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Abstract. Real-life scheduling problems often require comput-
ing solutions on-line, due to real-time requirements. In this sce-
nario, greedy algorithms guided by priority rules are of common
use. This is the case of the problem of scheduling jobs on a ma-
chine with variable capacity and total tardiness minimization, de-
noted (1, Cap(t)||∑Ti). Recent work proposed a Genetic Pro-
gramming (GP) approach for evolving priority rules for this problem,
outperforming several well-known classical rules. In this paper, we
consider state space search as an alternative framework and propose
a new method based on a refined exhaustive enumeration of priority
rules. Our approach, termed Systematic Search and Heuristic Evalua-
tion (SSHE), integrates powerful pruning techniques and an efficient
heuristic procedure used to evaluate candidate rules. Experimental
results indicate that SSHE represents a valuable alternative to GP.

1 Introduction

One-machine scheduling problems play a central role in scheduling.
Besides modeling a variety of real-life settings, these problems of-
ten arise as relaxations of other problems [4] or may appear as a re-
sult of a decomposition process when solving other, more complex,
problems [1]. This paper deals with a problem of the last class in-
troduced in [13] in the context of scheduling the charging times of
a fleet of Electric Vehicles (EV). In this problem, a number of jobs
must be scheduled on a single machine, whose capacity varies over
time, and with the goal of minimizing the total tardiness objective
function. According to the standard α|β|γ notation proposed in [11],
it is denoted as (1, Cap(t)||∑Ti). Due to real-time requirements,
this problem needs to be solved quickly, in an on-line fashion. In this
setting, the use of a schedule builder guided by efficient priority rules
represents a suitable approach.

The aim of this paper is the automated development of priority
rules for the (1, Cap(t)||∑Ti) problem; more concretely, priority
rules adapted to specific problem instance distributions. Recent work
proposed a Genetic Programming (GP) approach [9, 10] which was
shown able to evolve priority rules outperforming several classical
ones from the literature. However, due to its stochastic nature, GP
may not always converge to high-quality solutions. As an alterna-
tive, we consider systematic search as a means to generating effective
priority rules. Our approach, termed Systematic Search and Heuris-
tic Evaluation (SSHE), is based on a refined exhaustive enumeration
of priority rules. The efficiency of the proposed method relies on
the use of powerful pruning techniques, that allow for reducing the
search space by discarding redundant and useless rules, as well as on
a heuristic procedure used to evaluate rules efficiently. Experimen-
tal results indicate the practical suitability of SSHE, constituting a
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valuable alternative to GP on search spaces of reasonable size.
The remainder of the paper is organized as follows. In the next

section the problem (1, Cap(t)||∑Ti) is defined. Section 3 reviews
existing methods proposed in the literature to solve this problem and
establishes the working hypotheses. In Section 4, we describe the
proposed SSHE method. Section 5 reports the results of an experi-
mental study. Finally, Section 6 summarizes the main conclusions of
the paper and outlines some lines for future research.

2 The (1, Cap(t)||∑Ti) problem

The (1, Cap(t)||∑Ti) problem derives from the Electric Vehicle
Charging Scheduling Problem (EVCSP) introduced in [13]. How-
ever, this problem could model any other setting where a single ma-
chine is able to perform a number of tasks at a time, being its ca-
pacity variable over time. In [13], a number of electric vehicles are
distributed over three charging lines and at each scheduling point a
number of instances of the (1, Cap(t)||∑Ti) problem may arise in
each line, which must be solved on-line. For the sake of space, and
to keep the focus on the (1, Cap(t)||∑Ti) problem, we do not de-
scribe the EVCSP herein and refer the interested reader to [13] for
further details.

2.1 Problem definition

The (1, Cap(t)||∑Ti) problem is defined as follows. We are given
a number of n jobs {1, . . . , n}, all of them available at time t = 0,
which have to be scheduled on a machine whose capacity varies over
time, such that Cap(t) ≥ 0, t ≥ 0, is the capacity of the machine
in the interval [t, t + 1). Job j has duration pj and due date dj . The
goal is to allocate starting times stj , 1 ≤ j ≤ n to the jobs on the
machine such that the following constraints are satisfied:

i. At any time t ≥ 0 the number of jobs that are processed in parallel,
X(t), cannot exceed the capacity of the machine, i.e.,

X(t) ≤ Cap(t). (1)

ii. The processing of jobs on the machine cannot be preempted, i.e.,

Cj = stj + pj , (2)

where Cj is the completion time of job j.

The objective function is the total tardiness, defined as:∑
i=1,...,n

max(0, Ci − di) (3)

which should be minimized.
As an example, Figure 1 shows a feasible schedule for a problem

instance with 7 jobs.
The identical parallel machines problem, denoted (P ||∑Ti) in

[17], known to be NP-hard, can be reduced to the (1, Cap(t)||∑Ti)
problem, so this problem is NP-hard as well.
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Figure 1: A feasible schedule for an instance of the
(1, Cap(t)||∑Ti) problem with 7 jobs and a machine with
capacity varying between 2 and 5. For clarity, due dates are omitted.

3 Review of the current solving methods and
working hypotheses

In [13], the (1, Cap(t)||∑Ti) problem was solved on-line by means
of a non-deterministic schedule builder guided by priority rules
adapted from the literature. More recently, an off-line solution was
proposed in [19] by means of a memetic algorithm that, as expected,
reaches much better solutions at the expense of taking much more
time. The differences between the solutions obtained by the methods
above motivated the Genetic Programming (GP) approach proposed
in [10] to obtain new priority rules, which were shown to perform
much better than the classical ones. In this section, we review the
mentioned schedule builder and the priority rules, both the classical
ones and those evolved by GP.

3.1 Schedule builder

A schedule builder is a non-deterministic algorithm that provides a
way for enumerating a subset of the feasible schedules, thus enabling
the definition of a search space for a given scheduling problem. Algo-
rithm 1 shows a schedule builder for the (1, Cap(t)||∑Ti) problem
taken from [10]. In this algorithm US represents the set of unsched-
uled jobs at a given time, and X(t) denotes the consumed capacity
of the machine due to the jobs scheduled so far. In each iteration, the
algorithm schedules one unscheduled job among the ones that can
start at the earliest possible time, denoted γ(α).

As an example, the schedule in Figure 1 can be built by this al-
gorithm following the sequence of choices (1, 3, 4, 5, 6, 7, 2). The
search space defined by this scheduler is dominant, i.e., there always
is a sequence of choices that produces an optimal solution.

3.2 Classic priority rules

A Priority Rule (PR) is a “a simple heuristic that derives a priority
index of a job from its attributes” [2]. PRs may be combined with

Algorithm 1 Schedule Builder
Data: A (1, Cap(t)||∑Ti) problem instance P .
Result: A feasible schedule S for P .

1: US ← {1, 2, ..., n};
2: X(t) ← 0, t ≥ 0;
3: while US �= ∅ do

4: γ(α) = min{t′|X(t) < Cap(t), t ∈ [t′, t′ + pu), u ∈ US}
5: US∗ ← {u ∈ US|X(t) < Cap(t), t ∈ [γ(α), γ(α) + pu)}
6: Non-deterministically pick job u ∈ US∗;
7: stu ← γ(α);
8: X(t) ← X(t) + 1, t ∈ [stu, stu + pu);
9: US ← US − {u};

10: return The schedule S = (st1, st2, ..., stn);

schedule builders as Algorithm 1 so the job with the highest prior-
ity in US∗ is scheduled at each iteration. This way, we obtain an
algorithm suitable for on-line scheduling.

Several well-known rules in the literature may be adapted to the
(1, Cap(t)||∑Ti) problem; among others, the simple Earliest Due
Date (EDD) and Shortest Processing Time (SPT) rules; which cal-
culate priorities for an eligible job j as πj = 1/dj and πj = 1/pj
respectively, as well as more sophisticated rules as the Apparent Tar-
diness Cost (ATC) rule [21, 15], which calculates

πj =
1

pj
exp

[−max(0, dj − γ(α)− pj)

gp̄

]
, (4)

where p̄ is the average processing time of the unscheduled jobs and
g is a look-ahead parameter to be introduced by the user.

3.3 Learning priority rules

Classical PRs are usually defined by hand by experts from the knowl-
edge or intuitions they may have about a given problem. For this rea-
son, they are often easily understandable, but they may not capture
non-trivial characteristics of the problem domain that are not evident
to the expert eye. Therefore, learning arises as an alternative method.

In this context, GP is a common technique to learning rules for
problems such as job shop [12, 14], one machine [6], unrelated par-
allel machines [8], or resource constrained project scheduling prob-
lems [5, 7], among others. These approaches are based on the frame-
work proposed by Koza in [18], adapting it to the particular problem,
which requires taking two main decisions; establishing first a set of
terminal and function symbols, and then defining a grammar to build
expression trees. Hybridizations between GP and other algorithms
have also been considered. For example, Nguyen et al. [20] proposed
a hybrid genetic programming algorithm based on applying a local
improvement algorithm to the rules calculated by GP. Burke et al. in
[3] classify all these approaches as heuristic generation, specifically
these methods are named GP-based hyper-heuristics.

To improve readability, Keijzer and Babovic introduced the notion
of dimensionally aware rules [16], which were used in other works
such as [8] and [10]. In the latter, GP was proposed to evolve pri-
ority rules for the (1, Cap(t)||∑Ti) problem. The set of symbols
used was similar to that given in Table 1, which is the one we con-
sider herein. This set includes the basic operators and some arith-
metic functions, four attributes from the problem domain and 9 con-
stants. Regarding the grammar, the approach in [10] considered the
possibility of generating any dimensionally compliant well-formed
arithmetic expression, also considered in this work.

Table 1: Functional and terminal sets used to build expression trees.
Symbol “-” is considered in unary and binary versions. max0 and
min0 return the maximum and minimum of an expression and 0.

Binary functions - + / × max min

Unary functions - pow2 sqrt exp ln max0 min0

Terminals pj dj γ(α) p̄ 0.1 . . . 0.9

The GP presented in [10] was designed from all the considerations
above. In an experimental study, each evolved rule was evaluated
over a set of 50 training instances and then the best rules from 30
independent runs were evaluated over a large set of unseen testing
instances. The evolved rules were shown to outperform SPT, EDD
and ATC with any value of g in {0.1, . . . , 1.0}. Even when the depth
of the trees is restricted to a small value as 4, not only the best but
also the average rule outperform ATC with any value of g.
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Table 2: Summary of results obtained by GP proposed in [10] with
different values of maximum depth and size. Best and average results
from 30 runs are reported. Avg. Size is the average size of the best
rules obtained in 30 independent runs. The Best value in testing is
that obtained by the best rule in training.

Max. Max. Training Testing Avg.
Depth Size Best Avg. Best Avg. Size

3 7 1034.04 1049.89 1022.61 1043.09 6
4 15 997.18 1012.29 1000.13 1015.42 10
5 31 989.18 1000.68 995.37 1005.39 19
6 63 986.32 996.80 992.14 1001.64 21
7 127 986.82 998.39 994.66 1003.02 24
8 255 986.92 1000.80 995.09 1006.44 29

Table 2 shows a summary of the results obtained by GP [10] con-
sidering different values of maximum size and depth of the evolved
trees. As we can see, the best values correspond to a maximum depth
of 6 levels; being worse for both smaller and larger values. In particu-
lar, the quality of the rules gets slightly worse as long as the allowed
depth increases, and the size of the rules grows at the same time.
These results indicate that in these cases the search space is so large
that GP is not able to converge to better solutions.

On the other hand, when the search is restricted to rules of maxi-
mum depth of 3 or 4 levels the reached rules may be worse due to the
search space not containing better rules. However, given the reason-
able size of the search space for these depth values, exhaustive search
could be an alternative to a stochastic method as GP and so the last
conjecture could be clarified. This is the proposal of this work, which
is developed in the next section.

4 Calculating priority rules as state space search

We propose to systematically generate all the priority rules that can
be built from a given set of symbols, a grammar and some con-
straints on the size and depth of the expression trees. This method
can be expected to be of practical use for search spaces of reason-
able size. Limiting the size of the search space brings a number of
advantages, as guaranteeing small expression trees. In addition, the
best rule in this space may be better than the rules evolved by GP
searching over larger spaces. In any case, if the number of candidate
rules is large, evaluating all of them on a set of 50 instances of the
(1, Cap(t)||∑Ti) problem, as done by GP in [10], could be im-
practical. In this case, the use of a surrogate method may be suitable
to speed up the evaluation. Furthermore, to keep the effective search
space as reduced as possible, we can use strategies to avoid redun-
dant rules or even to discard some rules using knowledge from the
problem domain. These techniques could improve the efficiency of
the method at the risk of losing optimality in some cases.

As done in [10], we restrict the search to dimensionally compliant
expressions. This is reasonable when the expression trees represent
arithmetic expressions involving dimensional magnitudes, as it does
happen in equations representing physical phenomena. The dimen-
sion of the four characteristics considered in Table 1: dj , pj , p̄ and
γ(α) is time, denoted t, whereas constants are considered adimen-
sional. This way, dimension compliant rules require that operations
+, −, max or min are only applied to expressions having the same
dimension; while operations as ×, /, pow2, sqrt, max0 and min0

may be applied to expressions of any dimension; and exp and ln can
only be applied to adimensional expressions. It is easy to see that
the expression tree of the ATC rule is dimensionally compliant and
that the dimension of the whole expression is t−1, the same as the
dimension of both EDD and SPT rules.

The proposed method is termed herein Systematic Search and
Heuristic Evaluation (SSHE) and it is described in the following sub-
sections. We first describe a representation of priority rules that facil-
itates the enumeration procedure. Then, we devise an algorithm that
generates the set of feasible priority rules restricted to a given maxi-
mum size and depth of the expression trees. Besides, we introduce a
number of pruning techniques that prevent the algorithm from gener-
ating a number of equivalent and useless rules. Finally, we describe
the search algorithm and the way generated rules are evaluated.

4.1 Representation of priority rules

Expression trees representing rules are mapped into arrays, whose
size is established from the maximum number of elements, P , and
the maximum depth, D, allowed to trees. Let B denote the array rep-
resenting a priority rule, for convenience we denote the indices of
their components as 0, . . . ,S . So, S + 1 is the size of the array,
which must fulfill P ≤ S + 1 = 2D − 1.

The interpretation of the array content is borrowed from binary
heaps implementation. B0 is the root node, and the remaining posi-
tions may either be NULL or contain a terminal or function sym-
bol. If Bi is not NULL its parent is B(i−1)/2; if it has children, they
are B2i+1 (left child) and B2i+2 (right child). If a node only has one
child, it is the left one. Therefore, the nodes of the tree are distributed
in the array so that nodes at depth 1 ≤ k ≤ D are in positions
2k−1−1, . . . , 2k−2. In particular, the positions S/2, . . . ,S can only
contain terminal or NULL symbols, while positions 1, . . . ,S/2−1
may contain any terminal or function symbol, or NULL; and posi-
tion 0 can only contain terminal or function symbols.

Figure 2 shows the array representation of an expression tree with
size 6 and depth 3.

4.2 The search space of priority rules

The use of arrays to represent priority rules facilitates the process of
enumerating and building all feasible rules given D and P . The ex-
pression trees are generated by filling the array from right to left start-
ing in position S. In this process, the terminal, function or NULL
symbol inserted in position i must be coherent with the symbols pre-
viously inserted in positions [i + 1..S], and it must guarantee not to
exceed the maximum size of the rule. Besides, each time an operator,
either unary of binary, is inserted in a position of the array, we have
to be aware of the dimension of its operands; in fact, this is the reason
why the array is filled from right to left.

Algorithm 2 shows the generation procedure for the grammar de-
scribed in Section 3.3 and the function and terminal symbols given
in Table 1 (in the algorithm C denotes the set of constants). Besides,
[Bk] denotes the dimension of the expression tree under position k,
in particular if [Bk] = 1 the expression is adimensional. To produce
a feasible priority rule, this procedure is called initially on an empty

Figure 2: Array representation of a priority rule.
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Algorithm 2 Grammar generation procedure
Data: A state Bi+1..S , 0 ≤ i ≤ S and the number p ≤ P of non

null positions in Bi+1..S .
Result: A set B(i) of successor states of Bi+1..S .

1: if p = P then

2: return ∅;
3: if i ≥ S/2 ∨ B2i+1 = NULL then

4: if i%2 �= 0 ∧ Bi+1 �= NULL then

5: B(i) ← {pi, di, γ(α), p̄} ∪ C;
6: else

7: B(i) ← {pi, di, γ(α), p̄, NULL} ∪ C;
8: else

9: if B2i+2 �= NULL then

10: if [B2i+1] = [B2i+2] then

11: B(i) ← {+, −, max, min, ×, /};
12: else

13: B(i) ← {×, /};
14: else

15: if [B2i+1] = 1 then

16: B(i) ← {−, pow2, sqrt, max0, min0, exp, ln};
17: else

18: B(i) ← {−, pow2, sqrt, max0, min0};
19: return the set of states B(i);

array, i.e., i = S, and then iteratively from the state returned in B(i)
as long as i ≥ 0 and the number of non null positions in the state is
lower than P . The notation B(i) ← X means that one of the sym-
bols in the set X is chosen non deterministically and assigned to the
position i of the array B, then the new state Bi..S is assigned to the
set B(i). This way, we have a greedy algorithm that may finish either
in a dead end, if the number of non null symbols in the array reaches
P and i > 0, or with i = 0 and the array representing a full expres-
sion tree. This greedy algorithm may be naturally extended to build
a full search tree by just considering that B(i) ← X produces a set
of successor states of Bi+1..S , one for each of the symbols in X .

With the above, we explain some details of Algorithm 2. The con-
dition i ≥ S/2 ∨ B2i+1 = NULL in line 3 expresses that either
i is a position in the second half of the array or i is in the first half
and its left child is NULL and so its right child must be NULL
as well. In either case, the value inserted in i cannot be a functional
symbol. Furthermore, if i%2 �= 0 ∧ Bi+1 �= NULL in line 4 holds,
then i is the left child of node j, with i = 2j + 1, and the right child
of j is not null, so the position i cannot be NULL and must con-
tain any terminal symbol; otherwise i could contain NULL as well.
Otherwise, if i < S/2 ∧ B2i+1 �= NULL (line 8), the position i
must contain a function symbol as at least one of their children is not
null. The function will be unary or binary depending on the left child
being null or not. Furthermore, we have to take into account that the
operations +, −, max and min require that both operands have the
same dimension (line 11) and that the functions exp and ln can only
be applied to adimensional expressions (line 16).

Figure 3 shows a fraction of the search tree that Algorithm 2 would
generate for S = 2. With this value, priority rules of at most three
symbols could be generated, among others SPT and EDD.

4.3 Pruning the search space

The search space generated by Algorithm 2 may be reduced to a
great extent from the observation that it contains many equivalent
rules. We consider that two rules are equivalent if they induce the

Figure 3: Part of the tree generated by Algorithm 2 for S = 2. The
priority rules may contain 1, 2 or at most three symbols, and the depth
of the expression trees can be at most 2.

same order of priorities on the operations in US∗ in Algorithm 1, for
any problem instance and iteration of the algorithm.

Some of these equivalences can be efficiently identified along the
construction process due to symmetries in subexpressions rooted at
commutative operators, namely +, ×, min and max. To do that, we
define a total ordering on the terminal and function symbols. This or-
dering may be used to induce a total ordering on subtrees whose roots
are at the same level in a given state. To this aim, we perform a pre-
order traversal of both subtrees, comparing them lexicographically
w.r.t. the total ordering defined. Then, for a subtree rooted at a com-
mutative operator, we enforce that the left subtree must be less than
the right one. In particular, this strategy also enforces the operands
of a commutative operator to be different. The control of symmetries
may be done in line 11 of Algorithm 2, so that if the left child (in
position 2i + 1) is not less than the right child (in position 2i + 2),
no successors are generated from the commutative operators. This
mechanism preserves completeness of the search space, which fol-
lows from the next result.

Proposition 1. Let R be a priority rule containing one subexpres-
sion 〈L op R〉 with op a commutative operator and L ≥ R. There
exists a rule R′ equivalent to R either not using a commutative op-
erator in the subexpression or fulfilling the condition L < R.

Proof. Case 1 (L > R): Define R′ by swapping L and R in R. R′

fulfils the condition and is equivalent to R, since op is commutative.
Case 2 (L = R): If op = +, define R′ by substituting the subex-

pression 〈L op R〉 in R by L/0.5. If op = ×, substitute the subex-
pression in R by pow2(L). Otherwhise, if op ∈ {min,max} sub-
stitute the subexpression by L. In all cases R′ is equivalent to R, and
no commutative operator is used in the resulting subexpression.

In addition, the number of constants in the set of terminal symbols
may have a significant impact on the size of the search space, mainly
if there is no restriction on how these can appear in expressions. So,
another way to reduce the search space is to limit the number of con-
stants, e.g., to a smaller subset as {0.25, 0.5, 0.75}, at the expense
of losing some rules, and also to restrict the allowed operations with
them. In this regard, we opted to avoid binary operations among con-
stants. To this aim, the states generated in line 5 will not include a
constant if there is already a constant in position i + 1 (note that in
this case i and i+1 are the positions of the roots of the left and right
subtrees of the tree rooted at (i − 1)/2). Besides, in lines 16 and
18 the operators max0 and min0 will not be applied to constants.
Some other restrictions may be imposed to avoid useless subexpres-
sions, for example not applying the operators max0 and min0 to
subexpressions rooted at operators max0 and min0; and applying
the unary operator − only to constants (lines 16 and 18).
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4.4 Evaluation of the states and search algorithm

Conventional state space search requires an evaluation function on
the states that is often defined from problem domain knowledge. For
an intermediate state, the evaluation function returns an estimation
on the cost to reach a solution from this state, while for a goal state
it gives the actual cost of the solution represented by such node.
In our setting, goal states are valid priority rules, whereas interme-
diate states are partial expression trees. To evaluate goal states we
may follow the same strategy as in the GP proposed in [10]; i.e., the
candidate priority rule is evaluated on a number of instances of the
(1, Cap(t)||∑Ti) problem and the inverse of the average total tar-
diness is taken as its cost. However, this method cannot be extended
to evaluate intermediate states, as they do not represent actual prior-
ity rules. In this respect, we have not devised any method that allows
for discriminating in favor of promising states to guide the search.

As a consequence of the observations above, in order to get a com-
plete algorithm, we have to perform an exhaustive search and eval-
uate each one of the goals reached. As the number of goals may be
very large, even for small values of parameters P and D, evaluating
all of them on a number of 50 non-trivial training instances may be
prohibitive. Therefore, we have to think of some surrogate or sim-
plified method. The use of surrogates is common in scheduling, for
example to estimate the fitness value of neighboring solutions within
local search [22]. Additionally, we may exploit knowledge from the
problem domain to discard some of the goal states; in our case, we
could take into account the problem attributes and, for example, dis-
card the rules not containing some of the most relevant ones.

From the above ideas, we propose to use a simplified evaluation
consisting in a preliminary evaluation of the goal states on a few
small instances. The rules performing poorly on these instances are
discarded without full evaluation on the training instances. The ra-
tionale behind this is that a rule performing poorly at solving small,
easy, instances could be expected to perform poorly on larger ones.
So, hopefully, the number of good rules discarded in this process will
be small. At the same time, if we look at the problem attributes in Ta-
ble 1, pi, di, γ(α) and p̄, the first two are specific of the job i, and
so it is natural to think that a rule not containing them would not be
good. Notice that SPT contains only pi, EDD contains di and ATC
contains both. Besides, it seems reasonable to think that γ(α) and
p̄ have to be included in good rules as well. To clarify this, we will
analyze this issue in the experimental study.

Regarding the search strategy, Depth First Search (DFS) seems
the most reasonable option. We recall that we have to visit and eval-
uate all goal states and we have no way to guide the search towards
the most promising ones. So, the efficiency of the search algorithm
SSHE relies on the pruning strategies and the efficient evaluation of
the goal states.

5 Experimental study

We conducted an experimental study aimed at analyzing the compo-
nents of the proposed method and comparing it to the state-of-the-art
Genetic Programming (GP) approach proposed in [10]. To this aim,
we implemented a prototype in Java and ran a series of experiments
on a Linux cluster (Intel Xeon 2.26 GHz. 128 GB RAM), as in [10].

5.1 The benchmark set

We used two sets of instances; the first one is that proposed in [9]
to evaluate the performance of GP. This set includes 1,000 instances
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Figure 4: Relation on the average total tardiness obtained by 10,000
random rules on the training and filter sets (two filters with 5 in-
stances each are considered, Filter 1 and Filter 2). The numbers at
the top show the Kendall’s tau-b coefficient.

.

of 60 jobs each and a maximum capacity of the machine of 10. As
done in [10], 50 instances are used for training and the remaining
950 for testing. The second set consists of small instances and it is
used for filtering, as described in Section 4.4. The instances in this
set have 10 jobs and a maximum capacity of the machine of 3. We
generated 2,000 instances and solved all of them using the ATC rule
with g = 0.5, selecting the 1,000 instances with the greatest tardiness
values. We recall that the use of filters is aimed at discarding low-
performing rules while keeping good ones in short time. This way,
the filters used in the experiments consist each of 5 of these small
instances taken at random. The filtering mechanism discards any rule
performing worse than ATC with g = 0.5 on more than one instance
in the filter, avoiding its full evaluation on the training set.

5.2 Preliminary analysis

In this section, we show the results from a preliminary study aimed
at analyzing the expected utility of the filtering mechanism, the rel-
evance of the symbols used to generate rules, the influence of the
dimension of the expression trees, and finally the effectiveness of the
symmetry breaking mechanism at reducing the search space.

5.2.1 Filtering mechanism

To analyze the filtering strategy and to visualize the behavior of ran-
dom rules, we performed a preliminary experiment: 10,000 rules
were generated at random in the space defined by D=4, P=15 and
C={0.25, 0.5, 0.75}, following the same procedure as that used to
generate the initial population of the GP proposed in [10]. With each
rule we solved the instances of the training and two filter sets (termed
Filter 1 and Filter 2 throughout).

Figure 4 shows the average total tardiness obtained; x values cor-
respond to filter sets and y values to the training set. In the latter,
the best rule produces an average total tardiness of 1,030.94 and the
average value over all rules is 7,686.11, which is similar to the av-
erage value obtained by random search, i.e., by selecting one job in
line 6 of Algorithm 1 uniformly. We can observe that there is a posi-
tive correlation between the values obtained on the filter and training
sets. At the same time, there are some differences between the filters.
Besides, it is observed that there is no rule that being bad in the fil-
ters is good in the training set. These results suggest that the filtering
mechanism may be useful, but at the same time that the results may
be dependent on the filter used.
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Table 3: Frequency of symbols in the rules passing the filters. For
each symbol in Table 1 and filter, we show the frequency of the sym-
bol in the passing rules w.r.t. its frecuency in the total set of rules,
and the average total tardiness of the rules passing the filter in the
training set of 50 instances.

%filtered
%total

Avg. tardiness

Symbol Filter1 Filter2 Filter1 Filter2

0.25 93.27 69.59 1089.55 1097.75
0.5 49.53 85.78 1037.00 1059.77
0.75 58.30 88.01 1034.62 1111.18
pi 126.58 126.58 1063.12 1084.76
di 126.58 126.58 1063.12 1084.76

γ(α) 126.58 126.58 1063.12 1084.76
p̄ 89.97 101.23 1077.58 1083.11
/ 53.11 79.45 1104.27 1087.84
× 92.16 109.19 1038.87 1088.95

min 192.93 136.90 1051.21 1066.75
max 162.08 78.05 1077.60 1102.90

+ 163.63 150.29 1046.82 1082.94
- 157.14 159.28 1063.18 1084.75

sqrt 27.97 40.99 1029.22 1049.02
pow2 52.26 41.00 1030.46 1084.54

- 158.29 122.19 1044.62 1063.51
max0 23.09 17.15 1013.42 1068.23
min0 23.09 30.26 1038.25 1041.87
ln 75.80 111.90 1037.05 1070.28
exp 39.01 48.31 1021.52 1044.26

5.2.2 Relevance of the symbols

To assess the relevance of the symbols (see Table 1) we generated the
whole set of priority rules in the space defined by D=4, P=15, and
C={0.25, 0.5, 0.75} (2.44× 109 rules in all). Then, we analyzed the
frequency of each symbol in these rules and also in the rules passing
the filters. For this purpose, we considered the same two filters as in
Figure 4 (Filter 1 and Filter 2).

The results are summarized in Table 3. For each symbol and filter,
we show the quotient %filtered

%total
in percentage terms and the average

total tardiness obtained by the rules passing the filter. %total is the
percentage of rules that contain a given symbol and %filtered is the
percentage of the rules containing the symbol in the subset of rules
that passed the filter (in these experiments 6,275 and 14,362 rules
passed Filter 1 and 2 respectively). This way, values of %filtered

%total
in

percentage greater than 100 mean that the symbol is relevant as the
ratio of rules containing it is greater in the filtered set than in the
original set.

We can observe that all the symbols have a significant presence
in the rules passing the filters, even though there are differences de-
pending on the filter used. Symbols as min, max, + and − have a
greater presence in the filtered sets than they have in the original set.
Importantly, the frequency values of the symbols pi, di and γ(α) are
the same for the two considered filters, although Filter 2 is passed
by more than twice the number of rules that pass Filter 1. This is
not due to a coincidence; indeed, all the rules passing the filters con-
tain all these three symbols. This is in agreement with the conjecture
made in Section 4.4. This experimental evidence motivates discard-
ing candidate rules not having the three symbols pi, di and γ(α).
This includes more than half of the rules in the search space.

5.2.3 Dimension of the expression trees

We restrict the study to the rules containing the three symbols pi,
di and γ(α) in the set of rules considered in Section 5.2.2. There
are rules with 47 different dimensions (from t−7.0 to t8.0). However,

only the dimensions t−2, t−1, t0, t1 and t2 have a significant pres-
ence after filtering. Table 4 shows the frequency and average total
tardiness values of these rules. It is remarkable the high proportion
of rules with dimension t1. Given their tardiness values, we could
restrict the search to this space. However, this is only a preliminary
result and additional experiments would be necessary for drawing
more meaninful conclusions.

Table 4: Frequency of dimensions on the set of rules containing the
three symbols pi, di and γ(α). For each dimension t−2, t−1, t0, t1

and t2 and filter, we show the frequency of the symbol in the passing
rules w.r.t. its frequency on the total set of rules, and the average
tardiness of the rules passing the filter in the training set.

%filtered
%total

Avg. tardiness

Dimension Filter1 Filter2 Filter1 Filter2

t−2 59.47 21.19 1053.74 1058.83
t−1 31.17 20.89 1072.84 1062.13
t0 26.32 43.98 1559.39 1087.08
t1 209.06 184.67 1027.35 1075.71
t2 73.37 132.48 1045.90 1127.07

Table 5: Summary of results from different combinations of D, P ,
C and time limit of 2 hours, with and without symmetry breaking in
the generation of states. The generated goals are not evaluated.

With symmetry breaking Without symmetry breaking
Time Generated Time Generated

D P |C| hh:mm:ss Nodes Goals hh:mm:ss Nodes Goals
3 7 9 00:00:00 2.06E5 5.80E3 00:00:00 4.17E5 1.83E4
4 12 0 00:00:56 1.41E8 2.41E7 00:04:40 7.33E8 1.57E8
4 12 3 00:10:04 1.53E9 1.08E8 00:40:45 6.37E9 6.44E8
4 12 9 02:00:00 1.83E10 3.72E8 02:00:00 1.82E10 4.67E8
4 15 0 00:03:06 4.16E8 1.74E8 00:30:42 4.19E9 2.23E9
4 15 3 00:31:53 4.34E9 1.15E9 02:00:00 1.65E10 6.09E9
4 15 9 02:00:00 1.57E10 2.58E9 02:00:00 1.65E10 4.00E9
5 12 0 02:00:00 1.75E10 3.52E6 02:00:00 1.82E10 4.67E8

5.2.4 Symmetry breaking

We performed a number of experiments considering different values
of D, P , C, with and without symmetry breaking, and a time limit of
2 hours. The results are summarized in Table 5. For D = 3 the whole
search space can be generated with and without symmetry breaking
in less than 1s. However, symmetry breaking is able to reduce the
number of goal states in almost one order of magnitude. On the other
hand, for D = 5, the search space is so large that the time limit is
always reached. In both cases the number of generated states is rather
similar, showing that the symmetry breaking mechanism represents
a low overhead. However, symmetry breaking allows for generating
around two orders of magnitude less goals due to avoiding equivalent
rules. For D = 4, the results strongly depend on P and C, with three
different cases:

• The algorithm terminates in both cases; but by using symmetry
breaking it takes shorter time and produces much fewer goals.

• The algorithm terminates with symmetry breaking but not without
it; in these cases the number of generated states and goals is lower
in the first case, making clear the usefulness of symmetry breaking
to avoid redundant rules.

• The algorithm terminates in no case; in these situations both algo-
rithms generate a similar number of states and goals, but without
symmetry breaking many of the goals are equivalent.
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5.3 Performance of SSHE

From the results above, we choose D = 4, P = 15 and discard
any rule not containing the 3 symbols pi, di and γ(α). Besides,
we considered three values for the set C: ∅, {0.25, 0.5, 0.75} and
{0.1, . . . , 0.9}; 4 options for dimension: t−1, t0, t1 and any dimen-
sion; and two filters: Filter 1 and Filter 2. The time limit was 10 hours
(the same time given to GP in [10]). The results are summarized in
Table 6; from them, we can make the following observations:

Table 6: Results by SSHE with D=4 and P=15, considering different
sets of constants, dimensions and filters. The time limit was 10 hours.

Training Test
|C| Dim. Fi. hh:mm:ss Best Avg. Best Avg.
0 t−1 1 00:15:56 1024.36 1072.74 1035.13 1064.50
0 t−1 2 00:15:59 1018.80 1066.79 1016.12 1079.41
3 t−1 1 02:05:13 1011.34 1072.84 1007.69 1061.99
3 t−1 2 02:06:00 999.86 1062.13 1009.78 1070.42
9 t−1 1 10:00:00 1006.96 1056.37 1005.50 1045.65
9 t−1 2 10:00:00 997.64 1007.15 1012.28 1017.07
0 t0 1 00:30:14 1002.88 1177.48 1014.42 1166.93
0 t0 2 00:30:51 1000.30 1087.91 1010.29 1100.87
3 t0 1 03:42:41 990.76 1559.39 997.02 1528.67
3 t0 2 03:39:51 998.88 1087.08 1011.94 1099.65
9 t0 1 10:00:00 999.84 4369.41 1015.95 4178.28
9 t0 2 10:00:00 996.94 1611.72 1005.03 1583.04
0 t1 1 00:53:22 1000.96 1039.75 1008.19 1031.78
0 t1 2 00:54:36 998.82 1073.44 1008.78 1088.29
3 t1 1 05:46:19 998.48 1027.35 1010.51 1023.36
3 t1 2 05:54:48 995.22 1075.71 1012.70 1079.67
9 t1 1 10:00:00 996.40 1043.34 1000.33 1037.19
9 t1 2 10:00:00 998.34 1083.66 1006.96 1077.40
0 any 1 02:13:50 1000.96 1053.70 1008.19 1046.00
0 any 2 02:15:17 998.82 1078.98 1008.78 1091.82
3 any 1 10:00:00 990.76 1074.40 997.02 1067.74
3 any 2 10:00:00 995.22 1086.52 1012.70 1090.51
9 any 1 10:00:00 996.40 1095.18 1000.33 1086.51
9 any 2 10:00:00 996.10 1115.10 1008.41 1106.29

• In order for the algorithm to terminate by 10 hours, we have to
restrict to |C| ≤ 3 and to rules of the same dimension.

• Although the number of rules that undergo full evaluation depends
on the filter used, as shown in Section 5.2.2, the time taken by the
algorithm is very similar, suggesting that most of the time is spent
in applying the filters. Notice that with D = 4, P = 15 and
|C| ≤ 3, the time spent in generating priority rules represents a
small fraction of the total running time (see Table 5).

• Regarding total tardiness values, it is remarkable the bad average
results from some rules of dimension t0. To draw sharper conclus-
sions, we summarize in Table 7 the total tardiness values obtained
by the best rules averaged for each value of the parameters. We
can observe that C = {0.25, 0.5, 0.75} is the best option, t−1 is
the worst dimension and the chosen filter is not too relevant. Even
though the results in Table 7 suggest that any dimension is the
best option, it may also be too time consuming, as indicated in Ta-
ble 6. On the other hand, rules of dimension t1 yield solutions of
similar quality in much shorter time, and the proportion of rules
having dimension t1 that pass any of the filters in Table 4 is greater
than with any other dimension. So, dimension t1 is to be preferred.

5.4 Comparison to GP

As pointed out, the GP proposed in [10] is the only method available
to evolve priority rules for the (1, Cap(t)||∑Ti) problem. This al-

gorithm was evaluated on the same benchmark we consider herein.
Different experiments were carried out with the maximum depth
of the expression trees D varying from 3 to 8 and maximum size
P = 2D − 1. Due to its stochastic nature, 30 independent runs were
performed. Table 2 summarizes the total tardiness values produced
by the best and average of the 30 rules, averaged for the 50 instances
of the training set and the 950 of the test set. Given the limitations
of SSHE mentioned in previous sections, we compare GP and SSHE
with D = 4. For smaller values the search space is small and SSHE
is able to reach an optimal solution in very short time, while for val-
ues of D greater than 4, GP is expected to perform better due to the
combinatorial explosion of states in SSHE.

For a fair comparison, we gave SSHE a time limit of 10 hours
(as given to GP for one single run), and performed 30 runs using
30 different filters (generated as Filter 1 and Filter 2). In doing so,
we may compare the best and average of the 30 rules obtained with
those evolved by GP. Besides, in these experiments, SSHE restricts
the search to expressions containing the three symbols pi, di and
γ(α), and with dimension t1. The results are reported in Table 8.
Noticeably, regarding total tardiness values, the rules calculated by
SSHE outperform the rules evolved by GP by a wide margin. In-
deed, despite restricting the search to small rules, SSHE is able to
find better rules in average than GP with larger values of D and P
(see Table 2). On the other hand, the rules evolved by GP are smaller
in average than those produced by SSHE. This does not come as a
surprise, since GP introduces a bias in the evaluation function in fa-
vor of small expression trees. Anyway, SSHE could be restricted to
a lower value of P to search for smaller rules if necessary.

Table 7: Summary of results from Table 6 averaged for each C, di-
mension and filter.

Avg. tardiness Avg. tardiness Avg. tardiness
|C| Training Test Dim. Training Test Fi. Training Test
0 1005.7 1013.7 t−1 1009.8 1014.4 1 1001.7 1008.4
3 997.6 1007.4 t0 998.3 1009.1 2 999.6 1010.3
9 998.6 1006.9 t1 998.0 1007.9

any 996.4 1005.9

Table 8: Summary of results obtained by GP proposed in [10] and
SSHE with D=4, P=15, |C|=3 and 30 different filters. Best, average
and standard deviation results from 30 runs are reported. Avg. Size
is the average size of the best rules obtained in 30 independent runs.
The Best value in testing is that obtained by the best rule in training.

Training Testing Avg.
Best Avg. SD Best Avg. SD Size

GP 997.18 1012.29 23.73 1000.13 1015.42 23.96 10
SSHE 993.90 995.62 1.90 997.05 1001.17 4.71 13

Another advantage that SSHE shows over GP is that it is more
stable, as can be observed from the standard deviation values. In the
experiments, the average time taken by SSHE was 7 hours and 47
minutes, reaching the time limit of 10 hours in 7 out of the 30 runs.

6 Conclusions

The automated discovery of priority rules is an important and chal-
lenging task. In this paper, we propose a new method for generating
rules for the (1, Cap(t)||∑Ti) problem. Our approach is based on
systematically searching over the space of possible expression trees
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of a given maximum depth and size, and integrates a number of effec-
tive optimizations to reduce the search space and improve efficiency.
From the experimental study, we can conclude that state space search
represents a useful alternative to hyper-heuristics as Genetic Pro-
gramming on search spaces of reasonable size. The experimental
results also encourage further research, as devising new optimiza-
tions or applying the proposed approach to other scheduling prob-
lems. In addition, the use of constraint reasoning frameworks, such as
Boolean satisfiability (SAT) or Constraint Programming (CP), repre-
sents a promising line for the future, which could allow for exploiting
additional pruning techniques. Finally, we will investigate the devel-
opment of parameterized priority rules using abstract constants, such
as the ATC rule.
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Ochoa, Ender Özcan, and John R. Woodward, A Classification of
Hyper-Heuristic Approaches: Revisited, 453–477, Springer Interna-
tional Publishing, Cham, 2019.

[4] J. Carlier, ‘The one-machine sequencing problem’, European Journal
of Operational Research, 11, 42–47, (1982).

[5] Shelvin Chand, Quang Huynh, Hemant Singh, Tapabrata Ray, and
Markus Wagner, ‘On the use of genetic programming to evolve priority
rules for resource constrained project scheduling problems’, Informa-
tion Sciences, 432, 146 – 163, (2018).

[6] C. Dimopoulos and A.M.S. Zalzala, ‘Investigating the use of genetic
programming for a classic one-machine scheduling problem’, Advances
in Engineering Software, 32(6), 489 – 498, (2001).
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