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Local spin and open quantum systems: clarifying mis-
conceptions, unifying approaches

A. Martín Pendás∗†, E. Francisco∗†

The theory of open quantum systems (OQSs) is applied to partition the squared spin operator
into fragment (local spin) and interfragment (spin-coupling) contributions in a molecular system.
An atomic or fragment subsystem is described by a quantum mechanical mixed density operator
composed of sectors, characterized by different integer number of electrons that appear with
specific probabilities. The OQS fragment spin operators coincide with those defined by Clark and
Davidson in their paper on local spins (J. Chem. Phys. 2001, 111111555, 7382) and are fully consistent
with the theory of local operators by Stollhoff and Fulde (J. Chem. Phys. 1980, 777333, 4548).
OQSs provide a unique way to rationalize the non-zero values of local spins found in closed-shell
molecules, a fact that has led to propose a large number of modified definitions, which we show
suffer from inconsistencies. The OQS viewpoint makes it easy to build models for localized and
itinerant spins. These models are used to classify possible local spin arrangements. The role
of electron correlation is also studied through the analysis of the Hubbard Hamiltonian in small
chains. Local spins result from a game played differently by localized and delocalized electrons. A
number of examples exemplifying the ability of the OQS local spin perspective to uncover simple
chemical patterns is examined.

1 Introduction
No other conceptual framework in the history of human thought
has been interpreted in so many mutually exclusive ways as Quan-
tum Mechanics (QM).1,2 In a way, interpreting QM has become a
discipline on its own, and although most practicing physicists sim-
ply take Copenhaguen’s interpretation for granted and apply the
take the money and run aphorism, trying to understand what lies
deep in a wavefunction is still a way of making a living in Physics.
Applying QM to Chemistry adds a new source of noise to this sit-
uation. Chemists think locally in real space. However, as soon as
two otherwise isolated fragments start to interact with each other
locality disappears in the overall state vector. Atoms dissolve on
forming molecules, and molecules dissolve on forming molecu-
lar aggregates. Yet, chemists know that atoms, functional groups
and other entities like bonds or lone pairs persist in molecules,
endowing systems with properties that can be subtly tuned.

Extracting local information from global wavefunctions is thus
essential to theoretical chemistry. As in QM, many different, again
mutually exclusive routes to analyze (i.e. interpret) wavefunc-
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tions have been proposed. Sooner or later, these techniques need
to cope with how to decompose a quantum mechanical expec-
tation value into its chemical constituents, which must be first
isolated from the wavefunction. We thus partition binding or re-
action energies, giving rise to energy decomposition analyses,3

the number of electrons of a system into its atoms or fragments,
providing what we call population analyses,4 and so on. Literally
dozens of techniques give different answers to these questions.
Those answers are then used to guide the synthesis of new mate-
rials, for instance.5

A particularly relevant issue that has received quite a lot of at-
tention in recent years is the partition of the total electronic spin
of a system into fragment and interfragment contributions.6–18

The relation between the coupling of the spins of a pair of elec-
trons i and j and chemical bonding was first examined by Pen-
ney19, who noticed that the expectation value of−4/3ŝssi · ŝss j would
pass from 1 to 0 as the pair evolves from a singlet coupled bonded
to a non-bonded pair, proposing to use this quantity as a bond or-
der, which has come to be known as the Penney-Dirac bond order.
In the context of valence-bond theory, these expectation values
have been widely used in the theoretical analysis of nuclear mag-
netic resonance20 and, in this sense, the study of how spins cou-
ple at different spatial points in molecules predated the modern
local spin concept. The understanding of spin couplings (SCs) has
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also become basic in modern technology, since much of it is based
on the control of local magnetic interactions in crystals.21 These
interactions have been interpreted historically through model
Hamiltonians like that of Heisenbeg, H = −∑A<B JABŜSSA · ŜSSB, in
which local spins are associated to magnetic centers that interact
in a pairwise manner. This means that the correlation of spins lo-
cated at different centers in chains, as modeled by different lattice
approximations, has been widely studied in the past.22,23 Find-
ing the expectation value of ŝssi · ŝss j beyond the tight binding or
Hubbard models was also soon examined by Rosenberg,24 who
used expressions using one- and two-particle densities derived by
Adams.25.

In Chemistry, the presence of localized spins leads to radicals,
which have been used in very many different ways. When the
total spin of a system vanishes, 〈Ŝ2〉= 0, and with it the spin den-
sity ρs(rrr) at each point in space, a general means to locate the
presence of local spins beyond that of computing model SCs is
needed, and a partitioning technique for the spin-square opera-
tor Ŝ2 becomes urgent. This is the case of singlet diradicals or
polyradicals in chemistry.

Over the years, the theory of site-site SCs evolved considerably.
Luzanov26 considered, for instance, how SCs are related to the
traditional ionic and covalent character of a link in conjugated
systems, and Clark and Davidson (CD), in a set of papers,6–8,12

clarified how to use general atomic (i.e. site) projection opera-
tors to partition the squared spin operator into local atomic con-
tributions and interatomic (i.e. site-site) SC terms. Actually, their
derivation used a subset of the local operator formalism of Stoll-
hoff and Fulde,27 that had already been applied to the SC prob-
lem in relatively high-level multiconfigurational calculations.28,29

Aside from the arbitrariness of atomic projectors, their approach
is exact, and it was initially applied with Löwdin’s symmetric pro-
jections. Since then, CD-like local spins have been used rather
commonly in the physical literature30 as well as to analyze ev-
ery more complex phenomena, like the multi-excitonic character
of excited states in molecular complexes.31 In chemistry, how-
ever, the CD approach was soon criticized,9 for some extra re-
quirements for a spin partition to be physically meaningful were
added that were not satisfied by the local spins of CD. In partic-
ular, it was suggested that local atomic spins 〈Ŝ2

A〉 of closed-shell
wavefunctions should be zero. After all, how could the atomic
local spin of an otherwise perfectly diamagnetic single molecule
get a non-zero value? Little later, Mayer11,13,14,16 insisted on this
shortcoming of Clark and Davidson approach and proposed an
alternative definition that enforced zero local spins for restricted
single-determinant wavefunctions (SDW). A rapid succession of
proposals followed. Alcoba et al15,32 generalized Mayer’s ap-
proach to correlated wavefunctions, but forcing zero local atomic
spins even at dissociation, Mayer and Matito14 solved this incon-
sistency, and in a final round, Ramos-Cordoba et al (RC)17 pro-
posed a set of four conditions that any theory of local spins should
satisfy. Namely, (i) closed-shell restricted wavefunctions should
lead to zero local spins; (ii) local spins should behave properly
in asymptotic (i.e. dissociation) limits, tending to the 〈Ŝ2〉 value
of the isolated fragments; (iii) correlated formulas should tend to
single-determinant ones in the absence of correlation; (iv) local

spins of one-electron systems should be proportional to the elec-
tron population of the center considered. Ramos-Cordoba et al
also showed that a one-parameter linear combination of the ex-
pressions proposed by CD and Alcoba et al leads to a continuous
family of local spins, from which only one member satisfies the
four conditions, together with a non-negativity constraint, simul-
taneously. Since then, this proposal has been used repeatedly to
deal with the quantification of di- and poly-radical character in
molecules,33,34 etc.

These new approaches have also been criticized. Luzanov,35

already put forward in 2012 that they had no formal or concep-
tual relation to the conventional spin correlators consistent with
both the CD and previous approaches, and that the new descrip-
tors could not be used to estimate Heisenberg exchange integrals.

Here we try to clarify the meaning of local spins, showing
that regardless the choice of atomic projection, the CD formal-
ism, and thus the spin correlators going back to Penney and used
by Luzanov, Fulde, and many others, provide a fully rigorous de-
composition of 〈Ŝ2〉. To show this, we start by considering atoms
in molecules as open quantum systems (OQSs), characterized by
well-defined subsystem density operators obtained by tracing out
the degrees of freedom of the rest of the system. An atom-in-the-
molecule has a fluctuating number of electrons (each possibility
gives rise to a so-called sector, equipped with its own set of den-
sity matrices). The CD local spins turn out to be weighted sums of
squared-spin expectation values that run over all possible sectors
and sector spin states.

As an easy to understand example, the H atom in a H2 molecule
cannot have a zero local spin. At the single-determinant level,
with any symmetry-preserving atomic partitioning, we find either
0, 1, or 2 electrons in it with probabilities 1/4, 1/2, and 1/4, re-
spectively.36 This results from the 50/50 covalent/ionic mixing
enforced by the wavefunction structure. Since S in these three
situations is forced to be 0, 1/2 and 0, respectively, this leads, in-
evitably, to 〈Ŝ2

H〉= 1/4×0(0+1)+1/2×1/2(1/2+1)+1/4×0(0+
1) = 3/8, which is the CD result. There is no inconsistency here.
Much on the contrary, what we find inconsistent is to assign a
null local spin value to this H atom. This requisite is summarized
by Mayer’s reasoning that the absence of free spins should lead
to null local spins for single-determinants. However, this ignores
that the electrons of a Lewis pair delocalize. Actually, they delo-
calize freely over the two atoms for a pure covalent pair. Since we
can find an isolated electron in our H atom-in-the-molecule, its
local spin is not null.

Local spins are thus non-vanishing in general in closed-shell
molecules. We will fully unveil their relation to covalency and
to the localization and delocalization of electrons, showing that
the OQS point of view tells a fully consistent, rigorous story. This
by no means implies that Ramos-Cordoba et al formalism is not
useful. In fact, it is compatible with our present findings once
we understand where the non-vanishing spins are hidden in their
proposal. Since the OQS perspective is rather easy to grasp from
a chemical point of view, we expect that our contribution may
help researchers who would like to use local spins in their work
to understand what they really mean and to select the framework
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that better fits their needs.

The OQS perspective sheds much light on how spin and spin
interactions evolve as electrons delocalize and as electron corre-
lation becomes significant. The Heisenberg-like image of a mag-
netic material, for instance, is rather obvious in localized cases,
dissolving as the magnetic electrons delocalize. We think that
in line with classical works on spin coupling in chains22,23 the
Hubbard model may be very useful to identify several local spin
regimes, and offer a couple of examples with it. We also empha-
size that the open systems partitioning that we offer provides very
clear images of how local spins appear from statistical mixtures
of sectors with different number of electron counts, that couple
following simple rules. If the fact that a fragment needs to be
envisioned as a mixture of situations characterized by different
integer numbers of electrons is acknowledged, then non-zero lo-
cal spins follow necessarily. If, however, the OQS fine grained
partition is not needed, our global local spins and spin couplings
are otherwise exactly equal to those provided by the conventional
CD or spin correlator theory.

We start by presenting Clark and Davidson projectors, as well
as Löwdin’s density matrix formalism. We then turn to show how
the sequence of requirements imposed by Mayer led to a number
of algebraic operations which are not legitimate in our opinion.
In the end, these are the basis of Ramos-Cordoba et al formula,
which we also show to provide non-physical results in cases not
considered up to now. Then we briefly review the real space open
systems formalism, and demonstrate how the CD local spin ac-
quires its full sense after it. A number of academic examples is
then examined.

2 Local spin formulations

Let us briefly consider the different formulations of the local spin
concept, starting from the projection formalism proposed by Clark
and Davidson6 which, as already stated, is equivalent to the local
operator formalism of Stollhoff and Fulde27 or to the spin cor-
relators used by Luzanov and coworkers.26,31,35 The total vector
spin operator of an N electron system is defined as the sum of the
spins for each electron, ŜSS = ∑

N
i ŜSSi. Now consider a one-electron

projection for each atom or fragment A in which we divide the
system, such that ∑A P̂A = 1̂ and P̂AP̂B = δABP̂A, and assign a frag-
ment spin operator as ŜSSA = ∑

N
i ŜSSiP̂A

i . With this, it is easy to show
that ŜSSA is a proper angular momentum operator, and with it,

Ŝ2 = ∑
A,B

ŜSSA · ŜSSB = ∑
A

Ŝ2
A +∑

A
∑

B 6=A
ŜSSA · ŜSSB, (1)

so that the squared spin operator is a sum of intra- and inter-
fragment terms, the latter measuring the coupling of the spins
associated to each pair of fragments. To compute the expectation
value of each of these terms, we notice that (ŜSSA · ŜSSA = Ŝ2

A)

ŜSSA · ŜSSB = ∑
i, j

ŜSSi · ŜSS jP̂A
i P̂B

j = δAB ∑
i

Ŝ2
i P̂A

i +∑
i

∑
j 6=i

ŜSSi · ŜSS jP̂A
i P̂B

j , (2)

which is a sum of one- and two-electron operators. Using the one-
and two-particle reduced density matrices ρ1 and ρ2,

〈ŜSSA · ŜSSB〉=
3
4

δABTr(P̂A
1 ρ1)+Tr(P̂A

1 P̂B
2 ŜSS1 · ŜSS2ρ2). (3)

In the above expression we have used the fact that the spin of
each electron is s = 1/2. Now it is clear that, since for any frag-
ment partition Tr(P̂A

1 ρ1) = NA, the fragment’s electron population,
the first term in Eq. 3 just adds the squares of the spins of the
electrons associated to the fragment, while the second takes into
account their mutual coupling.

As it can be seen, the approach up to now is completely rig-
orous and univocal. The only arbitrariness lies in the choice
of the fragment projectors. One can use either Fock or real
space approaches. For instance, if a local basis set {|µ〉} is used
to build the one-electron functions used to construct the wave-
function, then a proper Hermitian Löwdin projector can be de-
fined by using the Löwdin-orthogonalized basis |µ ′〉= ∑ν |ν〉S−1

νµ :
P̂A = ∑µ ′∈A |µ ′〉〈µ ′|.9 Any Fock projector is dependent on the de-
tails of the basis set and the way in which one-electron functions
are constructed. In exhaustive real space partitionings with frag-
ment regions satisfying

⋃
A ΩA =R3, the projector is simply equal

to the standard Heaviside-like indicator function or atomic weight
P̂A(rrr) = ωA(rrr), where ωA(rrr) is equal to one within the A region
and zero outside. Real space projectors lead to expectation values
invariant under orbital transformations, and should be favoured.
For this reason we will use the following general notation, which
is explicit in the case of real space partitions:

Tr(P̂A
1 ô1ρ1) ≡

∫
A

ôρ(xxx;xxx′)|xxx′→xxxdxxx and

Tr(P̂A
1 P̂B

2 ĝ1,2ρ2) ≡
∫

A

∫
B

ĝρ2(xxx1,xxx2;xxx′1,xxx
′
2)| xxx′1→xxx1

xxx′2→xxx2

dxxx1dxxx2,

where xxx ≡ rrrσ gathers spin-space electron coordinates, while rrr
refers to the spatial-only components. We will use in our ex-
amples the partition provided by the quantum theory of atoms
in molecules of Bader and coworkers,37 but our conclusions are
completely general. Both conventional CD and RC local spins
have been computed for orbital, e.g. Löwdin, as well as for real
space decompositions, e.g. Bader. We stress that our global lo-
cal spins are exactly equivalent to the convential CD formulation.
The OQS decomposition here presented for other fragment parti-
tions is straightforward and will be presented elsewhere in a near
future.

It only remains to compute the effect of the ŜSS1 · ŜSS2 operator
on the two-particle density matrix (2RDM). As we will be show-
ing, several unfortunate misinterprations around this step lie at
the root of the very many different routes taken by different au-
thors. In a collinear spin regime, it was Dirac38 in 1929 who
showed, with the help of very simple arguments, that for two dif-
ferent electron spins, ŜSS1 · ŜSS2 = (2 p̂σ

12−1)/4, where p̂σ
12 is a permu-

tation operator that exchanges only the electron spin coordinates
of electrons 1 and 2 (i.e. their Sz projections). It is clear that this
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operation acts on pairs of electrons. Now,

p̂σ
12ρ2(rrr1σ1,rrr2σ2;rrr′1σ

′
1,rrr
′
2σ
′
2) = ρ2(rrr1σ2,rrr2σ1;rrr′1σ

′
1,rrr
′
2σ
′
2) =

−ρ2(rrr2σ1,rrr1σ2;rrr′1σ
′
1,rrr
′
2σ
′
2), (4)

where we have used the antisymmetry properties of the 2RDM.
Integrating out the spin variables, we can thus write17

∑
i

∑
j 6=i
〈ŜSSi · ŜSS j〉=−

1
4

∫∫
ρ2(rrr1,rrr2;rrr1,rrr2)drrr1drrr2

−1
2

∫∫
ρ2(rrr1,rrr2;rrr2,rrr1)drrr1drrr2. (5)

Straightforward manipulation also leads to

〈ŜSSA · ŜSSB〉=
3
4

δAB

∫
A

ρ(rrr)drrr

−1
4

∫
A

∫
B
{ρ2(rrr1,rrr2;rrr1,rrr2)+2ρ2(rrr1,rrr2;rrr2,rrr1)}drrr1drrr2, (6)

which is Clark and Davidson expression written in density ma-
trix language. Similar expressions can be obtained for other spin
coupling descriptors, like the SC anisotropy.35,39 Since ŜSSA is a
Hermitian operator, local spins and spin couplings satisfy all rules
of well-behaved operators in QM. For instance, 〈S2

A〉 ≥ 0. It can
be shown that (see the supporting information (SI)) for a single-
determinant description of H2 with Ψ = |σg(1)σ̄g(2)|, 〈Ŝ2

A〉 = 3/8
and 〈ŜSSA · ŜSSB〉 = −3/8 (A 6= B). This fact "makes a physical inter-
pretation ... in terms of local spins difficult, because closed-shell
molecules by definition have no spin excess at any point in space"
for Podewitz et al,40 an argument which is an invalid extrapola-
tion of the behavior of the spin density, and is a result that "looks
for me intuitively not appealing" for Mayer.13

The path taken by Mayer11 leading directly to recent local spin
expressions starts from Löwdin’s representation for Ŝ2,41

Ŝ2 =−N(N−4)
4

+∑
i< j

p̂σ
i j, (7)

who acknowledges Dirac’s paper.38 The first term of this ex-
pression condenses the contribution coming from the integra-
tion to R3 of ρ(rrr) in Eq. 6 (N × 3/4), together with the first
term in the double integral of Eq. 6 (−N(N − 1)/4), that gives
N× 3/4−N(N− 1)/4 = −N(N− 4)/4. It thus mixes one-particle
and two-particle counts. Adding them is legitimate when obtain-
ing a global expectation value, but it is not when using fragment
projectors, since the number of intra- and inter-fragment electron
pairs is not obvious and needs be computed. In other words, writ-
ing Ŝ2 =−N̂2/4+ N̂ +∑i< j p̂σ

i j as in Eq. 2 of Ref. 13 should not be
allowed in a rigorous local spin definition. Doing so, some two-
electron terms (which would end up in AB spin-coupling contribu-
tions) become effectively embedded in the one-electron contribu-
tions (which are necessarily absorbed in the local spin, one-center
terms).

A different route was followed by Alcoba and coworkers,15

who used spinless quantities such as the effectively unpaired den-
sity matrix u introduced by Takatsuka, Fueno and Yamaguchi42

and later by Staroverov and Davidson,43–45

u(rrr1;rrr′1) = 2ρ(rrr1;rrr′1)−
∫

ρ(rrr1;rrr2)ρ(rrr2;rrr′1)drrr2. (8)

The u diagonal density has been repeteadly used as a local (or
global, when integrated) measure of the number of unpaired elec-
trons, an interpretation which is made clear after an expansion in
terms of spinless natural orbitals, u(rrr) = ∑i ni(2− ni)χ

∗
i (rrr)χi(rrr).

The occupation number of natural orbital χi satisfies 0 ≤ ni ≤ 2.
For unrestricted determinants with ni = 0,1,2, the trace of u
counts singly occupied orbitals, and the u(rrr) density the sum of
the densities provided by those singly occupied functions. The
properties of u have been extensively studied,44 and unveil how
its interpretation in terms of unpaired electrons suffers from se-
vere shortcomings in the case of multideterminant wavefunctions.
For instance, its trace can grow twice as large as the total num-
ber of electrons, 0 ≤ Tr(u) ≤ 2N, and when partitioned into frag-
ments, the use of u may lead to a non-integer number of unpaired
electrons for a fragment in the dissociation limit. In the support-
ing information (SI) we also show that a CAS[2,2] description of
the first 1Σ+

g excited state in H2, which at dissociation describes
the pure ionic resonance H+ −H– ←−→ H– −H+, leads to one
effectively unpaired electron per H atom. This results from the
one-particle density matrix (1RDM) being unable to tell the sign
of the linear combination λ |σgσ̄g| ± µ|σuσ̄u|, with both λ ,µ ≥ 0.
In both cases we obtain two ni = 1 natural occupations at dis-
sociation. The state described with a minus sign dissociates to
two ground state H atoms, with one unpaired electron on each H.
However, the state bearing the plus sign dissociates to the ionic
resonance with no unpaired electrons whatsoever on any of the
two H atoms.

Since the CD partition (Eq. 6) provides non-zero local spins
in restricted single determinants, Ramos-Cordoba et al17 (RC)
proposed to use u as a simplification tool. To that end, the 2RDM
is expanded à la Fock-Dirac,

ρ2(rrr1,rrr2;rrr′1,rrr
′
2) = ρ(rrr1;rrr′1)ρ(rrr2;rrr′2)−

1
2

ρ(rrr1;rrr′2)ρ(rrr2;rrr′1)

− 1
2

ρ
s(rrr1;rrr′2)ρ

s(rrr2;rrr′1)+Γ(rrr1,rrr2;rrr′1,rrr
′
2),(9)

where ρs(rrr1;rrr′2) = ρα (rrr1;rrr′2)− ρβ (rrr1;rrr′2) is the spin-density ma-
trix, and Γ(rrr1,rrr2;rrr′1,rrr

′
2) is the spinless cumulant. Introducing

Eq. 9 into Eq. 5 one can recognize the integral in Eq. 8, which
is thus used to recover u and to obtain,

〈Ŝ2〉= 3
8

∫
u(rrr)drrr− 1

4

∫∫
[Γ(rrr1,rrr2)+2Γ(rrr1,rrr2;rrr2,rrr1)

−1
2

ρ
s(rrr1;rrr2)ρ

s(rrr2;rrr1)−ρ
s(rrr1)ρ

s(rrr2)]drrr1drrr2, (10)

with Γ(rrr1,rrr2) ≡ Γ(rrr1,rrr2;rrr1,rrr2) and ρs(rrr) ≡ ρs(rrr;rrr). This expres-
sion is now subjected to fragment projection, giving rise to one-
and two-center contributions. Notice that all the terms in the
second integrand vanish for a closed-shell single-determinant, so
that no local spins appear in this case. This procedure satisfies
Mayer’s condition (i). Our point, again, is that the u substitu-
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tion operation just is algebraically admissible but not physically
sound, in the sense that it should be performed after projection
(i.e. in Eq. 6), not before. The origin of the difference between
the CD and the RC results is now crystal clear: a one-center
A contribution obtained from the

∫
A
∫

ρ(rrr1;rrr2)ρ(rrr2;rrr1)drrr1drrr2

term in Eq 8 sums up a set of two-fragment contributions in
Eq. 6: ∑B

∫
A
∫

B ρ(rrr1;rrr2)ρ(rrr2;rrr1)drrr1drrr2. Since the latter are inter-
fragment exchange-like terms, describing much of the covalent
delocalization between centers A and B, the procedure destroys
the local spins due to covalent delocalization. Explicitly, the part
of 〈Ŝ2〉 that depends exclusively on u(rrr) lacks only apparently in-
terfragment terms. They have been absorbed by an algebraically
correct, yet physically unjustified procedure into intra-fragment
contributions.

On trying to satisfy the rest of the conditions imposed on lo-
cal spins, a new twist was envisaged by taking advantage of the
expression (Eq. 10 in Ref. 15)∫ [

Γ(rrr1,rrr2)−
1
2

ρ
s(rrr1;rrr2)ρ

s(rrr2,rrr1)

]
drrr2 =−

1
2

u(rrr1), (11)

which is an independent condition on u that was used to propose
a one-parameter family RCa of expressions for 〈Ŝ2〉:

〈Ŝ2〉RCa = a
∫

u(rrr1)drrr1 +(2a−1)
∫∫

Λ(rrr1,rrr2;rrr1,rrr2)drrr1drrr2

− 1
2

∫∫
Λ(rrr1,rrr2;rrr2,rrr1)drrr1drrr2. (12)

where Λ(rrr1,rrr2;rrr′1,rrr
′
2) = Γ(rrr1,rrr2;rrr′1,rrr

′
2)−

1
2 ρs(rrr1;rrr′2)ρ

s(rrr2,rrr′1), and
a is a free parameter that modulates the weight of one- and two-
electron terms, which are fragment-partitioned afterwards. The
value a = 3/8 corresponds to Eq. 8 of Ref. 17, and a = 1/2 to the
expression derived by Alcoba et al in Ref. 15. All fulfil Mayer’s
conditions (ii) (correct behavior at the dissociation limit) and (iii)
(correlated results should reduce to uncorrelated ones in the case
of single-determinant wave functions). All suffer from the same
collapse of two-center terms into one-center contributions already
described.

At this point, RC advocate for using a = 3/4 in order to satisfy
condition (iv). This is the only a that provides a correct 〈Ŝ2〉 =
3/4 for a single electron system, and also the only value of the
parameter a that guarantees the non-negativity of 〈Ŝ2

A〉 along the
full dissociation curve of H2 in a minimal basis full-CI calculation.

The winding road taken by the scientific community in search
of a chemically meaningful definition of local spins has been
guided by trying to satisfy a set of more and more stringent con-
straints while maintaing some non-negotiable properties. This
has led to the extremely clever a = 3/4 RC proposal, which has
provided much insight in the last years. We claim that simplic-
ity is better, for one can never sure that the set of imposed con-
straints is complete. For instance, as shown in the SI, the RC3/4
recipe provides a local spin for the excited 1Σ+

g state of H2 equal
to 〈Ŝ2

A〉 = 3/4 at dissociation. This is a completely wrong assign-
ment from our point of view, which will become clearer in the
following.

We will now show how an open quantum systems perspective

clarifies the meaning of the local spin as proposed by Clark and
Davidson, opening whole new avenues to understand the role of
electron localization and delocalization on magnetism and spin-
related chemical reactivity.

3 Quantum fragments as open quantum
(sub)systems

Whatever observable we may decide to partition into chemically
relevant components, be it the electron count that leads to pop-
ulation analyses, the energy of the system and the plethora of
energy decomposition techniques, or the electronic spin and the
local spin machinery that we are analyzing, we face the extrac-
tion of an observable for a subsystem that is quantum mechan-
ically coupled to an environment. This leads to the theory of
open quantum systems (OQSs), an expanding discipline crucial
to quantum control or quantum computing.46,47 We have already
shown how OQSs can be used to understand chemical bonding
issues in Ref. 48, where a more detailed account of what follows
can be found.

Very succinctly, if a quantum system U is described by a general
mixed density operator ρ̂ = ∑i |Ψi〉 pi〈Ψi| and we are interested
in a subsystem A (A∪ Ā = U , B ≡ Ā), then the subsystem expec-
tation value of an operator Ô can be obtained as 〈OA〉= Tr(Ôρ̂A),
where ρ̂A is the A subsystem reduced density operator, obtained
by tracing out all the degrees of freedom of Ā from the full density
operator, ρ̂A = TrĀρ̂. Even when the full system U is described by
a pure state |Ψ〉 the A subsystem reduced density operator is that
of a mixed state (which is usually called a pseudo-mixed state).
This means that its expectation values will be statistical mixtures
of those of pseudo-pure states. For instance, as already explained,
a subsystem has not a definite number of electrons, and the expec-
tation value of the number operator, 〈N̂A〉 = NA has to be under-
stood in terms of the probabilities pA(ni) that A displays an integer
electron count ni, NA = ∑i pA(ni)×ni. In more general terms, once
a partition of real space into (say) m fragments has been chosen,
the probability of finding an exact integer number of electrons n1,
n2, · · · , nm in regions 1, 2, · · · , m, can be obtained.36,49–52 This is
the key to rationalize the meaning of the CD local spin formula-
tion.

The subsystem reduced density operators of pure systems with
ρ̂ ≡Ψ∗(xxx′)Ψ(xxx), where xxx= xxx1 . . .xxxN , can be obtained easily by con-
structing multielectron fragment projection operators, starting
from the P̂A objects of Section 2. Since we prefer orbital invari-
ant real space fragments, we will use their real space analogs,48

but all of our arguments are general. Our n-electron projector
will thus be 111A

n = ∏
n
i=1 ωA(xxxi). By noting that 1 = ωA(xxx)+ωB(xxx)

for each electron, an N-electron unit operator 111N = ∏
N
i=1[ωA(xxxi)+

ωB(xxxi)] is immediately defined. Applying it to the ρ̂ operator, 22N

terms in which primed and unprimed coordinates are separated
into A and B regions appear. The trace over B is obtained by
integrating all coordinates over the B region, leaving only 2N sur-
viving terms.48 Each contains a given number of alpha and beta
electrons in A, a so-called spin sector, which can be grouped by
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the total number of electrons, a sector:

ρ̂
A =

N⊕
n=0

ρ̂
A
n , (13)

with ρ̂A
0 =

∫
B Ψ?(xxx1 . . .xxxN)Ψ(xxx1 . . .xxxN)dxxx1 . . .dxxxN and, for n≥ 1

ρ̂
A
n (xxxi≤n;xxx′i≤n) = 111

′A
n 111A

n ×
(

N
n

)∫
B

Ψ
?(xxx′i≤n,xxxi>n)Ψ(xxxi≤n,xxxi>n)dxxxi>n, (14)

where xxxi≤n = xxx1 . . .xxxn and xxxi>n = xxxn+1 . . .xxxN . To simplify the no-
tation, we will assume that, before doing any integration, the
xxx′i → xxxi identification has been performed for all the integrated
variables, for instance, xxx′i>n→ xxxi>n in eq 14.

Subsystem A is thus described by a mixed density operator with
N + 1 possible sector densities ρA

n (n = 0, · · · ,N), each integrat-
ing to pA(n), the probability that n and only n electrons reside
in domain A and the remaining N − n electrons in the domain
B, i.e. TrρA

n =
∫

A ρA
n (xxxi≤n;xxx′i≤n)dxxxi≤n = pA(n). Normalized sector

densities can be defined as ρ̃A
n = ρA

n /pA(n), so that Trρ̃A
n = 1 and

ρ̂A =
⊕

n pA(n)ρ̃A
n . Then, each ρ̃A

n can be dealt with as a pseudo-
pure system operator.

Besides the subsystem reduced density operator, we can define
standard reduced density matrices for each electron sector. The
reduced density matrix of order m≤ n (mRDM) of sector n is

ρ
A,m
n (xxxi≤m;xxx′i≤m) =

n!
(n−m)!

∫
ρ

A
n (xxxi≤n;xxx′i≤n)dxxxi>m, (15)

with the spinless mth order RDM given by ρ
A,m
n (rrri≤m;rrr′i≤m) =∫

ρ
A,m
n (xxxi≤m;xxx′i≤m)|σ ′i→σi

dσi≤m. Using eq 14, ρ
A,m
n can also be put

in the form

ρ
A,m
n (xxxi≤m;xxx′i≤m) = 111

′A
m 111A

mΛ
m
N,n

∫
D

ρ(xxx;xxx′)dxxxi>m, (16)

where Λm
N,n = N!/[(N−n)!(n−m)!], D is a domain such that elec-

trons m+1 to n are integrated over A, and electrons n+1 to N over
B. Adding Λm

N,n
∫
D ρ(xxx;xxx′)xxxi>m for values of n between 0 and N one

obtains ρm(xxxi≤m;xxx′i≤m), the mRDM of the full A+B system. As a
consequence, the sum of the mRDMs of all sectors n of domain A
is given by ρA,m = ∑n ρ

A,m
n = 111

′A
m 111A

mρm. Sectors behave as pseudo-
pure systems. For instance, the trace of the normalized mRDM of
sector n is n!/(n−m)!, so that 1RDMs integrate to the number of
electrons of the sector, 2RDMs to the number of (ordered) pairs
of electrons, and so on. Expressions for the first and second order
sector RDMs for single- and multideterminant wavefunctions can
be derived, and are found in the SI.

Each of the sector nRDMs can be independently diagonalized
to obtain a set of sector natural orbitals, geminals and, in gen-
eral, n-electron natural bases which allow to compact the de-
scription as much as possible. In the case of single-derminant
wavefunctions (SDWs), it can be shown that all the natural bases
are built from the same set of one-electron natural functions
φi, which are related to Ponec’s domain natural orbitals (DNO)
ϕi

48,53,54 by φi = s−
1/2

i ϕi, where si =
∫

A |ϕi(rrr)|2drrr denotes the
fragment overlap integral of orbital ϕi (see the SI for more de-
tails). In this sense, if the SDW is written in the φ basis as
|Ψ〉 = (N!)−1/2 det |φ1(xxx1) . . .φN(xxxn)|, and kkk = {k1, . . . ,kn} is a set

of n ordered integers k1 < · · ·< kn, n≤ N, then

ρ
A
n (xxxi≤n;xxx′i≤n) = 111′An 111A

n ×∑
kkk
|φkkk〉 pkkk

n 〈φkkk|, where (17)

|φkkk〉=
1√
n!
|φk1(xxx1) · · ·φkn(xxxn)〉. (18)

This expression shows that for a SDW, the n-sector is described as
a mixture of all the n-electron subdeterminants that can be drawn
from the original SDW, with weights pkkk

n that add to the total sector
weight, ∑kkk pkkk

n = pA(n). As shown,48 pkkk
n =∏

N
i pi, where pi = si if i∈

kkk and pi = (1− si) otherwise. Normalized sector densities ρ̃A
n can

also be used if coupled to normalized weights, p̃kkk
n = pkkk

n/pA(n). The
multi-determinant case is more complex, but follows the same
agenda (see the SI). The n-sector is a mixture of pseudo-pure n-
electron determinant states, now built from all the configuration
state functions populating the wavefunction expansion.

It is also relevant at this point to consider briefly the status
of density functional theory (DFT) in the present OQS formal-
ism. Strictly speaking, there is no wavefunction in DFT, and thus
no pure N-particle density operator (and no reduced densities to
construct from it). Nevertheless, it has become popular to use the
pseudo Kohn-Sham determinant as a proxy for a DFT-like wave-
function. For instance, many authors have used successfully the
Kohn-Sham Fock-Dirac pseudo 2RDM to build approximate two-
particle chemical bonding indices, like delocalization indices.55

This means that whenever SDW approximations describe reason-
ably a system, DFT OQS local spins will provide an also reason-
able account of its spin distribution. Actually, most RC-like cal-
culations found in the literature have been performed under this
DFT approximation.

4 Local spin from an OQS perspective

The previous account allows us to cope easily with the squared
spin operator Ŝ2. The flow of ideas is simple. The CD local spin
expectation value for a fragment A, 〈Ŝ2

A〉, is obviously equivalent
to that obtained from an OQS viewpoint: 〈Ŝ2

A〉 = Tr
(
Ŝ2ρ̂A). By

partitioning ρ̂A into its N+1 sectors, 〈Ŝ2
A〉= ∑n pA(n)〈Ŝ2

A,n〉, where
we use normalized sectors. As with other OQS observables, the
snapshot analogy is revealing. If we imagine a multitude of snap-
shots of the electron system, then the local spin of a fragment is
a statistical average of the spins of each electron configuration
of the fragment with weights equal to the probabilities of finding
those configurations. This is a fully rigorous result. If a fragment
displays a probability greater than zero of hosting one and only
one electron, its local spin will not be zero (since this contribu-
tion will provide 3/4 to the local spin). This solves the problem
of non-zero local spins for closed-shells.

Using the previous machinery,

〈Ŝ2
A,n〉=

3
4

∫
ρ̃

A,1
n (rrr)drrr−

1
4

∫∫ [
ρ̃

A,2
n (rrr1,rrr2;rrr1,rrr2)+2ρ̃

A,2
n (rrr1,rrr2;rrr2,rrr1)

]
drrr1drrr2. (19)

6 | 1–18Journal Name, [year], [vol.],



In the SDW case with restricted orbitals, as shown in the SI,

〈Ŝ2
A,n〉= ∑

kkk
p̃kkk

n

[
M2

kkk +nd/2
]
= ∑

kkk
p̃kkk

n〈Ŝ2
A,n,kkk〉, (20)

where Mkkk = (nα −nβ )/2 is the eigenvalue of Ŝz for the each kkk de-
terminant, and nd is the number of not-matched orbitals from
either spin, i.e. the total number of orbitals which have not
an opposite spin couple in the determinant.12 For instance, if
kkk = {φ1,φ2,φ3,φ4,φ5, φ̄4, φ̄5,φ6,φ7}, nd = 5. As shown by Clark and
Davidson, M2

kkk + nd/2 is the expectation value of Ŝ2 for a stan-
dard Slater determinant. More general expressions are found
in the SI, which also covers MDW cases. It is also clear that nd

is the trace of the density of effectively unpaired electrons u(rrr).
Then, a high spin determinant in which every β orbital is equal
to a single α one orbital and orthogonal to all the other α or-
bitals has nd = 2× |Mkkk|, and its contribution to the local spin is
nd/2(nd/2+ 1), which corresponds naïvely to the expected spin
from nd upaired electrons.

Notice that spin symmetry guarantees that appropriate linear
combinations of subdeterminants kkk which are spin eigenfunctions
can always be found, so that the local spin can be written as
∑i piSi(Si + 1), a weighted sum of proper S(S+ 1) squared spins.
We will show how to do this in examples below, and a general
framework will be published elsewhere. This remark answers the
criticism regarding the difficulty to interpret the CD local spin as
SA(SA +1).

Finally, we will point out that the kkk sets in Eq. 20 can
be grouped into as many subsets as the number of ways of
choosing nα and nβ such that nα + nβ = n, i.e. 〈Ŝ2

A,n〉 =
∑
′
nα ,nβ ∑

′
kkk p̃kkk

n
[
M2

kkk +nd/2
]
, where the prime (′) in the first sum

means than only terms with nA
α +nA

β
= n are included, and in the

second that only kkk’s associated to these nα and nβ have to be con-
sidered. This allows to consider spin-resolved sectors.

5 Gaining insight through models

We will devote this Section to examine the behavior of local spins
in the light of our OQS viewpoint. We will examine several mod-
els to gain intuition on what we may expect from CD local spins.

5.1 Local spin and bond order

The relation between the expectation value of the site-site SC and
bond orders goes back to the work of Penney,19 and has been
exploited many times since then.27 Since the work of Adams,25

RDMs have also been used for a long time to correlate spin cou-
plins and bonding descriptors, see the work of Okada and Fueno
for instance.56 Clark and Davidson also noticed the intimate link
between Wiberg-Mayer bond orders57,58 and the 〈ŜSSA · ŜSSB〉 values.
It is useful to show the origin of this relation in density matrix
language. For a closed-shell restricted determinant (RHF) the Γ

cumulant in Eq. 9 vanishes, as well as the spin-density matrix ρs.
Substituting Eq. 9 into Eq. 6 results in

〈ŜSSA · ŜSSB〉=
3
4

δAB

∫
A

ρ(rrr)drrr− 3
8

∫
A

∫
B

ρ(rrr1;rrr2)ρ(rrr2;rrr1)drrr1drrr2. (21)

We immediately recognize ρ(rrr1;rrr2)ρ(rrr2;rrr1) as 2ρxc(rrr1;rrr2) for a
RHF function, with ρxc being the exchange-correlation density,37

so that

〈ŜSSA · ŜSSB〉 = −3
8

δ
AB B 6= A,

〈ŜSSA · ŜSSA〉= 〈Ŝ2
A〉 =

3
4
(NA−λ

A). (22)

In the SC terminology, these results were also derived by Okada
and Fueno many years ago.56 Here, δ AB is the so-called delocal-
ization index between the fragments (the Wiberg-Mayer bond-
order in Fock projections), and λ A is the localization index of
fragment A. The former measures the number of delocalized elec-
tron (pairs) between regions, the latter the number of localized
electrons in a fragment. These are simply the covariance and
variance, respectively, of the electron populations in our OQS de-
scription,

δ
AB = −2× cov(nA,nB) = ∑

nA,nB

p(nA,nB)× (nA− n̄A)(nB− n̄B),

λ
A = var(nA) = ∑

nA

p(nA)× (nA− n̄A)
2. (23)

p(nA,nB) is the joint probability of finding nA electrons in A
and nB electrons in B, and p(nA) = pA(nA).36 Using the sym-
bol cov(nA,nA) as a proxy for the variance, then 〈ŜSSA · ŜSSB〉 =
3/4× cov(nA,nB).

At the RHF level, the local spin and the spin couplings simply
measure how localized (or delocalized) the electrons are. This
leads to large atomic local spins which are deemed as unphysical
by many, as we have explained. From our point of view, on the
contrary, this is particularly illuminating. To show it, we could
use Eq. 20 to gain insight, but the combinatorial number of kkk
possibilities makes this choice not appropriate for models.

5.2 Localized and itinerant spin models: Aufbau rules

For a simple N electron SDW with real orbitals ui, and using Slater
rules for the 2RDM, it is not difficult to find that

〈ŜSSA · ŜSSB〉=
3
4

NAδAB−
1
4

N

∑
i j

{
SA

iiS
B
j j(1−2δσiσ j )+SA

i jS
B
i j(2−δσiσ j )

}
,

(24)
valid for both A = B and A 6= B. In the above equation, which ex-
presses in a less compact way Eq. 20, we sum over spinorbitals,
σi is the spin variable of the spatial orbital ui and SA

i j = 〈ui|u j〉A is
the (spatial only) overlap between orbitals, projected onto frag-
ment A (the atomic or fragment overlap if in real space). Notice
that the i = j terms cancel out, since the Coulomb-like terms are
equal to the exchange-like contributions. Eq. 24 can be applied
both when the determinant is expressed with canonical or local-
ized orbitals, including Ponec’s ones. Localized descriptions lead
to a smaller number of non-cancelling terms, and are thus easier
to use for back of the envelope calculations. As we are showing,
much insight can be obtained from manipulating Eq. 24 in simple
cases.

Let us then consider two interacting atoms, A and B, described
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Fig. 1 Structure of the localized SDW spinorbitals for the first singlet and
triplet states of H2, and for the ground states of He2 and Li2, all at large
internuclear distance. Red and blue identify the α and β spin projection,
for instance.

by a (non-necessarily closed-shell) SDW. To ease manual calcula-
tions, we consider the two atoms at large distances, so that an SA

i j
overlap will vanish for two localized orbitals centered on differ-
ent atoms. Residual overlaps at general geometries will alter the
results quantitatively, but not the rules that will emerge.

Fig. 1 shows the structure of the localized orbitals in the first
triplet (a) and singlet (b) states of dihydrogen, and in the ground
state of He2 (c) and Li2 (d). The |σgσu| determinant describing
the 3Σ+

u state of H2 can be subjected to a unitary rotation that
leaves two strictly localized 1s functions at each center. This can-
not be done in the singlet, since the two electrons belong to dif-
ferent spin symmetry. Similarly, in He2 one can rotate the α and
β sets and come to a completely localized description, while in
dilithium the 2σg orbitals remain delocalized.

Application of Eq. 24 to case (a) shows that the sum vanishes if
A = B, and that it leaves only one term otherwise, in which i = 1sa

and j = 1sb, with SA
ii = SB

ii = 1, SA,B
i j = 0. Thus, 〈Ŝ2

A〉= 3/4+0= 3/4,

〈ŜSSA · ŜSSB〉 = 1/4. In case (b), since 1σg ≈ (1sa + 1sb)/
√

(2), all the
overlap integrals are equal to 1/2, 〈Ŝ2

A〉 = 3/4− 3/8 = 3/8, and
〈ŜSSA · ŜSSB〉 = −3/8. When shifting to He2, with full localization of
the 1s block, it is interesting to examine the contributions to the
local spin for each atom (A = B). Only contributions from φi and
φ j localized in A will contribute in Eq. 24: i = 1sa, j = 1̄sa and
viceversa. Each pair will add −1/4(1+2) = −3/4, cancelling the
1RDM contributions of each electrons. The local spin vanishes.
It is easy to grasp how this also occurs when different subshells
become filled. In Be2, for instance, the block coming from the
2s orbitals get also localized, and all i, j pairs mixing 1s and 2s
orbitals do not contribute due to 1s,2s orthogonality. Different
subshells are then isolated from each other, and behave as inde-
pendent electron blocks. This ceases to be so if residual overlaps
are allowed, so that in actual calculations at actual geometries,
this picture will be slightly altered. Moving to Li2, the 2σg or-
bital cannot be localized. However, the mixed atomic overlaps
〈2σg|1sa,b〉A still vanish due to 1s,2s orthogonality, so that, again,
the 2s block is isolated from the 1s set of functions. Li2 behaves
as H2.

This draws a very simple picture that also rationalizes the link
between local spin couplings and bond orders. Again, it is the de-
localization of electrons that causes non-zero local spins in closed-
shells. Each ideal, symmetric electron-pair covalent bond includes
two opposite spin delocalizable electrons. Each of these pairs pro-
vide a 3/8 local spin and a −3/8 AB coupling. Localized pairs do

not contribute at all. An interesting exercise is that of describ-
ing the local spin of O2 in its triplet ground state. A model SDW
may be written as Ψ = |KK2σ2

g 2σ2
u 3σ2

g 1π2
ux1π2

uy1πgx1πgy|. Follow-
ing our Aufbau rules, the 1σ and 2σ subshells are closed, can be
localized, and do not participate. Similarly, the α 1π subshell is
full. This leads the 3σg electrons as well as two independent (or-
thogonal) 1πx,y electrons as delocalized entities. With the help
of Eq. 24 one can easily find that two orthogonal same-spin elec-
trons coupled to a triplet SDW provide 〈Ŝ2

A〉 = 3/4+ 1/8 = 7/8.
Adding the independent σ and π contributions we get that 〈Ŝ2

O〉=
3/8+7/8 = 10/8.

The above rules are illuminating when mean-field solutions are
reasonable, describing our expectation in the case of itinerant
electrons. SDWs however fail when electron correlation is nec-
essary. We can yet propose simple models for strong static cor-
relation, like that found in the homolytic dissociation of an elec-
tron pair, or in situations where correlation-induced localization
appears. The OQS approach makes this extremely easy. In this
Section we will examine the prototype cases of local spin cou-
plings for a symmetric two-center two-electron case. We notice
that only global singlet and triplet squared-spin are allowed. To
simplify, only the limiting cases of totally (spatially) localized and
completely delocalized electrons will be considered.

If the pair of electrons is ideally delocalized, the two elec-
trons act on average as if they were statistically independent
objects. For symmetric fragments (A,B) ≡ (left,right) this im-
plies that the probability that any of them is found in each is
p = 1/2. p(1,0) = p(0,1) = 1/2 in the language of fragment pop-
ulations. The joint probability distribution is the direct product
of the above, so that p(2,0) = p(0,2) = 1/4 and p(1,1) = 1/2,
the binomial distribution well known from the theory of elec-
tron distribution functions.36,51 On the contrary, if the electrons
are localized in the two fragments, then p(2,0) = p(0,2) = 0, and
p(1,1) = 1. If two opposite spins are considered, the delocalized
setup can be matched with a single delocalized canonical orbital,
for instance through a |σσ̄ | determinant. For two same-spin elec-
trons, we need two independent (i.e. orthogonal) functions, like
in a |πxπy| state. Another symmetric delocalization possibility ex-
ists, in which p(2,0) = p(0,2) = 1/2, and p(1,1) = 0. This corre-
sponds to the ionic resonance that has been commented before
for the excited 1Σ+

g state of H2. The two electrons behave as a
bosonic entity, and are found together, either on one center or on
the other. This situation cannot be modeled at the SDW level. We
distinguish these states with the z label (zwitterionic).

With those probabilities at hand, we can now couple the two
electrons either to a singlet or to a triplet, and apply Eq. 20, which
is trivial since the sums have just one or at most two components.
We have

〈S2
A〉= p(1,1)〈Ŝ2

A,(1,1)〉+ p(2,0)〈Ŝ2
A,(2,0)〉+ p(0,2)〈Ŝ2

A,(0,2)〉. (25)

We only need to consider the following cases: (i) if no electron
lies in A, no local spin exists; (ii) if one electron lies in A, then
〈Ŝ2〉 = 3/4 necessarily; (iii) If the two electrons are in A, they
have to be coupled as the full two-electron system, so 〈S2〉= 2 in
the triplet and zero in the singlet. Nothing else is needed, just
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Table 1 Local spin analysis of ideal localized and delocalized singlet and
triplet states in a symmetric two-electron AB system. S is used for singlet,
T for triplet, n−z labels a normal versus a zwitterionic resonance, and D,L
a delocalized from a localized situation. δ is the intercenter delocalization
index.

〈Ŝ2
A〉 〈ŜSSA · ŜSSB〉 δ AB

Sz
D 0 0 2

Sn
D 3/8 -3/8 1

Sn
L 3/4 -3/4 0

Tn
L 3/4 +1/4 0

Tn
D 7/8 +1/8 1

Tz
D 1 0 2

appropriate snapshots of the spatial location of electrons.
Plugging in these numbers we get the results shown in Table 1

There is a considerable amount of information summarized there.
First, it is interesting to check that singlets display negative cou-
plings while the contrary is true for triplets, whatever the case.
This is a particularly appealing, physically consequent result. Sec-
ond, all states can be distinguished nominally from comparing lo-
cal spins and spin couplings. This is not the case if plain electron
delocalization is used, which just separates three categories: lo-
calized, normal-delocalized, zwitterionic-delocalized. The use of
u or of RC3/4 would fail to provide physically consistent results in
some of these cases.

Even more interesting is the identification of chemical species
from the Table. We have localized singlets, which are chemically
diradicals, delocalized singlets or covalent bonds, zwitterionic sin-
glets and triplets, and itinerant triplets. All categorized through
simple descriptors. We find this extremely appealing, although
actual results will be considerably more difficult to classify appro-
priately when the indicators of this Table evolve continuously. We
hope to examine how well real systems fit this scheme in the near
future.

5.3 Localized polyelectronic spin couplings

Once the role of localization and delocalization in the building of
local spins has been clarified, we recognize that local spin applica-
tions in chemistry are to be expected mainly to recognize radicals
or polyradicals, particularly in singlet states for which standard
spin densities are useless. These states are expected to bear local-
ized unpaired electrons, where the RC and CD results should not
differ considerably, at least in ground states.

It is therefore relevant to examine the local spins and spin cou-
plings of sets of N fully localized electrons in N different sites. The
electronic label i is thus equivalent to the site index A. This prob-
lem is equivalent to that of computing the expectation value of
the 〈ŜSSi · ŜSS j〉 operators over N-electron eigenfunctions of SSS2. These
can be constructed easily, or taken from monographs like that of
Pauncz.59 We have examined couplings from N = 3 to N = 6, non-
exhaustively, and also the limiting infinite spin chain. Notice that
since electrons are fully localized, 〈Ŝ2

A〉 is fixed to 3/4, and only
the i j couplings contain information. It is known59 that there
are (2S+1)N!/(N/2+S+1)!/(N/2−S)! independent eigenstates
of spin S for an N electron system, each composed of 2S+ 1 MS

projections. Thus we have one quartet and two independent dou-
blets for N = 3, two singlets, three triplets and one quintuplet for
N = 4, and so on. The functions examined are summarized on Ta-
ble 2. Expectation values of the ŜSSi · ŜSS j operators are easily found
with the help of the standard ladder formalism.

The maximum S = N/2 single-component (α . . .α) functions
are easily shown to have 〈ŜSSi · ŜSS j〉 couplings equal to 1/4 between
all electron pairs. Recall that our results are independent on the
spin projection. Localized polyradicals in their maximum S states
would thus be easy to identify. The situation becomes more in-
teresting as S decreases. For instance, the local spin analysis of
the two N = 3 doublets reflects the genealogy of the states exam-
ined very clearly. It is customary59 to build spin eigenfunctions
sequentially, such that the (n + 1)-electron state is constructed
through Clebsch-Gordan coupling a well-defined n-electron eigen-
function with spin S to a new electron to form the two possible
S± 1/2 final states, that we will call the plus-coupled and the
minus-coupled states, if S 6= 0, or the final doublet if S = 0. This is
how the states in Table 2 are labeled.

For a triradical, there are two non-trivial doublets beyond the
maximal S quartet. In the first, two electrons are coupled to a
triplet that then couple to a final doublet, while in the second,
the first coupling gives rise to a singlet. Fig. 2 provides a pic-
torial sketch. We use Q for quartets, etc, and order the states
by decreasing value of the total S that couples to the final elec-
tron in the genealogical notation. D1 is the first doublet, corre-
sponding to |1/2,1,1/2〉, and D2 the second. The pictures show
very clearly the genealogy. In D1, we see two spins with a posi-
tive coupling linked negatively to the third. One can very easily
group the spins into sets by adding the local spin and interspin
couplings. In D1, for instance, the first two spins on the base of
the triangle give rise to a triplet: 〈Ŝ2〉 = 3/4+ 3/4+ 2× (1/4) =
2, which now minus-couples to the remaining doublet, so that
〈Ŝ2〉= 2+3/4+2× (−1/2−1/2) = 3/4. In D2, the analysis shows
that a singlet has zero couplings to the rest of the spin system, a
result that is general.

Analysis of the N = 4 case allows to isolate rather general pat-
terns. For instance, T1 is made of an N = 3 Q1 spin group that
minus-couples with an isolated electron spin. All the negative
couplings are symmetric, and warrant the final triplet state. Sim-
ilarly, T2 is a D1 plus-coupling to the final spin, and T3 is two-
electron triplet coupling to a two-electron singlet. Whenever
one group of electrons coupled to a singlet interacts with a sec-
ond group, like in the D2,T3, and S2 cases, we think that we
should better consider these two groups as two independent sets
of lower-rank polyradicals better than a full N-electron radical
species.

Nothing precludes us from extending this analysis further.
Adding a certain character of itinerancy for all or some of the elec-
trons is also possible by considering OQS models, as done in the
previous Section, but we will not pursue this further in this intro-
ductory paper. We end up the Section by mentioning that for even
N, the maximally entangled singlet (the first in our labeling), can
be understood as coming from the annihilation of two S = N/2
subsystems found in their maximum spin states. For instance, in
the N = 4, the S1 state comes from two triplets that couple to a sin-
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Table 2 Spin eigenfunctions examined in this work. The maximum MS = S multiplicity state is shown in the standard genealogical notation in which the
total spin of each newly added electron is depicted. The final number is the total spin of the state. |1/2,1,3/2〉 is thus read as one electron that couples
to a second as a triplet and to the third as a quartet.

State |ψ〉
|1/2,1,3/2〉 ααα

|1/2,1,1/2〉
√

2
3 ααβ −

√
1
6 αβα−

√
1
6 βαα

|1/2,0,1/2〉
√

1
2 αβα−

√
1
2 βαα

|1/2,1,3/2,2〉 αααα

|1/2,1,3/2,1〉
√

3
4 αααβ −

√
1

12 ααβα−
√

1
12 αβαα−

√
1

12 βααα

|1/2,1,1/2,1〉
√

2
3 ααβα−

√
1
6 αβαα−

√
1
6 βααα

|1/2,0,1/2,1〉
√

1
2 αβαα−

√
1
2 βααα

|1/2,1,1/2,0〉
√

1
3 ααββ −

√
1

12 αβαβ −
√

1
12 αββα−

√
1
12 βααβ −

√
1
12 βαβα +

√
1
3 ββαα

|1/2,0,1/2,0〉
√

1
4 αβαβ −

√
1
4 αββα−

√
1
4 βααβ +

√
1
4 βαβα

1
4

1
4

1
4

Q1 D1 D2

1
4

−3
4

0 0−1
2 −1

2

− 1
12

1
4

−1
2

T2

1
4

1
4

1
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1
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4

0
0

0

0
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2

Fig. 2 Spin couplings 〈ŜSSi · ŜSS j〉 between all pairs of localized spins for the
cases N = 3 and N = 4. The state is identified as explained in the main
text. Intermediate spin couplings are sketched pictorially. The quintet in
the N = 4 case is not shown, since it is equivalent to the quartet for the
N = 3 situation.

glet. General analytical formulas for this state exist:59 for an even
number of electrons N, if |M〉1 is the |S,M〉 state with S = N/2 for
the first of these subsystems and |M〉2 its equivalent for the sec-
ond, the coupled singlet is written as ∑

M=+S
M=−S(−1)S−M |M〉1|−M〉2.

We can thus star the alternating nodes of an even number of node
chain and consider the antiferromagnetic coupling of two oppo-
site spin ferromagnetic N/2 subchains to form a maximally entan-
gled singlet. Each of the subsystems is in its maximal S state, so
that the spin couplings between all the possible pairs of its nodes
(electrons) is equal to +1/4. Since the two subsystems couple to
a singlet and all the pairs in which one electron belongs to the fist
and the other to the second are equivalent, a simple calculation
shows that the inter-subsystem spin couplings have to be equal to
−1/4−1/N.

5.4 Evolution of local spins with electron correlation: the
Hubbard model

Electron correlation may impact both the magnitude and the cou-
plings of local spins in several ways. Since we are here interested
in gaining insight through simple models, the Hubbard Hamilto-
nian,60 offers an appealing possibility to change from a mean-
field situation to a strongly correlated regime continuously.60 In
its simplest formulation, the Hubbard Hamiltonian models a one-
dimensional chain of identical single energy level sites with only
nearest neighbor interactions. In the half-filled case, each site
bears one electron on average, can hold up to two electrons with
opposite spin, and we talk of an N-sites N-electron (N/2 α elec-
trons and N/2 β electrons) problem. Periodic boundary condi-
tions can be imposed, and in this case, N is usually made to tend
to infinity. When two electrons lie at the same site they are sub-
jected to an interaction energy U (usually repulsive), which is
called the on-site Coulomb repulsion. Electrons can delocalize to
neighboring sites via a hopping parameter t, which acts as a kind
of site overlap. In second quantized form,

Ĥ =−t ∑
〈i, j〉,σ

(ĉ+iσ ĉ jσ + ĉ+jσ ĉiσ )+U ∑
i

n̂i↑n̂i↓, (26)

where ĉ+iσ (ĉiσ ) is the standard fermionic creation (annihilation)
operator at site i and spin projection σ , and n̂iσ = ĉ+iσ ĉiσ counts
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Table 3 Evolution of 〈ŜSS1 · ŜSS j〉 couplings for Hubbard benzene as r =

U/(4t) increases.

r j = 1 j = 2 j = 3 j = 4
0.000 0.417 -0.167 0.000 -0.042
0.250 0.426 -0.200 0.016 -0.058
1.000 0.583 -0.327 0.106 -0.147
2.500 0.711 -0.435 0.186 -0.213
12.50 0.748 -0.466 0.207 -0.231

the number of electrons with spin projection σ at site i. The 〈i, j〉
sum runs over first neighbors, with each term describing the hop-
ping of an electron from site j to site i. The second sum includes
the Coulombic repulsion energy (a positive energy U), added to
each doubly occupied site. t and U play drive the system in oppo-
site ways, and there is only one effective U/t adimensional corre-
lating parameter. Small U/t values favor hopping, thus delocal-
ized solutions. In the infinite U/t limit, the chain fully localizes,
with one electron per site and no hopping at all. At U/t = 0, the
Hubbard model converges to the tight-binding mean-field single-
determinant solution.

We have previously shown how the usual real space delocaliza-
tion indices are nothing but the order parameters used to detect
phase transitions in strongly correlated systems.61 Given the rela-
tion between the expectation value of spin couplings and DIs for
restricted SDWs, the general behavior of these parameters both
for open and closed finite and infinite chains (that approximate
the π system of alternating hydrocarbons) is thus known. For in-
stance,23,62 in a linear chain with sites i starting at position i = 1,

〈ŜSSi · ŜSS j〉 = − 6
π2

j2

(i2− j2)2 , (i+ j) odd

〈ŜSSi · ŜSS j〉 = 0, (i+ j) even. (27)

which shows a squared-distance algebraic decay of spin corre-
lations in the case of these metallic-like systems. Spin correla-
tion shows the same type of mesomeric oscillation as bond orders
in conjugated systems. If periodic boundary conditions are im-
posed, the first relation in the above expression becomes simply
−3/(2π2), and bond equalization leads to a uniform distribution
of spin coupling over the chain.

Increasing the r = U/(4t) correlating parameter allows to fol-
low the transition from the fully delocalized tight-binding so-
lution to the fully localized state. Lieb63 showed that there
is no phase transition in the 1D Hubbard chain, and that the
ground state is an isolating antiferromagnet at any r value. In
N = 4n+ 2 Hückel-aromatic cyclic Hubbard lattices, for instance,
it was found61 that at about r = 1 a clear change from the oscilla-
tory decay of the delocalization indices δ 1 j (see Eq. 27) changed
to its long-range exponential decay. Mesomeric or resonance ef-
fects disappear as correlation increases.

Table 3 shows the evolution of 〈ŜSSi · ŜSS j〉 in the Hubbard analog
of the benzene π system, an N = 6 cyclic chain. The calculations
have been performed after reconstructing the Hubbard 2RDMs
with the pySCF suite.64 It is apparent how each site’s local spin
moves from its SDW value, equal to 5/12, to its fully localized 3/4
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Fig. 3 Value of 〈Ŝ2
H〉 for the H2 molecule at the CAS[2,2] level in the 1Σ+

g
ground (GS) and excited (ES) electronic states, as well as full-CI value of
〈Ŝ2

H〉 in the 1Σ+
g GS. The vertical line signals the GS equilibirum distance.

The CAS[2,2] curves coincide exactly with pH(1)× 3
4 .

counterpart. Similar changes are found for the meta couplings,
which vanish only at U/t = 0, and the para one, which starts at
−1/24 for the mean-field solution. We stress that the closed-shell
tight-binding SDW cannot show positive spin couplings, but that
as soon as this restriction is liberated, the meta couplings become
positive and grow with r, leading to a clear antiferromagnetic
spin alternation. We notice that the mean-field coupling for the
ortho pair in a full SDW of benzene can be well approximated by
adding the tight-binding result −0.17 to the standard coupling of
a normal σ bond, which is close to −0.4. This gives a coupling of
about −0.57, in close agreement with that initially published by
Clark and Davidson.6

We think that this simple Hubbad example sheds light on how
electron correlation can grow polyradicals by localizing electrons
at specific sites. A full account of these and other results will be
presented elsewhere. We now leave models and turn to actual
calculations.

6 Examples
We have selected in this Section a small number of simple, yet
representative examples of results that show the insights that can
be obtained from the OQS viewpoint described in this work.

6.1 The H2 molecule

Although the dihydrogen molecule is always used as the basic
model in the theory of chemical bonding, it is still today a con-
tinuous source of inspiration. We gather here results in the the
1Σ+

g ground and first excited states of the H2 molecule, as well
as in the first excited 3Σ+

u triplet. The first two are described at
the simplest correlated level, i.e. with CAS[2,2] wavefunctions
given by Ψ = c1|σgσ̄g|+ c2|σuσ̄u|, with c1 and c2 having opposite
and equal signs for the ground and excited states, respectively.
For comparison purposes, we also add a full configuration inter-
action calculation (FCI) of the ground state. The basis set used is
6-311G(p) in all the cases.
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The value of 〈Ŝ2
H〉 for both singlet states as a function of

the internuclear distance RH−H is plotted in Fig. 3. Since H2
dissociates homolytically, each hydrogen atom in the ground
state at large internuclear distances must be a doublet, so that
limRH−H→∞〈Ŝ2

H〉 =
3
4 . As RH−H decreases, 〈Ŝ2

H〉 changes in tune
with pH(1), the probability that each hydrogen atom harbors a
single electron. At the equilibrium distance, pH(1) ' 0.5833 and
pH(1)× 3

4 ' 0.4375. The sectors (or real space resonance struc-
tures) that assign zero or two electrons to the same H, with a
probability 0.5833/2' 0.292 each, do not contribute to 〈Ŝ2

H〉. The
1Σ+

g excited state dissociates to a half-and-half mixture of the
ionic configurations 1sA(1)1sA(2) and 1sB(1)1sB(2), which implies
pH(1) = 0, pH(2) = 1

2 , and pH(0) = 1
2 , so that limRH−H→∞〈Ŝ2

H〉= 0,
in agreement with what should be expected from a resonant sin-
glet electron pair. Moreover, as in the 1Σ+

g ground state, 〈Ŝ2
H〉 at

any RH−H is also given by pH(1)× 3
4 . Actually, for any atom or

fragment (say A) of any molecule described at any level of the-
ory, the equation 〈Ŝ2

A,n=1〉= pA(1)× 3
4 holds. This means that the

contribution to the local spin of A of the sector n = 1 is always 3
4

times the probability that A contains a single electron.

The behavior observed in Fig. 3 can be fully understood in an
analytical way. Calling A and B the left and right hydrogen atoms
of H2, respectively, 〈Ŝ2

A〉, in terms of c1, c2, and the atomic overlap
integral s = 〈g|u〉A, is given by 〈Ŝ2

A〉= 3/8−3c1c2s2. In any closed-
shell molecule divided in two fragments A and B, 〈ŜSSA · ŜSSB〉 =
−〈Ŝ2

A〉, so that 〈ŜSSA · ŜSSB〉 = −3/8+ 3c1c2s2. On the other hand, the
bond-order between A and B, measured through the delocaliza-
tion index, defined as δ = 2

∫
A
∫

B [ρ(rrr1)ρ(rrr2)−ρ2(rrr1,rrr2)]drrr1drrr2,
takes in this case the form δ = 1+8c1c2s2. This gives 〈ŜSSA · ŜSSB〉 =
3/8(δ −2). Using covariances, δ = 2[1− pH(1)]. In the 1Σ+

g ground
state, c1 =−c2 = 1/

√
2 and pH(1) = 1 in the RH−H→∞ limit. This

leads to 〈ŜSSA · ŜSSB〉 = −〈Ŝ2
A〉 = −

3
4 and δ = 0 at large internuclear

distances. However, in the 1Σ+
g excited state, c1 = c2 = 1/

√
2 and

pH(1) = 0 in the RH−H→ ∞ limit, giving 〈ŜSSA · ŜSSB〉=−〈Ŝ2
A〉= 0, as

well as δ = 2. All this is in perfect agreement with our previous
insights.

A FCI calculation in the 1Σ+
g electronic ground state of the H2

molecule gives 〈Ŝ2
H〉 values marginally lower than those in the

CAS[2,2] calculation (Fig. 3). The small differences are due to
the slightly different value of pH(1) in the CAS[2,2] and full-CI
calculations, and show that good qualitative evolutions can be
predicted from wavefunctions as soon as the limitations of the
SDW are liberated.

This example shows also a possibly interesting link between
the OQS local spins and the concept of fractional spins used in
density functional theory.65,66 It has been shown that standard
density functional approximations greatly overestimate the en-
ergy of a H atom when an ensemble density mixing up and down
spins, ρ f s = (1/2+ γ)ρ(ms = 1/2)+ (1/2− γ)ρ(ms = −1/2), with
−1/2 ≤ γ ≤ 1/2, is used. This fractional spin error is propagated
to the dissociation problem of the H2 molecule in particular, and
to the dissociation of single and multiple bonds in general. Solv-
ing appropriately this problem (as well as the intimately related
fractional charge error) is a major challenge in DFT. In our con-
text, we point out that the atomic spin ensemble densities used
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Fig. 4 Value of 〈Ŝ2
H〉 for the H2 molecule in the first 3Σ+

u excited elec-
tronic state. This is the direct sum of the n = 1 and n = 2 contributions,
equal to S(S+1)pH(n = 1) and S(S+1)pH(n = 2), with S = 1/2 and S = 1,
respectively.

by Yang and coworkers are actually the 1RDMs of the atomic re-
duced density operators. We envision that understanding how
the information collapses on going from the overall 2RDM and
its exchange-correlation terms to the atomic OQS spin ensembles
might be useful in the design of density functional approxima-
tions satisfying the fractional spin condition.

The local spin for the 3Σ+
u state of the H2 molecule is very well

described at the ROHF level, and is plotted as a function RH−H

in Fig. 4. At variance with the ground state, both electrons are
coupled to a triplet, so that the contribution coming from sector
n= 2 to 〈Ŝ2

H〉 is not zero but is given by S(S+1)× pH(2) with S = 1.
The sector n= 1 has an analogous expression, i.e. S(S+1)× pH(1)
with S = 1

2 . However, the pH(n) probabilities are now different.
In the triplet state, the antisymmetry (Pauli) requirement keeps
the equal-spin electrons further apart than in the singlet state.
Actually, for a one-state site Hamiltonian, the probability to oc-
cupy the same site would be exactly zero. This results in a pH(1)
probability that is greater for the triplet than for the singlet at
any internuclear distance, although it correctly approaches the
value 1.0 at long distances in both cases. Consequently, as in
the ground state, limR→∞〈Ŝ2

H〉 =
3
4 . The progressive decrease of

pH(2) with R causes the sector n = 2 to be less an less important
as comparared to the sector n = 1 as the internuclear distance in-
creases. However, at the shortest computed distance both sectors
are equally important. Finally, it is worth noticing that the above
behaviors of pH(1) and pH(2) are responsible for the local spin
being a continuously decreasing function of R in the 3Σ+

u excited
state of H2. It is interesting that a partial statistical argument was
already put forward to understand the local spin of this triplet
state by Ramos-Cordoba, Salvador and Reiher et al.67 Here we
put it on firm grounds.

6.2 The H –
3 molecule

This anion allows us to show the emergence of new phenom-
ena without leaving simplicity. We have performed a RHF//6-
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311G(p) calculation of the linear H –
3 anion in its ground singlet

state and analyzed the local spin components. The SDW can be
written as |σgσ̄gσuσ̄u|, and we have 5 sectors and 9 spin-sectors.
If we use a minimal basis set model with zero differential overlap,
this is the Pimentel-Rundle three-center four-electron bond,68,69

where σg = 1/2(1sb+
√

21sa+1sc) and σu = 1/
√

2(1sb−1sc), with
the central H atom labeled as a. As soon as overlap is allowed,
the atomic overlap integral 〈σg|σu〉A ceases to be negligible, with
interesting outcomes. We have collected in Table 4 the local spin
components of the two non-equivalent H atoms in H –

3 : A ≡ Ha

and A≡Hb.
Let us first comment on the probabilities of the different sec-

tors. It is a straighforward, yet interesting exercise to build the
atomic charges of the central and terminal H atoms from the sec-
tor probabilities (NA =∑n pA(n)×n). Ha is positively charged, and
the extra anionic electron is accumulated in the terminal Hb and
Hc atoms, with Q(Hb) = Q(Hc) = −0.633 au. It is easy to check
that the squared spin is fixed in all the possible distributions of
electrons in the five sectors, except in one, when nα = nβ = 1.
For instance, if there are no electrons, the contribution of this
sector to the local spin is 〈Ŝ2〉 = 0. Similarly, if there is one, be it
described by an α or β subdeterminant, its squared spin contribu-
tion will be 3/4, 2 if we have two same spin electrons. However,
when we consider a spin sector with two opposite spin electrons,
these can be coupled either as a singlet or as a triplet, and the lo-
cal spin contribution ceases to be symmetry fixed. A much more
detailed view is possible, since a look at the weighted contribu-
tions (LS in the Table) shows that the (0,2), (1,1) and (2,0) con-
tributions are equal (although different in Ha and Hb). This is due
to the fact that one can only build triplets in this system from σgσu

subdeterminants, since the use of two σg functions must lead to
a singlet. Spin-adapted sectors are thus also possible, a general
formulation of which will be developed in the near future.

We can thus state that the central/terminal H atoms have
a probability 0.412/0.041 of being found with no electrons, a
probability 0.449/0.315 of being found with one electron in a
S = 1/2 state, with its two MS = ±1/2 constituents, a proba-
bility 0.017/0.012 of being found in a two-electron triplet and
0.117/0.602 in a singlet, 0.006/0.030 in a three-electron doublet,
and an almost negligible value of a four-electron singlet. Inter-
atomic couplings can be analyzed in an equivalent way. We stress
that all this complexity is lost in RC analyses which mix inter- with
intra-fragment couplings. For instance, the preference for singlet
coupling of the n = 2 sector is considerably larger in the terminal
atoms, which are behaving as a singlet hydride. In the end, as
evidenced in the last column of Table 4, the local spin of each H
atom is clearly dominated by the n = 1 sector. Being pA(1) larger
in the central hydrogen, its local spin is consequently larger.

We have previously shown36 that the above-mentioned zero
differential overlap model for this system leads to a neutral cen-
tral atom and two Q = −0.5 terminal ones. The model distri-
bution functions for the full system, p(nc,na,nb), are p(2,0,2) =
1/4, p(2,2,0) = p(0,2,2) = 1/16, p(2,1,1) = p(1,1,2) = 1/4, and
p(2,1,1) = 1/8 with zero probability of triplet coupled electrons
at the same atom due to Pauli exclusion, so that two ones in the
above trios, like in (1,1,2) implies opposite spins for them. It is

Table 4 Local spin components of a single H atom of the H−3 molecule
at the restricted Hartree-Fock (RHF) level. nα and nβ are the number
of α and β electrons in H, respectively, n = nα + nβ , and LS(nα ,nβ ) =

pH(nα ,nβ )× 〈Ŝ2
A,nα ,nβ

〉. Data for the central and terminal H atoms are
found in the upper and lower parts of the Table, respectively.

nα nβ pH(nα ,nβ ) 〈Ŝ2
A,nα ,nβ

〉 LS(nα ,nβ ) n 〈Ŝ2
H,n〉

0 0 0.4119 0 0.0000 0 0.0000
0 1 0.2243 3/4 0.1683 1 0.3365
0 2 0.0056 2 0.0111 2 0.0333
1 0 0.2243 3/4 0.1683 3 0.0045
1 1 0.1222 0.0910 0.0111 4 0.0000
1 2 0.0030 3/4 0.0023 Total 0.3744
2 0 0.0056 2 0.0111
2 1 0.0030 3/4 0.0023
2 2 0.0001 0 0.0000

nα nβ pH(nα ,nβ ) 〈Ŝ2
A,nα ,nβ

〉 LS(nα ,nβ ) n 〈Ŝ2
H,n〉

0 0 0.0410 0 0.0000 0 0.0000
0 1 0.1576 3/4 0.1182 1 0.2364
0 2 0.0039 2 0.0077 2 0.0231
1 0 0.1576 3/4 0.1182 3 0.0222
1 1 0.6061 0.0127 0.0077 4 0.0000
1 2 0.0148 3/4 0.0111 Total 0.2818
2 0 0.0039 2 0.0077
2 1 0.0148 3/4 0.0111
2 2 0.0004 0 0.0000

Table 5 Local spin components of the Na atom in the NaF molecule (left),
and of the Ne atom in Ne2 at the RHF level. Only results for sectors
n = 8−12 of NaF and n = 9−11 of Ne2 are shown.

n pNa(n) 〈Ŝ2
Na,n〉 n pNe(n) 〈Ŝ2

Ne,n〉
8 0.0001 0.0001 9 0.0005 0.0004
9 0.0186 0.0140 10 0.9990 0.0000

10 0.9113 0.0021 11 0.0005 0.0004
11 0.0681 0.0511 Total 0.0008
12 0.0018 0.0017

Total 0.0690

immediate to show that this model leads to 〈Ŝ2
Ha
〉 = 1/2× 3/4 =

0.375, and to 〈Ŝ2
Hb
〉= 3/8×3/4 = 0.281, which are rather close to

the results in Table 4. As it is starting to become clear, it is elec-
tron localization and delocalization patterns which govern local
spins.

6.3 The NaF and Ne2 molecules

Small, or even negligible local spins can be found in closed-
shell molecules even though the CD and not Mayer’s or RC’s ap-
proaches are used. From what we have said up to now, this will
be clearly the case when the fragments are spin paired and there
is little covalent delocalization among them. This is the situation
expected in largely ionic or van der Waals molecules. Since the
local spins of this type of systems will not be impacted much by
electron correlation, we show here RHF data on the NaF and Ne2
molecules. Only spinless sectors with non-negligible probabilities
are shown in Table 5.

In NaF, the Na atom has only three contributing sectors, with
9,10 and 11 electrons. The electron distribution is vastly domi-
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nated by the Na+ cation, which is clearly almost fully closed-shell
paired, since the sector with n = 10 provides a very small squared-
spin. There is a 7% probability to find the neutral Na atom dis-
tribution, and about 2% to find the Na2+ cation. In both cases,
3/4× p provides a very good match with the spin contributions
found in the Table, which demonstrates that the n−1 remaining
electrons (ten or eight, respectively) are coupled to a singlet, leav-
ing a double behind. The situation in dineon is taken to the limit.
The ten electrons of each atom form a singlet. We think that these
two simple cases demonstrate that there are strong theoretical
reasons supporting the use of non-zero local spins in closed-shell
systems.

6.4 Subdeterminant partition in LiH

We consider here an even thinner partition of the local spin in the
LiH molecule. At the RHF//6-311G(d,p) level the local spin of
each atom is small, 0.073, showing the largely ionic character of
the system. The SDW takes the form |1σ1σ̄2σ2σ̄ |, with rather lo-
calized 1σ and 2σ functions on the Li and H atoms, respectively.
There are several subdeterminants comprising each spin sector.
For instance, if we deal with one β electron, we have two sub-
determinants (in this case one electron functions): 1σ̄ ,2σ̄ . Their
contributions, in the notation already commented, are found in
entries 2 and 3 of the left panel of Table 6. The first of these
two determinants contributes negligibly to the H local spin. The
second, 2σ̄ , together with its one-electron α counterpart (k = 6),
make 90% of it. In orbital parlance, single electrons described
by a 2σ -like function, which are part of the neutral LiH resonant
structure, build the local spin of the sytem.

The rest of the table can be interpreted easily. For instance,
there is only one subdeterminant with either two α or two β elec-
trons, |1σ2σ | and |1σ̄2σ̄ |, respectively. Being its probability neg-
ligible, it does not contribute to the local spin. The two subde-
terminants |1σ ¯1σ |, and |2σ ¯2σ | contribute zero to 〈S2

H〉 (k = 8,9,
respectively). Interestingly, the second one, in which the two elec-
trons are singlet-coupled in the 2σ function, accounts for about
90% of all the possible electron distributions. Finally, it is also rel-
evant to consider entries 7 and 10, each contributing 1 to the local
spin. This value is not a valid S(S+ 1) squared spin. The first of
these two subdeterminants is |1σ ¯2σ |, while the second becomes
|2σ ¯1σ |, and we face here the same situation already commented.
Spin adapted sector would lead to triplet/singlet plus/minus lin-
ear combinations of the above, respectively. The first would con-
tribute 2 and the second 0 to the local spin.

Although we leave a detailed account of the following for fu-
ture works, an electron-hole analogy is apparent at this point.
Each electron subdeterminant for the H atom in Table 6 can be
associated to a hole counterpart in the Li atom that completes
the global wavefunction. We have organized them such that
ke + kh = 17 in the table. The first and the last entries, or entries
4 and 13. An electron in determinant as k = 4 contributes with
its probability pkkk

n ≈ 0.04 and spin 3/4 to 〈S2
H〉. These numbers

correspond to the probability of finding a 2σ electron in H con-
tributing with its single-electron squared spin. Its hole companion
determinant k = 13 would also contribute with the same proba-
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4 , and pH(1)× 3
4 for the H

atom of the LiH molecule in the ground electronic state as a function of
the Li−H distance, RLi−H.

bility and spin to 〈S2
Li〉, since it now describes the three remaining

electrons in the other region, an event which has of course the
same probability and carries the same squared spin.

In other words, Table 6 for the Li atom is obtained by chang-
ing the determinants in the Ψk column by those of the Ψ17−k

one. This is another demonstration that the local spins of the two
atoms of diatomic singlets are equal. Another interesting look fo-
cuses in the interatomic spin couplings. The n = 1 spin doublet
formed by the k = 2,5 subdeterminants in H couples to a singlet
with its hole equivalent doublet in Li, formed by the k = 14,11
subdeterminants. Similarly, the n = 2 H triplet formed by entries
k = 4,13 and the plus linear combination of 7 and 9 couples also
to a singlet with its equivalent hole entries in Li. More complex
rules needing from simple Clebsch-Gordan algebra can be found
in more general cases. Going to the middle panel of Table 6, we
also recognize that the A≡H (nα ,nβ ) local spin contributions will
be equal to the (N/2−nα ,N/2−nβ ) ones in Li, or that in the right-
most panel the local spin of each n-electron sector in the H atom
is equal to that of the partner (N− n)-electron sector in Li. We
find this symmetry particularly appealing.

We also analyze here the evolution of the local spins in LiH
at the simple CAS[2,2] level, which allows for a correct molec-
ular dissociation, maintaining the basis set. We have already
shown,70 that the LiH dissociation can be well understood by a
one-parameter ionization. An electron from the Li atom is trans-
fered as the interatomic distance decreases to the H moiety. In the
process, only the p(nLi = 3,nH = 1) and p(nLi = 2,nH = 2) proba-
bilites become affected. The second grows at the expense of the
first, and the sum of the two remains very close to 1. With this,
〈Ŝ2

H〉 should be just measuring how large p(3,1) (or pH(1)) is.
Fig. 5 shows how well this assumption works.

We end the subsection by showing the impact of static cor-
relation on the spin sectors. Table 7 contains a CAS[4,12]//6-
311G(d,p) calculation in LiH at the RHF geometry. It is known
that in highly ionic compounds the introduction of electron cor-
relation increases covalency. This increases the pH(1) probability,
and thus the H local spin slightly.
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Table 6 Local spin components of the H atom of the LiH molecule, 〈Ŝ2
H〉, at the restricted Hartree-Fock (RHF) level. Ψkkk is the subdeterminant, nα and

nβ are the number of α and β electrons in H, respectively, n = nα +nβ , Mkkk =
1
2 (n

α −nβ ), nd has been defined in the text, and sum = nd/2+M2
kkk ≡ 〈Ŝ

2
H,n,kkk〉.

〈Ŝ2
H〉= ∑

4
n=0〈Ŝ2

H,n〉= 0.072979.

k Ψkkk n/2 M2
kkk nd/2 sum pkkk

n pkkk
n× sum nα nβ 〈Ŝ2

A,nα ,nβ
〉 n 〈Ŝ2

A,n〉
1 || 0 0 0 0 0.002205 0.000000 0 0 0.000000 0 0.000000
2 |1σ | 1/2 1/4 1/2 3/4 0.000008 0.000006 0 1 0.033439 1 0.066878
3 |1σ̄ | 1/2 1/4 1/2 3/4 0.000008 0.000006 1 0 0.033439 2 0.001008
4 |2σ | 1/2 1/4 1/2 3/4 0.044577 0.033433 1 1 0.000336 3 0.005094
5 |2σ̄ | 1/2 1/4 1/2 3/4 0.044577 0.033433 0 2 0.000336 4 0.000000
6 |1σ2σ | 1 1 1 2 0.000168 0.000336 2 0 0.000336
7 |1σ2σ̄ | 1 0 1 1 0.000168 0.000168 1 2 0.002547
8 |1σ1σ̄ | 1 0 0 0 0.000000 0.000000 2 1 0.002547
9 |2σ2σ̄ | 1 0 0 0 0.901148 0.000000 2 2 0.000000
10 |1σ̄2σ | 1 0 1 1 0.000168 0.000168
11 |1σ̄2σ̄ | 1 1 1 2 0.000168 0.000336
12 |1σ1σ̄2σ | 3/2 1/4 1/2 3/4 0.003395 0.002546
13 |1σ1σ̄2σ̄ | 3/2 1/4 1/2 3/4 0.000001 0.000000
14 |1σ1σ̄2σ̄ | 3/2 1/4 1/2 3/4 0.003395 0.002546
15 |1σ̄2σ2σ̄ | 3/2 1/4 1/2 3/4 0.000001 0.000000
16 |1σ1σ̄2σ̄2σ̄ | 2 0 0 0 0.000013 0.000000

Table 7 Sector-resolved local spin components of the H atom in LiH,
〈Ŝ2

H〉. CAS[4,12]//6-311G(d,p) calculation at the RHF geometry. The total
value of 〈Ŝ2

H〉 for the RHF and CAS calculation is 0.072979 and 0.081586,
respectively.

n 〈Ŝ2
A,n〉

0 0.000000
1 0.075411
2 0.001245
3 0.004930
4 0.000000

Table 8 Local spin 〈Ŝ2
A〉 in the ground state HCI//aug-cc-pVTZ wavefunc-

tions of the first and second period homonuclear diatomics. R(O)HF val-
ues are also included for comparison.

Molecule R(O)HF HCI
H2 0.375 0.431
Li2 0.367 0.427
Be2 0.279 0.395
B2 1.288 1.626
C2 1.205 2.016
N2 1.140 1.382
O2 1.354 1.410
F2 0.466 0.603

6.5 Second period diatomics
We close the presentation of representative examples by examin-
ing the global local spins of the first and second period homonu-
clear diatomics. We have performed high level heat-bath configu-
ration interaction (HCI)71 calculations in their ground states with
the aug-cc-pVTZ basis set, using the pySCF suite.64 He2 and Ne2
have been excluded since their local spins are close to zero and
do no offer any additional insight. RHF (or ROHF) calculations
have also been performed for comparison purposes. Results are
contained in Table 8

Several considerations are due. First, the 〈ŜSSA · ŜSSB〉 spin cou-

plings are just the negatives of 〈Ŝ2
A〉 except in the two triplets, B2

and O2, where 〈ŜSSA · ŜSSB〉 = −〈Ŝ2
A〉+ 1. Notice that standard sin-

gle bonds provide correlated local spins close to 0.43 as in H2
and Li2. This shows how correlation induces localization of the
bonding Lewis electron pair in the atomic regions: Increasing the
atomic localized character of the electron pair changes the local
spin from 3/8 in an ideally delocalized situation to 3/4 in a perfect
diradical.

Let us consider now Be2, where correlation is important. At
the HF level, the local spin is significantly smaller than 3/8. We
must recall that the dissociation limit provides two closed-shell
singlet atoms, and that the RHF solution provides a local spin
directly related to bond order. A small bond order leads to a small
local spin. Correlation is important, as expected, to account for
bonding in Be2. It is known that the bond order of this molecule
increases considerably if a correlated description is used.

The mean-field description of diboron is known72 to lead to
two delocalized triplet coupled electrons in the 1πu block and a
2σ bonding pair from strong sp hybridization that leaves a de-
localization index close to 2.0. This is basically our delocalized
triplet+delocalized singlet model with local spin equal to 1.25.
The introduction of electron correlation seems to localize these
pairs in their atomic regions, increasing the local spin consider-
ably. RHF dinitrogen is close to a pure triple bond with local spin
equal to 3× 3/8 = 9/8 ≈ 1.125. Correlation induces a large de-
crease of its bond order from about 3.0 at the RHF level to about
2 at the correlated one. Here we also see a localization that in-
creases its local spin to 1.38. Dioxygen seems to be well described
by our simple singlet+triplet model at the ROHF level, with a
local spin not far from 1.25, that again increases through corre-
lation induced localization. Similarly, F2 is shown to be closer
to a proto-covalent bond, and not to a fluctuating charge-shift
link.73 If we imagine a dissociating electron pair similar to that
in H2, we can take Fig. 3 to check that its local spin, about 0.6,
corresponds to that of H2 at around 1.5 Å, more than twice the
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dihydrogen internuclear equilibrium distance. If the electron pair
fluctuations that are assumed to exist in charge-shift bonds would
be relevant, their spin singlet nature would decrease, not increase
its local spin.

Last, but not least, the singlet ground-state dicarbon deserves
a final comment. Notice that this is the system with a largest
HF/HCI difference by large. At the mean-field level,72 the bond
order rises to about 3.2, and a local spin of 1.2. The bond order
decreases to about 1.8 on including correlation. Even in the most
naïve case in which the eight valence electrons were engaged in
ideal covalent bonds leading to a bond order of 4, this would
lead to a top covalent local spin of 1.5. The large C local spin
can only be explained by a prominent localized singlet diradical
component. If the extra valence electron pair would be consid-
ered as a localized singlet diradical, this would add 0.75 to the
local spin. This, together with correlation enhaced local spins of
the covalen terms, would justify a 2.0 local spin. Notice that the
localization of this singlet diradical would contribute neither to
the interatomic delocalization nor to a substantial increase of the
binding energy of the system. These results are in consonance
with those obtained from RC local spins.33 Further work is still
needed to pinpoint chemical bonding in this system.

To summarize, the results of this Section show that the OQS
perspective offers a clear explanation of the evolution of local
spins in molecules. The role of electron correlation depends on
how its presence impacts the probability distribution of the dif-
ferent electron number sectors. These are clearly more affected
by strong (static) correlation than by dynamic effects, so we ex-
pect that in systems where the latter are not dominant, the spin
couplings are well described by a mean-field description.

7 Conclusions
We have presented in this work an open quantum systems com-
prehensive account of local spins. These have been introduced
in different fields over the years, starting with the spin couplings
considered by Penney,19 passing through the spin correlators con-
sidered by Luzanov,26 Fulde and coworkers,27 and many others,
and revitalized in computational chemistry by Clark and David-
son6 as descriptors of the local distribution of the electronic spins
and their couplings in molecules. These authors used projection
operators to define Hermitian fragment spin operators that ful-
fil all quantum mechanical requirements for well-behaved angu-
lar momenta. Fragment spins solve the inability of traditional
measures to offer any insight on spin coupling in globlal singlets,
where the spin density is everywhere exactly zero. Several au-
thorized voices have since then argued against CD local spins, for
they provide considerable values for closed-shell singlets. Over
the years, a set of ad hoc requisites for local spins to be considered
physically meaningful were introduced, which have led to an evo-
lution in their definition which culminates with Ramos-Cordoba
et al proposal.17

We take here the inverse road, and show that the original path
that transforms CD local spins into RC ones is based on physi-
cally unjustified transformations when a decomposition of two-
electron operators into fragments is performed, in agreement
with other voices.35 By understanding atoms or fragments in-

molecules as open quantum mechanical subsystems (OQSs), we
show that the CD operators are in fact offering a crystal clear
picture of the distribution of spin in a fragment-in-the-molecule.
An OQS is in a general mixed state, being composed of sectors
characterized by a given number of electrons with characteristic
probabilities. For each of these n-electron sectors well-defined n-
electron spin operators can be used to obtain spins which are then
weighted by the sector probability to build the CD local spin. Non-
zero fragment spins for a closed-shell singlet arise from electron
delocalization. When electrons are allowed to delocalize between
fragments (a signature of covalent bonding among them), non-
zero probabilities of finding an odd number of them, for instance,
appear, giving rise to sizeable local spins. The relation of con-
ventional CD spins to bond orders in closed-shell molecules thus
acquires a clear meaning after these insights.

The OQS viewpoint allows for a fruitful use of models. One
can propose back-of-the-envelope sets of sector probabilities for
covalent, ionic, and zwitterionic situations, and tune their degree
of localization. This leads to an easy road to classification. In
fact, the two-center, two-electron cases are fully mapped. We al-
gebraically show that RC local spins fail, for instance, in assigning
physically meaningful spins in the dissociative limit of the zwitte-
rionic excited state of dihydrogen. Classification in multielectron
cases is also sketched by examining general spin eigenfunctions.
We show that the local spin couplings can be used to reflect the
genealogy of the couplings, a property that we expect to use fur-
ther.

The general effect of static correlation is also analyzed through
the use of the Hubbard Hamiltonian, which allows to tune the
amount of correlation. We show how correlation induced local-
ization in a H-chain model changes completely the spin coupling
pattern, which evolves from all-negative, algebraically decaying
spin couplings between all site pairs toward an alternation of pos-
itive and negative couplings characteristic of an antiferromagnet.

Finally, a set of simple systems that exemplify our findings is
examined. We think that they demonstrate how electron local-
ization and delocalization modulate local spins, and open many
windows into future work. In particular, we show that CD lo-
cal spins in closed-shell molecules can actually be close to zero
when delocalization is small, as in ionic or van der Waals systems,
and that high level calculations in the dicarbon molecule display
anomalously large local spins, which can probably not be under-
stood without invoking a considerable singlet diradical character,
in agreement with results obtained with RC local spins.67 The
latter should provide results considerably similar to those of CD
whenever spins are localized. This means that RC local spins,
which mix a number of ingredients in a very clever way, maintain
their usefulness, at least in ground states where zwitterionic or
even weirder resonances do not dominate.

Besides helping to clarify the many approaches and misconcep-
tions that surround the local spin concepts, the OQS approach will
surely provide much light on issues that range from understand-
ing the atomic promotion concept to providing a firm ground to
spin model Hamiltonians in extended systems.
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1 Effectively unpaired electrons and local spin

The scalar field

u(r1;r′1) = 2ρ(r1;r′1)−
∫

ρ(r1;r2)ρ(r2;r′1)dr2, (1)

known as the effectively unpaired electrons density,1 and several of its properties2 have been thor-

oughly investigated. This name seems to be almost always justified since, in many cases, its

integration to all the space in different systems results in what one expects for the number of elec-

trons that are not paired with equivalent electrons of opposite spin. To cite just two very well-know

examples: the integration of u(r) over R3 for a single-electron system correctly predicts a value of

1, as it should. In the limit R→∞ of the properly dissociating H2 molecule in the 1Σ+
g ground elec-

tronic state, the integration of u(r) gives 2, again the correct number. However, some properties

of u(r) incite to think that the name of effectively unpaired electrons density may not be the most

accurate. For instance, the trace of u, that in terms of the occupation numbers, ni, of the natural

orbitals of the system, is given by nd = ∑i ni(2−ni) has an upper limit of 2N,2 i.e. the number of

effectively unpaired electrons can be greater that the number of electron themselves. An example

1



of this is a molecule with only spin up or spin down electrons described at the configuration inter-

action level. Another case in which nd ≥ N, also pointed out by Staroverov and Davidson, is the

1Σ+
u excited electronic state of the H2 molecule at large internuclear distances. We will show in

this subsection another counterintuitive behavior of u(r).

Let us consider the two 1Σ+
g states that can be formed for the H2 molecule from a linear combi-

nation of the Slater determinants |σgσ̄g| and |σuσ̄u|: Ψ= c1|σgσ̄g|+c2|σuσ̄u|. The state with c1 and

c2 of the opposite sign corresponds to the ground state cited above, while c1 and c2 with the same

sign indicates an excited state (ES). From |σgσ̄g|= σg(r1)σg(r2)Θ and |σuσ̄u|= σu(r1)σu(r2)Θ,

where Θ = 2−1/2(αβ −βα) is the spin function, the electron density of the above Ψ is given by

ρ(r;r)≡ ρ(r) = ngσ2
g (r)+nuσ2

u (r), where ng = 2c2
1 and nu = 2c2

2, so the natural orbitals are also

σg and σu, and u(r) is given by u(r) = ng(2−ng)σ
2
g (r)+nu(2−nu)σ

2
u (r). For both the ground

and excited states, ng→ 1 and nu→ 1 in the limit R→ ∞. Hence, limR→∞ u(r) = σ2
g (r)+σ2

u (r)

and limR→∞

∫
u(r)dr = 2. On the other hand, given that σg = 2−1/2(a+ b), σu = 2−1/2(a− b),

c1 = −c2 = 2−1/2 (ground state) and c1 = c2 = 2−1/2 (excited state) in the R→ ∞ limit (where

a ≡ 1sA and b ≡ 1sB), the spatial parts of Ψ(ground state) and Ψ(excited state) at large internu-

clear distances behave as

lim
R→∞

Ψ(r1,r2)(ground state) ∼ 2−1/2(ab+ba) (2)

lim
R→∞

Ψ(r1,r2)(excited state) ∼ 2−1/2(aa+bb). (3)

The second equation shows that the wave function for the 1Σ+
g excited state becomes, at large

values of R, into a half-and-half mixture of two ionic components (aa and bb), with both electrons

in each of them with opposite spin. In other words, both electrons have perfectly paired spins,

so a scalar field purportedly giving the number of effectively unpaired electrons at R→ ∞ should

integrate to 0 and not to 2.
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For the above wave function, ρ2(r1,r2;r1,r2) = ρ2(r1,r2;r2,r1) is given by

ρ
2(r1,r2;r1,r2) = 2c2

1σ
2
g (r1)σ

2
g (r2)+2c2

2σ
2
u (r1)σ

2
u (r2)

+ 4c1c2σg(r1)σg(r2)σu(r1)σu(r2). (4)

Taking into account that 〈σg|σg〉A = 〈σu|σu〉A = 〈σg|σg〉B = 〈σu|σu〉B = 1
2 and calling S= 〈σg|σu〉A =

−〈σg|σu〉B, the direct application of Eq. 6 of the main text leads to 〈Ŝ2
A〉= 〈Ŝ2

B〉= 3
8 −3c1c2S2. In

the limit R→ ∞, S = 1
2 , so that limR→∞〈Ŝ2

A〉 = +3/4 and 0 for the the ground and excited states,

respectively. These numbers are the expected ones for the asymptotic limits given by eqs 2 and

3. In the ground state, each atomic basin harbors a single α or β electron, and there is never an

(α,β ) electron pair in any of the two atoms. Hence, the local spin of that basin is simply s(s+1)

with s = 1
2 . On the contrary, in the excited state the (α,β ) electron pair is always in A or B, giving

a null local spin in the R→ ∞ limit.

2 Ramos-Cordoba et al. local spins

As shown in Eq. 12 in the main text, Ramos-Cordoba (RC) and coworkers proposed a one-

parameter family one-parameter family RCa of expressions for 〈Ŝ2〉:

〈Ŝ2〉RCa = a
∫

u(r1)dr1 +(2a−1)
∫∫

Λ(r1,r2;r1,r2)dr1dr2

− 1
2

∫∫
Λ(r1,r2;r2,r1)dr1dr2. (5)

where Λ(r1,r2;r′1,r
′
2) = Γ(r1,r2;r′1,r

′
2)−

1
2ρs(r1;r′2)ρ

s(r2,r
′
1), and a is a free parameter. This

expression satisfies Mayer’s requisites and shows correct local spins for one electron systems when

a = 3/4.

Let us examine now the excited 1Σ+
g state of H2 of the previous Section in the dissociation
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limit. The spin density vanishes for a singlet, so that Λ(r1,r2;r′1,r
′
2) = Γ(r1,r2;r′1,r

′
2), with

ρ
2(r1,r2;r′1,r

′
2) = ρ(r1;r′1)ρ(r2;r′2)−

1
2

ρ(r1;r′2)ρ(r2;r′1)

− 1
2

ρ
s(r1;r′2)ρ

s(r2;r′1)+Γ(r1,r2;r′1,r
′
2) (6)

defining Γ. With the expressions derived in the previous section, it is easy to show that ρ(r1;r′1) =

2c2
1σg(r1)σg(r

′
1)+ 2c2

2σu(r1)σu(r
′
1), so using the atomic overlap integrals for the σg and σu or-

bitals, including 〈σg|σu〉A = −1/2 in the dissociation limit, we easily come to the following ex-

pressions valid for the dissociated excited singlet:
∫

A u(r)dr = 1,
∫

A
∫

A Γ(r1,r2;r1,r2)dr1dr2 =∫
A
∫

A Γ(r1,r2;r2,r1)dr1dr2 = 1/2. With them, Ramos-Cordoba et al local spin becomes

〈Ŝ2
A〉= a− (1−2a)×1/2−1/4 = 2a−3/4. (7)

As show by RC in their Fig. 2, when a = 3/4, the above expression takes the value 〈Ŝ2
A〉 = 3/4,

and the local spin for the dissociating excited state becomes equal to that of the dissociating ground

state, a notoriously wrong result. It is interesting to notice that if a = 3/8, which coincides with

the expression proposed by Mayer and Matito,3 the local spin tends correctly to zero at dissocia-

tion. Unfortunately, this limit is approached from below, and as RC showed, the local spin in the

CAS[2,2] model becomes negative in all the sgn(c1) = sgn(c2) branch.

3 Reduced density matrices and local spin for open quantum

systems

This is an slightly expanded version of the main text treatment. We start by adopting from the

start a QCT viewpoint. Changing the indicator functions by center projections allows to read the

following in Fock space equally. We thus divide the physical space R3 into a spatial domain A and

its complementary region B = Ā, A∪B = R3 A∩B = /0. Since electrons can freely flow between
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both domains, A and B can be considered as open quantum systems (OQS). In a pure state, the

density operator of a N−electron system can be written as ρ̂(x;x′) = Ψ?(x′)Ψ(x), where x= rσ

denotes a spatial(r)-spin(σ ) coordinate and x stands for x1 · · · ,xN . The reduced density operador

of domain A, ρ̂A, is obtained from ρ̂ by performing a spatial trace over the B region, with the usual

x′i→ xi identification before integration. Defining the indicator function 1A
n = Πn

i=1ωA(xi), where

ωA(xi) is a Heaviside-like domain weight function such that ωA(xi) = 0 for xi /∈ A and ωA(xi) = 1

for xi ∈ A, with an equivalent definition for ωA(x
′
i), ρ̂A can be written in the form4,

ρ̂
A =

N

∑
n=0

ρ
A
n (xi≤n;x′i≤n), (8)

where ρA
0 =

∫
B Ψ?(x)Ψ(x)dx and, for n≥ 1

ρ
A
n (xi≤n;x′i≤n) = 1

′A
n 1A

n

(
N
n

)∫
B

ρ̂(x;x′)dxi>n, (9)

where dxi>n = dxi+1× ·· · × dxN and xi≤n = x1× ·· · ×xn. To simplify the notation, we will

assume that, before doing any integration, the x′i → xi identification has been performed for all

the integrated variables, for instance, x′
i>n→ xi>n in eq 9. The subsystem A is thus described by a

mixed density operator with N +1 possible sector densities ρA
n (n = 0, · · · ,N), each integrating to

pA(n), which is the probability that n and only n electrons reside in domain A and the remaining

N−n electrons in the domain B, i.e. TrρA
n =

∫
A ρA

n dxi≤n = pA(n). Normalized sector densities can

be defined as ρ̃A
n = ρA

n /pA(n), so that Trρ̃A
n = 1 and ρ̂A = ∑n pA(n)ρ̃A

n . Then, each ρ̃A
n can be dealt

with as a pseudo pure system operator.

We define the reduced density matrix of order m≤ n (mRDM) of sector n as

ρ
A,m
n (xi≤m;x′i≤m) =

n!
(n−m)!

∫
ρ

A
n (xi≤n;x′i≤n)dxi>m, (10)

with the spinless mth order RDM given by ρ
A,m
n (ri≤m;r′i≤m) =

∫
ρ

A,m
n (xi≤m;x′i≤m)|σ ′i→σi

dσi≤m.
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Using eq 9, ρ
A,m
n can also be put in the form

ρ
A,m
n (xi≤m;x′i≤m) = 1

′A
m1A

mΛ
m
N,n

∫
D

ρ(x;x′)dxi>m, (11)

where Λm
N,n = N!/[(N− n)!(n−m)!], D is a domain such that electrons m+ 1 to n are integrated

over A, and electrons n+ 1 to N over B. Adding Λm
N,n
∫

D ρ(x;x′)xi>m for values of n between 0

and N one obtains ρm(xi≤m;x′i≤m), the mRDM of the full A+B system. As a consequence, the

sum of the mRDMs of all sectors n of domain A is given by ρA,m = ∑n ρ
A,m
n = 1

′A
m1A

mρm. If the ρ̃A
n ’s

are used in the rhs integral of eq 10, one obtains ρ̃
A,m
n the normalized mRDMs of sector n. Then,

ρA,m = ∑n pA(n)ρ̃A,m
n . In the following two subsections we will consider separately the RDMs of

OQSs for single-determinant (SDW) and multi-determinant (MDW) wave functions.

3.1 The single-determinant case

Let us consider a N−electron system described by a SDW |Ψ〉 = (N!)−1/2det|u1(x1) · · ·uN(xN)|.

To aid in the derivation of ρA
n and ρ

A,m
n , we will introduce some definitions. We call SA and SB

the N×N atomic overlap matrices (AOM) between the molecular spin-orbitals (MSO) |ui〉 in A

and B, respectively, i.e. SA
i j = 〈ui|u j〉A and SB

i j = 〈ui|u j〉B, k = {k1, · · · ,kn} and l = {l1, · · · , ln} are

two ordered sets (k1 < · · ·< kn and l1 < · · ·< ln) of n≤ N numbers, k̃ and l̃ their complementary

sets of N−n elements, and SA(k|l) and SB(k|l) the n×n matrices obtained by selecting the rows

indicated by k and the columns indicated by l from SA and SB, respectively. Similarly, SA(k̃|l̃) and

SB(k̃|l̃) are the (N− n)× (N− n) matrices obtained from SA and SB by selecting the rows k̃ and

the columns l̃. Each of the above arrays is square, so that their determinants can be determined.

Each of these determinants is a number which, in turn, defines an element of another array. For

instance, det|SA(k|l)| is the kl element of an array SA, and det|SB(k|l)| is the kl element of an

array SB. Notice that SA and SB are m×m matrices, where N!/[n!(N− n)!] is the full number

of k and l ordered sets. The m×m arrays S̃A
kl and S̃B

kl are defined from SA(k̃|l̃) and SB(k̃|l̃) in a

6



similar way. Using the above definitions, the sector density of domain A, ρA
n , can be written as

ρ
A
n (xi≤n;x′i≤n) = 1′An 1A

n ×∑
k,l

|Uk〉 〈Ul| S̃B
kl, (12)

with |Uk〉= (n!)−1/2|uk1(x1) · · ·ukn(xn)| and 〈Ul|= (n!)−1/2|ul1(x
′
1) · · ·uln(x

′
n)|.

Important simplifications arise when a one-electron basis |up
i 〉, orthonormal in R3 and orthog-

onal in A and B, is used to construct |Ψ〉. This can be achieved by diagonalizing SA, U†SAU =

diag(si) = s. Then, the basis |up〉 = |u〉U is obviously orthonormal in R3, so that |Ψ〉 does not

change, and orthogonal in A (〈up
i |u

p
j 〉A = δi jsi)), and B (〈up

i |u
p
j 〉B = δi j(1− si)). Moreover, an

orthonormal one-electron basis in A, |φ〉, can also be obtained as |φ〉 = |up〉s−1/2. 1 The |up〉

basis is exactly that proposed by Ponec for SDW’s, and Ponec’s orbitals |up
i 〉, or domain natural

orbitals (DNOs), have been successfully used to extract chemical information, and have been also

interpreted in statistical terms. It can be shown that, in the DNO basis, ρA
n is given by

ρ
A
n (xi≤n;x′i≤n) = 1′An 1A

n ×∑
k

|φk〉 pkn 〈φk|, where (13)

|φk〉=
1√
n!
|φk1(x1) · · ·φkn(xn)〉, (14)

and pkn = ∏
N
i pi, with pi = si if i∈ k and pi = 1−si if i∈ k̃. Hence, pkn provides the contribution of

|φk〉 to pA(n), which is finally obtained by adding all the possible arrangements of the n electrons

in the the |φ〉 basis: ∑k pkn = pA(n). The normalized sector density ρ̃A
n is also given by eq 13

substituting pkn by p̃kn = pkn/pA(n) = pkn/∑k pkn .

Being |φ〉 an orthonormal basis within the domain A, the 1 and 2RDMs ρ
A,1
n and ρ

A,2
n for each

determinant |φk〉 are easily obtained from Eqs. 10, 13 and 14 by simple application of the Slater

1Since SA is blocked by spin (SA = SA,α ⊕SA,β ), in case of a closed-shell SDW, SA,α = SA,β , and the N/2 orbitals
derived from diagonalizing SA,α and SA,β are the same, which means that, leaving aside the spin part of MSO’s, each α

orbital is equal to an equivalent β orbital, and is orthogonal to all the other β orbitals. However, in open-shell SDW’s
SA,α 6= SA,β and the α and β orbitals are not, in general, orthogonal to each other. The α−β orthogonality is due in
this case to the spin parts of MSO’s.
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rules:

ρ
A,1
n (x1;x′1) = 1

′A
1 1A

1 ∑
k

pkn ρ
A,1
n,k (x1;x′1) (15)

ρ
A,2
n (x1,x2;x′1,x

′
2) = 1

′A
2 1A

2 ∑
k

pkn ρ
A,2
n,k (x1,x2;x′1,x

′
2), where (16)

ρ
A,1
n,k (x1;x′1) =

n

∑
i=1

φki(x1)φ
?
ki
(x′1) and (17)

ρ
A,2
n,k (x1,x2;x′1,x

′
2) =

n

∑
i, j=1

φki(x1)φk j(x2)
[
1− p̂i j

]
φ
?
ki
(x′1)φ

?
k j
(x′2). (18)

Since Tr(ρA,1
n,k )= n and Tr(ρA,2

n,k )= n(n−1) for any k, we have Tr(ρA,1
n )= n× pA(n) and Tr(ρA,2

n )=

n(n− 1)× pA(n), that represent the contributions of sector n to the total number of electrons and

pairs of electrons of domain A, respectively.

3.2 The multi-determinant case

We will assume now that |Ψ〉 is a N−electron MDW expressed in terms of a set of 2 f orthonormal

MSO’s |u〉 = {|u1〉 · · · |u2 f 〉} as |Ψ〉 = ∑
M
r=1Crψr(1,N), where ψr(1,N) = (N!)−1/2 det|ur1 · · ·urN |,

and uri (i = 1 · · ·N) is the subset of N MSO’s that define ψr(1,N). We will collectively label

this subset as r = (r1, · · · ,rN). As in the above section, let us consider now the transformed set

|up〉 = |u〉U , where U is the eigenvector matrix of SA = 〈u|u〉A, i.e. U†SAU = diag(si) = s. Here,

it is also possible to compute |φ〉= |up〉s−1/2, the orthonormal one-electron basis in A. In the |up〉

basis, |Ψ〉 can be written as (see Supplementary Information of Ref. 4)

Ψ(1,N) = ∑
j

Djχj(1,N), (19)

where j ≡ { j1 · · · jN}, Dj = ∑
M
r=1Crdet[Urj ], χj = (N!)−1/2 det|up

j1 · · ·u
p
jN |, and Urj is the (N×N)

matrix obtained from U by selecting the rows and columns denoted by r and j, respectively. The

summation over j in eq 19 runs, in principle, over all possible ordered subsets of N elements

obtained from the first 2 f natural numbers. However, given that all χj’s are built with the same
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number of α and β MSO’s (say, Nα and Nβ ), j1, · · · , jNα
and jNα+1, · · · , jN must be necessarily in

the ranges [1, f ] and [ f +1,2 f ], respectively, reducing considerably the number of terms in eq 19.

Matrix U is unitary but, in general, Urj is not. However, for a closed-shell SDW f = N/2, j and

r can only be j = r = (1,2, · · · ,N), and Urj = U . This is the well-known invariance of a Slater

determinant under an unitary transformation of all of its MSO’s.

As in the SDW case, we only need the 1RDM (ρA,1
n ) and 2RDM (ρA,2

n ) of sector n. Using eq 19

in eq 11, we obtain

ρ
A,m
n (xi≤m;x′i≤m) = 1

′A
m1A

m ∑
j,k

DjD?
kIm

jk(xi≤m;x′i≤m), where (20)

Im
jk(xi≤m;x′i≤m) = Λ

m
N,n

∫
D

χj(x)χ
?
k(x

′)dxi>m. (21)

The orthogonality in A and B of the |up〉 basis greatly simplifies the computation of the Im
jk inte-

grals. After a lenghty manipulation, that we omit here for brevity, we have

I1
jj(x1;x′1) =

N

∑
i=1

φ ji(x1)φ
?
ji(x

′
1)×nA,1

ji ji. (22)

If χj and χk differ in a single MSO, say up
ji 6= up

ki
we have

I1
jk(x1;x′1) = φ ji(x1)φ

?
ki
(x′1)×nA,1

jiki
(up

ji 6= up
ki
), (23)

and finally, I1
jk = 0 if χj and χk differ in two or more MSO’s. In Eqs. 22 and 23, nA,1

jiki
= (s jiski)

1/2×

p ji(n−1) and p ji(n−1) represents the probability that n−1 electrons lie in A and N−n electrons

lie in B for a hypothetical (N−1)−electron determinant built with all MSO’s of χj except up
ji .

The computation of I2
jk runs parallel to that of I1

jk. We obtain

I2
jj(x1,x2;x′1,x

′
2) =

1
2

Â12Â′12 ∑
i,l

φ ji(x1)φ jl(x2)φ
?
ji(x

′
1)φ

?
jl(x

′
2)nA,2

ji jl ji jl (24)

where nA,2
ji jlkikl

= (s jis jl skiskl)
1/2× p ji jl(n− 2), Â12 = 1− p̂12 is an operator that antisymmetrizes
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with respect to variables in the unstarred MSO’s, Â′12 acts likewise in the starred MSO’s, and

p ji jl(n−2) represents the probability that n−2 electrons lie in A and N−n electrons lie in B for

a hypothetical (N−2)−electron SDW built with all MSO’s of χj except up
ji and up

jl . If χj and χk

differ in a single MSO up
ji 6= up

ki
(or φ ji 6= φki) one has

I2
jk(x1,x2;x′1,x

′
2) = Â12 ∑

l 6=i
φ ji(x1)φ jl(x2)φ

?
ki
(x′1)φ

?
jl(x

′
2)nA,2

ji jlki jl
(25)

If χj and χk differ in two MSO’s up
ji 6= up

ki
(or φ ji 6= φki) and up

jl 6= up
kl

(or φ jl 6= φkl ), we obtain

I2
jk(x1,x2;x′1,x

′
2) = Â12φ ji(x1)φ jl(x2)φ

?
ki
(x′1)φ

?
kl
(x′2)nA,2

ji jlkikl
. (26)

Finally, I2
jk = 0 if χj and χk differ in three or more MSO’s.

Equations 22-26 can be expressed in the |up〉 one-electron basis instead of the |φ〉 basis simply

removing the (s jiski)
1/2 and (s jis jl skiskl)

1/2 factors from the definition of nA,1
jiki

and nA,1
ji jlkikl

.

Based on all the above expressions, three steps are necessary to compute the 1RDM and 2RDM

of each sector n: (1) Diagonalize SA, obtaining the matrix U , the eigenvectors si, and the trans-

formed MSO’s |up〉 and |φ〉; (2) Transform Ψ(1,N) to the form given by eq 19; (3) For each sector

n and determinant χj , compute the probabilities p ji(n−1) and p ji jl(n−2). Clearly, we can obviate

the sector n = 0, since the 1RDM and 2RDM are zero in this case, ρ
A,1
0 = ρ

A,2
0 = 0. Similarly, only

p ji(n−1) is needed for n = 1, since ρ
A,2
1 = 0. Once these calculations have been performed, ρ

A,1
n

and ρ
A,2
n in the |φ〉 basis can be written as

ρ
A,1
n (x1;x′1) = 1

′A
1 1A

1 ∑
i,k

γ
n
ikφi(x1)φk(x

′
1), (n≥ 1), (27)

ρ
A,2
n (x1,x2;x′1,x

′
2) = 1

′A
2 1A

2 ∑
i, j,k,l

Γ
n
i jklφi(x1)φ j(x2)φ

?
k (x

′
1)φ

?
l (x

′
2) (n≥ 2). (28)

Their spinless analogues are obtained after integrating the spin variables. To avoid an overexcess

of definitions, we will continue to maintain, however, the names of γn
ik and Γn

i jkl for the coefficient

that multiplies φi(r1)φk(r
′
1) and φi(r1)φ j(r2)φ

?
k (r1)φ

?
l (r2), respectively, after this integration of

10



the spin is carried out. Similarly, we will continue to maintain the γn
ik and Γn

i jkl names when the

|up〉 basis is employed instead of the |φ〉 basis.

The sum ∑
N
n=1 p ji(n−1) is equal to 1 since it gives the probability that the domain A contains

between 0 and N−1 electrons for a hypothetical (N−1)−electron SDW. Similarly, ∑
N
n=2 p ji jl(n−

2) = 1, since this is the probability that A holds between 0 and N − 2 electrons for a (N −

2)−electron SDW. As a consequence, ∑
N
n=1 γn

ik = γik and ∑
N
n=2 γn

i jkl = Γi jkl , where γik and Γi jkl

are the expansion coefficients of the 1RDM and 2RDM of the full system in the |φ〉 basis. The

expressions for the mRDMs (m = 1,2, · · · ) of any sector n are thus formally equal to those of the

full system, and the expansion coefficients of the latter in the |up〉 or |φ〉 basis are the sum of the

coefficients of all its sectors. Actually, Eqs. 22-26, without the nA,1 and nA,2 factors, are the well

known Slater rules Quantum Chemistry.

The γn
ik’s and Γn

i jkl’s of equations 27 and 28 adopt simpler forms for a SDW. Taking into account

that, in that case, only the diagonal term j = k= {1, · · · ,N} appears in eq 20, and Eqs. 21 and 22,

we obtain γn
ik = δik si pi(n−1) and Γn

i jkl = (δik δ jl−δil δ jk)si sl pil(n−2) for a SDW.

3.3 Local spin from an OQS perspective

Within the OQS formalism the local spin of an open region A is given by 〈Ŝ2
A〉 = Tr

(
Ŝ2ρ̂A), and

expressing ρ̂A in terms of its N + 1 sectors, 〈Ŝ2
A〉 = ∑n〈Ŝ2

A,n〉. The sector n = 0 trivially does not

contributes to 〈Ŝ2
A〉, and the sector n = N neither does if |Ψ〉 is a closed-shell wave function. On

the other hand, Ŝ2 for the sector n is given by

Ŝ2 =
n

∑
i, j

ŝ(i)ŝ( j) =
n

∑
i=1

ŝ2(i)+
n

∑
i6= j

ŝ(i)ŝ( j) = Ŝ2
1 + Ŝ2

2, so that (29)

〈Ŝ2
A〉 = 〈Ŝ2

1,A〉+ 〈Ŝ2
2,A〉, with (30)

〈Ŝ2
1,A〉 = ∑

n
〈Ŝ2

1,A,n〉= ∑
n

Tr
(

Ŝ2
1ρ

A,1
n (x;x′)

)
, (31)

〈Ŝ2
2,A〉 = ∑

n
〈Ŝ2

2,A,n〉= ∑
n

Tr
(

Ŝ2
2ρ

A,2
n (x1,x2;x′1,x

′
2)
)
. (32)

11



In the SDW case, from Eqs. 15-18, Eqs. 31-32, and the property 〈φi|φ j〉A = δi j, we find (See

Appendix 1)

〈Ŝ2〉A,n = ∑
k

pkn
[
n/2+M2

k−Sk
]
= ∑

k

pkn 〈Ŝ2〉A,n,k (33)

In eq 33, Mk = (nα−nβ )/2 is the eigenvalue of Ŝz for the determinant |φk〉, with nα +nβ = n, and

Sk = ∑ki∈α ∑k j∈β |〈kα
i |k

β

j 〉A|2, where kα
i and kβ

j are the real parts of MSO’s ki and k j, respectively.2

We should note that the α (or β ) subset of MSO’s is orthonormal in the domain A, but both subsets,

in general, are not orthogonal to each other, i.e. |φk〉 in the general case is a spin-unrestricted Slater

determinant. Particular cases of eq 33 deserve to to commented. (i) A single α or β electron in

A has n/2 = 1
2 , M2

k = 1
4 and Sk = 0, so that 〈Ŝ2〉A,n,k = 3

4 . (ii) An arbitrary |φk〉 with nα = nβ

has Mk = 0, so that 〈Ŝ2〉A,n,k = n/2− Sk. (iii) A restricted Slater determinant made of nα and

nβ < nα spin-restricted MSO’s, where every β orbital is equal to a single α orbital and orthogonal

to all the other α orbitals has Sk = nβ and n/2−Sk = Mk = |Mk|. If the situation is the opposite,

i.e. nβ > nα and every α orbital is equal to a single β orbital and orthogonal to the remaining

β orbitals, one has Sk = nα and n/2− Sk = −Mk = |Mk|. Since M2
k = |Mk|2, we obtain in both

cases 〈Ŝ2
A,n,k〉 = |Mk|(1+ |Mk|). If, in addition, nα = nβ , 〈Ŝ2

A,n,k〉 = 0, that correspondonds to a

restricted closed-shell Slater determinant. (iv) Finally, for a Slater determinant formed from spin-

restricted orbitals where nc α and β orbitals are equal (with nc ≤ nα and nc ≤ nβ ), Sk = nc, and

〈Ŝ2
A,n,k〉= M2

k+nd/2, where nd = nα +nβ −2nc is the number of not-matched orbitals from either

spin.5 For instance, if k = {φ1,φ2,φ3,φ4,φ5, φ̄4, φ̄5,φ6,φ7}, we have nc = 2 and nd = 5. This is

the most general case when α and β φi’s are obtained in the same diagonalization which, in turn,

happens when Ψ is a closed-shell SDW. As pointed out by Davidson and Clark5, nd is the trace of

the effectively unpaired density u(r). When nc = nα or nc = nβ this case reduces to case (iii).

In case that ρ̃
A,1
n and ρ̃

A,2
n had been used instead of ρ

A,1
n and ρ

A,2
n , eq 33 would be the same

2The meaning of Sk is the following. The set of spin-orbitals in k is divided into the α and β subsets, with nα

and nβ MSO’s, respectively. Then, the nα nβ overlaps between the α and β MSO’s (leaving aside their spin parts) are
computed and added to give Sk.

12



except that p̃kn must replace pkn . As it is evident from this equation, the expected value of Ŝ2 for

sector n of domain A is a weighted sum of the expected values of this operator for the N!/[n!(N−

n)!] choices of k. Given that pkn = ∏
N
i pi with pi = si if i ∈ k and pi = 1− si if i /∈ k, it is clear that

only k’s with all of its MSO’s partially localized in A will contribute significantly to 〈Ŝ2
A,n〉.

The k sets in eq 33 can be grouped into as many subsets as the number of ways of choosing

nα and nβ such that nα + nβ = n, i.e. 〈Ŝ2
A,n〉 = ∑

′
nα ,nβ ∑

′
k pkn

[
n/2+M2

k−Sk
]
, where the prime

(′) in the first sum means than only terms with nA
α + nA

β
= n are included, and the ′ in the second

that only k’s associated to these nα and nβ have to be considered. All these restricted k’s have

n/2 = (nα +nβ )/2 and Mk = (nα −nβ )/2, so that

〈Ŝ2
A,n〉= ∑

′

nα ,nβ

[
n/2+(nA

α −nA
β
)2/4−Sn

k

]
pA(nα ,nβ ). (34)

where pA(nα ,nβ ) = ∑
′
k pkn is probability of having nα α and nβ β electrons in the domain A,

and we have defined Sn
k = pA(nα ,nβ )−1

∑
′
k pkn Sk. The quantity

[
n/2+(nα −nβ )

2/4−Sn
k

]
can

be understood as 〈Ŝ2
A,nα ,nβ

〉, the local spin of domain A for a spin-resolved sector. The local spin

of sector n is thus the sum of all of its spin-resolved contributions, each weighted with the factor

pA(nα ,nβ ).

In the MDW case, we use Eqs. 31-32 of Appendix 1 with ρ
A,1
n and ρ

A,2
n given by Eqs. 27 and

28, obtaining

〈Ŝ2〉A,n =
3
4 ∑

i
γ

n
ii−

1
4 ∑

i, j

(
Γ

n
i ji j +2Γ

n
i j ji
)
. (35)

In some way, the expresion of 〈Ŝ2〉A,n is formally simpler for MDW’s than for SDW’s. Of course,

the complexity in the first case lies in the calculation of the γn
i j and Γn

i jkl coefficients. In addition,

since we have not derived the 1RDM and 2RDM of spin-splitted sectors of MDW’s (i.e. for given

values of nα and nβ ), an expression for 〈Ŝ2
A,nA

α ,nA
β

〉 is not available yet.

13



4 Appendix 1

In this appendix, we will prove eq 33. For an arbitrary N−electron wave function Ψ with 1RDM

and 2RDM ρ1(1;1′) and ρ2(1,2;1′,2′), the expectation value of Ŝ2 is given by

〈Ŝ2〉 =
3
4

∫
ρ(r)dr− 1

4

∫∫ [
ρ

2(r1,r2;r1,r2)+2ρ
2(r1,r2;r2,r2)

]
dr1dr2. (36)

This equation can be applied as well using ρ
A,1
n,k instead of ρ and ρ

A,2
n,k instead of ρ2. Then, from

Eqs. 15, 17 and 31 we have 〈Ŝ2
1〉A,n =

3
4 ∑k npkn . To obtain the second and third integrals, we will

elliminate for clarity the subscripts n and k and the superscript A from ρ
A,2
n,k . Since ρ

A,2
n,k corresponds

to a SDW, we can write it as

ρ
2(r1,r2;r1,r2) = ρ(r1)ρ(r2)−

1
2

ρ(r1;r2)ρ(r2;r1)−
1
2

ρ
s(r1;r2)ρ

s(r2;r1), (37)

ρ
2(r1,r2;r2,r1) = ρ(r1;r2)ρ(r2;r1)−

1
2

ρ(r1)ρ(r2)−
1
2

ρ
s(r1;r1)ρ

s(r2;r2), (38)

where ρ(r1) ≡ ρ(r1;r1), ρ(r2) ≡ ρ(r2;r2), ρ(r;r′) = ρα(r;r′) + ρβ (r;r′), and ρs(r;r′) =

ρα(r;r′)−ρβ (r;r′), with ρσ (r;r′) = ∑ki∈σ φ?
ki
(r)φki(r

′) (σ = α,β ), and nα +nβ = n. Since the

φi spin-orbitals are orthonormal in A, the integration of ρ2(r1,r2;r1,r2) is analogous to that of a

standard n−electron 2RDM in R3, i.e.

∫
A

∫
A

ρ
2(r1,r2;r1,r2)dr1dr2 = n(n−1). (39)

The integration of ρ2(r1,r2;r2,r1) is as follows. First,
∫

A
∫

A ρ(r1;r2)ρ(r2;r1) dr1dr2 = αα +

ββ +αβ + βα , where σσ ′ =
∫

A
∫

A ρσ (r1;r2)ρ
σ ′(r2;r1) dr1dr2. The contribution αα can be

written as ∑ki∈α ∑k j∈α |〈φki|φk j〉A|2. Since φki and φk j are α MOs, they come from the same

diagonalization and are orthogonal if ki 6= k j. Then, αα = nα . Similarly, ββ = nβ . The αβ

contribution is given by αβ = ∑ki∈α ∑k j∈β |〈kα
i |k

β

j 〉A|2 = |Sαβ

i j |2 = Sk, where we have used an

abbreviated notation for the overlap integrals. In a closed-shell molecule, the α and β φi’s are

14



equal and each Sαβ

i j is simply 0 (kα
i 6= kβ

k ) or 1 (kα
i = kβ

k ), and Sk = nkp , where nkp is the number

φi’s in k that appear simultaneously in the α and β sets. For instance, for the five-components

k vector with nα = 3 and nβ = 2 formed with the α MOs φ1, φ3, and φ4, and the β MOs φ1

and φ4, we will have nkp = 2. The above situation also happens in an open-shell molecule if

we decide to obtain the full set of α + β MOs from the same diagonalization. However, in

the most general case, Sαβ

i j 6= 0. The βα contribution is also given by βα = Sk. In summary,

we have
∫

A
∫

A ρ(r1;r2)ρ(r2;r1) dr1dr2 = n + 2Sk. From
∫

A ρ(r)dr = n, we trivially obtain

−1
2
∫

A
∫

A ρ(r1)ρ(r2) dr1dr2 = −1
2n2. Finally, from ρs(r;r′) = ρα(r;r′)− ρβ (r;r′) we have

−1
2
∫

A
∫

A ρs(r1;r1)ρ
s(r2;r2) dr1dr2 =−1

2(n
α −nβ )2 =−2M2

k. Adding these three contributions

∫
A

∫
A

ρ
A,2
n,k (r1,r2;r2,r1)dr1dr2 =−

1
2

n(n−2)+2 Sk−2M2
k. (40)

Finally, adding the 〈Ŝ2
1〉A,n value, −1

4 of eq 39, and −1
2 of eq 40 we obtain eq 33.
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