                  1                𝜀11 = 𝜀33 = ϒ                 2(𝐶11 + 𝐶13 + 𝐶33 − 2𝑝 

                                   2                𝜀11 = −𝜀22 = ϒ               2(𝐶11 − 𝐶12 − 𝑝) 

                                   3                 𝜀11 = 𝜀22 = ϒ                2(𝐶11 + 𝐶12 − 𝑝) 

                                   4                 𝜀13 = 𝜀31 = ϒ                     4𝐶44 − 2𝑝 

                                   5                  𝜀33 = ϒ𝐶33 − 𝑝 

                                   6              𝜀13 = 𝜀31 = ϒ,                           4(𝐶44 − 𝑝) 

𝜀22 =
ϒ2

(1 − ϒ2)
 

                                  7               𝜀11 = −𝜀22 = ϒ,                          2(𝐶11 − 𝐶12 − 2𝑝) 

𝜀33 =
ϒ2

(1 − ϒ2)
 

 

         The elastic constants of the ecliptic graphite lattice are obtained through the 5 primary 

deformations of Table 3.1 The first corresponds to a modification of axes  𝑎 𝑎𝑛𝑑 𝑐. It is, 

therefore, an orthorhombic distortion. The second one (also orthorhombic) deforms the basal 

plane by elongation along  𝑎 and along  𝑏.  The third maintains the hexagonal symmetry, 

modifying in it the value of axes 𝑎 𝑎𝑛𝑑 𝑏 in the same amount. The fourth, in which the energy 

is an even function of the deformation, decreases the hexagonal to monoclinic symmetry and 



118 
 

the fifth retains the hexagonal symmetry by compressing or expanding the  𝑐  axis. In all these 

deformations the volume changes. With verification effects, two other deformations were 

applied, in which the volume, the monoclinic deformation 6 and the orthorhombic 

deformation  7  were conserved. It was found that the modifications in the elastic constants 

were less than 4%. 
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CHAPTER IV 

APPLICATIONS to COVALENT, IONIC  
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          A clear understanding of cohesive and mechanical properties of technological materials 

is of capital importance especially when applications are demanded in hostile thermal, stress 

and chemical environments. Since the nature of the crystalline bonding networks is the 

ultimate responsible for the response of the compounds to these external conditions, it is 

rewarding and necessary investigating how macroscopic properties correlate with the 

chemical interactions at an atomic level. Covalent, ionic and layered solids constitute three 

crystal families currently displaying interest in a variety of areas such as electronics and solar 

cell industries [1–3]. These compounds provide a good target to examine how changes in 

strong and weak interactions affect the observed elastic stability of materials. To this end, 

computer simulations constitute a practical research route to microscopically analyze strained 

structures of solids since geometries optimized by minimizing the crystal energy can be 

accurately obtained from first-principles electronic structure calculations under different stress 

conditions (see for example, Ref. [4]). 

 

           Within the above three families of compounds, silicon carbide (SiC), zinc oxide (ZnO), 

graphite and molybdenum disulfide (MoS2) are pertinent examples because, besides their 

genuine bonding networks, they are materials with a variety of applications in several 

technological sectors as new semiconductor devices, field effect transistors [1,2,5–8], 

lubricants [9,10] and components of solar cell panels [3]. In the manufacturing processes of 

these materials, mechanical failure may occur as a result of the stresses induced during the 

heating cycles to which the compounds are subjected. In addition, the simultaneous existence 

of covalent and van der Waals interactions leads to preferential bi-dimensional and three-

dimensional atomic arrangements in their crystalline structures that result in a high 

anisotropic response of these materials under variable stress conditions which is worth to be 

explored. 

 

            The challenge consists in the accurate calculation of the limiting tension that these 

materials can support in particular directions. Considering perfect non-defective crystals, this 

maximum tension is known as the ideal or critical strength (σc) of the material for that 

direction. Both, experimentally and theoretically, the evaluation of strain-stress curves 

constitutes the usual strategy to access to this quantity since after this critical point a 

catastrophic scenario emerges in form of a crystal fracture or a phase transition. It seems then 

required to understand how the atomic level interactions correlate with the mechanism of 
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failure in these environmental conditions and, if possible, anticipate the onset of the 

catastrophic scenario. 

 

A number of theoretical studies using first-principles calculations, mainly employing density 

functional theory (DFT) [11,12], have permitted a quantitative evaluation of the critical 

strength of various materials (see [13–15] and references therein to cite a few) showing that 

the effect of multi-axial stress obviously depends on the atomic species involved [16–18]. 

However, to the best of our knowledge, none of these studies have addressed the description 

of the observed or calculated stress-strain data by means of analytical functions as normally 

happens for example in high-pressure and related fields. Such equations of state would open 

the possibility of anticipating critical values for the strength and strain of materials without 

reaching the instability condition. At this regard, it is pertinent to recall the spinodal equation 

of state (SEOS) [19]. This analytical function was designed to describe the high-pressure 

behavior of condensed matter using as a reference state the onset of the elastic instability. It 

has been successfully applied not only to the description of experimental and theoretical 

pressure-volume data, but also to the pressure evolution of one dimensional unit cell 

parameters [20]. Along with this fact, the SEOS is particularly well suited for the description 

of both experimental and theoretical stress-strain data derived from variable stress tensile 

conditions since, in the limit, these conditions precisely lead to the elastic instability of the 

material, i.e, the reference state for this analytical EOS. 

 

           In this chapter, we present results from DFT calculations performed to obtain the 

critical strength of 3C- and 2H-polytypes of  SiC,  ZnO zinc blende and wurtzite, graphite and 

2H-MoS2 along their main crystallographic directions without and with superimposed 

transverse stress conditions. Results are analyzed in terms of the density of chemical bonds 

and atomic interactions in the investigated directions of these materials. We are particularly 

interested in general analytical functions able to represent the behavior of different types of 

compounds under these tensile conditions and to reproduce the critical parameters. For this 

end, we propose a new SEOS-form that uses the critical strain as the reference state and that 

can be easily used to fit both, experimental and calculated stress-strain data. 

 

           The chapter is divided in three more sections. In the next one, we present 

computational details of the electronic structure calculations and the algebra related with the 

new EOS. Section 4.2 contains the results and the discussion and is divided in three 
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subsections devoted, respectively, to the equilibrium properties of the four compounds, the 

stress-strain calculated curves, and the energetic and Young moduli derived from the 

proposed SEOS. A summary of our main findings are given at the end of the chapter. 

 

4.1. Computational Details 

4.1.1. Electronic Structure Calculations 

          First-principles electronic energy calculations and geometry optimizations under the 

Kohn-Sham DFT framework of 3C and 2H polytype structures of SiC, ZnO, ABA stacking of 

graphite and hexagonal  2H-MoS2 are carried out with the ABINIT code [21, 22] using the 

Perdew-Burke-Ernzerhof (PBE)  exchange-correlation functional [23]. In order to take into 

account van der Waals forces, the correction (DFT-D2) to the exchange-correlation term, as 

proposed by Grimme [24], is used for graphite and MoS2. Although this pairwise approach 

does not capture many-body effects inherent to van der Waals interactions (see for example 

[25–27]), it has been proven to be accurate enough to determine optimized geometries 

involving the length scale (Å) of the tensile phenomena explored in this thesis. The so-called 

FHI atomic plane wave pseudopotentials [28] are adopted, while cutoff energies and 

Monkhorst-Pack grids [29] are set to 1000 eV and 6 x 6 x 6 and 6 x 6 x 4 for 3C-SiC and 2H-

SiC respectively; 1200 eV and 6 x 6 x 3 for graphite; 400 eV and 6 x 6 x 2 for 2H-MoS2 and 

400 eV and 8 x 8 x 8and 8 x 8 x 6 for cubic- and hexagonal-ZnO, respectively. Atomic 

positions are optimized until the total energy converged within 0.1 meV. At the same time, all 

the strain components (except in the applied loading direction) were optimized so that the 

corresponding stress components turned out to be within 100 MPa from a predetermined 

value. The Broyden-Fletcher-Goldfarb-Shanno minimization scheme (BFGS) [30] was used. 

In this way, tensile-strain curves under controlled normal stress were obtained. Critical 

strength (ideal strength) was determined as the maximum value of tensile stress before the 

lattice loses stability and the forces diverge. Multi-axial stress calculations have been 

performed superimposing a transverse stress to the chosen stress direction. Atomic positions 

and movements through the different paths are analyzed using the visualization program for 

structural models (VESTA code) [31]. 

             For the cubic structure, we calculate how the stress increases along the [100], [110] 

and [111] symmetry directions. For the hexagonal one, an orthorhombic unit cell containing 

four atom pairs, calculations were performed along the normal-plane direction [001] 

perpendicular to the layers, and two in-plane directions, one containing nearest neighbors 
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(NN) [110], so-called zigzag direction and the other connecting next nearest neighbors (NNN) 

[1̅10], so-called armchair direction. 

 

           The stress tensor is calculated in ABINIT as the derivative of the total energy with 

respect to the strain tensor. The strain tensor, εαβ, can be calculated from the relation between 

the strain-free lattice vector of a given atom μ, rμ , and its strained lattice vector, r'μ, as follows 

[32]: 

                                            𝑟′𝜇 
𝛼  =  𝑟𝜇 

𝛼  +  ∑𝛽=1
3 𝜀𝛼𝛽 𝑟𝜇

𝛽
                                                          (1) 

 

where 𝜇 and 𝛽 symbols denote the Cartesian components. 

 

               In the calculation of the second-order elastic constants in these cubic and hexagonal 

lattices, we follow an energy-strain scheme (see Refs. [33, 34]). The lattice was first relaxed 

to achieve a zero stress state and then strains were applied by multiplying the lattice vectors 

by the strain matrix. For a lattice initially under no stress, and using Voigt notation, the energy 

of the strained lattice can be expressed around the equilibrium position as: 

                                                     𝐸 = 𝐸0 +
𝑉0

2
∑𝑖𝑗 𝐶𝑖𝑗𝜀𝑖 𝜀𝑗                                                     ( 2) 

where E0 and V0 are, respectively, the energy and the volume of the unstrained lattice. There 

are three independent elastic constants for the cubic lattice (C11, C12, C44) and five 

independent elastic constants (C11, C12, C33, C13, C44) for the hexagonal one, thus three and 

five sets of finite strains were applied respectively. For each case, eleven equally-spaced 

strain values were applied between -0.05 and 0.05. The elastic constants were obtained from 

fitting a quadratic equation to the energy-strain calculated data points. The bulk modulus B0 

for each structure was calculated using its relationship with the elastic constants. A detailed 

description of elastic constants and their calculation are given in Chapter 3. 

 

4.1.2.  Spinodal-like stress-strain equation of state 

 

            From a thermodynamic point of view, the elastic stability limit of a solid at thermal 

conditions is defined by the point where the second derivative of the internal energy with 

respect to the volume becomes zero. At the corresponding pressure, also named as the 

spinodal pressure (psp), the bulk modulus (B) of the substance tends to zero, and therefore any 
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restoring force given by the chemical bonds is overcome, leading to a crystal rupture or a 

phase transition [35]. 

 

The spinodal locus has been considered as an excellent reference to describe the 

thermodynamic behavior of solids under high pressure conditions [36,37]. Polymers, metals, 

covalent and ionic crystals have been analyzed showing that their (p-V) data is accurately and 

universally represented through the spinodal constrain. This follows from the fact that along a 

given isotherm, the isothermal bulk modulus depends on the pressure through the following 

universal relation [38, 39]: 

                                                         𝐵 =  𝐵∗(𝜎𝑠𝑝 − 𝜎)
𝛾
                                                   (3) 

 

Where B* and β are, respectively, the amplitude and the pseudocritical exponent that 

characterize the pressure behavior of the isothermal bulk modulus. 

 

              The spinodal equation of state has not been used only in its volumetric form. For 

instance, Francisco et al.[40] studied the evolution under isotropic compression of the lattice 

parameters of rutile TiO2, showing that a one dimensional (1D) spinodal equation of state 

(1D-SEOS) can reproduce accurately their pressure dependence. To that, the authors define a 

linear bulk modulus, or equivalently a directional Young modulus (Yl, l specifies the 

direction), and applied the universal relation of Eq.[3]. Considering both the physical 

significance and the directional behavior of this spinodal-like equation of state, in this thesis 

we introduce a 1D-SEOS to analytically describe the stress-strain curves associated with 

tensile stress phenomena. Indeed, under directional stretching, the critical strength attained 

along the stress-strain curve corresponds to the spinodal stress limit, σsp. The later parameter 

accounts for the maximum engineering stress at which the solid breaks, and therefore, 

represents the elastic limit of the material. Furthermore, at this spinodal point the directional 

Young modulus Yl has a value of zero, pointing out that there is no material resistance to a 

phase transition or rupture. Notice that these two parameters (σsp and Yl) are also the one-

dimensional analogs of the spinodal pressure and the bulk modulus. Consequently, from this 

perspective, the spinodal constrain is clearly fulfilled. Accordingly, the stress dependence of 

Yl can be accurately described with an amplitude factor Yl
*
and a pseudocritical exponent γ 

following an equivalent power law form as Eq.[3]., and taking into account the engineering 

convention of signs (σ is positive for tensile and negative for compressive stress): 
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                                                          𝑌𝑙  = 𝑌𝑙
∗(𝜎𝑠𝑝 − 𝜎)

𝛾
                                                  (4) 

 

Under these premises, an analytical stress-strain EOS can be derived. As the Young modulus 

is thermodynamically defined as the derivative of the stress with respect to the strain, the 

simple integration of Eq.[4] leads to the following expression for a directional tensile curve: 

                                       𝜎 =  𝜎𝑠𝑝 − {𝑌𝑙
∗(1 − 𝛾)(𝜎𝑠𝑝 − 𝜎 )(𝜖𝑠𝑝 − 𝜖)}

1/(1− 𝛾)
                        (5) 

 

Eq.[5] provides an analytical relationship between the stress and the strain along a particular 

direction of a crystalline solid involving four characteristic parameters. However, it must be 

emphasized that only three are independent since the spinodal strength, the spinodal strain and 

the amplitude factor are related realizing that no strain is present at σ = 0: 

                                                          𝑌𝑙
∗(1 − 𝛾) =

𝜎𝑠𝑝
(1−𝛾)

𝜖𝑠𝑝
                                                   (6) 

 

Using this expression in Eq. [5], we arrive at our final stress-strain 1D-SEOS: 

 

                                                           𝜎 =  𝜎𝑠𝑝 (1 − (
𝜖𝑠𝑝−𝜖

𝜖𝑠𝑝
)
1/(1− 𝛾)

)                                   (7) 

 

An interesting feature of the proposed stress-strain SEOS is that it can be also expressed 

analytically in its energy form. In fact, considering the isotherm at 0 K and neglecting zero 

point vibrational contributions, the stress is related to the internal energy E and the zero-

pressure volume V0 by means of [40]: 

 

                                                                 𝜎 =
1

𝑉0

𝑑𝐸

𝑑𝜖
                                                         (8) 

 

Consequently, the integrated energy-strain SEOS is: 

 

                                 𝐸𝑠𝑝  −  𝐸 =  𝑉0 𝜎𝑠𝑝(𝜖𝑠𝑝 − 𝜖) − 𝑉0
(1−𝛾)

(2−𝛾)

𝜎𝑠𝑝
1/(1− 𝛾)

𝜖𝑠𝑝
(𝜖𝑠𝑝 − 𝜖) 

2−𝛾

1−𝛾                   (9) 

 

where 𝐸𝑠𝑝 is the internal energy of the solid at the spinodal strain, or equivalently the 

spinodalenergy. This quantity must be understood as the energy needed to separate the 
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crystallographic planes perpendicular to the stress-strain direction, and therefore to overcome 

the interatomic forces. Mo 

reover, the spinodal energy can be expressed in terms of the spinodal stress and spinodal 

strain once we set to zero the internal energy at zero strain: 

                                             𝐸𝑠𝑝 = 𝑉0 (𝜖𝑠𝑝𝜎𝑠𝑝 −
(1−𝛾)

(2−𝛾)
(
𝜎𝑠𝑝

𝜖𝑠𝑝
)

1

1−𝛾
)                                   (10) 

 

An important feature of our current spinodal stress-strain EOS is that the spinodal energy give 

us the opportunity to connect the mechanical parameters along a given tensile direction with 

the cohesive interatomic interactions. 

 

              Some words of caution on the notation should be given. First, 𝜎𝑐 and 𝜎𝑠𝑝  both 

represent the critical or ideal strength of the material along a given direction. The first symbol 

is obtained from  (𝜎𝑖, 𝜖𝑖) calculated or experimental data, whereas the second one comes from 

our 1D-SEOS fittings as we discuss later. The same applies to 𝜖𝑐 and 𝜖𝑠𝑝. Second, in our static 

simulations (zero temperature and zero point energy contributions neglected), the internal 

energy of the system 𝐸 is reduced to the electronic energy obtained in our DFT calculations. 

Finally, this symbol 𝐸 is often used in other works to design the Young modulus. To avoid 

confusion, here we have chosen  𝑌𝑙 for the directional Young modulus. 

 

4.1.3.   Spinodal Equation of State Fittings 

              The versatility of the proposed 1D-SEOS allows us fitting Young modulus-stress 

(Eq.[4]), stress-strain (Eq.[7]), and energy-strain (Eq.[10]) data. Since the spinodal hypothesis 

is based on the assumption that the universal relationship given in expression Eq.[3] can 

accurately describe stress-dependence of the directional Young modulus, it becomes first 

necessary to examine if the proposed power law can fit in a reliable manner the calculated 

data. To minimize numerical errors induced by the second strain derivative of the energy 

involved in the 𝑌𝑙 − 𝜎 curves, a linear interpolation of the computed electronic energy has 

been performed. In all the cases, adjusted R-squares for the 𝑌𝑙 − 𝜎 curves lie in the range 

between 0.97 and 0.99 and residuals are equally distributed between negative and positive 

values with a percentage of deviation lower than 7%. In order to test the reliability of our 

proposed 1D-SEOS, the pseudocritical exponent and the critical strength and critical strain 

have been used as fitting parameters to analytically construct the stress-strain curves and 
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energy-strain curves for all the directions and materials studied in this thesis according to the 

expressions derived in subsection 4.1.2. Successfully, we obtain that the differences between 

the analytical curves and the calculated data are always below 1%. A summary of the fitting 

parameters are presented in Table 4.1. Notice that Eq.[6] and Eq.[10] can provide us the 

values of 𝑌𝑙
∗(0)and 𝛾. 

As we can see in Table 4.1, 𝛾 
parameter lies inside the 0.41±0.12 interval, depending on the 

crystal and the direction considered (except for ZnO with few values up to 0.69). These 𝛾 

values are much lower than the universal β value of 0.85 assumed by Baonza et al. for the 

volumetric compression of solids [35]. Such a difference is attributed to the fact that here we 

are in the stretching region. Indeed, Brosh et al. [41] studied the dependence of the 

pseudocritical exponent as a function of the reduced volume both in the compressive and 

expansive regimens. These authors conclude that while the universal pseudocritical exponent 

of 0.85 accurately describes the solid under high and moderate pressure, the exponent goes 

down to the value of 0.5 in the case of the negative pressure regime, which is within the range 

of the results obtained in our spinodal stress-strain equation of state. 
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Table 4.1 1D-SEOS parameters from the fittings to our computed stress-strain data. Units of 

𝜎𝑠𝑝  and  𝑌𝑙
∗(0) are GPa. 

 

Material Direction                                𝛾                            𝜖𝑠𝑝                         𝜎𝑠𝑝 

 

3C-SiC            [100]                          0.29                       0.35                   90.5 

                        [110]                          0.49                       0.30                   52.3 

                        [111]                          0.36                       0.15                   45.1 

 

2H-SiC            [001]                          0.36                       0.15                   44.9 

                        [110]                          0.46                       0.29                   58.0 

                        [1̅10]                         0.34                       0.17                    50.7 

 

Graphite          [001]                          0.35                      0.99                     0.06 

                        [110]                          0.53                       0.26                  85.8 

                        [1̅10]                         0.37                       0.11                  78.3 

 

2H-MoS2        [001]                         0.39                       0.05                   0.07 

                        [110]                         0.38                       0.27                  21.4 

                        [1̅10]                         0.46                       0.20                  14.2 

 

B1-ZnO          [100]                          0.63                       0.20                   7.98 

                       [110]                          0.63                       0.23                  14.31 

                       [111]                          0.29                       0.35                  57.60  

 

B2-ZnO         [100]                          0.62                        0.36                  52.46 

                      [110]                          0.69                        0.16                  19.08 

                      [111]                              -                              -                       -      

 

B3-ZnO         [100]                              -                              -                       - 

                      [110]                         0.49                         0.22                 12.98 

                      [111]                         0.45                         0.25                 30.00 

 

B4-ZnO        [100]                             -                              -                          - 

                     [110]                              -                             -                          - 

                     [1̅10]                          0.32                        0.20                    16.00 
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4.2. Covalent Materials: Silicon Carbide (SiC): Results and Discussion 

4.2.1. Bulk Properties 

           This subsection is restricted just to the summary of the equilibrium structural and 

elastic data of the two SiC polytypes. Computed lattice constants, bulk moduli and elastic 

constants are collected in Table 4.2 along with experimental and other calculated values. 

Overall, our results are found to be in good agreement with reported observed data, showing 

only slight differences due to the overestimation of the lattice constants and underestimation 

of the elastic constants inherent to the GGA level of calculations.  

 

Table 4.2  Zero pressure lattice and elastic constants of 3C- and 2H-SiC polytypes. All B0 

values calculated using Voigt elastic constants relationship. 

                                          This work                         Calculated                      Experimental 

          

         3C-SiC   a(Å)               4.39                           4.34 [42], 4.38 [43]           4.34 [44] 

                        C11(GPa)        341                             390 [42], 385 [43]                 352 [45] 

                        C12(GPa)        130                             134 [42], 128 [43]                 140 [45] 

                        C44(GPa)        224                             253 [42], 264 [43]                 233 [45] 

                          B0(GPa)        200                                     219, 213                         211 

 

          

          2H-SiC   a(Å)            3.085                            3.05 [46], 3.09 [43]              3.076[47] 

                         c(Å)            5.060                            5.00 [46], 5.07 [43]              5.224 [47] 

                    C11(GPa)         528                               541 [46], 536 [43]             501 ± 4[48] 

                    C12(GPa)         112                               117 [46], 78 [43]               111 ± 5 [48] 

                    C33(GPa)         565                               586 [46], 573 [43]              553 ± 4 [48] 

                   C13(GPa)           52                                  61 [46], 31 [43]                  52 ± 9 [48] 

                   C44(GPa)         156                                162 [46], 164 [43]               163 ± 4 [48] 

                     B0(GPa)         228                                       238, 214                           220 
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4.2.2. Ideal strength with and without transverse stress. 

                 This subsection is devoted to the calculation of the strain-stress curves of the two 

structures considered in this part. First, we collect in Fig.[4.1] the results under vanishing 

transverse stress. For 3C-SiC and 2H-SiC, calculated points are very similar to those reported 

by Umeno, Kubo and Nagao [43].  

            It is usual to recall to the chemical bonding network to interpret at an atomic level 

differences in the strain-stress curves between compounds and/or directions. Without being 

strictly quantitative while keeping the basic chemical meaning, a simple and practical 

indicator able to account for the majority of these differences is proposed as follows. Each 

chemical bond in the unit cell is described by a vector connecting its two bound nearest-

neighbor atoms. The projection of this vector along the corresponding tensile direction is 

evaluated and the sum calculated over all the bonds in the unit cell is defined as the total 

effective bond length (EBL) associated to that direction. The two main structural effects 

induced in the chemical bonds by the tensile strain (changes in bonding lengths and angles) 

are essentially captured in this parameter. EBL values exhibit the expected trend always 

increasing as the strain increases up to the stability limit.  

 

               Fig.[4.1-a] shows that in 3C-SiC the slopes in the low strain region are nearly equal 

regardless the direction. However, the maximum stress value strongly depends on the 

direction of the deformation with an ideal strength nearly twice larger along the [100] axis 

(ϵc= 0.35 andσc = 91 GPa) as that found for [110] (ϵc = 0.30 and σc =53 GPa) and [111] (ϵc = 

0.15 and σc = 45 GPa). We notice that along [100] all tensile forces are equally distributed 

over the Si-C bonds. This is in contrast to the tension along [110] and [111] directions. For 

example, in the latter, one of the four C-nearest neighbors of a given Si- atoms stand along the 

same [111] direction and the corresponding Si-C bond suffers a pure stretching, whereas the 

stretching of the other three Si-C bonds is not so effective and involves bond angle 

modifications upon the tensile strain along this [111] direction (Table 4.3). At zero strain, the 

previously defined EBL parameter already has a value roughly twice greater for the [100] 

direction (17.5 Å) than for the [110] (9.3 Å) and [111] (9.5 Å) directions (Table 4.3). Thus, 

although the order between the [100] and [111] directions is not captured considering just the 

equilibrium structure, the EBL parameter catches the essential difference between the [100] 

direction and these two other directions. 
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             The stress-strain curves during uniaxial tension with vanishing transverse stress in 

2H-SiC are shown in Fig.[4.1-b]. Slopes in the low strain (harmonic) region are almost 

exactly equal whereas the maximum stress value strongly depends on the direction of the 

deformation. The stress-strain relation in 2H-SiC [001] (ϵc= 0.15 and σc= 45 GPa) and 3C-SiC 

[111] are nearly identical. It is so because of the similarity of the lattice planes normal to the 

stress direction, and so are the curves of 2H-SiC [100] (ϵc= 0.29 and σc= 58 GPa) and 3C-SiC 

[110]. The stress-strain relation in 2H-SiC along [110] shows intermediate values (ϵc= 0.20 

and σc= 50 GPa). Again, these values correlate with the effective Si-C bond lengths along the 

corresponding directions. Calculated EBL values in Å for the [110], [11̅0] and [001] are, 

respectively, 21.3, 16.8, and 12.3 (Table 4.3), following the same trend as σc and in agreement 

also with previous interpretations in terms of next-nearest Si-C interactions by Umeno et al. 

[43]. 

 

              For all directions and structures, we now analyze new results coming from the 

proposed analytical 1D-SEOS. All the curves in the two panels of Fig [4.1] were obtained 

from the 1D-SEOS fittings to the calculated strain-stress data. The performance of the 1D-

SEOS is apparent and allows us to derive with confidence critical stress and critical strain 

values from the corresponding fitting parameters σsp and ϵsp, respectively. We have checked 

that the trends and specific values of these two key parameters compare with high accuracy 

with our first-principles computed numerical values (see Table 4.1). Thus, we arrive to this 

interesting conclusion: the 1D-SEOS of Eq.[7] is an appropriate analytical function for 

describing stress-strain data. 

 

(a)                                                                     (b)
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Figure 4.1 Calculated strain-stress curves without transverse stress for: (a) 3C-

SiC, (b) 2H-SiC. 

 

Table 4.3 Effective Bond Length (EBL) vs strain at zero-transverse stress in SiC-polymorphs 

ε 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,33 0,35 

[100] (Si-C) 

[Å] 

𝜎 [GPa] 

17,4811 

-0.0006 

18,3550 

17.1351 

19,2291 

35.1621 

20,1032 

52.4546 

20,9772 

67.6626 

21,8512 

79.7698 

22,7253 

88.0570 

23,2497 

90.9083 

22,5497 

90.4528 

[110] (Si-C) 

[Å] 

𝜎 [GPa] 

9,2685 

0.0068 

9,7317 

19.8038 

10,1954 

34.1828 

10,6588 

43.8803 

11,1223 

49.7450 

11,4920 

51.5011 

11,2418 

52.8216 

- - 

 

[111] (Si-C) 

[Å] 

𝜎 [GPa] 

9,4839 

0.0025 

9,9581 

23.3517 

10,4323 

39.2249 

10,9065 

45.0364 

- - - - - 

[21́1́0] (Si-C) 

[Å] 

𝜎 [GPa] 

21,3395 

0.0020 

22,4065 

23.4965 

23,4734 

39.4081 

24,5404 

44.89345 

25,6074 

34.9075 

- - - - 

[1́21́0] (Si-C) 

[Å] 

𝜎 [GPa] 

16,8788 

0.0033 

17,7227 

21.7812 

18,5668 

39.0343 

19,4106 

49.7105 

19,6074 

49.7913 

- - - - 

[0001] (Si-C) 

[Å] 

𝜎 [GPa] 

12,3410 

0.0021 

12,9581 

23.4965 

13,5751 

39.4081 

14,1922 

44.8935 

13,5051 

34.9075 

- - - - 

 

           We have noticed earlier that multi-load conditions may be present in manufacturing 

processes combining thermal effects and epitaxial growth. As a particular situation of these 

conditions, we have studied in a second round of simulations the effects of superimposing 

transverse stress (both compressive and tensile) on the previous tensile directions for the two 

structures. The expected trend is a decreasing of the critical strength as we increase the 

superimposed transverse stress from negative to positive values. In fact, this is the computed 

behavior for the majority of situations we have studied. For example, the critical strength 𝜎c is 

lowered by the transverse stress σt in all the directions in 3C-SiC (except [110]), 2H-SiC 

(except [100]). All these results are displayed in Fig [4.2] and are in complete agreement with 

the computed data in 3C- and 2H-SiC reported by Umeno et al. [43]. In general, the 

unexpected positive slope in the ideal strength-transverse stress curve appears at compressive 
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transverse stress values. In the tensile regime, all the directions and structures show a 

modulated lowering of the ideal strength as the transverse tension increases which is 

compatible with the overall weakening of the compounds as multi-load conditions are 

enhanced or, in Umeno et al. words, to the higher strain energy stored in the material. 

  

        (a)                                                                                       (b) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.2 Calculated critical stress-transverse stress curves for: (a) 3C-SiC, (b) 2H-SiC. 

 

            Interestingly enough, we have observed an equivalent behavior when we analyze the 

computed EBL parameters. In all but the cases where we have detected an exception, the 

calculated effective bond length parameter at the critical strain condition decreases 

monotonically as we superimpose the transverse stress on the corresponding tensile strain 

direction. Thus, we found that the decreasing of the ideal strength value correlates with the 

decreasing in the EBL parameter (Table 4.4). For example, along the [111] direction in 3C-

SiC, EBL continuously decreases from 11.00 Å at σt = -30 GPa to 10.78 Å at σt= +30 GPa. 

The corresponding values at the same transverse stress conditions for the [100] direction are 

24.71 Å and 21.18 Å. Similar trends are found for the EBL parameter along the [11̅0] and 

[001] directions in 2H-SiC (Table 4.4). On the contrary, in those cases where negative 

transverse stresses induce an unexpected behavior, this EBL parameter also shows an 

increasing as the transverse stress increases up to the condition of vanishing transverse stress. 

Thus, along [110] in 3C-SiC and [100] in 2H-SiC, the values of EBL at σt = -30 GPa are, 
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respectively, 10.94 Å and 26.08 Å, increasing up to 11.49 Å and 26.24 Å at σt = 0 GPa, and 

finally decreasing to 10.97 Å and 24.13 Å at σt = +30 GPa. The reason why a reduction in the 

critical strength occurs as compressive transverse is superimposed has been explained by the 

appearance of a thermodynamic competitive phase as the rock-salt structure in 3C-SiC [43]. 

Here, we also see that this reduction in the σc also correlates with the fact that the effective Si-

C bond lengths along the [110] and [100] directions in 3C-SiC and 2H-SiC, respectively, 

show lower values at the critical conditions when the compressed transverse stress is 

increased, thus correlating with the trend followed by the critical strength. 

 

Table 4.4 Nearest neighbor (NN) distance at critical stress 𝜎𝑐  and strain 𝜖𝑐 with transverse 

stress 𝜎𝑡 in SiC-polymorphs. 

transverse stress 

𝜎𝑡[GPa] 

-30 -20 -10 00 10 20 30 

[100] (Si-C) [Å] 

𝜖𝑐 

𝜎𝑐[GPa] 

EBL [Å] 

1.96272 

0.15 

96.62 

24,7133 

2.01172 

0.20 

97.30 

23,4034 

2.06202 

0.30 

95.28 

23,3384 

2.10596 

0.33 

90.91 

23,2494 

2.14464 

0.35 

88.99 

23,1959 

2.17361 

0.30 

66.95 

22,6794 

2.16158 

0.25 

49.79 

21,1812 

[110] (Si-C) [Å] 

𝜖𝑐 

𝜎𝑐[GPa] 

EBL [Å] 

1.95934 

0.15 

24.15 

10,9445 

2.02010 

0.20 

36.99 

11,2954 

2.09804 

0.25 

47.43 

11,3335 

2.13927 

0.24 

52.82 

11,4920 

2.26173 

0.30 

52.75 

11,2153 

2.23878 

0.25 

49.51 

11,1741 

2.20402 

0.20 

43.51 

10,7919 

[111] (Si-C) [Å] 

𝜖𝑐 

𝜎𝑐[GPa] 

EBL [Å] 

1.81346 

0.15 

51.67 

11,0044 

1.83253 

0.20 

49.30 

10,9737 

1.84472 

0.15 

47.08 

10,9414 

2.15407 

0.15 

45.04 

10,9065 

2.68545 

0.15 

43.20 

10,8707 

2.17677 

0.15 

41.43 

10,8294 

2.15407 

0.17 

39.94 

10,7812 

[21́1́0] (Si-C) [Å] 

𝜖𝑐 

𝜎𝑐[GPa] 

EBL [Å] 

- 

0.10 

28.71 

26,0794 

- 

0.15 

41.61 

26,1141 

2.08796 

0.25 

56.16 

26,1507 

2.19351 

0.29 

58.04 

26,2433 

2.12411 

0.20 

52.85 

25,4628 

- 

0.22 

51.74 

25,3520 

- 

0.20 

44.76 

24,1372 

[1́21́0] (Si-C) [Å] 

𝜖𝑐 

𝜎𝑐[GPa] 

EBL [Å] 

- 

0.20 

56.79 

19,97,76 

 

- 

0.20 

55.09 

19,8789 

 

1.89577 

0.20 

52.63 

19,6131 

 

1.93193 

0.20 

49.79 

19,6074 

1.93692 

0.15 

48.69 

17,7492 

- 

0.20 

44.41 

16,1153 

- 

0.20 

42.02 

16,0356 

[0001] (Si-C) [Å] 

𝜖𝑐 

𝜎𝑐[GPa] 

EBL [Å] 

- 

0.15 

51.89 

14,4979 

- 

0.15 

49.40 

14,3639 

1.89549 

0.15 

47.05 

14,2584 

2.24228 

0.15 

44.89 

14,1922 

1.92884 

0.15 

42.94 

14,0992 

- 

0.15 

41.10 

14,0403 

- 

0.15 

38.96 

13,9958 

 

 

4.2.3. Other outcomes of the stress-strain SEOS: energetic and directional Young moduli  

             As stated in subsection 4.1.3, our analytical scheme allows us not only gathering 

information on the critical parameters, but also on the energetic of crystalline materials and on 

the Young moduli along specific tensile directions. From an experimental point of view, 
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stress-strain data can be directly measured for particular directions whereas the corresponding 

energy-strain curves remain only accessible once an equation of state is proposed. Eq.[10] 

displays how, by simple integration of our stress-strain 1D-SEOS, analytical energy-strain 

curves can be derived using data either from experiments or from computer simulations. In 

the previous subsection, we have shown that our calculated (ϵi,σi) data points are well 

described by the proposed 1D-SEOS. Here, the integrated SEOS for all the directions of 

materials studied in this part are represented in Fig [4.3]. The symbols correspond to the 

energy minima at selected strains obtained from our first-principles calculations. The 

calculated parameters associated with the integrated forms are collected in Table 4.5. 

 

The analytical energy curves clearly reflect the good quality of the fittings (see Fig 4.3). Two 

parameters define the shape of each of these curves, ϵsp and Esp. The first one, previously 

discussed in relation to the stress-strain curves (see Table 4.1), identifies the abscissa of the 

inflexion point, where the directional Young modulus vanishes. The ordinate of this point is 

Esp (see Table 4.5) and correlates quite well with the critical/spinodal strength calculated 

along each of the directions explored for the materials under study in this part. The higher the 

strength, the higher the energy required to induce an elastic instability in the material. 

 

As regards the directional Young modulus, we can easily derive a simple expression at zero 

stress 𝑌𝑙(0)involving the three parameters of the stress-strain 1D-SEOS by evaluating Eq. [4] 

at zero stress: 

                                                          𝑌𝑙(0) =
σsp

σsp(1−𝛾)
.                                                    (11) 

This parameter is discussed below. 
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Table 4.5 Energy and Young modulus parameters from the integrated stress-strain SEOS 

fittings 

             Material Direction                         Yl(0)(GPa)                         Esp (kJ/mol) 

 

               3C-SiC [100]                                   396                                      219 

                            [110]                                   407                                      110 

                            [111]                                    478                                         50 

 

              2H-SiC [001]                                    481                                         50 

                          [110]                                    437                                       142 

                          [1̅10]                                    450                                          66 

 

 

 

           In 3C-SiC, the directional Young moduli at zero stress are (in GPa) 396, 407, 478 GPa 

for the [100], [110] and [111] directions, respectively. These results are in concordance with 

the directional Young moduli calculated through the theory of representation surfaces [49]. 

For instance, in the case of the [111] direction 

                               𝑌111 = (𝑆11 −
2

3
(𝑆11 − 𝑆12 −

1

2
𝑆44))

−1

                                         (12) 

 

where  𝑆11, 𝑆12, and 𝑆44 are the compliance constants related to the elastic constants by: 

                𝑆11 =
𝐶11+ 𝐶12

(𝐶11− 𝐶12)(𝐶11+2𝐶12)
 ,     𝑆12 =

− 𝐶12

(𝐶11− 𝐶12)(𝐶11+2𝐶12)
 ,    𝑆44 =

1

𝐶44
.             (13) 

 

According to the data from Table 4.2, and using the above equations, the calculated value for 

Y111 (0) is 489 GPa in good agreement with the parameter obtained from our 1D-SEOS. 

(a)                                                                            

(b)  



138 
 

 

Figure 4.3 Calculated energy-strain curves for: (a) 3C-SiC, (b) 2H-SiC. 

 

                 In this case, the elastic behavior of the cubic SiC polytype is not enterely isotropic 

and 𝑌𝑙(0) slightly increases along the sequence [100] [110] and [111]. Yl (0) provides a 

quantitative measure of the initial slope of the stress-strain curve, thus representing the 

resistance of the material to a tensile distortion along a particular direction at equilibrium. 

Under this perspective, the values of 𝑌𝑙(0) in the [100], [110] and [111] series of 3C-SiC 

inform that the direction [111] offers the highest resistance to a strain stretching at zero stress. 

In 2H-SiC, the values of 𝑌𝑙(0)  point out that all the directions studied present similar 

resistance to distortion. Here, the solid behaves less anisotropically than in the case of the 

cubic polytype, expanding a narrower range of values, although both polytypes display 

similar zero stress Young moduli. 

 

4.3. IonicMaterials (Zinc Oxide ZnO): Results and Discussion 

4.3.1. Bulk Properties 

            This subsection is restricted just to the summary of the equilibrium structural and 

elastic data of the four ZnO phases studied in this Thesis. Computed lattice constants, bulk 

moduli and elastic constants are collected in Table 4.6. Overall, our results are found to be in 

good agreement with reported observed data, along with experimental and other calculated 

values [50,51], showing only slight differences due to the overestimation of the lattice 

constants and underestimation of the elastic constants inherent to the GGA level of 

calculation. 
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Table 4.6 Zero pressure lattice and elastic constants of ZnO-polytypes. All B0 values 

calculated using Voigt elastic constants relationship. 

                                  This work                   Calculated                            Experimental 

 

   B1-ZnO       a(Å)         4.37                      4.63[50],4.53[52]                       4.47[53] 

                    C11(GPa)     224.20                 237.32[51], 226.90[50]                      - 

                   C12(GPa)    129.60                  145.18[51],139.85[50]                       - 

                  C44(GPa)       74.10                    59.04[53], 82.19[51]                        - 

                   B0(GPa)     161.13                  164.91[51], 209.6[54]                202.50[55] 

 

   B2-ZnO      a(Å)          2.71                 2.69[51], 3.29[54], 2.67[56]                - 

                   C11(GPa)    363.70                            433.47[51]                              - 

                   C12(GPa)    49.50                             35.96[51]                                 - 

                   C44(GPa)     37.00                             69.04[51]                                  - 

                   B0(GPa)     154.23                     159.91[51], 205.4[54]                      - 

 

     B3-ZnO     a(Å)          4.67                        4.63[51],4.52[54]                 4.62[57] 

                 C11(GPa)    110.70                 167.36 [51],155.93[50]                       - 

                 C12(GPa)    127.50                  125.30 [51],116.33[50]                       - 

                 C44(GPa)    132.20                  112.88 [51],128.13[38]                       - 

                    B0(GPa)   121.93                   139.32 [1],157.28[56]                       - 

 

   B4-ZnO      a(Å)          3.32                      3.28 [51],3.21[54]                    3.25 [55] 

                      c(Å)          5.34                        5.32[51],5.16[34]                   5.20[59] 

               C11(GPa)      222.10                     226[60],227.00[58]              209.70[61] 

               C12(GPa)        90.40                  87.00[62],108.34[50]              102.00[63] 

               C33(GPa)      238.30                246.00[64], 225.00[65]              211.00[66] 

               C13(GPa)       58.00                   60.95[51],93.00[58]                   90.00[67] 

               C44(GPa)       54.70                   57.49[61], 49.89[51]                   44.50[68] 

                 B0(GPa)    125.60                  129.19[51],164.36[56]                  142.6[55] 
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4.3.2. Ideal strength with and without transverse stress. 

                   This subsection is devoted to the calculation of the strain-stress curves of the four 

ZnO structures considered in this study. First, we collect in Fig 4.4 the results under vanishing 

transverse stress. For B4-ZnO, calculated points are very similar to those reported by Li-Zhi 

Xu, Yue-Lin Liu and Hong-Bo Zhou [69]. 

 

                Fig 4.4-a shows that in B1-ZnO the slopes in the whole strain region are different 

for all directions. However, the maximum stress value strongly depends on the direction of 

the deformation with an ideal strength nearly four times larger along the [111] axis (ϵc = 0.35 

andσc = 57.70 GPa) as that found for [110] (ϵc = 0.23 and σc = 14.34 GPa) and six times along 

the [100] (ϵc = 0.20 and σc = 8.06 GPa). We notice that along [111] all tensile forces are 

equally distributed over the Zn-O bonds. This is in contrast to the tension along [110] and 

[100] directions. For example, in the latter, one of the four O nearest neighbors of a given Zn 

atoms stand along the same [100] direction and the corresponding Zn-O bond suffers a pure 

stretching, whereas the stretching of the other three Zn-O bonds is not so effective and 

involves bond angle modifications upon the tensile strain along this [100] direction.  

 

Fig 4.4-c shows that in B3-ZnO the slopes in the whole strain region are different for all 

directions. However, the maximum stress value strongly depends on the direction of the 

deformation with an ideal strength nearly twice larger along the [100] axis (ϵc= 0.58 and σc = 

55.56 GPa) as that found for [111] (ϵc = 0.25 and σc =29.74 GPa) and four times as that found 

for [110] (ϵc = 0.22 and σc = 12.91 GPa). We notice that along [100] all tensile forces are 

equally distributed over the Zn-O bonds. This is in contrast to the tension along [110] and 

[111] directions. 

 

         The stress-strain curves during uniaxial tension with vanishing transverse stress in B4-

ZnO are shown in Fig 4.4-d. Slopes in the low strain (harmonic) region are not equal whereas 

the maximum stress value strongly depends on the direction of the deformation. The stress-

strain relation in B4-ZnO [001] (ϵc = 0.15 and σc = 20.42 GPa) and B2-ZnO [110] are nearly 

identical. It is so because of the similarity of the lattice planes normal to the stress direction 

(ϵc = 0. 15 and σc = 19.07 GPa). The stress-strain relation in B4-ZnO along [1̅10] shows 

intermediate values (ϵc = 0.20 and σc = 15. GPa).  
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(a)                                                                                 (b)                                                

 

 

 

 

 

 

 

 

 

(b)                                                                                  (d) 

 

 

 

 

 

 

 

 

 

Figure 4.4 Calculated strain-stress curves without transverse stress for: (a) B1-ZnO, (b) B2-

ZnO, (c) B3-ZnO and (d) B4-ZnO. 

 

           We have noticed earlier that multi-load conditions may be present in manufacturing 

processes combining thermal effects and epitaxial growth. As a particular situation of these 

conditions, we have studied in a second round of simulations the effects of superimposing 

transverse stress (both compressive and tensile) on the previous tensile directions for the four 

structures. The expected trend is a decreasing of the critical strength as we increase the 

superimposed transverse stress from negative to positive values. However, this is not the 

computed behavior for the majority of situations we have studied. For example, we can see in 

Fig 4.5 that the critical strength σc is only lowered by the (positive) transverse stress σt in the 

[111] direction in B1-ZnO, is increased by σt for compression and tension in B3-ZnO and B4-

ZnO (except when the [001] direction is considered) and shows the expected decreasing trend 

in the two directions examined in the B2-phase. In general, the unexpected positive slope in 
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the ideal strength-transverse stress curve appears in this ionic compound regardless if the 

compressive transverse stress has positive or negative values. A more detailed exploration of 

the bonding network is needed to explain this variety of results that should be understood as a 

consequence of the directionality of the nearest neighbor ionic bonds and their organization in 

the corresponding structures. Obviously, the overall weakening of the compounds as multi-

load conditions are enhanced, i.e. the higher strain energy stored in the material, is always a 

general principle that is preserved in this compound. 

 

(a)                                                                            (b) 

 

 

 

 

 

 

 

 

        (c)                                                                           (d) 

 

 

 

 

 

 

 

 

Figure 4.5 Calculated critical stress-transverse stress curves for: (a) B1-ZnO, (b) B2-ZnO, (c) 

B3-ZnO, and (d) B4-ZnO. 

. 

 

4.3.3. Other outcomes of the stress-strain SEOS: energetic and directional Young moduli  
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As stated in subsection 4.1.3, our analytical scheme allows us not only gathering information 

on the critical parameters, but also on the energetic of crystalline materials and on the Young 

moduli along specific tensile directions. From an experimental point of view, stress-strain 

data can be directly measured for particular directions whereas the corresponding energy-

strain curves remain only accessible once an equation of state is proposed. Eq. [10] displays 

how, by simple integration of our stress-strain 1D-SEOS, analytical energy-strain curves can 

be derived using data either from experiments or from computer simulations. In the previous 

subsection, we have shown that our calculated (ϵi,σi) data points are well described by the 

proposed 1D-SEOS. Here, the integrated SEOS for all the directions of materials studied in 

this part are represented in Fig 4.6 The  symbols correspond to the energy minima at selected 

strains obtained from our first-principles calculations. The calculated parameters associated 

with the integrated forms are collected in Table 4.7 

 The analytical energy curves clearly reflect the good quality of the fittings (see Fig 4.6. Two 

parameters define the shape of each of these curves, ϵsp and Esp. The first one, previously 

discussed in relation to the stress-strain curves (see Table 4.1), identifies the abscissa of the 

inflexion point, where the directional Young modulus vanishes. The ordinate of this point is 

Esp (see Table 4.7) and correlates quite well with the critical/spinodal strength calculated 

along each of the directions explored for the materials under study in this part. The higher the 

strength, the higher the energy required to induce an elastic instability in the material. 

 As regards the directional Young modulus, we can easily derive a simple expression at zero 

stress 𝑌𝑙(0) involving the three parameters of the stress-strain 1D-SEOS by evaluating Eq.[4] 

at zero stress: 

 

                                                    𝑌𝑙(0) =
σsp

σsp(1−𝛾)
.                                                          (11) 

 

This parameter is discussed below. 
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Table 4.7 Energy and Young modulus parameters from the integrated stress-strain SEOS 

fittings 

   Material direction               Yl(0)(GPa)                                Esp (Ha)  

 

      B1-ZnO [100]                  107.7                                    0.00557 

                    [110]                   167.3                                  0.01149 

                    [111]                   232.9                                   0.05654 

 

     B2-ZnO  [100]                    391.2                                   0.06041 

                    [110]                    382.3                                   0.01060 

                    [111]                        -                                                 -         

 

     B3-ZnO [100]                         -                                                - 

                   [110]                     116.0                                 0.01106 

                   [111]                     219.1                                  0.02830 

 

    B4-ZnO [100]                           -                                            - 

                  [110]                           -                                            - 

                  [1̅10]                     117.7                                   0.01114 

 

    

(a)                                                                            (b) 

 

 

 

 

 

 

 

(c)                                                                           (d) 
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Figure 4.6.Calculated energy-strain curves for: (a) B1-ZnO, (b) B2-ZnO, (c) B3-ZnO, (d)  B4-

ZnO. 

 

4.4. Layered Materials: Graphite and 2H-MoS2. Results and Discussions 

4.4.1. Bulk Properties 

              This subsection is restricted just to the summary of the equilibrium structural and 

elastic data of the four structures. Computed lattice constants, bulk moduli and elastic 

constants are collected in Table 4.8. Along with experimental and other calculated values. 

Overall, our results are found to be in good agreement with reported observed data, showing 

only slight differences due to the overestimation of the lattice constants and underestimation 

of the elastic constants inherent to the GGA level of calculations. The introduction of the 

DFT-D2 correction, which is intended to take into account the vdW inter-layer interactions, 

leads our results for graphite and molybdenum disulfide to be in good agreement with the 

experiments and improves in general other previous local density approximation (LDA) or 

(GGA) results. In addition, the controversial C12 parameter in 2H-MoS2, the higher 

discrepancy (less than 20%) is found in our calculation of C11 in graphite (see Table 4.8). We 

attribute this deviation to the above tendency of GGA results. Regarding C12 in2H-MoS2, the 

situation is different. The discrepancy between the negative value reported in the experimental 

paper of Feldman [70] and the positive one obtained when the D2-Grimmecorrection 

isincluded in the calculations was discussed by Peelaers and Van de Walle [71]. We only 

notice here that C12 was not directly measured but derived by Feldman using linear 

compressibilities reported in other works. Further details can be found in [71]. Overall, our 

calculated equilibrium properties provide the necessary reliable basis to undertake tensile 

stress simulations.  
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Table 4.8 Zero pressure lattice and elastic constants of graphite and 2H-MoS2. All B0 values 

calculated using Voigt elastic constants relationship. 

 

                                        This work            Calculated                       Experimental 

   Graphite     a(Å)           2.521                     2.451 [72]                          2.464 [73] 

                      c(Å)          7.067                      6.582 [74]                          6.712 [73] 

                   C11(GPa)       892                        1118 [75]                      1109 ±16 [73] 

                  C12 (GPa)      163                           235 [75]                        139 ± 36 [73] 

                  C33 (GPa)        31                             29 [75]                         38.7 ± 7 [73] 

                  C13 (GPa)         5                              8.5 [75]                             0 ± 3 [73] 

                  C44 (GPa)        6                              -2.8 [75]                             5 ±3 [73] 

                   B0 (GPa)       240                            307                                       281 

 

2H-MoS2        a(Å)         3.19                           3.16 [76]                             3.163 [77] 

                       c(Å)         12.56                        12.296 [76]                         12.341 [77] 

                   C11 (GPa)      220                             218 [76]                                238 [70] 

                   C12 (GPa)        45                              38 [76]                                 -54 [70] 

                   C33 (GPa)        40                              35 [76]                                   52 [70] 

                   C13 (GPa)        16                              17 [76]                                   23 [70] 

                   C44 (GPa)        26                              15 [76]                                  19 [70] 

                     B0 (GPa)        75                               68                                         57 

 

 

                                        

 4.4.2. Ideal strength with and without transverse stress. 

               This subsection is devoted to the calculation of the strain-stress curves of the two 

structures considered in this part. First, we collect in Fig 4.7 the results under vanishing 

transverse stress. For graphite, our in-plane stress-strain curves show maxima at similar strain 

values to those reported by Liu al. [72] for graphene, although we compute critical strengths 

along these directions around 25 GPa lower than in their work. This is due in part to 

differences between LDA (Liu et al.) and GGA (ours) levels of calculation, and on the other 

hand, to differences in the system, single sheet (graphene) and the bulk (graphite). To the best 

of our knowledge, the corresponding curve for the c-direction has not been reported so far. 
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Analogously, we have not found previous strain- stress curves along this direction for bulk 

2H-MoS2, whereas for the in-plane directions the previous reported studies refer to single- or 

few-layers 2H-MoS2 [78,79]. These results indicated a noticeable decreasing of σc as the size 

of the slab increases, which is also the expected trend according to our calculations. 

                 It is usual to recall to the chemical bonding network to interpret at an atomic level 

differences in the strain-stress curves between compounds and/or directions. Without being 

strictly quantitative while keeping the basic chemical meaning, a simple and practical 

indicator able to account for the majority of these differences is proposed as follows. Each 

chemical bond in the unit cell is described by a vector connecting its two bound nearest-

neighbor atoms. The projection of this vector along the corresponding tensile direction is 

evaluated and the sum calculated over all the bonds in the unit cell is defined as the total 

effective bond length (EBL) associated to that direction. The two main structural effects 

induced in the chemical bonds by the tensile strain (changes in bonding lengths and angles) 

are essentially captured in this parameter. EBL values exhibit the expected trend always 

increasing as the strain increases up to the stability limit.  

 

              In Fig 4.7-a,b and Fig 4.7-c,d, the responses of graphite and 2H-MoS2 to tensile stress 

along the [110], [1̅10], and [001] directions are displayed. Here, the laminar nature of these 

two compounds is clearly revealed by very low ideal strength values along the c-axis (ϵc = 

0.13 and σc = 0.063 GPa in graphite and ϵc = 0.05 and σc = 0.069 GPa in 2H-MoS2) which is in 

concordance with the weak Van der Waals nature of the inter-layer interaction. At low strains, 

the in-plane graphite strains reveal an isotropic 2D- elastic behavior in good agreement with 

previous DFT calculations [80]. At large in-plane strains, the lattice layers start to behave 

anisotropically and the critical stress along the next-nearest-neighbor [100] direction (ϵc = 

0.26 and σc = 86 GPa in graphite and ϵc = 0.27 and σc = 22 GPa in 2H-MoS2) becomes greater 

than along the nearest-neighbor [120] direction (ϵc=0.11 and σc=78 GPa in graphite and 

ϵc=0.20 and σc=14 GPa in 2H-MoS2). Expected differences between stronger C-C than Mo-S 

intralayer bonds are also clearly manifested when comparing these data. 

 

               For all directions and structures, we now analyze new results coming from the 

proposed analytical 1D-SEOS. All the curves in the four panels of Fig 4.7 were obtained from 

the 1D-SEOS fittings to the calculated strain-stress data. The performance of the 1D-SEOS is 

apparent and allows us to derive with confidence critical stress and critical strain values from 

the corresponding fitting parameters ϵsp and ϵsp, respectively. We have checked that the trends 
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and specific values of these two key parameters compare with high accuracy with our first-

principles computed numerical values (see Table 4.1). Thus, we arrive to this interesting 

conclusion: the 1D-SEOS of Eq.[7] is an appropriate analytical function for describing stress-

strain data. 

 

(a)                                                                               (b) 

 

 

 

 

 

 

 

 

 

(b) 

 

(c)                                                                                     (d) 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Calculated strain-stress curves without transverse stress for Graphite and for2H-

MoS2  (a),(c) in plane and (b),(d) normal plane. 
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                We have noticed earlier that multi-load conditions may be present in manufacturing 

processes combining thermal effects and epitaxial growth. As a particular situation of these 

conditions, we have studied in a second round of simulations the effects of superimposing 

transverse stress (both compressive and tensile) on the previous tensile directions for the four 

structures. We detected convergence problems in some simulations that have hindered the 

calculations in the compressive  (negative) transverse stress range in 2H-MoS2, and also along 

the [100] direction in the positive range of this compound. The expected trend is a decreasing 

of the critical strength as we increase the superimposed transverse stress from negative to 

positive values. In fact, this is the computed behavior for the majority of situations we have 

studied. For example, the critical strength σc is lowered by the transverse stress σt in all the 

directions in graphite, and 2H-MoS2. In this two laminar compounds, we obtain just one value 

at the most negative transverse stress breaking the decreasing trend along the [1̅10] direction. 

All these results are displayed in Fig 4.8. In general, the unexpected positive slope in the ideal 

strength-transverse stress curve appears at compressive transverse stress values. In the tensile 

regime, all the directions and structures show a modulated lowering of the ideal strength as 

the transverse tension increases which is compatible with the overall weakening of the 

compounds as multi-load conditions are enhanced or, in other words, to the higher strain 

energy stored in the material. However, we would like to notice that the opposite behavior 

was also found by Sestak et al. [15] and Cerný et al. [18]. The increasing of the critical 

strength under sumper imposed positive lateral tensile stress obtained in their calculations 

might be due to the different nature of the chemical bonding network. These authors deal with 

metallic materials where directional bonds are not identified. 
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(a)                                                                                 (b) 

 

 

 

 

 

 

 

 

 

 

(c)                                                                                         (d) 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Calculated critical stress-transverse stress curves for Graphite and 2H-MoS2  

(a),(c) in plane and (b),(d) normal plane. 

 

4.4.3 Other outcomes of the stress-strain SEOS: energetic and directional Young moduli  

           As stated in subsection 4.1.3, our analytical scheme allows us not only gathering 

information on the critical parameters, but also on the energetic of crystalline materials and on 

the Young moduli along specific tensile directions. From an experimental point of view, 

stress-strain data can be directly measured for particular directions whereas the corresponding 

energy-strain curves remain only accessible once an equation of state is proposed. Eq.[10] 

displays how, by simple integration of our stress-strain 1D-SEOS, analytical energy-strain 

curves can be derived using data either from experiments or from computer simulations. In 
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the previous subsection, we have shown that our calculated (ϵi,σi) data points are well 

described by the proposed 1D-SEOS. Here, the integrated SEOS for all the directions of 

materials studied in this part are represented in Fig 4.9. The symbols correspond to the energy 

minima at selected strains obtained from our first-principles calculations. The calculated 

parameters associated with the integrated forms are collected in Table 4.9. 

 

              The analytical energy curves clearly reflect the good quality of the fittings (see Fig 

4.9. Two parameters define the shape of each of these curves, ϵsp and Esp. The first one, 

previously discussed in relation to the stress-strain curves (see Table 4.1), identifies the 

abscissa of the inflexion point, where the directional Young modulus vanishes. The ordinate 

of this point is Esp (see Table 9.) and correlates quite well with the critical/spinodal strength 

calculated along each of the directions explored for the materials under study in this part. The 

higher the strength, the higher the energy required to induce an elastic instability in the 

material. 

As regards the directional Young modulus, we can easily derive a simple expression at zero 

stress 𝑌𝑙(0)  involving the three parameters of the stress-strain 1D-SEOS by evaluating 

Eq.[4]at zero stress: 

                                                       𝑌𝑙(0) =
σsp

σsp(1−𝛾)
                                                        (11) 

This parameter is discussed below. 

 

 

(a)                                                                                         (b)
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Figure 4.9 Calculated energy-strain curves for: (a) Graphite, and (b) 2H-MoS2. 

 

Table 4.9 Energy and Young modulus parameters from the integrated stress-strain SEOS 

fittings 

                                                              

Material direction Yl(0) (GPa) Esp (kJ/mol) 

Graphite [001] 

               [110] 

              [1̅10]                                        

0.99< 1 

746 

746 

- 

201 

113 

2H-MoS2 [001] 

                 [110]    

                [1̅10]                                                                            

2.41< 1 

150 

140 

- 

69 

153 

                                              

                                                                                                                                                    

               Let us finally conclude by analyzing these zero stress directional Young moduli in 

graphite and 2H-MoS2. Layered materials constitute a severe test for our model since weak 

and covalent interactions are simultaneously present. In both compounds, the van der Waals 

nature of the inter-layer interactions is revealed through the values of the directional Young 

modulus provided by the spinodal parameters. Y001(0) values (in GPa) are as low as 0.99 and 

2.40 for graphite and 2H-MoS2, respectively, in contrast with the values along the [100] and 

[120] directions which are, respectively, 748 and 728 for graphite, and 150 and 140 for 2H-

MoS2. The latter values can be compared with the intra-layer Young modulus reported for 

graphite and MoS2 by other authors. For instance, for graphite goes from 700 to 1100 GPa 

([81] and references therein), whereas for 2H-MoS2 the values range between 130 and 220 

GPa [82–84] showing a good agreement with the results obtained in this work. At this point, it 

must also be emphasized that our Young modulus values reflect the expected different 

intralayer bond strengths between the C–C and Mo–S bonds, as we previously detected in the 

analysis of the1D-SEOS parameters (see Section 4.2.2). 
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Conclusions  

 

The ideal strength of 3C- and 2H-SiC, ZnO-polymorphs, graphite, and 2H-MoS2were 

evaluated by means of first principles quantum-mechanical methodologies based on the DFT 

approximation. Both, vanishing and superimposed transverse stress over uniaxial tensile 

strains were considered in order to evaluate the ideal strength of the all crystalline structures. 

The ideal strength is found to depend on the particular crystallographic direction revealing the 

expected stronger mechanical anisotropy in the layered and ionic compounds. We introduced 

the DFT-2D correction which take into account the vdW interactions in graphite and 

molybdenum disulfide layers. After an isotropic behavior at the low strain regime, we observe 

a different behavior along the two in-plane directions, being the ideal tensile strength smaller 

in the nearest-neighbor than in the next-nearest-neighbor direction. In these crystals, the 

lowest value of σc is obtained in the c-direction as expected given the weak inter-layer vdW 

interactions. The ideal tensile strength is generally decreased by the transverse tension. 

Reduction in the ideal strength by large transverse compression occurs in some structures and 

orientations in concordance with an increasing on the effective bond lengths in those 

conditions. The critical stress in all directions at all transverses loads were related and 

explained in terms of Effective Bond Lengths for the SiC-polymorphs compound. 

 

We present a new 1D-SEOS analytical function that was successfully applied to the computed 

strain-stress data points, and that can be also used to describe results from tensile stress 

experiments. The spinodal strain ϵsp along with the corresponding spinodal stress σsp fitting 

parameters have been calculated for the two covalent (SiC), the two layered (MoS2 and 

Graphite)and the four ionic (ZnO) compounds. These parameters are identified with the 

critical strength and strain values provided they appear at the instability elastic limit. In 

addition, the integrated energy-strain SEOS reveals to be an interesting equation enclosing 

information on the energy stored in the material along tensile processes and providing data on 

the required energy to reach the instability elastic limit. 
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Outlook 

Several extensions can be foreseen as regards the current study. We enumerate here the most 

straightforward directions that can be considered for future work. 

 Ideal shear strength evaluation in some planes along specific directions.  

 n-Layer study for graphite and molybdenum disulfide.  

 Comparison of hydrostatic and non-hydrostatic conditions effects. 

 Extension of the 1D-SEOS analytical function to the take into account transverse stress 

effects. 

 Simulation and computation of the impact of defects on the mechanical properties of 

these prototypical materials. 
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Conclusiones 

 

La resistencia ideal de los politipos 3C y 2H del SiC, distintos polimorfos de ZnO, grafito y 

2H-MoS2 se evaluó mediante metodologías de primeros principios de la mecánica cuántica 

basadas en la aproximación DFT. Se consideró tanto la tensión transversal superpuesta sobre 

las tensiones de tracción uniaxiales como su ausencia para evaluar la resistencia ideal de todas 

las estructuras cristalinas. Se encuentra que la resistencia ideal depende de la dirección 

cristalográfica particular, hecho que revela una anisotropía mecánica más fuerte en los 

compuestos laminares e iónicos. Introdujimos la corrección DFT-2D que tiene en cuenta las 

interacciones vdW en capas de grafito y disulfuro de molibdeno. Después de un 

comportamiento isotrópico en el régimen de baja tensión, observamos un comportamiento 

diferente a lo largo de las dos direcciones en el plano, siendo la resistencia a la tracción ideal 

más pequeña en la dirección de primeros vecinos que en la dirección de segundos vecinos. En 

estos cristales, el valor más bajo de σc se obtiene en la dirección c como se esperaba dada la 

débil interacción vdW entre capas. La resistencia a la tracción ideal generalmente disminuye 

por la tensión transversal. La reducción de la resistencia ideal mediante una gran compresión 

transversal se produce en algunas estructuras y orientaciones en concordancia con un aumento 

de las longitudes de enlace efectivas en esas condiciones. El esfuerzo crítico en todas las 

direcciones y en todas las cargas transversales se relacionó y explicó en términos de 

longitudes de enlace efectivas para los polimorfos del el compuesto SiC. 

 

Presentamos una nueva función analítica 1D-SEOS que se aplicó con éxito a los puntos 

tensión-esfuerzo calculados, y que también se puede usar para describir los resultados de los 

experimentos de tensión. La deformación espinodal ϵsp junto con los parámetros de ajuste de 

la tensión spinodal correspondiente, σsp, se han calculado para los dos politipos covalentes 

(SiC), los dos compuestos laminares (MoS2 y Graphite) y los cuatro polimorfos iónicos 

(ZnO). Estos parámetros se identifican con los valores críticos de resistencia y deformación 

siempre que aparezcan en el límite elástico de inestabilidad. Además, la SEOS integrada de  

revela ser una ecuación interesante que incluye información sobre la energía almacenada en el 

material a lo largo de los procesos de tracción y proporciona datos sobre la energía requerida 

para alcanzar el límite elástico de inestabilidad. 
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Perspectivas  

 

Se pueden prever varias extensiones con respecto al estudio actual. Enumeramos aquí las 

líneas de investigación más inmediatas que se pueden considerar para trabajos futuros. 

 

 Evaluación de la resistencia ideal en algunos planos a lo largo de direcciones 

específicas. 

 Estudio de sistemas de n-capas para grafito y disulfuro de molibdeno. 

 Comparación de los efectos de las condiciones hidrostáticas y no hidrostáticas. 

 Extensión de la función analítica 1D-SEOS para tener en cuenta los efectos del estrés 

transversal. 

 Simulación y cálculo del impacto de los defectos en las propiedades mecánicas de 

estos materiales prototípicos. 
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Abstract: Understanding the stability limit of crystalline materials under variable tensile stress
conditions is of capital interest for technological applications. In this study, we present results from
first-principles density functional theory calculations that quantitatively account for the response
of selected covalent and layered materials to general stress conditions. In particular, we have
evaluated the ideal strength along the main crystallographic directions of 3C and 2H polytypes of
SiC, hexagonal ABA stacking of graphite and 2H-MoS2. Transverse superimposed stress on the
tensile stress was taken into account in order to evaluate how the critical strength is affected by these
multi-load conditions. In general, increasing transverse stress from negative to positive values leads
to the expected decreasing of the critical strength. Few exceptions found in the compressive stress
region correlate with the trends in the density of bonds along the directions with the unexpected
behavior. In addition, we propose a modified spinodal equation of state able to accurately describe
the calculated stress–strain curves. This analytical function is of general use and can also be applied
to experimental data anticipating critical strengths and strain values, and for providing information
on the energy stored in tensile stress processes.

Keywords: ideal strength; quantum-mechanical calculations; SiC; graphite; molybdenum disulfide;
spinodal equation of state

1. Introduction

A clear understanding of the cohesive and mechanical properties of technological materials
is of capital importance especially when applications are demanded in environments with hostile
thermal, stress, and chemical conditions. Since the nature of the crystalline bonding networks is
ultimately responsible for the response of the compounds to these external conditions, it is rewarding
and necessary to investigate how macroscopic properties correlate with chemical interactions at an
atomic level. Covalent and layered solids constitute two crystal families currently attracting interest in
a variety of areas such as electronics and solar cell industries [1–3]. These compounds provide a good
target to examine how changes in strong and weak interactions affect the observed elastic stability of
materials. To this end, computer simulations constitute a practical research route to microscopically
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analyze strained structures of solids since geometries optimized by minimizing the crystal energy
can be accurately obtained from first-principles electronic structure calculations under different stress
conditions (see for example, [4]).

Within the above two families of compounds, silicon carbide (SiC), graphite and molybdenum
disulfide (MoS2) are pertinent examples because, besides their genuine bonding networks, they are
materials with a variety of applications in several technological sectors, such as new semiconductor
devices, field effect transistors [1,2,5–8], lubricants [9,10], and components of solar cell panels [3]. In the
manufacturing processes of these materials, mechanical failure may occur as a result of the stresses
induced during the heating cycles to which the compounds are subjected. In addition, the simultaneous
existence of covalent and van der Waals (vdW) interactions leads to preferential bi-dimensional and
three-dimensional atomic arrangements in their crystalline structures that result in a high anisotropic
response of these materials under variable stress conditions which is worth exploring.

The challenge consists in the accurate calculation of the limiting tension that these materials can
support in particular directions. Considering perfect non-defective crystals, this maximum tension is
known as the ideal or critical strength (σc) of the material for that direction. Both experimentally and
theoretically, the evaluation of strain-stress curves constitutes the usual strategy to access this quantity,
since after this critical point a catastrophic scenario emerges in the form of a crystal fracture or a phase
transition. It then seems required to understand how the atomic level interactions correlate with the
mechanism of failure in these environmental conditions and, if possible, anticipate the onset of the
catastrophic scenario.

A number of theoretical studies using first-principles calculations, mainly employing density
functional theory (DFT) [11,12], have permitted a quantitative evaluation of the critical strength of
various materials (see [13–15] and references therein) showing that the effect of multi-axial stress
obviously depends on the atomic species involved [16–18]. However, to the best of our knowledge,
none of these studies have addressed the description of the observed or calculated stress–strain data by
means of analytical functions as normally happens in high-pressure and related fields. Such equations
of state would open the possibility of anticipating critical values for the strength and strain of materials
without reaching the instability condition. In this regard, it is pertinent to recall the spinodal equation
of state (SEOS) [19]. This analytical function was designed to describe the high-pressure behavior of
condensed matter using as a reference state the onset of elastic instability. It has been successfully
applied not only to the description of experimental and theoretical pressure-volume data, but also to
the pressure evolution of one dimensional unit cell parameters [20]. Along with this fact, the SEOS
is particularly well suited for the description of both experimental and theoretical stress–strain data
derived from variable stress tensile conditions since, in the limit, these conditions precisely lead to the
elastic instability of the material, i.e., the reference state for this analytical equation of state (EOS) .

In this study, we performed DFT calculations to obtain the critical strength of 3C and 2H
polytypes of SiC, graphite and 2H-MoS2 along their main crystallographic directions, with and
without superimposed transverse stress conditions. The results are analyzed in terms of the density
of chemical bonds and atomic interactions in the investigated directions of these materials. We are
particularly interested in general analytical functions able to represent the behavior of different types
of compounds under these tensile conditions and to reproduce the critical parameters. To this end,
we propose a new SEOS form that uses the critical strain as the reference state, and that can be easily
used to fit both the experimental and calculated stress–strain data.

Our paper is divided in three more sections. In the next section, we present the computational
details of the electronic structure calculations and the algebra related with the new EOS. Section 3
contains the results and the discussion and is divided into three subsections, devoted, respectively,
to the equilibrium properties of the four compounds, the stress–strain calculated curves, and the
energetics and Young moduli derived from the proposed SEOS. The paper ends with a summary of
our main findings.
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2. Computational Details

2.1. Electronic Structure Calculations

First-principles electronic energy calculations and geometry optimizations under the Kohn–Sham
DFT framework of 3C and 2H polytype structures of SiC, ABA stacking of graphite and hexagonal
2H-MoS2 are carried out with the ABINIT code [21,22] using the Perdew–Burke–Ernzerhof (PBE)
exchange-correlation functional [23]. In order to take into account van der Waals forces, the correction
(DFT-D2 ) to the exchange-correlation term, as proposed by Grimme [24], is used for graphite and
MoS2. Although this pairwise approach does not capture many-body effects inherent to van der Waals
interactions (see for example [25–27]), it has been proven to be accurate enough to determine optimized
geometries involving the length scale (Å) of the tensile phenomena explored in this work. The so-called
FHI atomic plane wave pseudopotentials [28] are adopted, while cut off energies and Monkhorst–Pack
grids [29] are set to 1000 eV and 6× 6× 6 and 6× 6× 4 for 3C-SiC and 2H-SiC respectively, 1200 eV and
6 × 6 × 3 for graphite, and 400 eV and 6 × 6 × 2 for 2H-MoS2. Atomic positions were optimized until
the total energy converged within 0.1 meV. At the same time, all the strain components (except in the
applied loading direction) were optimized so that the corresponding stress components turned out to
be within 100 MPa from a predetermined value. The Broyden–Fletcher–Goldfarb–Shanno minimization
scheme (BFGS) [22] was used. In this way, tensile-strain curves under controlled normal stress were
obtained. Ideal strength (critical strength from now on) was determined as the maximum value of
tensile stress before the lattice loses stability and the forces diverge. Multi-axial stress calculations have
been performed superimposing a transverse stress to the chosen stress direction. Atomic positions and
movements through the different paths are analyzed using the visualization program for structural
models (VESTA code) [30].

For the cubic 3C-SiC polytype, we calculate how the stress increases along the [100], [110] and
[111] symmetry directions. For the hexagonal 2H-SiC polytype, and graphite and 2H-MoS2 layered
crystals, calculations were performed along the inter-plane direction ([001]) perpendicular to the layers,
and two in-plane directions, one containing nearest neighbors ([120], so-called zigzag direction) and
the other connecting next nearest neighbors ([100], so-called armchair direction).

The stress tensor is calculated in ABINIT as the derivative of the total energy with respect to the
strain tensor. The strain tensor, ε, can be calculated from the relation between the strain-free lattice
vector of a given atom µ, ~rµ, and its strained lattice vector, ~r′µ, as follows [31]:

r′αµ = rα
µ +

3

∑
β=1

εαβrβ
µ, (1)

where the α and β symbols denote the Cartesian components.
In the calculation of the second-order elastic constants in these cubic and hexagonal lattices,

we follow an energy–strain scheme (see [32,33]). The lattice was first relaxed to achieve a zero stress
state and then strains were applied by multiplying the lattice vectors by the strain matrix. For a lattice
initially under no stress, and using Voigt notation, the energy of the strained lattice can be expressed
around the equilibrium position as:

E = E0 +
V0

2 ∑
i,j

Cijεiεj, (2)

where E0 and V0 are, respectively, the energy and the volume of the unstrained lattice. There are three
independent elastic constants for the cubic lattice (C11, C12, C44) and five independent elastic constants
(C11, C12, C33, C13, C44) for the hexagonal one, thus three and five sets of finite strains were applied
respectively. For each case, eleven equally-spaced strain values were applied between −0.05 and 0.05.
The elastic constants were obtained from fitting a quadratic equation to the energy–strain calculated
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data points. The bulk modulus B0 for each structure was calculated using its relationship with the
elastic constants.

2.2. Spinodal-Like Stress–Strain Equation of State

From a thermodynamic point of view, the elastic stability limit of a solid at athermal conditions is
defined by the point where the second derivative of the internal energy with respect to the volume
becomes zero. At the corresponding pressure, also named as the spinodal pressure (psp), the bulk
modulus (B) of the substance tends to zero, and therefore any restoring force given by the chemical
bonds is overcome, leading to a crystal rupture or a phase transition [34].

The spinodal locus has been considered as an excellent reference to describe the thermodynamic
behavior of solids under high pressure conditions [19,35]. Polymers, metals, covalent and ionic crystals
have been analyzed showing that their p-V data is accurately and universally represented through
the spinodal constrain. This follows from the fact that along a given isotherm, the isothermal bulk
modulus depends on the pressure through the following universal relation [36,37]:

B = B?(p− psp)
β, (3)

where B? and β are, respectively, the amplitude and the pseudocritical exponent that characterize the
pressure behavior of the isothermal bulk modulus.

The spinodal equation of state has not been used only in its volumetric form. For instance,
Francisco et al. [20] studied the evolution under isotropic compression of the lattice parameters
of rutile TiO2, showing that a one dimensional (1D) spinodal equation of state (1D-SEOS) can
reproduce accurately their pressure dependence. To that, the authors define a linear bulk modulus,
or equivalently a directional Young modulus (YI, I specifies the direction), and applied the universal
relation of Equation (3). Considering both the physical significance and the directional behaviour of
this spinodal-like equation of state, in this article we introduce a 1D-SEOS to analytically describe the
stress–strain curves associated with tensile stress phenomena. Indeed, under directional stretching,
the critical strength attained along the stress–strain curve corresponds to the spinodal stress limit,
σsp. The later parameter accounts for the maximum engineering stress at which the solid breaks, and
therefore, represents the elastic limit of the material. Furthermore, at this spinodal point the directional
Young modulus YI has a value of zero, pointing out that there is no material resistance to a phase
transition or rupture. Notice that these two parameters (σsp and YI) are also the one-dimensional
analogs of the spinodal pressure and the bulk modulus. Consequently, from this perspective,
the spinodal constrain is clearly fulfilled. Accordingly, the stress dependence of YI can be accurately
described with an amplitude factor Y?

I and a pseudocritical exponent γ following an equivalent power
law form as Equation (3), and taking into account the engeneering convention of signs (σ is positive
for tensile and negative for compressive stress):

YI = Y?
I (σsp − σ)γ. (4)

Under these premises, an analytical stress–strain EOS can be derived. As the Young modulus
is thermodynamically defined as the derivative of the stress with respect to the strain, the simple
integration of Equation (4) leads to the following expression for a directional tensile curve:

σ = σsp − {Y?
I (1− γ)(εsp − ε)}1/(1−γ). (5)

Equation (5) provides an analytical relationship between the stress and the strain along a
particular direction of a crystalline solid involving four characteristic parameters. However, it must be
emphasized that only three are independent since the spinodal strength, the spinodal strain and the
amplitude factor are related realizing that no strain is present at σ = 0:
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Y?
I (1− γ) =

σ
(1−γ)
sp

εsp
. (6)

Using this expression in Equation (5), we arrive at our final stress–strain 1D-SEOS:

σ = σsp

(
1−

(
εsp − ε

εsp

) 1
1−γ

)
. (7)

An interesting feature of the proposed stress–strain SEOS is that it can be also expressed
analytically in its energy form. In fact, considering the isotherm at 0 K and neglecting zero point
vibrational contributions, the stress is related to the internal energy E and the zero-pressure volume V0

by means of [38]:

σ =
1

V0

dE
dε

. (8)

Consequently, the integrated energy–strain SEOS is:

Esp − E = V0σsp(εsp − ε)−V0
(1− γ)

(2− γ)

σsp

εsp

1
1−γ

(εsp − ε)
2−γ
1−γ , (9)

where Esp is the internal energy of the solid at the spinodal strain, or equivalently the spinodal
energy. This quantity must be understood as the energy needed to separate the crystallographic
planes perpendicular to the stress–strain direction, and therefore to overcome the interatomic forces.
Moreover, the spinodal energy can be expressed in terms of the spinodal stress and spinodal strain
once we set to zero, the internal energy at zero strain:

Esp = V0εsp

(
σsp −

1− γ

2− γ

)
. (10)

An important feature of our current spinodal stress–strain EOS is that the spinodal energy gives
us the opportunity to connect the mechanical parameters along a given tensile direction with the
cohesive interatomic interactions.

Some words of caution on the notation should be given. First, σc and σsp both represent the
critical or ideal strength of the material along a given direction. The first symbol is obtained from
(εi,σi) calculated or experimental data, whereas the second one comes from our 1D-SEOS fittings as
we discuss later. The same applies to εc and εsp. Second, in our static simulations (zero temperature
and zero point energy contributions neglected), the internal energy of the system E is reduced to
the electronic energy obtained in our DFT calculations. Finally, the symbol E is often used in other
works to design the Young modulus. To avoid confussion, here we have chosen YI for the directional
Young modulus.

2.3. Spinodal Equation of State Fittings

The versatility of the proposed 1D-SEOS allows us to fit the Young modulus-stress (Equation (4)),
stress–strain (Equation (7)), and energy–strain (Equation (10)) data. Since the spinodal hypothesis
is based on the assumption that the universal relationship given in expression Equation (3) can
accurately describe the stress dependence of the directional Young modulus, it becomes first necessary
to examine if the proposed power law can fit the calculated data, in a reliable manner. To minimize
numerical errors induced by the second strain derivative of the energy involved in the YI − σ curves,
a linear interpolation of the computed electronic energy has been performed. In all the cases, adjusted
R-squares for the YI-σ curves lie in the range between 0.97 and 0.99 and residuals are equally distributed
between negative and positive values with a percentage of deviation lower than 7%. In order to test
the reliability of our proposed 1D-SEOS, the pseudocritical exponent and the critical strength and
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critical strain have been used as fitting parameters to analytically construct the stress–strain curves
and energy–strain curves for all the directions and materials studied in this work according to the
expressions derived in Section 2.2. Successfully, we obtain that the differences between the analytical
curves and the calculated data are always below 1%. A summary of the fitting parameters are presented
in Table 1.

Table 1. One dimensional (1D) spinodal equation of state (1D-SEOS) parameters from the fittings to
our computed stress–strain data. Units of σsp are GPa.

Material Direction γ εsp σsp

3C-SiC
[100] 0.29 0.35 90.5
[110] 0.49 0.30 52.3
[111] 0.36 0.15 45.1

2H-SiC
[001] 0.36 0.15 44.9
[100] 0.46 0.29 58.0
[120] 0.34 0.17 50.7

Graphite
[001] 0.35 0.99 0.06
[100] 0.53 0.26 85.8
[120] 0.37 0.11 78.3

2H-MoS2

[001] 0.39 0.05 0.07
[100] 0.38 0.27 21.4
[120] 0.46 0.20 14.2

As we can see in Table 1, the γ parameter lies inside the 0.41 ± 0.12 interval, depending on
the crystal and the direction considered. These γ values are much lower than the universal β value
of 0.85 assumed by Baonza et al. for the volumetric compression of solids [19]. Such a difference
is attributed to the fact that we are in the stretching region in this case . Indeed, Brosh et al. [39]
studied the dependence of the pseudocritical exponent as a function of the reduced volume both in the
compressive and expansive regimes. These authors conclude that while the universal pseudocritical
exponent of 0.85 accurately describes the solid under high and moderate pressure, the exponent goes
down to the value of 0.5 in the case of the negative pressure regime, which is within the range of the
results obtained in our spinodal stress–strain equation of state.

3. 3C-SiC, 2H-SiC, Graphite and 2H-MoS2: Results and Discussion

3.1. Bulk Properties

This subsection is restricted just to the summary of the equilibrium structural and elastic data
of the four structures. Computed lattice constants, bulk moduli and elastic constants are collected in
Table 2 along with experimental and other calculated values. Overall, our results are found to be in good
agreement with the reported observed data, showing only slight differences due to the overestimation
of the lattice constants and underestimation of the elastic constants inherent to the generalized gradient
approximation (GGA) level of calculation. The introduction of the DFT-D2 correction, which is intended
to take into account the vdW inter-layer interactions, leads our results for graphite and molybdenum
disulfide to be in good agreement with the experiments and improves in general other previous
local density approximation (LDA) or GGA results. In addition, the controversial C12 parameter
in 2H-MoS2, the higher discrepancy (less than 20%) is found in our calculation of C11 in graphite
(see Table 2). We attribute this deviation to the above tendency of GGA results. Regarding C12 in
2H-MoS2, the situation is different. The discrepancy between the negative value reported in the
experimental paper of Feldman [40] and the positive one obtained when the D2 Grimme correction is
included in the calculations was discussed by Peelaers and Van de Walle [10]. We only notice here that
C12 was not directly measured but derived by Feldman using linear compressibilities reported in other



Nanomaterials 2019, 9, 1483 7 of 16

works. Further details can be found in [10]. Overall, our calculated equilibrium properties provide the
necessary reliable basis to undertake tensile stress simulations.

Table 2. Zero pressure lattice and elastic constants of 3C- and 2H-SiC polytypes, graphite and 2H-MoS2.
All B0 values calculated using Voigt elastic constants relationship.

This Work Calculated Experimental

3C-SiC

a(Å) 4.39 4.34 [41], 4.38 [42] 4.34 [43]
C11(GPa) 341 390 [41], 385 [42] 352 [44]
C12(GPa) 130 134 [41], 128 [42] 140 [44]
C44(GPa) 224 253 [41], 264 [42] 233 [44]
B0(GPa) 200 219, 213 211

2H-SiC

a(Å) 3.085 3.05 [45], 3.09 [42] 3.076[46]
c(Å) 5.060 5.00 [45], 5.07 [42] 5.224 [46]

C11(GPa) 528 541 [45], 536 [42] 501 ± 4 [47]
C12(GPa) 112 117 [45], 78 [42] 111 ± 5 [47]
C33(GPa) 565 586 [45], 573 [42] 553 ± 4 [47]
C13(GPa) 52 61 [45], 31 [42] 52 ± 9 [47]
C44(GPa) 156 162 [45], 164 [42] 163 ± 4 [47]
B0(GPa) 228 238, 214 220

Graphite

a(Å) 2.521 2.451 [48] 2.464 [49]
c(Å) 7.067 6.582 [50] 6.712 [49]

C11(GPa) 892 1118 [51] 1109 ± 16 [49]
C12 (GPa) 163 235 [51] 139 ± 36 [49]
C33 (GPa) 31 29 [51] 38.7 ± 7 [49]
C13 (GPa) 5 8.5 [51] 0 ± 3 [49]
C44 (GPa) 6 −2.8 [51] 5 ± 3 [49]
B0 (GPa) 240 307 281

2H-MoS2

a(Å) 3.19 3.16 [52] 3.163 [53]
c(Å) 12.56 12.296 [52] 12.341 [53]

C11 (GPa) 220 218 [52] 238 [40]
C12 (GPa) 45 38 [52] −54 [40]
C33 (GPa) 40 35 [52] 52 [40]
C13 (GPa) 16 17 [52] 23 [40]
C44 (GPa) 26 15 [52] 19 [40]
B0 (GPa) 75 68 57

3.2. Ideal Strength with and without Transverse Stress

This subsection is devoted to the calculation of the strain-stress curves of the four structures
considered in this study. First, we collect in Figure 1 the results under vanishing transverse stress.
For 3C-SiC and 2H-SiC, calculated points are very similar to those reported by Umeno, Kubo, and
Nagao [42]. For graphite, our in-plane stress–strain curves show maxima at similar strain values to
those reported by Liu et al. [48] for graphene, although we compute critical strengths along these
directions around 25 GPa lower than in their work. This is due in part to differences between LDA
(Liu et al.) and GGA (ours) levels of calculation, and on the other hand, to differences in the system,
single sheet (graphene) and the bulk (graphite). To the best of our knowledge, the corresponding curve
for the c direction has not been reported so far. Analogously, we have not found previous strain-stress
curves along this direction for bulk 2H-MoS2, whereas for the in-plane directions the previous reported
studies refer to single- or few-layer 2H-MoS2 [54,55]. These results indicate a noticeable decreasing of
σc as the size of the slab increases, which is also the expected trend according to our calculations.

It is usual to refer to the chemical bonding network to interpret, at an atomic level, the differences
in the strain-stress curves between compounds and/or directions. Without being strictly quantitative,
while keeping the basic chemical meaning, a simple and practical indicator able to account for the
majority of these differences is proposed as follows. Each chemical bond in the unit cell is described
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by a vector connecting its two bound nearest-neighbor atoms. The projection of this vector along the
corresponding tensile direction is evaluated and the sum calculated over all the bonds in the unit cell
is defined as the total effective bond length (EBL) associated to that direction. The two main structural
effects induced in the chemical bonds by the tensile strain (changes in bonding lengths and angles) are
essentially captured in this parameter. EBL values exhibit the expected trend always increasing as the
strain increases up to the stability limit.

Figure 1a shows that in 3C-SiC the slopes in the low strain region are nearly equal regardless of the
direction. However, the maximum stress value strongly depends on the direction of the deformation
with a critical strength nearly twice as large along the [100] axis (εc= 0.35 and σc = 91 GPa), as that
found for [110] (εc = 0.30 and σc = 53 GPa) and [111] (εc = 0.15 and σc = 45 GPa). We notice that along
[100] all tensile forces are equally distributed over the Si-C bonds. This is in contrast to the tension
along the [110] and [111] directions. For example, in the latter, one of the four C nearest neighbors of a
given Si atom stand along the same [111] direction and the corresponding Si-C bond suffers a pure
stretching, whereas the stretching of the other three Si-C bonds is not so effective and involves bond
angle modifications upon the tensile strain along the [111] direction. At zero strain, the previously
defined EBL parameter already has a value roughly twice greater for the [100] direction (17.5 Å) than
for the [110] (9.3 Å) and [111] (9.5 Å) directions. Thus, although the order between the [100] and [111]
directions is not captured considering just the equilibrium structure, the EBL parameter catches the
essential difference between the [100] direction and these two other directions.

The stress–strain curves during uniaxial tension with vanishing transverse stress in 2H-SiC are
shown in Figure 1b. Slopes in the low strain (harmonic) region are almost exactly equal whereas the
maximum stress value strongly depends on the direction of the deformation. The stress–strain relation
in 2H-SiC [001] (εc = 0.15 and σc = 45 GPa) and 3C-SiC [111] are nearly identical. It is so because of
the similarity of the lattice planes normal to the stress direction, and so are the curves of 2H-SiC [100]
(εc = 0.29 and σc = 58 GPa) and 3C-SiC [110]. The stress–strain relation in 2H-SiC along [120] shows
intermediate values (εc = 0.20 and σc = 50 GPa). Again, these values correlate with the effective Si-C
bond lengths along the corresponding directions. Calculated EBL values in Å for the [100], [120] and
[001] are, respectively, 21.3, 16.8, and 12.3, following the same trend as σc and in agreement also with
previous interpretations in terms of next-nearest Si-C interactions by Umeno et al. [42].

In Figure 1c,d, the responses of graphite and 2H-MoS2 to tensile stress along the [100], [120], and
[001] directions are displayed. Here, the laminar nature of these two compounds is clearly revealed
by the very low critical strength values along the c axis (εc = 0.13 and σc = 0.063 GPa in graphite
and εc = 0.05 and σc = 0.069 GPa in 2H-MoS2) which is in concordance with the weak van der Waals
nature of the inter-layer interaction. At low strains, the in-plane graphite strains reveal an isotropic
2D elastic behavior in good agreement with previous DFT calculations [56]. At large in-plane strains,
the lattice layers start to behave anisotropically and the critical stress along the next-nearest-neighbor
[100] direction (εc = 0.26 and σc = 86 GPa in graphite and εc = 0.27 and σc = 22 GPa in 2H-MoS2)
becomes greater than that along the nearest-neighbor [120] direction (εc = 0.11 and σc = 78 GPa in
graphite and εc = 0.20 and σc = 14 GPa in 2H-MoS2). Expected differences between stronger C–C than
Mo–S intralayer bonds are also clearly manifested when comparing these data.

For all directions and structures, we now analyze new results coming from the proposed analytical
1D-SEOS. All the curves in the four panels of Figure 1 were obtained from the 1D-SEOS fittings to the
calculated strain-stress data. The performance of the 1D-SEOS is apparent and allows us to derive
with confidence critical stress and critical strain values from the corresponding fitting parameters σsp

and εsp, respectively. We have checked that the trends and specific values of these two key parameters
compare with high accuracy with our first-principles computed numerical values (see Table 1). Thus,
we arrive to this interesting conclusion: the 1D-SEOS of Equation (7) is an appropriate analytical
function for describing stress–strain data.
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Figure 1. Calculated strain-stress curves without transverse stress for: 3C-SiC (top left), 2H-SiC (top right),
Graphite (bottom left), and 2H-MoS2(bottom right).

We noticed earlier that multi-load conditions may be present in manufacturing processes,
combining thermal effects and epitaxial growth. As a particular situation of these conditions,
in a second round of simulations, we have studied the effects of superimposing transverse stress
(both compressive and tensile) on the previous tensile directions for the four structures. We detected
convergence problems in some simulations that have hindered the calculations in the compressive
(negative) transverse stress range in 2H-MoS2, and also along the [100] direction in the positive range
of this compound. Based on previous resuls in other covalent systems [42], the expected trend is a
decreasing of the critical strength as we increase the superimposed transverse stress from negative to
positive values. In fact, this is the computed behavior for the majority of situations we have studied.
For example, the critical strength σc is lowered by the transverse stress σt in all the directions in 3C-SiC
(except [110]), 2H-SiC (except [100]), graphite, and 2H-MoS2. In this two laminar compounds, we
obtain just one value at the most negative transverse stress breaking the decreasing trend along the
[120] direction. All these results are displayed in Figure 2 and are in complete agreement with the
computed data in 3C- and 2H-SiC reported by Umeno et al. [42]. In general, the unexpected positive
slope in the critical strength-transverse stress curve appears at compressive transverse stress values.
In the tensile regime, all the directions and structures show a modulated lowering of the critical
strength as the transverse tension increases. This fact is compatible with the overall weakening of the
compounds as multi-load conditions are enhanced, or, in Umeno et al. words as due to the higher
strain energy stored in the material . However, we would like to notice that the opposite behavior
was also found by Sestak et al. [15] and Cerný et al. [18]. The increasing of the critical strength under
sumperimposed positive lateral tensile stress obtained in their calculations might be due to the different
nature of the chemical bonding network. These authors deal with metallic materials where directional
bonds are not identified, thus preventing the use for example of our EBL parameter that we introduce
in what follows.
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Interestingly enough, we observed an equivalent behavior when we analyzed the computed
EBL parameters. In all but the cases where we have detected an exception, the calculated effective
bond length parameter at the critical strain condition decreases monotonically as we superimpose the
transverse stress on the corresponding tensile strain direction. Thus, we found that the decreasing of
the critical strength value correlates with the decreasing in the EBL parameter. For example, along
the [111] direction in 3C-SiC, EBL continuously decreases from 11.00 Å at σt = −30 GPa to 10.78 Å at
σt = +30 GPa. The corresponding values at the same transverse stress conditions for the [100] direction
are 24.71 Å and 21.18 Å. Similar trends are found for the EBL parameter along the [120] and [001]
directions in 2H-SiC. On the contrary, in those cases where negative transverse stresses induce an
unexpected behavior, this EBL parameter also shows as increasing as the transverse stress increases,
up to the condition of vanishing transverse stress. Thus, along [110] in 3C-SiC and [100] in 2H-SiC,
the values of EBL at σt = −30 GPa are, respectively, 10.94 Å and 26.08 Å, increasing up to 11.49 Å and
26.24 Å at σt = 0 GPa, and finally decreasing to 10.97 Å and 24.13 Å at σt = +30 GPa. The reason why a
reduction in the critical strength occurs as compressive transverse is superimposed has been explained
by the appearance of a thermodynamic competitive phase as the rock-salt structure in 3C-SiC [42].
Here, we also see that this reduction in the σc also correlates with the fact that the effective Si-C bond
lengths along the [110] and [100] directions in 3C-SiC and 2H-SiC, respectively, show lower values at
the critical conditions when the compressed transverse stress is increased, thus correlating with the
trend followed by the critical strength.
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Figure 2. Calculated critical stress-transverse stress curves for: 3C-SiC (top left), 2H-SiC (top right),
Graphite (bottom left), and 2H-MoS2(bottom right).

Other Outcomes of the Stress–Strain SEOS: Energetics and Directional Young Moduli

As stated in Section 2.3, our analytical scheme allows us to gather information, not only on the
critical parameters, but also on the energetics of crystalline materials and on the Young moduli along
specific tensile directions. From an experimental point of view, stress–strain data can be directly
measured for particular directions whereas the corresponding energy–strain curves remain only
accessible once an equation of state is proposed. Equation (10) displays how, by simple integration
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of our stress–strain 1D-SEOS, analytical energy–strain curves can be derived using data either from
experiments or from computer simulations. In the previous subsection, we have shown that our
calculated (εi,σi) data points are well described by the proposed 1D-SEOS. Here, the integrated SEOS
for all the directions and materials studied in this work are represented in Figure 3. The symbols
correspond to the energy minima at selected strains obtained from our first-principles calculations.
The calculated parameters associated with the integrated forms are collected in Table 3.

The analytical energy curves clearly reflect the good quality of the fittings (see Figure 3).
Two parameters define the shape of each of these curves, εsp and Esp. The first one, previously
discussed in relation to the stress–strain curves (see Table 1), identifies the abscissa of the inflexion
point, where the directional Young modulus vanishes. The ordinate of this point is Esp (see Table 3)
and correlates quite well with the critical/spinodal strength calculated along each of the directions
explored for the materials under study in this work. The higher the strength, the higher the energy
required to induce an elastic instability in the material. Not surprising, the highest values are obtained
in 3C-SiC along the [100] direction and graphite along the [100] direction, just the same systems
and directions where we had found the greatest values for σc (and σsp). Esp values provide also
information on the energy stored in the material due to the tensile stretching. For example, along the
last two directions the energy stored is expected to be higher than along other directions with flatter
energy–strain curves, as [001] directions in graphite and 2H-MoS2 (see Figure 3). Notice that for these
two situations with the weakest cohesive interactions, values are so low (within the accuracy of the
calculations) that only a limit value is given. Overall, we believe that these results evidence the utility
of the energy–strain SEOS.

As regards the directional Young modulus, we can easily derive a simple expression at zero
stress YI(0) involving the three parameters of the stress–strain 1D-SEOS by evaluating Equation (4) at
zero stress:

YI(0) =
σsp

εsp(1− γ)
. (11)

This parameter is discussed below.

Table 3. Energy and Young modulus parameters from the integrated stress–strain SEOS fittings.

Material Direction YI(0) (GPa) Esp (kJ/mol)

3C-SiC
[100] 396 219
[110] 407 110
[111] 478 50

2H-SiC
[001] 481 50
[100] 437 142
[120] 450 66

Graphite
[001] 0.99 <1
[100] 746 201
[120] 746 113

2H-MoS2

[001] 2.41 <1
[100] 150 69
[120] 140 153

In 3C-SiC, the directional Young moduli at zero stress are (in GPa) 396, 406, 478 GPa for the [100]
[110] and [111] directions, respectively. These results are in concordance with the directional Young
moduli calculated through the theory of representation surfaces [57]. For instance, in the case of the
[111] direction

Y111 =

(
S11 −

2
3

(
S11 − S12 −

1
2

S44

))−1
, (12)

where S11, S12, and S44 are the compliance constants related to the elastic constants by:

S11 =
C11 + C12

(C11 − C12)(C11 + 2C12)
, S12 =

−C12

(C11 − C12)(C11
+ 2C12), S44 =

1
C44

. (13)
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According to the data from Table 2, and using the above equations, the calculated value for Y111(0)
is 489 GPa in good agreement with the parameter obtained from our 1D-SEOS.

In this case, the elastic behavior of the cubic SiC polytype is not enterely isotropic and YI(0) slightly
increases along the sequence [100] [110] and [111]. YI(0) provides a quantitative measure of the initial
slope of the stress–strain curve, thus representing the resistance of the material to a tensile distortion
along a particular direction at equilibrium. Under this perspective, the values of YI(0) in the [100],
[110] and [111] series of 3C-SiC inform that the direction [111] offers the highest resistance to a strain
stretching at zero stress. In 2H-SiC, the values of YI(0) point out that all the directions studied present
similar resistance to distortion. Here, the solid behaves less anisotropically than in the case of the cubic
polytype, expanding a narrower range of values, although both polytypes display similar zero stress
Young moduli.

Let us finally conclude by analyzing these zero stress directional Young moduli in graphite
and 2H-MoS2. Layered materials constitute a severe test for our model since weak and covalent
interactions are simultaneously present. In both compounds, the van der Waals nature of the inter-layer
interactions is revealed through the values of the directional Young modulus provided by the spinodal
parameters. Y001(0) values (in GPa) are as low as 0.99 and 2.40 for graphite and 2H-MoS2, respectively,
in contrast with the values along the [100] and [120] directions which are, respectively, 748 and 728
for graphite, and 150 and 140 for 2H-MoS2. The latter values can be compared with the intra-layer
Young modulus reported for graphite and MoS2 by other authors. For instance, for graphite goes
from 700 to 1100 GPa ([56] and references therein), whereas for 2H-MoS2 the values range between 130
and 220 GPa [58–60] showing a good agreement with the results obtained in this work. At this point,
it must also be emphasized that our Young modulus values reflect the expected different intralayer
bond strengths between the C–C and Mo–S bonds, as we previously detected in the analysis of the
1D-SEOS parameters (see Section 3.2).
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Figure 3. Calculated energy–strain curves for: 3C-SiC (top left), 2H-SiC (top right), Graphite (bottom left),
and 2H-MoS2(bottom right).
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4. Conclusions

The critical strength of 3C- and 2H-SiC, graphite, and 2H-MoS2 were evaluated by means of first
principles quantum-mechanical methodologies based on the DFT approximation. Both vanishing and
superimposed transverse stress over uniaxial tensile strains were considered in order to evaluate the
critical (ideal) strength of the four crystalline structures. The critical strength is found to depend on
the particular crystallographic direction revealing the expected stronger mechanical anisotropy in the
layered compounds. In graphite and molybdenum disulfide layers, after an isotropic behavior at the
low strain regime, we observe a different behavior along the two in-plane directions, the critical tensile
strength being smaller in the nearest-neighbor than in the next-nearest-neighbor direction. In these
crystals, the lowest value of σc is obtained in the c-direction as expected given the weak inter-layer vdW
interactions. The critical tensile strength is generally decreased by the transverse tension. Reduction
in the critical strength by large transverse compression occurs in some structures and orientations in
concordance with an increase in the effective bond lengths in those conditions.

We present a new 1D-SEOS analytical function that was successfully applied to the computed
strain-stress data points, and which can be also used to describe results from tensile stress experiments.
The spinodal strain εsp along with the corresponding spinodal stress σsp fitting parameters have been
calculated for the two covalent and the two layered compounds. These parameters are identified with
the critical strength and strain values provided they appear at the instability elastic limit. In addition,
the integrated energy–strain SEOS reveals an interesting equation, enclosing information on the energy
stored in the material along tensile processes and providing data on the required energy to reach the
instability elastic limit .
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