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Electronegativity equalization: Taming an old problem
with new tools

J. Luis Casals-Sainz, E. Francisco, A. Martín Pendás∗†

Electronegativity equalization is examined after understanding an atom-in-a-molecule as an open
quantum system, characterized by a variable fluctuating number of electrons whose average is
set through charge-constrained electronic structure calculations. It is shown that actual results in
toy systems can be easily modeled through electron distribution functions, and that by doing so
several conflicting interpretations converge onto a common formalism.

Electronegativity (χ) is one of the most fundamental, yet slippery,
ordering descriptors in chemistry.1 It was originally proposed by
Pauling as the power of an atom in a molecule to attract electrons
to itself, and this very diffuse definition paved the way to multi-
ple interpretations, generalizations and, ultimately, scales.2 Since
polar bond formation leads to interatomic electron flows, charge
(Q) or electron count (N) dependent χ ’s were soon proposed by
Sanderson.3 He also postulated that molecular electronegativities
were the geometric mean of their atomic counterparts and that,
as a consequence of charge flow, electronegativities were equal-
ized upon bonding (Sanderson’s principle).4 Not only charge, but
orbital or valence state dependent χ ’s were also introduced.5

A crucial step in the formalization of the electronegativity con-
cept was given by Iczkowski and Margrave,6 who in 1961 pro-
posed that electrons would flow such that the energy gained by
the more electronegative counterpart would exceed the penalty
at the less electronegative end. With this simple reasoning they
identified χ as minus the derivative of the (atomic) energy with
N, χ = −dE/dN. Expanding E(N) to second order in N around
the neutral electron population, N0, and using the energies of
the cation, E(N0 − 1), the neutral atom, E(N0), and the anion,
E(N0+1), they showed that χM(N0) =−dE/dN|N0 = (I+A)/2, i.e.
Mulliken’s definition of electronegativity, where I and A are the
first ionization potential and electron affinity of the atom, respec-
tively. The expansion leads to

E(Q) = E(0)+χMQ+
1
2

ηQ2, (1)

χM being Mulliken’s electronegativity, η = I−A, the Parr-Pearson
hardness,7 and Q = N0−N the atomic charge.
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The next milestone was Parr et al. proposal of identifying
the electronegativity with minus the electronic chemical poten-
tial µ in density functional theory (DFT):8 µ =−χ =

(
δE[ρ]

δρ

)
v
=(

∂E
∂N

)
v
. Here µ is found as the Lagrange multiplier in a con-

strained energy minimization at constant external potential v
and total electron count N, so that a Gibbs-Duhem-like iden-
tity dE = µdN +

∫
ρ(rrr)δv(rrr)drrr is satisfied. This thermodynamic

analogue is the origin of the so-called chemical DFT or concep-
tual DFT (cDFT).9 Since the chemical potential µ(rrr) is constant
through space, Sanderson’s equalization principle follows imme-
diately. A final achievement came after analyses in the grand
canonical ensemble10 showed that at zero temperature E(N) is
convex and piecewise linear between integer N values. The lat-
ter means that E is not differentiable at integer N, so that µ

is undefined, and that it has constant derivative at non-integer
electron numbers. In this way, µ(x) = E([x] + 1)−E([x]), where
[x] is the integer part of a non-integer electron number x. This
leads to well defined, but different left and right electronegativ-
ities at integer N: χ−(N) = I, χ+(N) = A. To avoid the deriva-
tive discontinuity problem, which predated early cDFT, a bunch
of approximations and differentiable models were proposed. In
the finite difference method, the derivative is approximated by
a three-point (N− 1,N,N + 1) formula, that recovers again Mul-
liken’s χ, χM(N) = (I +A)/2. The finite difference method also
leads to E ′′(N)/2 = η(N) = I − A, and is closely related to the
parabolic approximation, which builds a differentiable E(N) by
fitting E(N − 1),E(N) and E(N + 1) to a parabola. This leads
directly to Eq. 1. A similar three parameter model is Parr and
Bartolotti exponential approximation (EA),11 introduced so that
Sanderson’s geometrical average was the outcome of χ equaliza-
tion. While plausible, no real justification exists to introduce these
models, that are known to lead to severe inconsistencies. The
parabolic approximation may give rise to a spurious minimum in
E(N) at non-integer N values and thus fractional charges for two
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non interacting atoms at infinity. In the EA, µ is undefined if
A≤ 0, and η is necessarily a decreasing function of N, predicting
that any multiply charged anion should be stable.

As soon as a differentiable E(N) model is proposed, the con-
stancy of µ can be used to equalize the electronegativities of the
molecular components, be them atoms or groups. This provides
a set of partial charges as well as a charge flow or charge-transfer
energetic stabilization. In the parabolic approximation for an AB
system with QA =−QB = Q,

E(Q) = E(0)+(χA−χB)Q+(ηA +ηB)Q2/2, (2)

so that both energy minimization or electronegativity equaliza-
tion (ENE) lead to Q = −∆χ/(ηA +ηB) and ∆E = Q∆χ/2. This
is the basis of Rappé and Goddard’s charge equilibration.12 In
the context of the real space partitions of the quantum theory
of atoms in molecules (QTAIM) that we will use here, the ENE
has also been used, for instance, to fit atomic charges quickly.13

Electronegativity scales have even been proposed from QTAIM
atoms.14

Blind application of the above ENE ideas to diatomics using
ground state I’s and A’s leads to catastrophic partial charges
that barely amount to half the values which are obtained with a
plethora of population analyses.15 In NaCl, a largely ionic moiety
with partial charge close to 1 according to most physically sound
partitioning methods, ground state ENE gives Q≈ 0.4.

This problem was early recognized, and the solutions proposed
have gone two different ways, mainly. One has explored the
fact that χ ’s in-the-molecule are not those of the ground state
atoms or fragments, but of their valence states (as emphasized
by Mulliken). The valence state energy takes into account Wigner
and Witmer symmetry correlation rules,16 any promotion needed
for bonding to occur, and the recognition (fundamental for what
follows) that not only (valence-bond-like) neutral but also ionic
structures contribute to the energy of an atom in-the-molecule
(AIM). This program has been followed to the present day by
Szentpály, who has even challenged the meaning of ground state
cDFT.17 By using Ruedenberg’s valence states18 that lead to the
valence state parabolic approximation, this author has shown that
valence state ENE renders charge transfers in agreement with
population analyses.15 The valence shell parabolic approxima-
tion is a modification of the Hinze-Whitehead-Jaffé19 model com-
ing from the analysis of Hartree-Fock energy expressions. For an
electron pair residing in a given orbital, an occupation depen-
dent energy can be defined as ε(n) = −nI + n(n− 1)J/2, where
n = 0,1,2 and J is the Coulombic repulsion of the pair. Hinze-
Whitehead-Jaffé χ ’s are plagued with problems that disappear if
ε(n) = −nI + n2J/4. At n = 1, the J/4 repulsion is justified by
taking into account that in a (non-correlated) 2e bond, the prob-
ability of finding two electrons in one atom is 1/4 (Ruedenberg’s
sharing penetration). From this, a valence shell parabolic approx-
imation was proposed15 in which Evs(n) =−Ivsn+(Ivs−Avs)n2/4,
where vs refers to valence state derived quantities.

The second route considers the effect of the potential exerted
by B on A and vice versa. It was already shown by Perdew et
al.10 that by just considering the −1/RAB Coulomb potential be-

tween pure atomic ions A+ and B− a complete charge transfer
(CT) transition occurs at a critical distance RAB,c = 1/(IA−AB).
These authors also noticed that fractional electron numbers may
arise if we consider atoms as open quantum systems. Adding the
attraction of partially charged atoms −Q2/RAB to Eq. 2 leads to
Q =−∆χ/(ηA+ηB+2/RAB), which is equivalent to assuming that
the AIM χ value has acquired a new−Q/RAB interaction contribu-
tion.20 The role of these interaction terms has been examined by
Nalejwaski21 and by Mortier and coworkers.22 The latter consid-
ered for the first time a fully consistent density matrix description
of an AIM in which the molecular energy becomes a sum of intra-
atomic and interatomic terms, arriving at an approximate expres-
sion for the AIM χ with intra- and interaction contributions.

Thorough analyses of how electron flow and electronegativity
equalization takes place upon bonding were offered by Cioslowski
and coworkers,23 who used charge-constrained (CgC) calcula-
tions and real space atoms from the quantum theory of atoms
in molecules to control the partial charges on the interacting
atoms.24 These seminal works demonstrated that ENE leads to
the exact partial charges of the atoms used to partition the en-
ergy, and that a transition from piecewise linear to parabolic E(Q)

regimes was observed as the distance between the interacting
atoms decreases. However, no explicit energy partition was made,
so that their conclusions remained disconnected from mainstream
ENE or cDFT formalisms. We now show that CgC calculations
coupled to the interacting quantum atoms (IQA) energy decom-
position25 and to the open systems electron distribution proba-
bilities (EDFs)26 offers a rigorous link among all the branches of
ENE, including a justification of Szentpály valence shell parabolic
approximation that smoothly converges over Mortier’s insights.

In IQA, the energy of a system is exactly decomposed as a
sum of atomic (or fragment) self-energy terms, EA

sel f , and pair-
wise additive interatomic (interfragment) energies, EAB

int : E =

∑A EA
sel f +∑A>B EAB

int , much as in Mortier’s description. The first
are atomic energies converging to the isolated atoms at dissocia-
tion, the latter contain electrostatic and covalent terms that van-
ish appropriately with RAB. Differentiation with respect to elec-
tron counts yields exact χ ’s and exact ENEs. Since QTAIM atoms
are open systems, which may be understood as entangled statis-
tical mixtures of regions that harbor different integer numbers of
electrons (nA for atom A) with probabilities pA(n),27 ∂Esel f /∂N
terms include all promotion, valence state excitation and sharing
penetration effects directly. By assuming specific behaviors for
the p’s, models can easily be crafted and compared with existing
approximations.

CgC-IQA calculations impose a controlled charge in a two-
fragment AB system at constant v. For overall neutral moieties,
Q = QA = −QB, so that E(Q) is minimized at the Qe value that
renders the system’s QTAIM charges, with dE(Q)/dQ = χA− χB

and dE(Q)/dQ|Qe = 0 at ∆µ = 0. CgC-IQA has been implemented
in the PySCF suite.28 Since our conclusions are general, only min-
imal examples for the H2 homopolar and LiH heteropolar links
are offered at the full configuration interaction level. See the ESI
for details.

Fig. 1 shows the evolution of EA,B
sel f and EAB

int with Q in H2 for two
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Fig. 1 Evolution of EA,B
sel f (green and purple, main), EAB

int (cyan) together
with the delocalization index DI (orange) in the inset, as the CgC Q varies
in H2 at RAB = 5.0 (top) and 1.40 au (bottom), respectively.

different values for RAB in the dissociation and covalent regime,
respectively. At RAB = 5.0 au, in agreement with Cioslowski and
Stefanov,23 the energy varies almost linearly with Q, with small
deviations at large |Q| values related to CgC convergence prob-
lems. Although the E(Q) function remains differentiable at Q = 0,
the RAB → ∞ limit is non-differentiable. Notice how this plot
shows the piecewise linear grand canonical cDFT behavior of the
H atom. In the large distance regime, a QTAIM atom behaves as
a grand canonical atom. The inset shows an almost linear evo-
lution of the interatomic interaction energy that contrasts with
a parabolic behavior of the bond order or delocalization index
(DI) that peaks at DI=0.5. Taking into account that as Q grows
a −Q2/RAB Coulombic attraction appears, the linear behavior of
Eint needs further understanding. As shown many times,26 the
0.5 peak of the DI points toward the real space transfer of one
and only one electron.

The above regime changes as we move toward equilibrium.
The (quasi)-discontinuity at Q = 0 disappears, and the Esel f ’s turn
to behave smoothly. We should notice that the stationary atoms
(at Q= 0) are slightly deformed (their Esel f is a bit above−0.5 au)
and that if we try to fully charge (or discharge) the quantum AIM
considerable energetic deformations are needed. The DI peaks
now at Q = 0, where covalency is maximized, decreasing parabol-
ically with Q. With this, EAB

int has a local maximum at Q = 0,
decreases parabolically up to about Q = 0.65, where considerable

deformation accumulates and a more complex shape develops.

It is easy to rationalize these observations with the help of an
open systems viewpoint and EDFs.26 In H2, an H atom may con-
tain 0,1, or 2 electrons (H+,H,H– ), with probabilities p(0), p(1),
and p(2), respectively. There are three possible electron count
arrangements for HA−HB, (2,0),(1,1), and (0,2) that closely cor-
respond to the three valence bond (VB) structures, H–−H+,
H ·−H · , H+−H– . As evidenced by the DI behavior, the long-
distance regime is dominated by one-electron transfers: when
an atom (e.g. the A atom) is charged, there is a one-way elec-
tron flow. This is equivalent to a one-parameter model (the
1e model in what follows) in which p(2,0) = q, p(1,1) = 1− q,
p(0,2) = 0 and Q = QA = −QB = −q. At dissociation, the AIMs
of this model are exactly grand canonical, since EA

sel f = q ×
E(H−) + (1− q)× E(H) and EB

sel f = q× E(H+) + (1− q)× E(H),
with E = EA

sel f +EB
sel f . It is obvious that at large but finite inter-

nuclear distance a Coulombic attraction between the ions equal
to q× (−1/RAB) appears, so that E(Q) = 2E(H)+η |Q|− |Q|/RAB.
This is Perdew and coworkers’ result,10 but differs from Balbás
et al.’s20 and Mortier et al.’s22 who modelled the CT transfer as
classical, with a −Q2/RAB contribution. E is non-differentiable at
Q = 0 but it remains always a minimum at this value. In the 1e
model, the DI is computed from the covariance of the probability
distribution (see the ESI) as DI = 2q(1− q), so that all features
of the top part of Fig. 1 are recovered. As shown in the ESI, the
actually computed probabilities in this regime closely follow the
model.

As the RAB distance decreases, covalent delocalization sets in25

that implies a symmetric electron exchange at the stationary Q= 0
value. This has already been modeled in the general correlated
case with two parameters:26 a correlation factor f ∈ [−1,1] that
senses how correlated the motion of the two electrons is (pos-
itive in standard cases, zero in the mean-field approximation)
and a CT-like parameter that measures the mean-field proba-
bility of finding an electron in an AIM, p ∈ [0,1]. In this 2e
model, p(2,0) = p2 − p(1− p) f , p(1,1) = 2p(1− p)(1 + f ), and
p(0,2) = (1− p)2− p(1− p) f , with QB = 2p−1. A homonuclear 2e
link displays always p = 1/2, with varying degrees of electron cor-
relation, although in standard chemical bonds like that in H2 f is
close to zero at equilibrium (supporting the success of the mean-
field approximation). As the H2 bond forms on approaching the
H atoms, f decreases from 1 at dissociation to about 0 at equi-
librium. To correctly understand how this impacts ENE, we will
suppose in the following that f = 0 to rationalize the transition to
the behavior disclosed in the bottom panel of Fig. 1. With these
assumptions, DI = 4p(1− p) = 1−Q2 is parabolic, in very good
agreement with our findings (More precisely, f ≈ 0.15 in our full
configuration interaction H2, so that since DI = 4p(1− p)(1− f ),
DI≈ 0.85 at Q = 0).

In the 2e model at finite RAB’s, as Q is forced out of its sta-
tionary null value, each AIM can be found in either of the H+,H,
or H– situations. Beyond the H+ cation (with E = 0 necessar-
ily), each of these are atoms-in-the-molecule, with densities and
pair densities different from their isolated counterparts: they are
not only valence-state-prepared atoms in symmetry compatible
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states, but deformed atoms that feel their environment. As such,
their Esel f ’s will be above their isolated counterparts. To distin-
guish the self-energies of the cationic, neutral, and anionic H
AIM from the isolated ones used in the 1e model at dissocia-
tion, we will call the former E+,E0, and E−, respectively. We can
now easily check that EA

sel f = p2E− + 2p(1− p)E0 + (1− p)2E+,
and EB

sel f = (1− p)2E− + 2p(1− p)E0 + p2E+. Similarly, EAB
int =

−[p2+(1− p)2]/RAB. We should notice that even at Q = 0 EAB
int 6= 0

if RAB is finite. This interaction term comes from the existence
of VB-like ionic structures (or Ruedenberg’s sharing penetration).
For instance, a Hartree-Fock calculation leads to p= 1/2, f = 0, so
that p(0,2) = p(2,0) = 1/4 and the weighted Coulombic attraction
in these structures is −1/(2RAB).

It is profitable to write EA
sel f as a function of QA: EA

sel f (QA) =

EA
sel f (0) + χ

sel f
A QA + η

sel f
A Q2

A/2. In this expression, EA
sel f (0) =

(E−+E++2E0)/4, χ
sel f
A = (E+−E−)/2 is nothing but the equiva-

lent to the AIM Mulliken’s electronegativity, (Isel f +Asel f )/2, and
η

sel f
A = (E+ +E−− 2E0)/2 or (Isel f −Asel f )/2. A symmetric for-

mula is obtained if A is exchanged by B. It is clear that atomic
self-energies are continuous and differentiable at Q = 0. If we
assume that E+,E−, and E0 are constant with Q, we arrive at
a parabolic self-energy behavior that matches the general shape
of the bottom panel of Fig. 1 and also the traditional parabolic
approximation in cDFT. The interaction energy at non-zero Q in
this 2e model is given by EAB

int =−(1+Q2)/(2RAB), again in agree-
ment with the actually computed data at low Q. If we add it to the
atomic self-energies E(Q) = 2Esel f (0)+(χ

sel f
A − χ

sel f
B )Q+(η

sel f
A +

η
sel f
B )Q2/2− (1+Q2)/(2RAB). We stress that the interaction term

adds to the AIM electronegativities, but differently than in either
Balbás et al.’s10,20 or Mortier et al.’s22 treatment. In our case, the
AIM χ would acquire a −Q/(2RAB) interaction contribution (half
the previously derived value). At Q = 0, the AIM electronegativ-
ities would by given, anyway, by Mulliken’s expression with in-
the-molecule state quantities. Moreover, Szentpály’s valence shell
parabolic approximation J/4 term is intrinsic to the 2e model and
immediately recovered from mean-field f = 0 probabilities, since
the probability of a 2e repulsion is p(2,0) = 1/4.

A final point regards the observed transition from the 1e to the
2e behaviors. If we compare the 1e and 2e energies at Q = 0 we
notice that the first model will minimize the energy up to a given
transition RAB. Neglecting the deformation difference between
E+,− and E(H+,−) and between E0 and E(H), this is easily found
as RAB,t = 1/[4(Esel f (0)−E0]. For H2 this is easily calculated as
RAB,t ≈ 2.1 au, which is not so far from its equilibrium distance.
1e (ionic) CTs are thus expected to be preferred until the covalent
transition sets in. It is rather interesting that such a simple model
can be used to estimate equilibrium distances in homodiatomics.

As shown in the ESI, an equivalent analysis in LiH shows
that the 1e CT model forces a neutral-ionic transition at RLiH =

1/(ILi−AH) that persists when CgC is imposed even at equilib-
rium. Imposing negative charges on Li leads to large deformar-
tion energies, as expected, but the rationalization of the results
follows the same principles, much as in more complex systems.
When polyelectronic atoms are considered, for instance, it is nec-
essary to understand that the atomic open system may acquire a

given charge in a large number of ways (by changing the several
p(n) values such that ∑n n× p(n) is fixed to the chosen CgC pop-
ulation). This shows how complex the ENE may come to be in
a general case (and how futile simple models will become). We
encourage further work in this direction.

Concluding, Sanderson’s principle of electronegativity equal-
ization, a concept underlying modern chemical thinking about
electron flow in molecular systems, and which was allegedly put
on firm grounds by Parr’s seminal insight about the meaning of
electronegativity in density functional theory, has always suffered
from a number of deep problems that can be traced back to the
derivative discontinuity of grand canonical DFT at integer elec-
tron count. Since equalization models need from differentiable
E(N) expressions, a diversity of proposals have appeared over the
years to solve them. Two routes, one based on noticing that elec-
tronegativities of atoms in-the-molecule are different from those
of the isolated species, and other that considers the potential ex-
erted by the environment on the atomic self-energies have been
proposed with divergent interpretations. We have shown that: (i)
by understanding an atom-in-a-molecule in real space as an open
quantum system characterized by a fluctuating number of elec-
trons; and (ii) by allowing its atomic population to vary continu-
ously at constant external potential through constrained calcula-
tions that fix the number of electrons in each atom,23 the several
conflicting energy models proposed over the years converge onto
a common formalism.

Atoms in molecules (here QTAIM atoms, although this is not
necessary) are symmetry adapted, deformed, interacting entities
with non-constant electron count. Simple models account for the
actually computed data, showing a simple to understand evolu-
tion from grand canonical derivative discontinuity regimes to dif-
ferentiable ones as interatomic distance changes. We expect that
future work in this direction may shed further light on the theo-
retical foundation of Sanderson’s principle.
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1 Basic Chemistry in Real Space

The real space point of view in theoretical and computational chemistry tries
to build proper quantum mechanical observables from orbital invariant de-
scriptors with chemical meaning. Among them, all reduced densities and
density matrices (RDs, RDMs). An identification of spatial regions with
chemical concepts is also necessary. This can be done through spatial par-
titionings, normally induced by the topology of a scalar field. For instance,
the topology of the electron density, ρ, induces an atomic partitioning known
as the Quantum Theory of Atoms in Molecules (QTAIM). It was introduced
and explored by R. F. W. Bader and coworkers.1 Other fields, like the elec-
tron localization function of Becke and Edgecombe’s,2 provides a partition
into cores, lone pairs and bonding domains, etc.

From atoms (or electron-pair domains), chemical bonding descriptors are
built. Both the electron-counting perspective (leading to populations and
bond orders) as well as the energetic view that provides bond strengths are
needed. These are offered by, for instance, electron distribution functions
(EDFs) and the interacting quantum atoms approach (IQA). In order to
study Electronegativity Equalization (ENE) in molecular systems, both are
needed to construct derivatives of energetic descriptors with respect to elec-
tron counts. We will thus provide a basic account of the theory of open
systems in real space, IQA and EDFs.

1.1 Real space regions as open quantum systems

Let us consider two systems Sa, Sb with Hilbert spaces Ha, Hb, respectively.
The composite system S lives in the tensor product spate Ha ⊗ Hb. If
{|φai 〉} and {|φbj〉} are orthonormal bases in Ha, Hb (countable bases have
been assumed, but the results are general), then a state in S can be written
as Ψ =

∑
ij aij|φai 〉 ⊗ |φbj〉. The subsystems are uncorrelated if ρ̂ = ρ̂a ⊗ ρ̂b,

where ρ̂ is the density operator. Otherwise they are said to be entangled. In
the complete system we may still be interested in the expectation value of
an operator Aa that depends only on dynamic variables of subystem Sa. To
obtain it, it is only necessary to known the so-called reduced density operator
of the subsystem, defined by taking the partial trace of ρ̂ over subsystem Sb:
〈A〉 = Tr Aρ̂ = TrAρ̂a, where ρ̂a = Trbρ̂.

We have shown3 how to perform a partial trace in real space. For an
N -electrons system in a pure state, ρ̂ = Ψ?(x′1 . . . ,x

′
N)Ψ(x1 . . . ,xN). Con-
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sidering a spatial region A and its complement, Ā = B, A ∪ B = R3, we
introduce the indicator function of a domain Ω, ωΩ such that ωΩ(x) = 0 and
ωΩ(x) = 1 for x /∈ Ω and x ∈ Ω. Equivalent definitions hold for the primed
variables.

AnN -electron spatial projection operator is obviously 1N =
∏N

i=1[ωA(xi)+
ωB(xi)]. Applying this to the x and x′ coordinates in the the ρ̂ operator
above, the full density operator becomes a sum of 22N terms in which the
primed and unprimed electrons are separated into the A and B spatial do-
mains. The reduced density operator of domain A, ρ̂A, is obtained from ρ̂ by
inegrating over B. After doing it, only 2N terms survive, each corresponding
to a given number of α and β electrons in domain A, what is called a spin
sector. If spin is also summed over, we talk about spinless sectors. Using
electron indistinguishability, the 2N terms can be classified into N+1 spinless
sectors, each contaning a different number of electrons in A, irrespectively of
their spin:

ρ̂A =
N⊕
n=0

ρ̂An , (1)

where ρ̂A0 =
∫
B

Ψ?(x1 . . .xN)Ψ(x1 . . .xN)dx1 . . . dxN and, for n ≥ 1

ρ̂An (xi≤n;x′i≤n) =
n∏
i=1

ωA(x′i)ωA(xi)×

×
(
N

n

)∫
B

Ψ?(x′i≤n,xi>N)Ψ(xi≤n,xi>ndxi>n, (2)

with xi≤n = x1 . . .xn and xi>n = xn+1 . . .xN , for instance. The trace of
each sector density operator is equal to the probability that a given number
of electrons reside in the spatial region, see below. To each of the sectors
we can associate reduced densities of all orders up to the total number of
electrons of the sector.

1.2 Energy partitioning: Interacting Quantum Atoms

Given an atomic spatial partition, the interacting quantum atoms (IQA) de-
composition considers the one- and two-domain division of the non-relativistic
Born-Oppenheimer electronic energy4 described in the following equation,
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E =
∑
A

EA
self +

∑
A>B

EAB
int

=
∑
A

(
TA + V AA

ne + V AA
ee

)
+
∑
A>B

(
V AB
nn + V AB

ne + V BA
ne + V AB

ee

)
, (3)

wherein EA
self and EAB

int are the IQA self and interaction energies of domain
A and pair AB, while TA denotes the kinetic energy of domain A. Finally,
the terms V AB

ne and V AB
ee stand for (i) the attraction between the nuclei of

domain A and the electrons of domain B and (ii) the repulsion between
the electrons in domain A with those in region B, respectively. The atomic
or group self-energies are the expectation values of the atomic (or group)
Hamiltonian in-the-molecule.

We can get further insight about the nature of the interaction between two
atoms by separating the electronic repulsion into its Coulombic and exchange-
correlation components. This splitting allows for a further separation of the
IQA interaction energy of a pair AB into ionic and covalent contributions
as4

EAB
int = V AB

cl + V AB
xc = EAB

ion + EAB
cov . (4)

Usually, binding is measured relative to appropriate references for the
quantum fragments A, with EA,0. Then EA

self − EA,0 = EA
def is called the

atomic or fragment deformation energy, which corresponds to a combination
of the traditional promotion energy and other effects, like spin-recoupling,
true electronic deformation, etc.5 We have shown that the IQA interaction
energies behave as in situ bond energies. IQA thus provides an invariant
decomposition of the energy into group deformations and bond contributions
in which covalent and ionic energies acquire rather pure forms.

1.3 Electron-counting: Electron Distribution Functions
(EDFs)

Electron counting provides access to the more qualitative view of chemical
bonding in which the number of electrons engaged in sharing or in pure
transfer between atoms gives rise to bonding descriptors like bond orders. In
real space, we examine how the total number of electrons distributes among
the different atomic regions in which we divide the space.
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EDFs are defined as follow. Given an N–electron molecule and an ex-
haustive partition of the real space (R3) into m arbitrary regions Ω1, Ω2,
. . . , Ωm (Ω1 ∪ Ω2 ∪ · · · ∪ Ωm = R3), an EDF is the set of all the proba-
bilities p(n1, n2, . . . , nm) of finding exactly n1 electrons in Ω1, n2 electrons
in Ω2, . . . , and nm electrons in Ωm, {np} being integers (ni ∈ N ) satisfying
n1 +n2 +· · ·+nm = N . This view is in accord with considering subsystems as
open quantum systems in which number operators do not commute with the
subsystem Hamiltonian. In this way, Ψ is not an eigenstate of the operator
defining the number of electrons in domain Ωi, N̂Ωi

. This means that the
average number of electrons in Ωi is not an eigenvalue of N̂Ωi

, so that mea-
suring the number of electrons in the domain will render values nΩi

ranging
from 0 to N , the total number of electrons, with a defined set of probabili-
ties, p(nΩ1). This is the one-fragment EDF for domain Ωi, and, in the general
case, we are interested in the multivariate probabilities p(n1, n2, · · · , nm). To
obtain them one needs Ψ(1, . . . , N), Ψ being the complete wave function,

p(n1, n2, . . . , nm) = N !Λ

∫
D

Ψ?Ψdx1 · · · dxN , (5)

where D is a multidimensional domain in which the first n1 electrons are
integrated over Ω1, the second n2 electrons over Ω2, · · · , and the last nm
electrons over Ωm, and N !Λ = N !/(n1!n2! · · ·nm!) is a combinatorial factor
that accounts for electron indistinguishability. The 3D domains of these inte-
grations can be arbitrary, but when using QTAIM atomic basins, a partition
of the N electrons of the molecule that assigns a given number of electrons
(including possibly 0) to each of these regions will be called a real space res-
onance structure (RSRS)6 and there are NS = (N +m− 1)!/[N !(m− 1)!] of
these for a given N ,m pair. With the notation S(n1, n2, . . . , nm) ≡ S({np}),
or simply (n1, n2, . . . , nm) ≡ {np}, we label the resonance structure having
n1 electrons in Ω1, n2 electrons in Ω2, . . ., and nm electrons in Ωm. If elec-
trons are spin-segregated, then we come to spin-resolved EDFs, and a set of
probabilities p(nα1 , n

β
1 , n

α
2 , n

β
2 , . . . , n

α
m, n

β
m) which gives extremely fine-grained

information about how electrons and their spins distribute.7

The computation of p(n1, n2, . . . , nm) for all the RSRSs provides all the
statistical moments of the electron populations, including the average number
of electrons in a given region, or its fluctuation. The average population is
obviously given by
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Ni = 〈ni〉 =
∑
{np}

n× p({np}) =
N∑
n=0

n× p(n). (6)

where p(n) is the probability of having n electrons in Ωi, which is obtained
by adding the p({np})’s for all possible values of n1,. . . ,ni−1,ni+1,. . . , and nm
such that n1 + · · ·+ ni−1 + ni+1 + · · ·+ nm = N − n.
It is not difficult to show that the number of shared pairs between two regions
may be obtained directly by counting the number of intra- and interpairs.8

This has given rise to the so-called localization and delocalization indices,
(λii, δij), which determine the number of localized and delocalized pairs. The
latter, which is the covalent bond-order in real space can be obtained from
the p({np}) probabilities as

δij = −2cov(i, j) = −2 [〈ninj〉 − 〈ni〉〈nj〉] = (7)

−2

∑
{np}

ninj × p({np})− 〈ni〉〈nj〉

 = (8)

−2
∑
ninj

(ni −Ni)(nj −Nj)p(ni, nj) = 2Nij (9)

where the −2 factor has been included to comply with the usual definition of
δ in terms of the exchange-correlation density and to ensure that the bond
order for an ideal single bond is equal to 1,

δij = −2

∫
Ωi

∫
Ωj

dx1 dx2ρxc(1, 2). (10)

The localization index is given by

λii = Ni − cov(i, i) = Ni − var(i) = Ni −
∑
ni

(ni −Ni)
2p(ni) = Nii (11)

From equations 7-11 it is clear that Nii = Ni if the variance is zero and
that Nij = 0 if the covariance is cero. This is the starting point for a complete
theory of chemical bonding based on the fluctuation of electron populations.
There is chemical bonding between two regions if their electron populations
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are not statistically independent. A sum rule, that classifies electrons into
localized and delocalized sets appears:

N =
∑
Ωi

Ni =
∑
Ωi

λii +
1

2

∑
Ωi 6=Ωj

δij. (12)

Suitable generalizations in the case of multi-center bonding exist.9

It is easy to build energetic models using the open systems perspective
and the IQA+EDF approaches.

1.4 The simple two-center, two-electron case

In the case of a system with two domains (A-left, B-right) and two chemically
active electrons, the 2c-2e bond, we can easily map all possible resonance
structures in real space. There are only three of them:(2, 0), (1, 1), (0, 2),
where we label how many electrons lie in each of the A,B domains. The
EDF space is two-dimensional, since p(2, 0) + p(1, 1) + p(0, 2) = 1, and all
bond indices become fully mapped in this 2D space. A convenient coordinate
system can be built with the mean-field probability that any of the electrons
lie in the left basin (for instance). We call this probability p and it provides
a measure of heteropolarity. The second coordinate is a correlation factor
−1 ≤ f ≤ 1 that determines how the electronic motion is correlated. f = 1
means that an electron is completely excluded from one domain if the other is
already in it (positive correlation) and f = −1 implies that the two electrons
are always found together within the same domain (negative correlation).
The correlation factor here defined plays the same role as that used in density
matrix theory, where ρ2(r1, r2) = ρ(r1)ρ(r2)(1− f). The (p, f) pair describes
fully a 2c,2e link at this level:10

p(2, 0) = p2 − p(1− p)f,
p(1, 1) = 2p(1− p)(1 + f),

p(0, 2) = (1− p)2 − p(1− p)f. (13)

It is clear that the average number of electrons in B is NB = 2 × p(0, 2) +
1 × p(1, 1) + 0 × p(2, 0) = 2(1 − p). The charge in B is thus QB = 2p − 1.
Homonuclear links have necessarily p = 1/2.

If we use these p, f parameters, the covalent bond order can be immedi-
ately obtained from δ = −2cov(NA, NB) and becomes δ = 4p(1− p)(1− f).
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An ionic bond order ι = −QaQb where Q is the net charge of a center has also
been defined.11 In standard weakly correlated bonds with positive f ∼ 0, the
EDF is close to binomial, and δ peaks at δ = 1 for a purely covalent homopo-
lar link with p = 1/2. As electron correlation, f , or polarity, p, increases δ
decreases. Moreover, for non-correlated f = 0 links, ι = 1 − δ so, in agree-
ment with standard wisdom, the ionic and covalent bond orders are inversely
correlated.

When electron correlation is important, f deviates considerably from
zero, and the model describes positively or negatively correlated bonds. The
latter case implies a bosonization of the link. Electrons try to delocalize to-
gether, giving rise to very large fluctuations. The most extreme 2c,2e case
with δ = 2 occurs when p(0, 2) = p(2, 0) = 1/2 and p(1, 1) = 0. The real
space bond orders have been shown to be electron count analogs of energetic
quantities.11 Under the IQA perspective a multipolar expansions shows that
the first order ionic and covalent energies are immediately related to their
corresponding bond orders. For an interaction between atoms A and B,

EAB
ion ∼ −

ιAB

Rij

EAB
cov ∼ −

1

2

δAB

RAB

. (14)

2 The Electronegativity Equalization (ENE)

models

We will describe here the one- (1e) and two- (2e) electron models used in the
manuscript. The second is immediately related to the 2c,2e bond that we
have just described. In the following, A,B or left, right labels will be used
indistinctly.

2.1 The 1e model

As shown in the main text, imposing a constrained charge in a real space atom
in the large distance regime may be understood in terms of a one-way, one
electron transfer. This is energetically indistinguishable from the behavior
of a grand canonical atom with an average electron population equal to the
constrained charge.

Let us then consider a 2c,2e system (like the H2 molecule) at large in-
ternuclear distance for which we impose a constrained atomic charge Q =
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QA = −QB = −q. At positive q values the A atom gains electrons (NA > 1)
while the B atom is depopulated (NB < 1). At q = 0 we know that only one
resonance structure is populated: p(2, 0) = p(0, 2) = 0, p(1, 1) = 1. In the 1e
model, electron transfer from B to A occurs only one-way, from right to left,
maintaining p(0, 2) = 0 during the process. This implies that a single coor-
dinate (q for instance) describes the change, and that the EDF is p(2, 0) = q,
p(1, 1) = 1−q, p(0, 2) = 0. Notice that once the EDF is given, all descriptors
can be computed: NB = 1− q and δ = 2q(1− q) peaks at q = 1/2, δ = 1/2.

In this long-range model it is also trivial to write analytical expressions
for the atomic self-energies and the total molecular energy. We must simply
take into account that since no short-range deformations exist, the sector
density matrices are those of isolated systems with the appropriate number of
electrons. In other words, the self-energy of the A, A−, and A+ species are the
in vacuo energies of the neutral, anionic, and cationic moieties, respectively.
The same can be said for B. This said,

EA
self = = p(2, 0)× E(A−) + p(1, 1)× E(A) + p(0, 2)× E(A+),

EB
self = = p(2, 0)× E(B+) + p(1, 1)× E(B) + p(0, 2)× E(B−),

EAB
int = p(2, 0)×QAQB/RAB + p(1, 1)× 0 + p(0, 2)×QAQB/RAB.

E = EA
self + EB

self + EAB
int (15)

Particularizing for the dihydrogen molecule, we get

EA
self = qE(H−) + (1− q)E(H),

EB
self = 0 + (1− q)E(H),

EAB
int = −q/RAB,

E(Q) = 2E(H) + η|Q| − |Q|/RAB. (16)

as described in the text. Notice that the behavior of each of the self-energies
is exactly grand canonical, and that the energy model is that of Perdew and
coworkers.12 No other approximation has been made except that of long-
range, so that the model is exact at dissociation. Interestingly, at constant
internuclear distance the interaction energy is linear with the constrained
charge, as shown in Fig. 1 in the text.

2.2 The 2e model

At variance with the model just examined, in which electron flow is ac-
companied by the change of only two out of the three possible resonance
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structure probabilities of a 2c,2e interaction (being thus a one-parameter or
1e approximation), the three probablities can change simultaneously in gen-
eral situations. This implies the existence of two independent parameters.
For a homopolar case, e.g the H2 molecule, at the stationary Q = 0 value
NA = 1, NB = 1 always, and the electron distribution needs be symmetric:
p(0, 2) = p(2, 0). Following Eq. 13, the mean-field probability p as well as the
correlation factor f suffice to offer a complete description from the electron
counting point of view.

To simplify as much as possible, we can assume that not far from equi-
librium geometries the correlation factor is sufficiently small so as to ignore
it. With this new approximation, the 2e model depends again on only one
parameter p. Notice that the distributions with f = 0 are binomial:

p(2, 0) = p2,

p(1, 1) = 2p(1− p),
p(0, 2) = (1− p)2. (17)

Now we use the sector reduced density matrices to write the energy as a
weighted sum of resonance structure energies:

E = p(2, 0)× E(2, 0) + p(1, 1)× p(1, 1) + p(0, 2)× p(2, 0). (18)

Each of these resonance structure energies can be IQA partitioned,

E(nA, nB) = EA
self (nA, nB) + EB

self (nA, nB) + EAB
int (nA, nB). (19)

Notice that, in the general case, when a large number of resonance structures
contribute, the list of atomic self-energies to include in the calculations can
be extense. In the present toy example, the (2,0) and (0,2) structures in-
clude in-the-molecule H+ cations and H− anions, while the (1,1) possess two
equivalent neutral in-the-molecule H atoms. Their self-energies are called
E+, E−, and E0, respectively. E−, for instance, is the self-energy of the left
atom in the (2,0) resonance structure. This is the self-energy of a ”hydride”
in a structure where, at a given distance, a domain with no electron but one
proton is found. Similarly, E0 is the self-energy of a domain with just one
electron that has an equivalent neighboring region by its side.

The average self-energies of atoms A,B will thus be:

EA
self = p2E− + 2p(1− p)E0 + (1− p)2E+,

EB
self = p2E+ + 2p(1− p)E0 + (1− p)2E−. (20)
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We can transform these results by writing them as functions of the con-
strained charge. Taking into account that p = (1−QA)/2 = (1 +QB)/2,

EA
self (QA) = EA

self (0) + χselfA QA + ηselfA Q2
A/2, (21)

with an equivalent relation for B. In this expression, EA
self (0) is the A self-

energy at Q = 0, equal to (E+ + E− + 2E0)/4, and χselfA and ηselfA the
in-the-molecule electronegativity and hardness of A:

χselfA = (E+ − E−)/2 = (Iself + Aself )/2,

ηselfA = (E+ + E− − 2E0)/2 = (Iself − Aself )/2, (22)

where Iself = E+ − E0, Aself = E0 − E− are the in-the-molecule atomic
ionization potential and electron affinity, respectively. Differently from the
1e model valid at dissociation, now the atomic self-energies are differentiable
at integer N from both sides:

At Q = 0,
(

∂EA
self

∂QA

)
v

= χself
A

and, of course, the atomic electronegativities of both atoms are equal. This is
a very satisfying result. If we now further suppose that RAB is large enough
so that the atomic distribution is not far from spherical, then the interaction
energy can be exactly computed from Gauss’ theorem as purely Coulombic,
so that a −1/RAB term will exist between the ions in the (0,2) and (2,0)
structures. Eint will vanish for the neutral (1,1) distribution. With this,

Eint = −[p2 + (1− p)2]/RAB = −(1 +Q2)/(2RAB), (23)

which is parabollic in Q and does not contribute to Q derivatives at Q = 0.
For this 2e system, the open systems perspective transforms covalency into
an electrostatic-like term. At Q = 0, the interaction energy between both
atoms is −1/(2RAB). This is nothing but the classic Coulombic attraction
between a pure cation and a pure anion that are found with probabilities
1/4 in the (2,0) structure, and 1/4 in the (0,2) one, respectively, adding to a
total ionic probability of 1/2.

Using Q = QA = −QB, and summing up,

E(Q) = 2Eself (0) + (χselfA − χselfB )Q+
(ηselfA + ηselfB )

2
Q2 − (1 +Q2)

2RAB

(24)
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2.3 The 1e to 2e transition

The open systems point of view allows for an easy rationalization of the 1e to
2e transition as the interatomic distance decreases. This is dependent on the
constrained charge, and straightforward at Q = 0. Comparing Eq. 16 and
Eq. 24, E1(0) = 2E(H), and E2(0) = 2Eself (0)− 1/(2RAB). Given that the
in-the-molecule state is a deformed one, Eself > E(H), so that if the deforma-
tion energy Edef = Eself −Eisolated of each atom in a homodiatomic molecule
is used, the two separated atoms will be more stable than a covalently held
model at distances larger than EAB,t = 1/(4Edef )

When two different species A and B interact, a complete charge transfer
may also occur within the 1e regime from a neutral to an ionic situation. This
occurs when the energy cost needed to form an ion pair equals the mutual
Coulombic attraction of the ions: (I − A) = 1/RAB. This is Perdew et al.
insight.12 Notice that there are obviously two paths to form an ion pair, so
that the observed neutral to ionic transition will be that in which the (I−A)
cost is smaller. According to this view, the formation of a covalent 2c,2e link
can be understood as a resonant symmetric autoionization.

3 ENE in heterodiatomics: the LiH molecule

Insight into how ENE using open systems occurs is now shown in another
toy example: The LiH molecule. We have thus performed FCI constrained
calculations. Results are shown at two internuclear distances, R = 5.0 and
Re = 3.02 au. See the computational details section for more information.
Fig. 1 gathers our main results. Some convergence problems where found
when trying to obtain Li− species, so that reliable results are only shown up
to Q(Li) ≈ −0.9. At R = 5 au, the avoided crossing between the covalent and
ionic states has almost been completed, and with no charge constraint the
topological charge of Li is Q(Li) = 0.825 au. This increases to Q(Li) = 0.909
at equilibrium.

As it is clear from the data, at both distances we observe a behavior
that can be classified as doubly 1e-like. Although the self-energy curves are
differentiable, they show well-developed piecewise-linear segments that agree
with a one-electron transfer processes. The goodness of the one-electron
picture in LiH was pointed out years ago.13

Now the behavior of the two atomic species is clearly different. As the H
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Figure 1: Evolution of EH
self (green, right scale), and ELi

self (blue, left scale),
together with EAB

int (cyan) and the delocalization index DI (orange) in the
inset, as the CgC Q varies in LiH at RAB = 5.0 (top) and 3.02 au (bottom),
respectively. All data in au.
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atom is concerned, we can see at both distances the different slope of the self-
energy curves in the cationic (or normal) branch, in which Li gets positively
charged and in its anionic (or inverted) counterpart. At R = 5 au, the H atom
is well described as a grand canonical entity, with ionization potential and
electron affinity matching rather well the free atomic value. Extracting elec-
trons from the Li atom is relatively easy (notice the range difference between
the right and left energy scales). However, adding electrons to the Li in-
the-molecule does lead to a rather linear, although endothermic, self-energy
variation, which is clearly more noticeable at the equilibrium geometry. Li
has a low electron affinity (about 0.62 eV 10.1103/PhysRevA.53.4127), and
our calculations show that it soon becomes an unstable entity in the field of
its neighboring cation.

The doubly 1e character of the charging process is clearly evidenced when
the behavior of the DI is examined. At both distances, the DI displays one
peak with DI≈ 0.5 when |Q| ≈ 0.5 in each of the charging branches. This
clearly means that we can apply a reasoning equivalent to that leading to
Eq. 16 for each branch. To a good approximation, charging the quantum
atoms in any of the two possible senses can be envisioned as a one-parameter
process in which one of the three possible resonance structures remains un-
occupied. Considering a frozen Li core, p(2, 0) ≈ 0 while we traverse the
LiH to Li+H− branch, and p(0.2) ≈ 0 when running over the LiH to LI− H+

branch. These two one-electron branches imply two parabollic 2p(1− p) DI
regimes. Due to the considerable difference between the ionization potentials
of Li and H, adding the atomic self-energies of the two atoms involved in each
branch leads to considerably smaller s self-energies if we follow the Li+H−

charging branch. Thus, the energy of the model can be written in terms of
Q(Li) as E(Q) ≈ Eself (LiH)+(ILi−AH)Q−Q/RAB which obviously leads to
complete ionization. An exam of Eint shows that the normal branch shows
the expected linear −Q/RAB behavior at fixed internuclear distance, but the
inverted branch has a more complex behavior due to the anomalous structure
of the Li−H+ moiety.

4 Computational implementation

We have implemented general atomic charge-constrained calculations in the
PySCF suite.14 To that end we have followed the ideas contained in the orig-
inal Ciowsloski and Stefanov implementation.15 We thus consider a diatomic
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system (the generalization to several atoms is straightforward) and minimize
its energy subjected to the fixed atomic charge constraint. For an AB sys-
tem in which we constrain the number of electron for atom A, NA, we thus
minimize the Lagrange functional:

Ĥ − λN̂A, (25)

where N̂A is the operator whose expectation value provides the atomic pop-
ulation of atom A. Using topological atoms, this can be written as

N̂A =

∫
A

δ(r − r′)dr′, (26)

so that its matrix elements in a given basis {iχµ} are given by

NA,µν =

∫
A

χ∗ν(r)χµ(r)dr, (27)

i.e. the standard atomic overlap matrix (AOM) commonly used in the quan-
tum theory of atoms in molecules. Notice that obtaining the AOMs implies
choosing a given atomic topological partition for the system under study. We
have used that of the unconstrained calculation throughout this work. Once
this has been obtained at a selected level of theory, the core Hamiltonian
is supplemented by the matrix elements of the λN̂A term. Calculations are
then performed at a grid of values of the λ parameter. Since ∂E/∂QA = λ
and the calculations are performed at constant external potential, λ gives
the difference in electronegativity between the two atomic components. At
λ = 0 the ENE follows directly. We have taken profit of the high modularity
of the PySCF code, see below. At the time of writing, both SCF, MCSCF,
Full CI, CASSCF, and CASCI implementations are available.

In a practical calculation, it is easier to impose λ and then read the
constrained atomic charges from the calculation. This is what we have done.

The workflow for a constrained calculation for a given molecule at a se-
lected level of theory at a fixed geometry and predefined basis set is as follows:

1. A first standard (unconstrained) calculation is performed: a .wfn or
.wfx file is generated.

2. A QTAIM calculation is done so that atomic basins are identified and
the AOM over all (occupied and virtual) orbitals is computed. This
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AOM can be obtained through several different codes. We have used
our in-home PROMOLDEN package,16, although it is easy to (so-to-
speak) cheat AIMALL17 to perform the same task.

3. A back transformation obtains the AOM matrix over primitive func-
tions.

4. A λ value is chosen and the constrained PySCF module is invoked to
minimize the Lagrangian. This module reads the AOM matrix. A .wfn
file with the final wavefunction is also generated.

5. Postprocessing of the wavefunction is performed, including its IQA or
EDF analysis to provide self-energies, interaction energies, and proba-
bilities of the relevant resonance structures. In this step the interatomic
surfaces are kept constant at the unconstrained ones. This is easily done
through the PROMOLDEN code.

The main PySCF constrained module is now described over a simple
example.

1. PySCF gto.Mole specification
#!/usr/bin/env python

import numpy, h5py, os, sys

from pyscf import gto, scf, dft, lib, mcscf

from pyscf.tools import wfn_format

subname = ’h2’

name = ’h2_ct_0p35’

atm = 0

mult = 0.35

mol = gto.Mole()

mol.atom = ’’’

H 0.000000 0.000000 0.000000

H 0.000000 0.000000 2.645886245

’’’

mol.basis = ’aug-cc-pvdz’

mol.verbose = 4

mol.spin = 0

mol.symmetry = 0

mol.charge = 0

mol.build()

A calculation on H2 with λ = 0.35 au. λ is labelled as mult. The basis set is aug-cc-pVDZ,
and a standard PySCF mol.build call is used.
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2. Read & build AOM

# Read overlap matrix and transform to AO basis

nao = mol.nao_nr()

saom = numpy.zeros((nao,nao))

mol = lib.chkfile.load_mol(subname+’.chk’)

mo_coeff = scf.chkfile.load(subname+’.chk’, ’scf/mo_coeff’)

coeff = numpy.linalg.inv(mo_coeff)

with h5py.File(subname+’.chk.h5’) as f:

idx = ’ovlp’+str(atm)

saom = f[idx+’/aom’].value

saom = coeff.T.dot(saom).dot(coeff)

The atomic overlap matrix over molecular orbitals is read from the chekpoint file obtained
in an unconstrained calculation. The inverse of the matrix of MO coefficients is obtained
and used to back-transform the AOM to the primitive basis. It is stored as saom

3. Define constraint
def get_pop(s, mult):

nao = s.shape[1]

fock = numpy.zeros((nao,nao))

fock = mult*s

return fock

A function to compute the λ part of the Fockian is constructed.
4. Build core Hamiltonian

# Calc

lig = get_pop(saom,mult)

hcore = mol.intor(’int1e_kin’) + \

mol.intor(’int1e_nuc’) - lig

mf = scf.RHF(mol).newton()

mf.conv_tol = 1e-6

mf.max_cycle = 120

mf.get_hcore = lambda *args: hcore

mf.kernel()

The core Hamiltonian is redefined including the constraint (”lig”).

5. CI
nelecas = 2

ncas = mf.mo_coeff.shape[1]

mc = mcscf.CASCI(mf, ncas, nelecas)

emc = mc.kernel()[0]

nmo = mc.ncore + mc.ncas
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rdm1, rdm2 = mc.fcisolver.make_rdm12(mc.ci, mc.ncas, mc.nelecas)

rdm1, rdm2 = mcscf.addons._make_rdm12_on_mo(rdm1, rdm2, mc.ncore, mc.ncas,

nmo)

A CI calculation is performed and the 1- and 2-particle RDMs obtained
6. Write .wfn file with NatOrbs

natocc, natorb = numpy.linalg.eigh(-rdm1)

for i, k in enumerate(numpy.argmax(abs(natorb), axis=0)):

if natorb[k,i] < 0:

natorb[:,i] *= -1

natorb = numpy.dot(mc.mo_coeff[:,:nmo], natorb)

natocc = -natocc

wfn_file = name + ’_fci.wfn’

with open(wfn_file, ’w’) as f2:

wfn_format.write_mo(f2, mol, natorb, mo_occ=natocc)

wfn_format.write_coeff(f2, mol, mc.mo_coeff[:,:nmo])

wfn_format.write_ci(f2, mc.ci, mc.ncas, mc.nelecas, ncore=mc.ncore)

A .wfn file is written. First the natural orbitals are obtained by diagonalizing the
1-RDM

7. Add constraint expectation value

dm = mc.make_rdm1()

elig = numpy.einsum(’ij,ji->’, dm, lig)

lib.logger.info(mol,’Energy due to ligadure : %f’ % (elig))

lib.logger.info(mol,’Final energy : %f’ % (elig+emc))

pop = numpy.einsum(’ij,ji->’,saom,dm)

lib.logger.info(mol,’Population atom %d : %f’ % (atm,pop))

The expectation value of the constrained is obtained and added to the energy.

4.1 Computational details & Data Tables

Full configuration interaction (FCI) calculations have been performed both in
the H2 and LiH molecules with aug-cc-pVDZ basis sets at their corresponding
equilibrium geometries (1.417 and 3.022 au, respectively), as well as at an
elongated distance, RAB = 5 au. The constrained PySCF just described
was used. AOMs and IQA were obtained with PROMOLDEN16 at several
λ values.
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Table 1: Representative results for H2 at R = Re. All data in au.
λ QB EA

self EB
self Eint DI

0.0 -0.000055 -0.485683 -0.485683 -0.193473 0.847624
0.1 0.089175 -0.512471 -0.453220 -0.194691 0.843207
0.2 0.177192 -0.533479 -0.415590 -0.198126 0.829766
0.3 0.262652 -0.548888 -0.373804 -0.203164 0.806971
0.4 0.344077 -0.559083 -0.329355 -0.208959 0.774930
0.5 0.420010 -0.564607 -0.284044 -0.214626 0.734674
0.6 0.489258 -0.566126 -0.239684 -0.219440 0.688232
0.7 0.551096 -0.564377 -0.197802 -0.222938 0.638246
0.8 0.605336 -0.560103 -0.159454 -0.224941 0.587382
1.0 0.692474 -0.546613 -0.095126 -0.224779 0.491229
1.2 0.755903 -0.529831 -0.046732 -0.220523 0.409620
1.4 0.801871 -0.512222 -0.011339 -0.214008 0.344205
2.0 0.879893 -0.463573 0.046901 -0.191529 0.220921
3.0 0.930552 -0.402680 0.078111 -0.161327 0.132490
6.0 0.968739 -0.298531 0.083094 -0.114723 0.061310
8.0 0.976380 -0.255693 0.076680 -0.098498 0.046577

Table 2: Representative results for H2 at R = 5 bohr. All data in au.
λ QB EA

self EB
self Eint DI

0.00 -0.000024 -0.495825 -0.495825 -0.010481 0.075313
0.10 0.018404 -0.498372 -0.490671 -0.012097 0.088986
0.20 0.065736 -0.502039 -0.470668 -0.020821 0.162167
0.25 0.141603 -0.506588 -0.433965 -0.035602 0.275692
0.30 0.344486 -0.516165 -0.329550 -0.073892 0.460381
0.35 0.658154 -0.526522 -0.161143 -0.130151 0.474112
0.40 0.831605 -0.529051 -0.065148 -0.159257 0.284539
0.50 0.924492 -0.526785 -0.013111 -0.173015 0.141179
1.00 0.971434 -0.515487 0.009511 -0.176778 0.055834
4.00 0.991074 -0.481226 0.008998 -0.172852 0.017728
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Table 3: Representative results for LiH at R = Re bohr. All data in au.
λ QLi ELi

self EH
self Eint DI

0.00 0.909499 -7.244830 -0.486850 -0.282051 0.197816
0.10 0.839957 -7.261641 -0.484057 -0.263556 0.305345
0.15 0.680848 -7.298484 -0.475216 -0.214881 0.479713
0.20 0.355873 -7.364537 -0.453802 -0.113451 0.523344
0.25 0.190636 -7.390957 -0.441695 -0.062814 0.386366
0.30 0.135763 -7.395995 -0.437477 -0.047133 0.319630
0.40 0.095756 -7.395349 -0.434028 -0.037564 0.270135
0.50 0.076907 -7.392334 -0.431489 -0.034687 0.253480
0.60 0.061977 -7.388650 -0.427720 -0.033911 0.252193
0.70 0.029426 -7.382277 -0.412175 -0.034237 0.292665
0.75 -0.116895 -7.362386 -0.327733 -0.031311 0.500383
0.80 -0.682028 -7.284446 0.005722 -0.006761 0.520957
1.00 -0.810034 -7.247997 0.072217 -0.001863 0.347114
2.00 -0.848041 -7.202204 0.082503 -0.007336 0.282789
4.00 -0.856336 -7.177515 0.086280 -0.013904 0.268508

Table 4: Representative results for LiH at R = 5 bohr. All data in au.
λ QLi ELi

self EH
self Eint DI

0.00 0.824923 -7.274712 -0.503719 -0.195830 0.294513
0.05 0.634559 -7.317259 -0.494826 -0.156564 0.470639
0.10 0.296571 -7.381745 -0.483582 -0.078180 0.426909
0.20 0.079778 -7.410033 -0.480067 -0.024500 0.161244
0.30 0.044139 -7.409910 -0.480059 -0.015952 0.104094
0.40 0.029274 -7.408360 -0.478847 -0.013487 0.087604
0.50 0.003164 -7.407057 -0.467399 -0.014070 0.115625
0.55 -0.493786 -7.392328 -0.199862 -0.029602 0.558696
0.60 -0.891156 -7.371562 0.005712 -0.033814 0.206358
0.80 -0.929852 -7.358537 0.015206 -0.030150 0.137029
1.20 -0.945284 -7.345705 0.016593 -0.028982 0.107626
2.00 -0.953958 -7.330976 0.017897 -0.031117 0.090729
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