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The notion of an orness measure for aggregation functions has been a relevant study subject whose history can be traced back to the
early works of Dujmović in 1973. Intuitively, an orness measure quantifies the similarity of an aggregation function to the ‘or’ func-
tion and results in an essential tool for decision engineering, field in which the choice of aggregation function is sometimes restricted
to a desired value of orness (orness-directed aggregation). In 1988, Yager presented a particular example of orness measure for OWA
functions and initiated a series of contributions aiming at proposing an axiomatic definition of orness measure for OWA functions. In
this paper, we go much further and present an axiomatic definition of orness measure for the whole family of aggregation functions.
We end by proposing two natural construction methods for an orness measure for aggregation functions. The particular examples of
the (discrete) Choquet integral and uninorms are studied in detail.

1 Introduction

Nowadays, intelligent systems need to deal with an increasing amount of information coming from many
different digital sources. For this very reason, information aggregation is naturally arising more frequently
than ever [1] and the study of aggregation functions [2, 3], which are the tools that serve to perform this
information aggregation, is becoming a very active field of research. Although there exist some other
classes of aggregation functions [4], there is little doubt that averaging aggregation functions [5] — often
referred to as means [6, 7] – are the most prominent family of aggregation functions and its study can
even be traced back to Cauchy [8]. Actually, some averaging aggregation functions such as the median
and the (weighted) arithmetic mean are known to have been used much earlier and have become essen-
tial tools in the field of descriptive statistics. One of the most relevant families of averaging aggregation
functions is that of Ordered Weighted Averaging aggregation functions, OWA functions for short, that
were described for the first time by Yager [9] and currently arise in many different fields of application
(e.g., modelling customized individual semantics [10] and movie ratings aggregation [11]).
According to the historical account presented in [12], the notion of orness was first introduced in the
context of graded logic by Dujmović [13] (and further developed in [14, 15, 16]) for measuring the de-
gree of disjunction of an aggregation function. Independently, Yager [9] proposed a specific orness mea-
sure for the family of OWA functions that has become a standard nowadays for measuring how similar
an OWA function is to the ‘or’ function (which is the greatest possible OWA function). Interestingly,
Fernández Salido and Murakami [17] later proved that Yager’s proposal is equivalent to Dujmović’s pro-
posal when the latter is restricted to measuring the orness of an OWA function.
Recent work on the topic has followed different directions. On the one hand, some authors have studied
orness-directedness aggregation [18], which is the process of selecting the most appropriate aggregation
function given a desirable value of orness. This process has been of interest to practitioners even when
restricting to a specific family of aggregation functions. For instance, Fullér and Majlender [19] provided
an analytic solution for identifying the OWA function with maximal entropy weights for a given value of
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orness (a problem that was initially brought to attention in the context of real-time expert systems by
O’Hagan [20]). On the other hand, other authors have studied the notion of orness for specific families of
functions (e.g., quasi-arithmetic means [21] or lattice OWA functions [22, 23, 24, 25, 26]).
The present work has a twofold goal. Firstly, we aim at providing an axiomatic definition of orness mea-
sure for aggregation functions that formalizes in a mathematical manner a notion that has been studied
for decades. This line of research is similar to that in [27], where the notion of orness measure for OWA
functions is axiomatized. Secondly, we aim at proposing different construction methods for orness mea-
sures, thus providing different examples of functions fulfilling the newly-presented axiomatic definition.
This line of research is similar to that in [28], where a new orness measure for aggregation functions gen-
eralizing Yager’s proposal for OWA functions is presented. We pay particular attention to orness mea-
sures for the (discrete) Choquet integral and uninorms.
The remainder of the paper is structured as follows. Section 2 presents the basic notions related to ag-
gregation functions and OWA functions. Section 3 is devoted to the axiomatization of an orness mea-
sure for OWA functions. Section 4 follows a similar structure, providing an axiomatization of an orness
measure for aggregation functions. Obviously, this can be understood as a natural generalization of the
axiomatization of an orness measure for OWA functions. In Section 5, two construction methods for an
orness measure for aggregation functions are presented. We end with some conclusions in Section 6.

2 Preliminaries

In this section, we recall some preliminary concepts related to aggregation functions [5] and OWA func-
tions [9].

2.1 Aggregation functions

Aggregation functions [5] are tools that allow to combine n values into a single one. Since the study of
aggregation functions stemmed from the field of fuzzy logic, these values are often assumed to belong to
the unit interval. It is immediate to extend the definition from the unit interval to another compact real
interval.

Definition 1. Consider n ∈ N. A function f : [0, 1]n → [0, 1] (with n ≥ 2) is called an aggregation
function if

� it is increasing, i.e., for any (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n such that xi ≤ yi for any i ∈ {1, . . . , n},
it holds that f(x1, . . . , xn) ≤ f(y1, . . . , yn).

� it satisfies the boundary conditions, i.e., f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1.

Definition 2. The dual of an aggregation function f is the aggregation function f defined as f(x1, . . . , xn) =
1− f(1− x1, . . . , 1− xn) for any (x1, . . . , xn) ∈ [0, 1]n.

We denote by Fn the set of all aggregation functions f : [0, 1]n → [0, 1]. Two relations on Fn will be used
throughout the paper.

Definition 3. Consider f, g ∈ Fn. The aggregation function f is said to be smaller than or equal to the
aggregation function g, denoted by f ≤ g, if,

f(x1, . . . , xn) ≤ g(x1, . . . , xn) .

for any (x1, . . . , xn) ∈ [0, 1]n.

Definition 4. Consider f, g ∈ Fn. The aggregation function f is said to be almost surely smaller than or
equal to the aggregation function g, denoted by f ≤∗ g, if it holds that

µ({(x1, . . . , xn) ∈ [0, 1]n | f(x1, . . . , xn) > g(x1, . . . , xn)}) = 0 ,

where µ denotes the Lebesgue measure.
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2.2 OWA functions

Obviously, ≤⊆≤∗. Also, note that ≤ is an order relation on Fn, whereas ≤∗ is a preorder relation on Fn.
Therefore, the relation =∗ defined by ≤∗ ∩ ≤T∗ (where ≤T∗ denotes the transpose of ≤∗) is an equivalence
relation.
A prominent family of aggregation functions is that of averaging aggregation functions [5].

Definition 5. Consider n ∈ N. An aggregation function f : [0, 1]n → [0, 1] is called averaging if it is
bounded by the minimum and the maximum of its arguments, i.e., it holds that:

min ≤ f ≤ max .

Averaging aggregation functions are related to the property of idempotence.

Definition 6. Consider n ∈ N. A function f : [0, 1]n → [0, 1] is said to be idempotent if, for any x ∈
[0, 1], it holds that:

f(x, . . . , x) = x .

Note that, since the minimum and maximum functions are idempotent, every averaging aggregation func-
tion is idempotent.

2.2 OWA functions

An important family of averaging aggregation functions is the family of the so-called OWA functions [9].
An OWA function is associated with a weighting vector w = (w1, . . . , wn) such that wi ∈ [0, 1] for any
i ∈ {1, . . . , n} and

∑n
i=1wi = 1. The set of all possible weighting vectors (of dimension n), oftentimes

referred to as the (standard) simplex, is denoted by On.

Definition 7. Consider n ∈ N. Given a weighting vector w = (w1, . . . , wn), the function fw : [0, 1]n →
[0, 1]

fw(x1, . . . , xn) =
n∑
i=1

wi x(i) ,

where x(i) denotes the i-th largest element among x1, . . . , xn, is called the OWA function associated with
w.

Note that an OWA function characterizes and is characterized by a unique weighting vector [9]. There-
fore, there exists a one-to-one correspondence between the set of all possible weighting vectors and the
set of all possible OWA functions. For this very reason, we also use the notation On for referring to the
set of all OWA functions.

Remark 1. Some well-known OWA functions are associated with the following weighting vectors:

� The maximum (‘or’): w1 = (1, 0, . . . , 0).

� The minimum (‘and’): w0 = (0, . . . , 0, 1).

� The arithmetic mean: wA = ( 1
n
, . . . , 1

n
).

� The median: if n is odd, wM is defined by wi = 0 for any i 6= n+1
2

and wn+1
2

= 1; if n is even, wM is

defined by wi = 0 for any i 6∈ {n
2
, n
2

+ 1} and wn
2

= wn
2
+1 = 1

2
.

Note that the median is not always defined as the arithmetic mean of the two middle points in case n is
even, but, oftentimes, all functions for which wn

2
+ wn

2
+1 = 1 are said to be medians. However, this latter

definition is not considered throughout this paper in order to guarantee that the function uniquely defines
a point.
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A weighting vector wd is called the dual of another weighting vector w, if wd is obtained by reversing
w, i.e., if, wdi = wn−i+1 for any i ∈ {1, . . . , n}. An OWA function fw′ is called the dual of the OWA
function fw (or, simply, fw′ and fw are called duals) if w′ = wd. Note that the notion of duality for the
weighting vector of an OWA function coincides with the more general notion of duality for aggregation
functions when restricted to OWA functions. As an example, the maximum and the minimum are duals.
The dual of the arithmetic mean is the arithmetic mean itself. Similarly, the dual of the median is the
median itself.

3 Orness for OWA functions

The orness of an OWA function fw (as defined by Yager [9]), denoted by OY(fw), measures how close fw
is to being the ‘or’ (the maximum) function.

Definition 8. Consider n ∈ N. Yagers’s orness measure is the function OY : On → [0, 1] defined as:

OY(fw) =
1

n− 1

n∑
i=1

wi (n− i) . (1)

The orness of the ‘or’ function is equal to one and is maximum among all OWA functions, whereas the
orness of the ‘and’ function is equal to zero and is minimum among all OWA functions. The orness of
the arithmetic mean and the median is 1

2
.

Kishor et al. [27] further studied Yager’s orness measure and proposed a more general axiomatic defini-
tion.

Definition 9. Consider n ∈ N. A K-orness measure for OWA functions is a function OK : On → [0, 1]
such that:

(K1) OK(fw) = 1 if and only if w = w1.

(K2) OK(fw) = 0 if and only if w = w0.

(K3) If w = (w1, . . . , wn) and w′ = (w1, . . . , wj − ε, . . . , wk + ε, . . . , wn) with ε > 0 and j < k, then
OK(fw′) < OK(fw).

(K4) OK(fwA
) = 1

2
.

It is immediate to see that Yager’s orness measure fulfils the previous axioms and, therefore, it is an ex-
ample of K-orness measure for OWA functions. Different orness measures fulfilling the axioms of Defini-
tion 9 were proposed in [27].
Note that the somehow-cumbersome notation of Axiom (K3) could be expressed in terms of the ma-
jorization order relation [29]. The majorization order relation ≤D is defined by w ≤D w′ if for any k ∈
{1, . . . , n},

k∑
i=1

wi ≤
k∑
i=1

w′i .

This order was already mentioned by Yager in [9] and used for defining an intuitive property of his or-
ness measure: if a weighting vector is greater than or equal to another one, then the orness of the former
should be greater than or equal to the orness of the latter.
We propose here a slight modification of the orness measure proposed by Kishor et al. [27]. The ratio-
nale for introducing this modification is to further extend the dual role played by the ‘or’ and ‘and’ func-
tions and reflected by Axiom (K4) to any pair of dual OWA functions. Actually, the special role played
by the orness value 0.5, which represents that an OWA function is equally close to being the ‘or’ and the
‘and’ functions, was already pointed out by Kishor et al. in [27] for the arithmetic mean (Axiom (K4)).
This could be extended to any OWA function with a symmetric weighting vector (as in the case of the
arithmetic mean), for which the orness should be equal to 0.5.
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Definition 10. Consider n ∈ N. A P-orness measure for OWA functions is a function OP : On → [0, 1]
such that:

(P1) OP(fw) = 1 if and only if w = w1.

(P2) OP(fw) ≤ OP(fw′) if w ≤D w′.

(P3) OP(fwd) = 1−OP(fw).

Remark 2. One should note that Yager’s orness measure satisfies all axioms above. It is immediate
to see that there exist other functions different from that by Yager satisfying the axioms above, e.g., the
function O∗ : On → [0, 1] defined by O∗(fw1) = O∗(max) = 1, O∗(fw0) = O∗(min) = 0 and O∗(fw) = 1

2
otherwise.

It is immediate to prove that (P1) is exactly the same as (K1), (P2) is equivalent to (K3) and (K2) is a
consequence of (P1) and (P3). Moreover, (P3) implies (K4), even though the converse is not true. Thus,
the family of P-orness measures is contained in the family of K-orness measures for which (K4) is fur-
ther restricted to (P3). From now on, we will restrict our attention only to P-orness measures for OWA
functions and we will just refer to them as orness measures for OWA functions.

4 A generalization of the notion of orness to aggregation functions

Inspired by the study of orness for OWA functions, we aim at studying and measuring the orness of any
aggregation function. For an OWA function, an orness measure quantifies how close the OWA function
is to being equal to the ‘or’ function. Since the ‘or’ function is the greatest possible OWA function, this
is equivalent to quantifying how close the OWA function is to being greater than or equal to the ‘or’
function. When we move to the setting of aggregation functions, as long as the aggregation function is
not idempotent, both “being equal to the ‘or’ function” and “being greater than or equal to the ‘or’ func-
tion” are no longer equivalent. We consider the latter understanding for quantifying the orness of an ag-
gregation function.
In the following, we present four intuitive conditions that will be later on used for defining in an axiomatic
manner the notion of an orness measure for aggregation functions. Firstly, any intuitive orness measure
should assign the greatest possible value of orness to all possible functions that are greater than or equal
to the ‘or’ function (and, in particular, to the ‘or’ function). These functions (and functions that are
equal to them up to a set of Lebesgue measure zero) will be the only ones attaining the greatest possi-
ble value of orness. Secondly, it seems natural to require that the greater the aggregation function is, the
greater its orness should be. Thirdly, since an aggregation function is as close to being the ‘or’ function
as its dual is to being the ‘and’ function, it is logical to require the orness of an aggregation function to
be related to the orness of its dual, as was represented in Axiom (P3). Fourthly, OWA functions are in-
variant under variable permutations (i.e., symmetry). Even if we consider an aggregation function that
is no longer assured to be symmetric, it still seems natural for an orness measure not to depend on the
order of the inputs.
Considering the properties described above, we establish the following axiomatization of an orness mea-
sure for aggregation functions. As usual, an aggregation function with a value of orness smaller than or
equal to 0.5 will be called a conjunctive aggregation function, whereas an aggregation function with a
value of orness greater than or equal to 0.5 will be referred to as a disjunctive aggregation function. In
case the extreme values 0 and 1 are reached by an aggregation function different than the minimum or
the maximum, the terms hyperconjunctive aggregation function and hyperdisjunctive aggregation func-
tion are respectively used. Some authors, see e.g. [30], argue that the orness of a hyperconjunctive aggre-
gation function should be smaller than 0 and that the orness of a hyperdisjunctive aggregation function
should be greater than 1, but this point of view is here abandoned since the value of orness is seen as a
degree of disjunction (thus a value between 0 and 1).

Definition 11. Consider n ∈ N. An orness measure for aggregation functions is a function O :
Fn −→ [0, 1] such that:
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(O1) O(f) = 1 if and only if max ≤∗ f .

(O2) If f ≤ g, then O(f) ≤ O(g).

(O3) O(f) = 1−O(f).

(O4) If there exists a permutation σ of {1, . . . , n} such that f(x1, . . . , xn) = g(xσ(1), . . . , xσ(n)) for any
(x1, . . . , xn) ∈ [0, 1]n, then O(f) = O(g).

Note that, similarly to Axiom (O1), the orness of any function smaller than the minimum (up to a set of
measure zero) is uniquely determined.

Proposition 1. Consider n ∈ N. Let f : [0, 1]n −→ [0, 1] be an aggregation function and O : Fn −→ [0, 1]
be an orness measure for aggregation functions. It holds that O(f) = 0 if and only if f ≤∗ min.

Proof. From Axiom (O3) we have that O(f) = 0 iff O(f) = 1. From Axiom (O1), this is equivalent to
max ≤∗ f , which is equivalent to

µ
(
{(x1, . . . , xn) ∈ [0, 1]n|max(1− x1, . . . , 1− xn) > f(1− x1, . . . , 1− xn)}

)
= 0 .

Since f(1 − x1, . . . , 1 − xn) = 1 − f(x1, . . . , xn) and 1 − min(x1, . . . , xn) = max(1 − x1, . . . , 1 − xn), the
above is equivalent to

µ
({

(x1, . . . , xn) ∈ [0, 1]n|1−min(x1, . . . , xn) > 1− f(x1, . . . , xn)
})

= 0 ,

or, equivalently,
µ
({

(x1, . . . , xn) ∈ [0, 1]n|f(x1, . . . , xn) > min(x1, . . . , xn)
))

= 0 .

In the following we prove that an orness measure for aggregation functions in the sense of Definition 11
restricts to an orness measure for OWA functions in the sense of Definition 10 when the aggregation func-
tion is an OWA function.

Theorem 1. Consider n ∈ N. Let O : Fn −→ [0, 1] be an orness measure for aggregation functions (in
the sense of Definition 11). The function O|On : On −→ [0, 1], defined as the restriction of O to On, is
an orness measure for OWA functions (in the sense of Definition 10).

Proof. (P1) For any OWA function fw, it holds that w = w1 iff

µ(
{

(x1, . . . , xn) ∈ [0, 1]n|fw(x1, . . . , xn) < max(x1, . . . , xn)
}

) = 0 .

The result then follows straightforwardly from Axiom (O1).

(P2) If fw and gw′ are two OWA functions with associated weighting vectors w and w′, then it holds
that fw ≤ gw′ if and only if w ≤D w′. The result then follows straightforwardly from Axiom (O2).

(P3) Consider fw an OWA with weighting vector w = (w1, . . . , wn). As mentioned in the Preliminaries,
fw = fwd . The result then follows straightforwardly from Axiom (O3).

As an illustrative example, we end the section by identifying the value of the orness measure for some
relevant aggregation functions.

� Any t-conorm S is such that S(x1, . . . , xn) ≥ max(x1, . . . , xn), for any (x1, . . . , xn) ∈ [0, 1]n. There-
fore, as a consequence of Axiom (O1), it holds that O(S) = 1.

� Any t-norm T is such that T (x1, . . . , xn) ≤ min(x1, . . . , xn), for any (x1, . . . , xn) ∈ [0, 1]n. Therefore,
as a consequence of Proposition 1, it holds that O(T ) = 0.

� The dual of the arithmetic mean is the arithmetic mean itself and the dual of the median is the me-
dian itself. Therefore, as a consequence of Axiom (O3), it holds that O(fwA

) = O(fwM
) = 0.5.
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5 Construction of orness measures for aggregation functions

As discussed by Dujmović [31] (see Conclusions), there exist different orness measures and decision mak-
ers can be trained to use any of them. Even though some specific orness measures might be preferred, all
orness measures are potentially useful. In this section we develop two construction methods for orness
measures for aggregation functions. The particular examples of the (discrete) Choquet integral and uni-
norms are studied in detail.

5.1 First construction method

5.1.1 General results

The rectified function of an aggregation function f is the ‘closest’ averaging aggregation function to f .
In particular, if f is an averaging aggregation function, the rectified function of f is f itself.

Definition 12. Consider n ∈ N. Let f : [0, 1]n −→ [0, 1] be an aggregation function. The rectified
function of f is the function fr : [0, 1]n −→ [0, 1] defined as:

fr(x1, . . . , xn) =


min(x1, . . . , xn) if f(x1, . . . , xn) < min(x1, . . . , xn) ,

f(x1, . . . , xn) if min(x1, . . . , xn) ≤ f(x1, . . . , xn) ≤ max(x1, . . . , xn) ,

max(x1, . . . , xn) if max(x1, . . . , xn) < f(x1, . . . , xn) .

Obviously, for any function f ∈ Fn, it holds that min ≤ fr ≤ max. In addition, fr is monotone since all
f , min and max are monotone. Therefore, fr is always an averaging aggregation function
Similarly to the classical definition of global orness (see, e.g., [12]), but using the rectified function rather
than the aggregation function, it is possible to construct an orness measure for an aggregation function.
Intuitively, the use of the rectified function assures that we are measuring the degree in which an aggre-
gation function is greater than or equal to the ‘or’ function. Formally, this rectification guarantees that
the orness measure takes values within the unit interval. Otherwise, we could obtain values of orness
greater than one for some aggregation functions, e.g., the value n/(n − 1) > 1 for the drastic disjunction
(defined as f(x1, . . . , xn) = 0, if x1 = . . . = xn = 0, and f(x1, . . . , xn) = 1, if there exists i ∈ {1, . . . , n}
for which xi 6= 0).

Theorem 2. Consider n ∈ N. The function OR : Fn −→ [0, 1] defined as

OR(f) =

∫ 1

0

∫ 1

0

. . .

∫ 1

0

fr(x1, . . . , xn)−min(x1, . . . , xn) dxn . . . dx1∫ 1

0

∫ 1

0

. . .

∫ 1

0

max(x1, . . . , xn)−min(x1, . . . , xn) dxn . . . dx1

=

(n+ 1)

∫ 1

0

∫ 1

0

. . .

∫ 1

0

fr(x1, . . . , xn) dxn . . . dx1 − 1

n− 1
,

is an orness measure for aggregation functions.

Proof. We recall that (see, e.g., [32]):∫ 1

0

∫ 1

0

. . .

∫ 1

0

max(x1, . . . , xn)dxn . . . dx1 =
n

n+ 1
,∫ 1

0

∫ 1

0

. . .

∫ 1

0

min(x1, . . . , xn)dxn . . . dx1 =
1

n+ 1
.

Therefore, it is straightforward to see that OR(f) ∈ [0, 1], for any f ∈ Fn, and that OR is well-defined.
In the following, we prove that the four axioms introduced in Definition 11 are satisfied.
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5.1 First construction method

(O1) It holds that OR(f) = 1 is equivalent to

n

n+ 1
=

∫ 1

0

∫ 1

0

. . .

∫ 1

0

fr(x1, . . . , xn)dxn . . . dx1

=

∫ 1

0

∫ 1

0

. . .

∫ 1

0

max(x1, . . . , xn)dxn . . . dx1 .

Since fr ≤ max, the above is equivalent to fr =∗ max, and, therefore, to max ≤∗ f .

(O2) Note that f ≤ g implies that fr ≤ gr. The result then follows from the monotonicity of the integral.

(O3) Since max(x1, . . . , xn) = 1−min(1−x1, . . . , 1−xn) and min(x1, . . . , xn) = 1−max(1−x1, . . . , 1−xn),
it is easy to check that (f)r = fr.

Therefore, it holds that∫ 1

0

∫ 1

0

. . .

∫ 1

0

(f)r(x1, . . . , xn)dxn . . . dx1

=

∫ 1

0

∫ 1

0

. . .

∫ 1

0

(
1− fr(1− x1, . . . , 1− xn)

)
dxn . . . dx1

= 1−
∫ 1

0

∫ 1

0

. . .

∫ 1

0

fr(1− x1, . . . , 1− xn)dxn . . . dx1

= 1−
∫ 1

0

∫ 1

0

. . .

∫ 1

0

fr(x1, . . . , xn)dxn . . . dx1 .

We finally conclude that

OR(f) =
(n+ 1)

(
1−

∫ 1

0

∫ 1

0
. . .
∫ 1

0
fr(x1, . . . , xn)dxn . . . dx1

)
− 1

n− 1

=
n− (n+ 1)

( ∫ 1

0

∫ 1

0
. . .
∫ 1

0
fr(x1, . . . , xn)dxn . . . dx1

)
n− 1

= 1 +
1− (n+ 1)

∫ 1

0

∫ 1

0
. . .
∫ 1

0
fr(x1, . . . , xn)dxn . . . dx1

n− 1
= 1−OR(f) .

(O4) The result follows from the fact that variable permutation does not affect the integral computation.

Since the rectified function of an averaging aggregation function is the averaging aggregation function it-
self, it is immediate to see that the orness measure above coincides with Dujmović’s global orness for an
averaging aggregation function. Also note that this construction method returns Yager’s orness measure
when restricted to OWA functions (as expected from the fact that Dujmović’s global orness is equivalent
to Yager’s orness measure for OWA functions [17]).

Theorem 3. Consider n ∈ N. Let fw : [0, 1]n −→ [0, 1] be an OWA function. It follows that

OR(fw) = OY(fw) .

Proof. Each OWA function is an averaging aggregation function and therefore (fw)r = fw. Thus, to ob-
tain OR(fw), we must compute∫ 1

0

∫ 1

0

. . .

∫ 1

0

(w1x(1) + . . .+ wnx(n))dxn . . . dx1 .

8



5.1 First construction method

Over the domain x1 > . . . > xn, it holds that∫ 1

0

∫ 1

0

. . .

∫ 1

0

(w1x(1) + . . .+ wnx(n))dxn . . . dx1

=
x1>...>xn

∫ 1

0

∫ x1

0

. . .

∫ xn−1

0

(w1x1 + . . .+ wnxn)dxn . . . dx1

=
x1≥...≥xn

n∑
i=1

wi

∫ 1

0

∫ x1

0

. . .

∫ xn−1

0

xi dxn . . . dx1

=
x1≥...≥xn

n∑
i=1

(n− i+ 1)wi
(n+ 1)!

.

Similarly, we can distinguish n! domains corresponding to all possible ways of ordering the values {x1, . . . , xn}.
All these domains are disjoint and add up to the full domain (bearing in mind that the cases in which
two values coincide have measure zero). Therefore, it suffices to compute the integral over the domain
x1 > . . . > xn and multiply by n!. Thus, it holds that∫ 1

0

∫ 1

0

. . .

∫ 1

0

(w1x(1) + . . .+ wnx(n))dxn . . . dx1 = n!
n∑
i=1

(n− i+ 1)wi
(n+ 1)!

=
1

n+ 1
+

n∑
i=1

(n− i)wi
(n+ 1)

.

We conclude that

OR(fw) =

(n+ 1)

(
1

n+ 1
+

n∑
i=1

(n− i)wi
(n+ 1)

)
− 1

n− 1
=

1

n− 1

n∑
i=1

(n− i)wi = OY(fw) .

5.1.2 The case of the (discrete) Choquet integral

In the following, we study the particular example of the (discrete) Choquet integral. We recall that a
(regular) fuzzy measure (or capacity) ν : Cn → [0, 1] on {1, 2, . . . , n} is a function such that Cn is the
powerset of {1, 2, . . . , n}, ν(∅) = 0, ν({1, 2, . . . , n}) = 1 and A ⊆ B ⊆ {1, 2, . . . , n} implies ν(A) ≤ ν(B).
The (discrete) Choquet integral based on ν is the function Cν : [0, 1]n → [0, 1] defined as

Cν(x1, . . . , xn) = x(n)ν
(
{(n)}

)
+

n−1∑
i=1

x(i)
(
ν
(
{(i), . . . , (n)}

)
− ν
(
{(i+ 1), . . . , (n)}

))
,

where x(1) ≤ . . . ≤ x(n) represents an increasing permutation of the values x1, . . . , xn and (i) represents
the i-th index in the permutation. The Choquet integral is an averaging aggregation function indepen-
dently of the chosen ν. For more details on the Choquet integral and fuzzy measures, we refer to [33].

Proposition 2. Consider n ∈ N and a fuzzy measure ν : Cn → [0, 1] on {1, 2, . . . , n}. Let Cν : [0, 1]n →
[0, 1] be the Choquet integral based on ν. It follows that

OR(Cν) =
1

n− 1

(
n−1∑
i=1

1(
n
i

) ( ∑
a1<···<ai

ν(a1, . . . , ai)

))
.

Proof. Since Cν is an averaging aggregation function, the result follows from Theorem 6.2.1 in [34] and
the fact that the orness measure above coincides for an averaging aggregation function with Dujmović’s
global orness.
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5.1 First construction method

A prominent type of fuzzy measures is that of symmetric fuzzy measures, for which only the cardinality
of the subsets of {1, . . . , n} matters, i.e., ν(A) = ν(B) if |A| = |B|.

Corollary 1. Consider n ∈ N and a symmetric fuzzy measure ν : Cn → [0, 1] on {1, 2, . . . , n}. Let
Cν : [0, 1]n → [0, 1] be the Choquet integral based on ν. It follows that

OR(Cν) =
1

n− 1

(
n−1∑
i=1

ν(1, . . . , i)

)
.

The corollary above corresponds to intuition since there exists a correspondence between Choquet inte-
grals based on a symmetric fuzzy measure and OWA functions [33]. More precisely, the weights of the
OWA function are given by wi = ν(1, . . . , i) − ν(1, . . . , i − 1), and, conversely, the symmetric fuzzy mea-
sure is given by ν(1, . . . , i) =

∑n
j=n−i+1wj. It is then immediate to conclude that the orness obtained in

Corollary 1 for the special case of Choquet integrals based on a symmetric fuzzy measure coincides with
that of Yager for OWA functions.

5.1.3 The case of uninorms

Uninorms were introduced by Yager and Rybalov [35] as a generalization of both t-norms and t-conorms.
Formally, a uninorm is a commutative, associative and increasing binary operator U : [0, 1]2 → [0, 1] with
a neutral element e ∈ [0, 1]. The extension from n = 2 to n > 2 arguments follows immediately from the
associativity property. In case e = 1 we recover the definition of a t-norm, and in case e = 0 we recover
the definition of a t-conorm.
It has been discussed in Section 4 that the orness of any t-norm equals zero and the orness of any t-conorm
equals one. The case of uninorms is not immediate and only some bounding results in terms of the neu-
tral element can be provided.

Proposition 3. Consider n ∈ N. Let U : [0, 1]n → [0, 1] be a uninorm with neutral element e ∈ [0, 1]. It
follows that

OR(U) ∈
[
(1− e)n+1, 1− en+1

]
.

Proof. On the one hand, for any interval [a, b] ⊆ [0, 1], it holds that∫ b

a

∫ b

a

. . .

∫ b

a

max(x1, . . . , xn)dxn . . . dx1 =
(b− a)n(a+ b n)

n+ 1
,∫ b

a

∫ b

a

. . .

∫ b

a

min(x1, . . . , xn)dxn . . . dx1 =
(b− a)n(a n+ b)

n+ 1
.

On the other hand, for any uninorm, the rectified function is such that Ur(x1, . . . , xn) = min(x1, . . . , xn)
for any (x1, . . . , xn) ∈ [0, e]n and Ur(x1, . . . , xn) = max(x1, . . . , xn) for any (x1, . . . , xn) ∈ [e, 1]n, with
Ur(x1, . . . , xn) ∈ [min(x1, . . . , xn),max(x1, . . . , xn)] elsewhere.
Both results above together imply that∫ 1

0

∫ 1

0

. . .

∫ 1

0

Ur(x1, . . . , xn)dxn . . . dx1 ≥
∫ 1

e

∫ 1

e

. . .

∫ 1

e

max(x1, . . . , xn)dxn . . . dx1

+

∫ 1

0

∫ 1

0

. . .

∫ 1

0

min(x1, . . . , xn)dxn . . . dx1

−
∫ 1

e

∫ 1

e

. . .

∫ 1

e

min(x1, . . . , xn)dxn . . . dx1

=
(n− 1)(1− e)n+1 + 1

n+ 1
,

10



5.2 Second construction method

and ∫ 1

0

∫ 1

0

. . .

∫ 1

0

Ur(x1, . . . , xn)dxn . . . dx1 ≤
∫ e

0

∫ e

0

. . .

∫ e

0

min(x1, . . . , xn)dxn . . . dx1

+

∫ 1

0

∫ 1

0

. . .

∫ 1

0

max(x1, . . . , xn)dxn . . . dx1

−
∫ e

0

∫ e

0

. . .

∫ e

0

max(x1, . . . , xn)dxn . . . dx1

=
n− (n− 1)en+1

n+ 1
.

Finally, if one substitutes the two values above in the formula of Theorem 2, then the following results
are obtained:

OR(U) =

(n+ 1)

∫ 1

0

∫ 1

0

. . .

∫ 1

0

Ur(x1, . . . , xn) dxn . . . dx1 − 1

n− 1
≥ (1− e)n+1 ,

OR(U) =

(n+ 1)

∫ 1

0

∫ 1

0

. . .

∫ 1

0

Ur(x1, . . . , xn) dxn . . . dx1 − 1

n− 1
≤ 1− en+1 .

After some trivial computations, it is concluded from the proposition above that a uninorm is assured to

be conjunctive (orness smaller than or equal to 0.5) if e ≥ 0.5
1

n+1 and disjunctive (orness greater than or

equal to 0.5) if e ≤ 1− 0.5
1

n+1 .

5.2 Second construction method

5.2.1 General results

Consider an aggregation function f ∈ Fn. For any i ∈ {1, . . . , n − 1}, consider f(i) to be the arithmetic
mean of the function f evaluated in all possible vectors formed by i ones and n− i zeros. Formally,

f(i) =
i! (n− i)!

n!

∑
x∈{0,1}n∑n
j=1 xj=i

f(x) .

Note that, in case f is symmetric, it holds that

f(i) = f(1, . . . , 1︸ ︷︷ ︸
i times

, 0, . . . , 0︸ ︷︷ ︸
n−i times

) .

The values above together with an aggregation function satisfying some minimal conditions (satisfied by,
e.g., the arithmetic mean) allow us to construct an orness measure for aggregation functions.

Lemma 1. Consider n ∈ N and an aggregation function A : [0, 1]n−1 → [0, 1] such that:

� A satisfies the strict upper boundary condition, i.e., A(x) = 1 if and only if x = (1, . . . , 1).

� A is increasing.

� A(x1, . . . , xn−1) + A(1− xn−1, . . . , 1− x1) = 1.

The function OA : Fn −→ [0, 1] defined as

OA(f) = A(f(1), . . . , f(n−1)) ,

satisfies Axioms (O2), (O3), (O4) and the right to left implication of Axiom (O1) of an orness measure
for aggregation functions.

11
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Proof. It is straightforward to see that OA(f) ∈ [0, 1], for any f ∈ Fn. Therefore, OA is well-defined.

(O1) If max ≤∗ f , then it holds that f(x) = 1 for any x with at least a one. Therefore, f(i) = 1 for any
i ∈ {1, . . . , n− 1}. This implies that A(f(1), . . . , f(n−1)) = 1. Finally, we conclude that OA(f) = 1.

(O2) If f ≤ g, then f(i) ≤ g(i) for any i ∈ {1, . . . , n − 1}. The result then follows from the monotonicity
of A.

(O3) Note that (f)(i) = 1− f(n−i). Therefore,

OA(f) = A((f)(1), . . . , (f)(n−1))

A(1− f(n−1), . . . , 1− f(1))
= 1− A(f(1), . . . , f(n−1))

= 1−OA(f) ,

by applying the fact that A(x1, . . . , xn−1) + A(1− xn−1, . . . , 1− x1) = 1.

(O4) The result follows from the fact that variable permutation does not affect the computation of the
values f(i).

Note that, Axiom (O1) is not satisfied by OA since there can be functions with orness 1 that are not
greater than or equal to the maximum. For instance, the function

f(x) =

{
1 if max(x) = 1 ,

0 otherwise ,

satisfies that OA(f) = 1. However, it holds that for any x = (x1, . . . , xn) such that 0 < xi < 1 for any
i ∈ {1, . . . , n}, f(x) = 0 < max(x), therefore, it does not hold that max ≤∗ f .
If one wants to overcome this problem, it suffices to consider a small margin δ by which we reduce the
orness measure in case it does not hold that max ≤∗ f .

Theorem 4. Consider n ∈ N and δ ∈ (0, 1
4
). Consider an aggregation function A : [0, 1]n−1 → [0, 1] such

that:

� A satisfies the strict upper boundary condition, i.e., A(x) = 1 if and only if x = (1, . . . , 1).

� A is increasing.

� A(x1, . . . , xn−1) + A(1− xn−1, . . . , 1− x1) = 1.

For any δ ∈ (0, 1
4
), the function OA,δ : Fn −→ [0, 1] defined as

OA,δ(f) =


0 if f ≤∗ min ,

1 if max ≤∗ f ,
δ

2
+ (1− δ)A(f(1), . . . , f(n−1)) otherwise ,

is an orness measure for aggregation functions.

Proof. Note that, since 0 ≤ f(i) ≤ 1 for any i ∈ {1, . . . , n− 1}, it holds that

0 ≤ A(f(1), . . . , f(n−1)) ≤ 1 .

Therefore, it holds that
0 ≤ (1− δ)A(f(1), . . . , f(n−1)) ≤ (1− δ) ,

and, then, 0 < δ/2 ≤ OA,δ(f) ≤ 1 − δ/2 < 1 whenever it does not hold that f ≤∗ min, nor max ≤∗ f .
The remainder of the proof follows from Lemma 1.
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The following theorem states that OA and OA,δ are as close as required.

Theorem 5. Consider n ∈ N and δ ∈ (0, 1
4
). Let f : [0, 1]n −→ [0, 1] be an aggregation function. It

follows that

|OA,δ(f)−OA(f)| ≤ δ

2
.

Proof. We distinguish three different cases:

� If max ≤∗ f , then OA,δ(f) = OA(f) = 1.

� If f ≤∗ min, then OA,δ(f) = OA(f) = 0.

� Otherwise, it holds that

|OA,δ(f)−OA(f)| = |δ
2

+ (1− δ)A(f(1), . . . , f(n−1))− A(f(1), . . . , f(n−1))|

= |δ
2
− δA(f(1), . . . , f(n−1))| ≤

δ

2
.

Note that this construction methods returns Yager’s orness measure when restricted to OWA functions.

Theorem 6. Consider n ∈ N and δ ∈ (0, 1
4
). Let fw : [0, 1]n −→ [0, 1] be an OWA function and let

A : [0, 1]n−1 −→ [0, 1] be the arithmetic mean. It follows that

OA(fw) = OY(fw) ,

and

|OA,δ(fw)−OY(fw)| ≤ δ

2
.

Proof. We distinguish three different cases:

� If fw = max, then it holds that max ≤∗ f , and, therefore, OY(fw) = OA,δ(fw) = OA(fw) = 1.

� If fw = min, then it holds that f ≤∗ min, and, therefore, OY(fw) = OA,δ(fw) = OA(fw) = 0.

� Otherwise, it holds that f(i) =
∑i

j=1wj. Therefore, it holds that

OA(fw) =
1

n− 1

n∑
i=1

f(i) =
1

n− 1

n∑
i=1

i∑
j=1

wj =
1

n− 1

n∑
i=1

(n− i)wi = OY(fw) .

The fact that

|OA,δ(fw)−OY(fw)| ≤ δ

2
,

follows from the result above and Theorem 5.

5.2.2 The case of the (discrete) Choquet integral

Again, we study the particular example of the Choquet integral.

Proposition 4. Consider n ∈ N, δ ∈ (0, 1
4
), a fuzzy measure ν : Cn → [0, 1] on {1, 2, . . . , n} and let

A : [0, 1]n−1 −→ [0, 1] be the arithmetic mean. Let Cν : [0, 1]n → [0, 1] be the Choquet integral based on ν.
The following results hold:

(i) If ν(A) = 0 for any A 6= {1, . . . , n}, it holds that OA,δ(Cν) = 0.
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(ii) If ν(A) = 1 for any A 6= ∅, it holds that OA,δ(Cν) = 1.

(iii) Otherwise, it holds that

OA,δ(Cν) =
δ

2
+ (1− δ)OR(Cν) .

Proof. First, it should be noted that (i) and (ii) represent the two extreme cases in which the Choquet
integral equals the minimum and the maximum, respectively. The result then follows straightforwardly
from the fact that

(Cν)(i) =
i! (n− i)!

n!

∑
x∈{0,1}n∑n
j=1 xj=i

Cν(x) =
1(
n
i

) ∑
a1<···<ai

ν(a1, . . . , ai) .

As a result of Corollary 1, the result above can be further simplified in the case of symmetric fuzzy mea-
sures.

Corollary 2. Consider n ∈ N, δ ∈ (0, 1
4
), a symmetric fuzzy measure ν : Cn → [0, 1] on {1, 2, . . . , n} and

let A : [0, 1]n−1 −→ [0, 1] be the arithmetic mean. Let Cν : [0, 1]n → [0, 1] be the Choquet integral based on
ν. The following results hold:

(i) If ν(A) = 0 for any A 6= {1, . . . , n}, it holds that OA,δ(Cν) = 0.

(ii) If ν(A) = 1 for any A 6= ∅, it holds that OA,δ(Cν) = 1.

(iii) Otherwise, it holds that

OA,δ(Cν) =
δ

2
+

1− δ
n− 1

(
n−1∑
i=1

ν(1, . . . , i)

)
.

5.2.3 The case of uninorms

For any uninorm it either holds that U(0, 1) = 0 or U(1, 0) = 1 [36, 37]. Uninorms fulfilling the first
condition are called conjunctive uninorms, whereas uninorms fulfilling the second condition are called
disjunctive uninorms. In the following, we see that these terms correspond to intuition with regard to
the second construction method for an orness measure.

Proposition 5. Consider n ∈ N, δ ∈ (0, 1
4
) and let A : [0, 1]n−1 −→ [0, 1] be the arithmetic mean. Let

U : [0, 1]n → [0, 1] be a uninorm with neutral element e ∈ [0, 1]. The following results hold:

(i) If e = 1, it holds that OA,δ(U) = 0.

(ii) If e ∈]0, 1[ and U(0, 1) = 0, it holds that OA,δ(U) =
δ

2
.

(iii) If e ∈]0, 1[ and U(0, 1) = 1, it holds that OA,δ(U) = 1− δ

2
.

(iv) If e = 0, it holds that OA,δ(U) = 1.

Proof. Cases (i) and (iv) are trivial since they represent the two extreme cases in which U is a t-norm
and a t-conorm, respectively. Case (ii) follows from the fact that U(i) = 0 for any i ∈ {1, . . . , n − 1}
in case U(0, 1) = 0. Case (iii) follows from the fact that U(i) = 1 for any i ∈ {1, . . . , n − 1} in case
U(0, 1) = 1.
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e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
OR(Ue,T,S) 1 0.729 0.512 0.343 0.216 0.125 0.064 0.027 0.008 0.001 0
OR(UT,S,e) 1 0.999 0.992 0.973 0.936 0.875 0.784 0.657 0.488 0.271 0

OA,δ(Ue,T,S) 1 δ
2

δ
2

δ
2

δ
2

δ
2

δ
2

δ
2

δ
2

δ
2 0

OA,δ(UT,S,e) 1 1− δ
2 1− δ

2 1− δ
2 1− δ

2 1− δ
2 1− δ

2 1− δ
2 1− δ

2 1− δ
2 0

Table 1: Comparison of the orness measures OR and OA,δ for the uninorms Ue,T,S and UT,S,e for different values
of e ∈ [0, 1].

5.3 Further discussion on uninorms

In this section, we provide a comparison of both construction methods for two prominent uninorms. In
particular, the two considered uninorms are the following:

Ue,T,S(x, y) =


eT
(
x
e
, y
e

)
if (x, y) ∈ [0, e]2 ,

e+ (1− e)S
(
x−e
1−e ,

y−e
1−e

)
if (x, y) ∈ [e, 1]2 ,

min(x, y) otherwise,

UT,S,e(x, y) =


eT
(
x
e
, y
e

)
if (x, y) ∈ [0, e]2 ,

e+ (1− e)S
(
x−e
1−e ,

y−e
1−e

)
if (x, y) ∈ [e, 1]2 ,

max(x, y) otherwise,

where e ∈ [0, 1] is the neutral element, T is a t-norm and S is a t-conorm. By convention, we consider
U0,T,S(x, y) = UT,S,0(x, y) = S(x, y) and U1,T,S(x, y) = UT,S,1(x, y) = T (x, y).
Table 1 presents the values of OR and OA,δ (with A being the arithmetic mean) for both uninorms con-
sidering different values of e ∈ [0, 1]. Note that both OR(Ue,T,S) and OR(UT,S,e) respectively reach the
lower bound and the upper bound given in Proposition 3. It is also interesting to note that, in terms of
the literature on uninorms, the uninorm Ue,T,S is conjunctive for any e 6= 0 (since Ue,T,S(0, 1) = 0) and
the uninorm UT,S,e is disjunctive for any e 6= 1 (since UT,S,e(0, 1) = 1). However, as can be seen in Ta-
ble 1, OR(Ue,T,S) might be greater than 0.5 (thus, for an appropriate e ∈ ]0, 1[, Ue,T,S is a disjunctive ag-
gregation function according to OR) and OR(UT,S,e) might be smaller than 0.5 (thus, for an appropriate
e ∈ ]0, 1[, UT,S,e is a conjunctive aggregation function according to OR). This implies that, even though
approaches similar to the first construction method have been more popular when studying the orness of
an aggregation function, the second construction method leads to a notion of orness that is more consis-
tent with the terminology on uninorms.

6 Conclusions

In this paper, we have provided an axiomatization of the notion of an orness measure for aggregation
functions beyond its current restriction to OWA functions. Furthermore, two different methods for con-
structing an orness measure for aggregation functions have been provided. It has also been proven that,
in case these aggregation functions are OWA functions, we recover the orness measure for OWA func-
tions originally proposed by Yager. Obviously, all results here presented can be easily adapted in order
to measure the andness of an aggregation function.
Recent studies on the notion of orness (see, e.g., [12]) abandon the interpretation of orness as the degree
of disjunction in order to accommodate values outside the unit interval. This re-interpretation allows
to compare, for instance, two t-conorms in terms of their degree of (hyper)disjunction. An example of
such orness is the so-called global orness. This global orness does not fulfill the axioms presented in Def-
inition 11 but coincides with the orness measure presented in Subsection 5.1 for averaging aggregation
functions (i.e., in case the rectified function coincides with the averaging aggregation function itself). A
potential solution for accommodating global orness as an orness measure for aggregation functions could

15



REFERENCES

be to define an orness measure as a function O : Fn −→ R satisfying Axioms (O1’), (O2), (O3) and
(O4), with Axiom (O1’) O(max) = 1. Nevertheless, the authors favour a future study concerning the
definition of a degree of hyperdisjunction covering the whole spectrum between the ‘or’ function and the
drastic disjunction as a more interesting solution.
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Pérez-Fernández acknowledges the support of KERMIT, Department of Data Analysis and Mathemati-
cal Modelling, Ghent University, Belgium, and the Research Foundation of Flanders (FWO17/PDO/160).
The authors are deeply indebted to an anonymous referee for helpful comments on an initial version of
this manuscript.

References

[1] R. R. Yager, J. Kacprzyk, G. Beliakov, editors, Recent Developments in the Ordered Weighted Aver-
aging Operators: Theory and Practice, Springer-Verlag, Berlin, Heidelberg, 2011.

[2] G. Beliakov, A. Pradera, T. Calvo, Aggregation Functions: A Guide for Practitioners, volume 221 of
Studies in Fuzziness and Soft Computing, Springer, Berlin, Heidelberg, 2007.

[3] M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap, Aggregation Functions, Cambridge University
Press, Cambridge, 2009.

[4] M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap, Aggregation functions: Constructions methods,
conjunctive, disjunctive and mixed classes, Information Sciences 2011, 181, 23–43.

[5] G. Beliakov, H. Bustince, T. Calvo, A Practical Guide to Averaging Functions, Studies in Fuzziness
and Soft Computing. Springer-Verlag, Berlin, Heidelberg, Berlin, 2016.
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