
Reasoning About Inconsistent Formulas

Joao Marques-Silva1 and Carlos Mencı́a2

1ANITI, University of Toulouse, France
2University of Oviedo, Spain

Abstract
The analysis of inconsistent formulas finds an ever-
increasing range of applications, that include ax-
iom pinpointing in description logics, fault local-
ization in software, model-based diagnosis, opti-
mization problems, but also explainability of ma-
chine learning models. This paper overviews ap-
proaches for analyzing inconsistent formulas, fo-
cusing on finding and enumerating explanations of
and corrections for inconsistency, but also on solv-
ing optimization problems modeled as inconsistent
formulas.

1 Introduction
In a wide range of settings, one must reason about incon-
sistent formulas. This is the case for example when debug-
ging inconsistent system specifications, e.g. for understand-
ing which constraints make the system inconsistent. This
is also the case in model-based diagnosis [Reiter, 1987],
where the system representation is inconsistent with its ex-
pected input-output behavior. In turn, model-based diagnosis
finds a number of significant applications, that include axiom
pinpointing in description logics, software fault localization,
type error debugging, spreadsheet debugging, or analysis of
inconsistent knowledge bases, to name a few. Inconsistency
is also often used when solving optimization problems, e.g. in
the case of maximum satisfiability for propositional domains.

In this paper we focus on inconsistent formulas of mono-
tonic logics, e.g. first-order logic and its fragments. However,
there is also interest in non-monotonic logics [Brewka et al.,
2019]. When analyzing inconsistent formulas, a number of
computational problems arise. In some settings, one is inter-
ested in explaining one possible reason of inconsistency. In
some other settings, the goal is to propose ways to correct the
source of inconsistency. Finally, in yet some other settings,
the purpose is to enumerate all explanations or corrections of
an inconsistent formula.

The purpose of this paper is to provide an overview of re-
cent work on reasoning about inconsistent formulas. The pa-
per addresses the problems of explaining and correcting in-
consistency, but also highlights enumeration of explanations
and corrections, and briefly overviews how inconsistency is
exploited when solving optimization problems. The paper

also demonstrates that most of the algorithms proposed in re-
cent years for reasoning about inconsistency, most of which
originally devised in the context of analyzing propositional
formulas, can be also be applied in any monotonic logic.

The paper is organized as follows. Section 2 introduces the
definitions and notation used throughout the paper. Section 3
covers approaches for finding (or extracting) subset-minimal
explanations and corrections. Section 4 overviews the re-
lationship between reasoning about inconsistency and opti-
mization problems. Section 5 highlights algorithms for the
enumeration of both corrections and explanations. A sam-
ple of practical applications is briefly discussed in Section 6.
Finally, the paper concludes in Section 7.

2 Preliminaries
Basic definitions. The paper assumes definitions standard
for first-order logic (FOL) [Ben-Ari, 2012]. We will be in-
terested in formulas expressed in some (decidable) fragment
of FOL1, and so respecting monotonicity of entailment. For
simplicity, we will not consider the use of function symbols,
but that does not affect the results in the paper. Throughout,
FOL formulas will be represented in clausal form and will
most often be inconsistent. In general, we consider an incon-
sistent FOL formula F , such that some clauses in F can be
relaxed (i.e. allowed not to be satisfied) to restore consistency,
whereas others cannot. Thus, we assume that F is partitioned
into two first-order subformulasF = B∪S, where S contains
the relaxable (soft) clauses, and B contains the non-relaxable
clauses. B can be viewed as background knowledge, which is
assumed to be consistent and must always be satisfied.

The paper uses other standard notation. P �Q denotes that
any model of P is also a model of Q. As a result, P �⊥ is
used to denote that P is inconsistent, and P 2⊥ denotes that
P is consistent. Set notation will be used to improve readabil-
ity. For example, P ∪Q�R is used to denote ∧c∈P∪Qc�R.
Generalizations from the propositional domain. This pa-
per covers the analysis of inconsistent formulas in very
generic terms, opting not to focus exclusively on proposi-
tional formulas. A number of concepts often used in the

1As a result, the results presented in the paper apply in different
settings, including SAT, ILP, CSP, QBF, SMT (specific theories),
among others. Decidability is expected, since we will need to be
able to answer decision problems both positively and negatively.

propositional domain can be easily generalized to different
fragments of first-order logic. These will prove instrumen-
tal in showing how different algorithms, often described for
propositional formulas, can in fact be generalized well be-
yond. A simple observation is that propositional variables
can be viewed as predicate symbols. Thus, concepts such as
reification of clauses, or constraints over propositional vari-
ables, can be used in more general settings. For example,
pseudo-boolean constraints, including cardinality constraints,
can be readily used in fragments of FOL. Furthermore, al-
though QBF may seem to involve non-standard quantification
(from a FOL perspective), there are well-known translations
from QBF to EPR [Seidl et al., 2012], and so the proposed
generalizations also extend to QBF.

Subset-minimal explanations and corrections. Given an
inconsistent clausal formula F , we are interested in identify-
ing the clauses that are responsible for unsatisfiability among
those that can be relaxed, as defined next.

Definition 1 (MUS). Let F = B∪S be an inconsistent set of
clauses (F �⊥). M ⊆ S is a Minimal Unsatisfiable Subset
(MUS) iff B ∪M�⊥ and ∀M′(M, B ∪M′ 2⊥.

Informally, an MUS provides the minimal information that
needs to be added to the background knowledge B to obtain
inconsistency; thus, an MUS represents an explanation for
the causes of inconsistency. Alternatively, one might be in-
terested in correcting the formula, removing some clauses to
achieve consistency.

Definition 2 (MCS). Let F = B ∪ S be an inconsistent set
of clauses (F �⊥). C ⊆ S is a Minimal Correction Subset
(MCS) iff B ∪ S \ C 2⊥ and ∀C′(C , B ∪ S \ C′ �⊥.

With each MCS C, one associates a Maximal Satisfiable
Subset (MSS), given by S \ C. Moreover, there exists a well-
known (subset-)minimal hitting set (MHS) relationship be-
tween MUSes and MCSes:

Proposition 1. MCSes are MHSes of MUSes and vice-versa.

The MHS relationship between MUSes and MCSes was
first demonstrated in the context of model-based diagno-
sis [Reiter, 1987] and later investigated for propositional for-
mulas in clausal form [Birnbaum and Lozinskii, 2003].

Recent years have witnessed the proposal of a large num-
ber of novel algorithms for the extraction and enumeration
of MUSes and MCSes [Mencı́a et al., 2015; Bacchus and
Katsirelos, 2015; Liffiton et al., 2016; Bacchus and Kat-
sirelos, 2016; Mencı́a et al., 2016; Previti et al., 2018;
Grégoire et al., 2018; Narodytska et al., 2018; Bendı́k et
al., 2018], where MUS enumeration algorithms build on the
MHS relationship between MUSes and MCSes.

Tractable theories have also been studied, as Horn formu-
las [Marques-Silva et al., 2016]. In addition, there has been
interest in computing the union of all MUSes [Mencı́a et
al., 2019], which can be approximated by the so-called lean
kernel [Kleine Büning and Kullmann, 2009; Kullmann and
Marques-Silva, 2015; Peñaloza et al., 2017].

Minimal sets over monotone predicates (MSMP). The
similarity among solutions for a number of apparently
unrelated problems motivated the proposal of a unifying

paradigm, MSMP [Marques-Silva et al., 2013b; Marques-
Silva et al., 2017], consisting in computing minimal sets
over a monotone predicate. In this setting, a predicate P :
2R → {0, 1}, defined over a reference set R, is monotone
if whenever P (R0) holds, with R0 ⊆ R, then P (R1) also
holds, with R0 ⊆ R1 ⊆ R. By defining different prob-
lems as instances of MSMP, one can devise algorithms that
can be used to solve different problems, many of which are
related with the analysis of inconsistent formulas. Earlier
work [Marques-Silva et al., 2017] proposed a partition of
MSMP problems into three classes, depending on the type
of monotone predicate considered. (Due to space constraints,
the predicate forms are only hinted at in this paper.)
Maximum satisfiability and optimization problems.
Given F = B ∪ S, with B ∪ S �⊥, the maximum satisfi-
ability (MaxSAT) problem asks for the largest subset S ′ of
S, such that B ∪ S ′ 2⊥. A cost can be associated with each
clause in S, and so the MaxSAT problem corresponds instead
to selecting the subset S ′ of the largest cost. There is a well-
known relationship between MaxSAT solutions and MSSes,
in that every MaxSAT solution is an MSS, and so the com-
plement of a MaxSAT solution is an MCS. Furthermore, it is
well-known that standard optimization problems can be cast
as MaxSAT (where MaxSAT can be interpreted at the propo-
sitional level, but also within any fragment of FOL):

min
∑
i wi × pi

s.t. M (1)

where wi ≥ 0, and each pi can be viewed as a 0-place predi-
cate. In this case, just let B ,M, S , {(¬pi)} and associate
with each clause ci in S a cost wi. Thus, F = B ∪ S is in-
consistent and an MSS (in terms of cost) of F is a solution to
the optimization problem.
Running example. Figure 1 shows an example2, used
throughout this paper to illustrate the operation of algorithms
for extracting and enumerating MUSes and MCSes. As it can
be observed, the example is written in Bernays-Schönfinkel’s
fragment of first-order logic, also referred to as effectively
propositional logic (EPR)3. It is well-known that EPR is
NEXP-complete [Lewis, 1980]. In this example, we have
a knowledge base (see Figure 1a) with a number of general
statements about parents (P) of new newborn children (N)
being proud (R), and that fathers or mothers are parents. We
also indicate that there should be no proud people (with the
objective of finding proud parents). Moreover, we also have
statements about concrete people {aw, rw, hw, pw,mw}. We
declare the general statements as hard, denoting that we are
certain that the statements are true. In contrast, the informa-
tion about concrete people is declared as soft, denoting that
we are uncertain about whether the information is true or not.
The set of statements is inconsistent. Using an existing rea-
soner for EPR [Korovin, 2013] as an oracle, we can identify

2Adapted from [Nilsson and Maluszynski, 1995, Section 3.1].
3By using EPR, we highlight that most of the proposed algo-

rithms generalize beyond the propositional cases and beyond ora-
cles for NP. There are dedicated algorithms for the analysis of EPR
formulas [Xie and Luo, 2016], but these are fundamentally different
from the algorithms studied here.

Hard? Knowledge base Clause ID’s

Yes

∀x∀y. (P(x, y) ∧ N(y)→R(x))

∀x∀y. (F(x, y)→P(x, y))

∀x∀y. (M(x, y)→P(x, y))

∀x. (¬R(x))

B

No
c1 = F(rw, hw), c2 = N(hw),

c3 = F(aw, pw), c4 = N(pw),

c5 = M(mw, rw), c6 = ¬N(rw)

S = { c1, c2, c3,
c4, c5, c6 }

(a) Example knowledge base

Type Computed sets

MUSes {{F(rw, hw),N(hw)}, {F(aw, pw),N(pw)}}

MCSes
{{F(rw, hw),F(aw, pw)}, {F(rw, hw),N(pw)},
{F(aw, pw),N(hw)}, {N(hw),N(pw)}}

(b) MUSes & MCSes for running example

Figure 1: Running example

Algorithm 1: Deletion-based minimal set computation

Function DELETION(P , B, S,R)
1 M←R;
2 foreach u ∈M do // Inv: P(B,S,M)
3 if P(B,S,M\ {u}) then
4 M←M\ {u};
5 returnM;

two minimal explanations (MUSes) of inconsistency as well
as four minimal corrections (MCSes) for eliminating incon-
sistency. These sets are shown in Figure 1b. The justification
for the inconsistencies serve to convey the facts that aw and
rw can be inferred to be proud parents, and this is inconsistent
with the requirement of no one being proud. As can be ob-
served, the MUSes are MHSes of the MCSes and vice-versa.

3 Subset-Minimal Sets
This section overviews approaches for extracting subset-
minimal explanations and corrections of inconsistency4.

Subset-minimal explanations. Given an inconsistent for-
mula F = B ∪ S, there is a fairly straightforward algorithm
for finding one MUS. Starting from a set of clausesM , S,
iteratively remove one clause u fromM. If B ∪ (M− {u})
is inconsistent, then we can safely discard u. Otherwise, we
must keep u, to preserve inconsistency. After analyzing all
clauses of S , the resulting setM is an MUS of F . Variants
of this algorithm have been studied since at least the early
90s [Chinneck and Dravnieks, 1991; Bakker et al., 1993;
Dershowitz et al., 2006]. Algorithm 1 represents a possi-
ble instantiation of this approach for computing MUSes, but
which also exploits the MSMP framework. As a result, one

4We consider clausal representations. Analysis of non-clausal
formulas has also been investigated in the past [Liffiton and
Sakallah, 2008; Belov and Marques-Silva, 2011].

M (line 2) u P (B,S,M\ {u}) Action

{c1, c2, c3, c4, c5, c6} c1 1 Drop c1
{c2, c3, c4, c5, c6} c2 1 Drop c2
{c3, c4, c5, c6} c3 0 Keep c3
{c3, c4, c5, c6} c4 0 Keep c4
{c3, c4, c5, c6} c5 1 Drop c5
{c3, c4, c6} c6 1 Drop c6
{c3, c4} – – –

Figure 2: Finding MUS with Algorithm 1 on formula from Figure 1

Algorithm Oracle Calls Reference
Insertion O(km) [de Siqueira N. and Puget, 1988]
MCS MUS O(km) [Bacchus and Katsirelos, 2015]
Deletion O(m) [Chinneck and Dravnieks, 1991]
Linear ins. O(m) [Belov et al., 2012]
Dichotomic O(k log(m)) [Hemery et al., 2006]
QuickXplain O(k + k log(m

k
)) [Junker, 2004]

Progression O(k log(1 + m
k
)) [Marques-Silva et al., 2013b]

Table 1: Query complexity of selected MUS algorithms

must specify which predicate to use for MUS extraction. Fol-
lowing [Marques-Silva et al., 2013b; Marques-Silva et al.,
2017], we use the predicate P (B,S,W) , ¬SAT(B ∧ W),
with W ⊆ R, and R , S. The SAT test for the run-
ning example needs to decide the satisfiability of an EPR for-
mula. In general, SAT must solve the decision problem for
the logic used to represent B and R. Figure 2 summarizes a
possible execution of Algorithm 1 on the formula from Fig-
ure 1. Clearly, the computed MUS depends on the order
of clauses considered. In this case, the computed MUS is
{c3, c4} , {F(aw, pw),N(pw)} which, together with B, is
inconsistent and minimal.

It is simple to conclude that Algorithm 1 requires Θ(|R|)
predicate tests. There is no known approach for comput-
ing one MUS that improves asymptotically on this bound.
A number of algorithms for MUS extraction have been pro-
posed over the years e.g. [Junker, 2004; Marques-Silva et al.,
2013b] but without exception, in the worst-case, the number
of predicate calls is Ω(|S|). Depending on the target deci-
sion problem, different optimizations can be envisioned for
MUS extraction, e.g. [Belov et al., 2012; Wieringa, 2012;
Lonsing and Egly, 2015]. Table 1 summarizes the query
complexity of well-known algorithms for extracting a single
MUS, where m and k denote the number of clauses in S and
the size of the largest minimal set respectively.

Subset-minimal corrections. Given an inconsistent for-
mula F = B ∪ S , the following approach can be used for
finding one MCS. Starting from a set of clausesM , ∅, it-
eratively consider one clause u ∈ S . If B ∪ M ∪ {u} is
consistent, add u to M. After considering all clauses in S,
the clauses that could not be added to M denote an MCS
of F . Such an algorithm has been used since at least the
mid 00s [Bailey and Stuckey, 2005], and has more recently

M (line 2) u P (B,S,M\ {u}) Action

{c1, c2, c3, c4, c5, c6} c1 1 Drop c1
{c2, c3, c4, c5, c6} c2 0 Keep c2
{c2, c3, c4, c5, c6} c3 1 Drop c3
{c2, c4, c5, c6} c4 0 Keep c4
{c2, c4, c5, c6} c5 1 Drop c5
{c2, c4, c6} c6 1 Drop c6
{c2, c4} – – –

Figure 3: Finding MCS with Algorithm 1 on formula from Figure 1

Algorithm 2: Clause D minimal set computation

Function CLD(P , B, S,R)
1 X ← ∅;
2 (R′, Y)← ReifyClauses(R, X);
3 D ← DCLAUSE(Y);
4 while true do
5 (st ,M)← P(B,S,R′ ∧D);
6 if ¬st then return

M← SetElements(R, Y);
7 X ← PickSatisfiedRVars(M,Y);
8 (R′, Y)← ReifyClauses(R, X);
9 D ← DCLAUSE(Y);

been referred to as basic linear search (BLS) [Marques-Silva
et al., 2013a]. As implicit in earlier work [Marques-Silva
et al., 2013b; Marques-Silva et al., 2017], by changing the
predicate used, Algorithm 1 corresponds to BLS, as outlined
above. For this case, the predicate to use is defined as fol-
lows: P (B,S,W) , SAT(B ∧ (S \ W)), withW ⊆ R and
R , S. Figure 3 illustrates the execution of Algorithm 1
for computing an MCS. The computed set is {c2, c4} ,
{N(hw),N(pw)}. A number of optimizations to the BLS al-
gorithm have been proposed in earlier work [Marques-Silva
et al., 2013a; Mencı́a et al., 2015]. These include, among
others, exploiting models to save a number of predicate tests.

BLS is one of a number of algorithms that have been pro-
posed for extracting MCSes. A conceptually simple solution
is to find an MCS using maximum satisfiability [Liffiton and
Sakallah, 2008]. In practice, solving MaxSAT, even if requir-
ing fewer oracle calls in the worst case, is not as effective
as other alternatives. One of the most widely used meth-
ods for the extraction of MCSes is the Clause D (CLD) al-
gorithm [Marques-Silva et al., 2013a]. For some kinds of
MSMP problems, the CLD algorithm can be used.

Algorithm 2 summarizes the main steps of CLD. One starts
by reifying each clause ci ∈ S with a fresh relaxation variable
(or 0-place predicate): (ri ∨ ci), thus creating a replacement
R′ for the originalR. Moreover, a disjunction is created with
a literal ¬ri for each ri variable (this is the D clause). Then,
the algorithm iteratively tests B ∪ R′ ∪ {D}. (Observe that
this requires at least one ri to be assigned value 0.) If this for-
mula is satisfiable, then some soft clause(s) ci can be satisfied
without assigning ri to 1. Thus, we recreate the formula by

Algorithm Oracle Calls Reference
Linear search O(m) [Bailey and Stuckey, 2005]
MaxSAT O(logm) [Liffiton and Sakallah, 2008]
Clause D O(m− k) 6 [Marques-Silva et al., 2013a]
FastDiag O(k + k log m

k
) [Felfernig et al., 2012]

Progression O(k log(1 + m
k
)) [Marques-Silva et al., 2013b]

LBX7 O(n) [Mencı́a et al., 2015]
CMP O(m2) [Grégoire et al., 2014]
UCD O(k + k log(m

k
)) [Mencı́a et al., 2016]

UBS, LOPZ O(
√
m logm) [Mencı́a et al., 2016]

Table 2: Query complexity of selected MCS algorithms

dropping any ri assigned value 0 and recreate the D clause
without the corresponding literals. The process is repeated
until the D clause contains a set of literals that, given the
other clauses, cannot be satisfied. These literals identify an
MCS5. In contrast to the deletion-based approach, as well as
to many other algorithms for MUS extraction, CLD expects
the oracle call to return a model, from which it can identify
the clauses that will no longer be reified. Thus, the predicate
call must test for consistency and not for inconsistency. Nev-
ertheless, as shown in earlier work, a large number of minimal
set problems are defined by testing for consistency.

Table 2 summarizes the query complexity of well-known
algorithms for extracting a single MCS, where n is the num-
ber of variables in S, and m and k have the same meaning as
before, with the exception of CLD, where k is the size of the
smallest MCS. Moreover, there are algorithms that compute
an MCS by modifying the oracle, imposing a fixed branching
preference [Rosa et al., 2010; Bacchus et al., 2014].

4 Cardinality- & Preferred Minimal Sets
Solving maximum satisfiability. MaxSAT is solved by
finding smallest (cost) MCSes. A well-known approach for
solving MaxSAT is branch-and-bound search (B&B) [Li and
Manyà, 2009]. Since the mid 00s, experimental evidence
from a number of applications showed that B&B does not
scale in practice [Morgado et al., 2013; Ansótegui et al.,
2013]. An alternative approach consists in reifying all the soft
clauses, i.e. replace (ci), with ci ∈ S, with (ri ∨ ci), obtain-
ing Sr; and then defining a constraint X ,

∑
i wi × ri ≤ τ ,

where τ ranges from 0 to
∑
i wi. As a result, finding the

smallest value of τ , such that B ∧ Sr ∧ X is consistent, can
then be achieved with linear search [Le Berre and Parrain,
2010], by refining lower or upper bounds on the value of τ ,
or with binary search [Koshimura et al., 2012]. When the
number of soft clauses is large, the representation or han-
dling of X can be a problem. Motivated by this drawback,
two approaches for solving MaxSAT using SAT oracles have
been proposed since the mid 00s, both of which reason about
inconsistency. Core-guided approaches relax soft clauses

5The propositional version admits optimizations, including the
fact that reification is unnecessary. Some optimizations are not re-
stricted to the propositional version.

6In the propositional case one obtains O(min(n,m− k)).
7LBX can only be used with non-quantified formulas.

on demand (see [Morgado et al., 2013; Ansótegui et al.,
2013] for surveys of earlier work and [Martins et al., 2014;
Morgado et al., 2014; Alviano et al., 2015] for recent im-
provements). An alternative is based on the iterative com-
putation of minimum hitting sets (MinHS) on clauses de-
scribing (minimal) unsatisfiable cores [Davies and Bacchus,
2011]. Core-guided approaches reify clauses on demand
given identified (minimal) unsatisfiable subsets. Cardinal-
ity (for unweighted problems) or pseudo-boolean constraints
(for weighted problems) are then specified using the relax-
ation variables and existing lower or upper bounds. MinHS
approaches do not reify clauses on demand. Instead, com-
puted (minimal) unsatisfiable subsets serve as sets that must
be hit when selecting the next minimum cost subset of clauses
whose satisfiability is to be tested. Not surprisingly, both ap-
proaches generalize beyond the propositional case.
Smallest explanations. The previous section argued that
existing algorithms for computing an MUS require Θ(|S|)
calls to a suitable oracle. In contrast, computing a cardinality-
minimal (or smallest) MUS (SMUS) seems to require solving
a computationally harder problem. For the case of proposi-
tional logic, deciding whether there exists an MUS of size not
greater than some k is complete for ΣP

2 [Liberatore, 2005],
and so computing a smallest MUS requires a logarithmic
number of calls to a ΣP

2 oracle. The state of the art in comput-
ing smallest explanations is FORQES [Ignatiev et al., 2015].
As with other methods studied in this paper, the FORQES
algorithm generalizes beyond the propositional case. Earlier
work proposed worst-case exponential propositional encod-
ings for this problem [Lynce and Marques-Silva, 2004].
Computing preferred sets. In propositional logic, prefer-
ences of inclusion of clauses in MUSes and MCSes are hard
for the second level of the polynomial hierarchy [Marques-
Silva and Previti, 2014]. Preferences of non-inclusion of
clauses in MUSes and MCSes are in FPNP. Similar increases
in complexity are expected to hold beyond the propositional
case.

5 Enumeration of Minimal Sets
Enumeration of minimal corrections. Enumeration of
MCSes can be achieved by enumerating MaxSAT solu-
tions [Liffiton and Sakallah, 2008]. More recent work pro-
posed dedicated algorithms for MCS enumeration [Marques-
Silva et al., 2013a; Bacchus et al., 2014; Previti et al., 2017;
Previti et al., 2018; Grégoire et al., 2018; Narodytska et al.,
2018]. To implement enumeration of MCSes, one needs to
prevent the same MCS from being computed again. This can
be done by blocking the selection of the set of clauses cor-
responding to an MCS. Most recent work focuses on how to
optimize the enumeration process.
Enumeration of minimal explanations. To our best
knowledge, enumeration of minimal explanations is harder
than the enumeration of minimal corrections, and cannot be
obtained directly by iterative extraction of MUSes8. One

8Implicit enumeration of all possible sets [Reiter, 1987; Bailey
and Stuckey, 2005] could be considered, but these approaches do
not scale in practice [Liffiton and Sakallah, 2008].

Algorithm 3: Generic MUS/MCS enumeration

Function MINSETENUM(PXYZ, B, S)
1 (N ,P)← (∅, ∅);
2 while true do
3 (stλ, λ)← FindMHS(N ,P);
4 if ¬stλ then break;
5 (stρ, ρ)← ChkXYZ(B,S,Cls(λ));
6 if stρ then
7 τ ← GetXYZ(PXYZ,B,S,S \ Cls(λ));
8 ReportXYZ(τ);
9 N ← N ∪ NegClIDs(τ);

10 else
11 ReportABC(Cls(λ));
12 P ← P ∪ PosClIDs(Cls(λ));

ABC XYZ ChkXYZ GetXYZ

MCS MUS ¬SAT(B ∧ S \ Cls(λ)) MUS
MUS MCS SAT(B ∧ Cls(λ)) MCS

Table 3: Configuration of Algorithm 3

well-known solution is the enumeration of all MCSes, from
which all the MUSes can be obtained by computing all the
minimal hitting sets. This was implemented for example in
the CAMUS tool [Liffiton and Sakallah, 2008]. A difficulty
of these approaches is that MUSes can be computed only af-
ter all the MCSes have been computed, which can be expo-
nential in number. A recent alternative is the MARCO al-
gorithm [Liffiton et al., 2016], which iteratively enumerates
both MUSes and MCSes, and can be configured such that
only one kind of minimal set needs to be extracted.

Algorithm 3 outlines a modified MARCO algorithm,
where the preference for a specific kind of minimal set is
made explicit. The two configurations are shown in Ta-
ble 3. Let us focus on the one that gives preference to finding
MUSes (the other one is analogous). In this case, XYZ is set
to MUS, and ABC to MCS. The algorithm maintains two sets
of sets of indices (where index ij is associated to clause cj ∈
S): N , with sets blocking all MUSes found; and P , with sets
blocking all MCSes found. Iteratively, a minimal hitting set
(MHS) λ of N subject to P is computed, which induces the
set of clauses Cls(λ). Then, if ¬SAT(B∧S\Cls(λ)) holds,
an MUS is extracted from S \ Cls(λ), which is blocked in
N . Otherwise, Cls(λ) represents an MCS, which is blocked
in P . The process continues until no MHS exists, guarantee-
ing that all MUSes and MCSes have been reported. Figure 4
illustrates the execution of Algorithm 3 on the running exam-
ple. Improvements to MARCO have been proposed in recent
years [Bacchus and Katsirelos, 2016; Narodytska et al., 2018;
Bendı́k et al., 2018]. Besides, MARCO and variants have
a growing number of applications [Polikarpova et al., 2016;
Rothenberg and Grumberg, 2016; Brandt et al., 2018].

N P (stλ, λ) stρ MUS/MCS N update P update
∅ ∅ (1, ∅) 1 {c1, c2} {¬i1,¬i2} –

{{¬i1,¬i2}} ∅ (1, {i1}) 1 {c3, c4} {¬i3,¬i4} –
{{¬i1,¬i2}, {¬i3,¬i4}} ∅ (1, {i1, i3}) 0 {c1, c3} – {i1, i3}
{{¬i1,¬i2}, {¬i3,¬i4}} {{i1, i3}} (1, {i1, i4}) 0 {c1, c4} – {i1, i4}
{{¬i1,¬i2}, {¬i3,¬i4}} {{i1, i3}, {i1, i4}} (1, {i2, i3}) 0 {c2, c3} – {i2, i3}
{{¬i1,¬i2}, {¬i3,¬i4}} {{i1, i3}, {i1, i4}, {i2, i3}} (1, {i2, i4}) 0 {c2, c4} – {i2, i4}
{{¬i1,¬i2}, {¬i3,¬i4}} {{i1, i3}, {i1, i4}, {i2, i3}, {i2, i4}} (0, –) – – – –

Figure 4: Enumerating MUSes&MCSes with Algorithm 3 on formula from Figure 1, with XYZ set to MUS and ABC set to MCS

6 Example Applications
This section provides a brief glimpse of the applications of
reasoning about inconsistency. Optimizing linear cost func-
tions subject to sets of constraints is ubiquitous in a grow-
ing range of domains. One well-known application domain
is program analysis [Si et al., 2017]. Additional exam-
ples include Pseudo-Boolean Optimization but also optimiza-
tion subject to quantified constraints and multi-objective op-
timization [Terra-Neves et al., 2017]. The relationship be-
tween the analysis of inconsistent formulas and model-based
diagnosis (MBD) can be traced to the seminal work of Re-
iter [Reiter, 1987]. Approaches based on solving MaxSAT or
computing MCSes have been proposed [Metodi et al., 2014;
Marques-Silva et al., 2015; Ignatiev et al., 2019a]. A con-
crete instantiation of MBD is axiom pinpointing. In this re-
spect, several of the algorithms presented in this paper have
been applied to axiom pinpoiting in EL+ ontologies [Sebas-
tiani and Vescovi, 2009; Arif et al., 2015]. In addition, MUS
extraction finds application in formal verification and model
checking [McMillan and Amla, 2003; Nadel, 2010]. Ex-
plainability is arguably a strategic area in Machine Learning
(ML). Most existing approaches for explaining ML models
are heuristic, with recent results raising concerns about the
global validity of the computed explanations [Ignatiev et al.,
2019d]. Recent work relates explanations with prime impli-
cants, and so with analyzing inconsistent formulas [Ignatiev
et al., 2019b]. Furthermore, recent work has also shown im-
portant links between explanations, adversarial examples and
the seminal work of Reiter [Ignatiev et al., 2019c].

7 Conclusions & Research Directions
This paper overviews solutions for the analysis of inconsis-
tent formulas, including the identification of minimal correc-
tions and minimal explanations, but also their enumeration.
The paper highlights that most of the algorithms proposed
for reasoning about inconsistent formulas generalize beyond
the propositional case, being applicable in more expressive
logics. Motivated by the many existing applications, the re-
cent fast pace of improvement of algorithms for inconsistency
analysis is expected to continue in the near future.

Acknowledgements
This work is supported by the AI Interdisciplinary Institute
ANITI, funded by the French program “Investing for the

Future – PIA3” under Grant agreement no ANR-19-PI3A-
0004, by the Spanish Government under project TIN2016-
79190-R and by the Principality of Asturias under grant
IDI/2018/000176.

References
[Alviano et al., 2015] Mario Alviano, Carmine Dodaro, and

Francesco Ricca. A MaxSAT algorithm using cardinality
constraints of bounded size. In IJCAI, pages 2677–2683,
2015.

[Ansótegui et al., 2013] Carlos Ansótegui, Maria Luisa
Bonet, and Jordi Levy. SAT-based MaxSAT algorithms.
Artif. Intell., 196:77–105, 2013.

[Arif et al., 2015] M. Fareed Arif, Carlos Mencı́a, and Joao
Marques-Silva. Efficient MUS enumeration of Horn for-
mulae with applications to axiom pinpointing. In SAT,
pages 324–342, 2015.

[Bacchus and Katsirelos, 2015] Fahiem Bacchus and George
Katsirelos. Using minimal correction sets to more effi-
ciently compute minimal unsatisfiable sets. In CAV, pages
70–86, 2015.

[Bacchus and Katsirelos, 2016] Fahiem Bacchus and George
Katsirelos. Finding a collection of MUSes incrementally.
In CPAIOR, pages 35–44, 2016.

[Bacchus et al., 2014] Fahiem Bacchus, Jessica Davies,
Maria Tsimpoukelli, and George Katsirelos. Relaxation
search: A simple way of managing optional clauses. In
AAAI, pages 835–841, 2014.

[Bailey and Stuckey, 2005] James Bailey and Peter J.
Stuckey. Discovery of minimal unsatisfiable subsets of
constraints using hitting set dualization. In PADL, pages
174–186, 2005.

[Bakker et al., 1993] R. R. Bakker, F. Dikker, F. Tempel-
man, and P. M. Wognum. Diagnosing and solving over-
determined constraint satisfaction problems. In IJCAI,
pages 276–281, 1993.

[Belov and Marques-Silva, 2011] Anton Belov and Joao
Marques-Silva. Minimally unsatisfiable boolean circuits.
In SAT, pages 145–158, 2011.

[Belov et al., 2012] Anton Belov, Inês Lynce, and Joao
Marques-Silva. Towards efficient MUS extraction. AI
Commun., 25(2):97–116, 2012.

[Ben-Ari, 2012] Mordechai Ben-Ari. Mathematical Logic
for Computer Science. Springer, 2012.

[Bendı́k et al., 2018] Jaroslav Bendı́k, Ivana Cerná, and
Nikola Benes. Recursive online enumeration of all min-
imal unsatisfiable subsets. In ATVA, pages 143–159, 2018.

[Birnbaum and Lozinskii, 2003] Elazar Birnbaum and
Eliezer L. Lozinskii. Consistent subsets of inconsistent
systems: structure and behaviour. J. Exp. Theor. Artif.
Intell., 15(1):25–46, 2003.

[Brandt et al., 2018] Felix Brandt, Christian Saile, and
Christian Stricker. Voting with ties: Strong impossibili-
ties via SAT solving. In AAMAS, pages 1285–1293, 2018.

[Brewka et al., 2019] Gerhard Brewka, Matthias Thimm,
and Markus Ulbricht. Strong inconsistency. Artif. Intell.,
267:78–117, 2019.

[Chinneck and Dravnieks, 1991] John W. Chinneck and
Erik W. Dravnieks. Locating minimal infeasible constraint
sets in linear programs. ORSA Journal on Computing,
3(2):157–168, 1991.

[Davies and Bacchus, 2011] Jessica Davies and Fahiem Bac-
chus. Solving MAXSAT by solving a sequence of simpler
SAT instances. In CP, pages 225–239, 2011.

[de Siqueira N. and Puget, 1988] J. L. de Siqueira N. and
Jean-Francois Puget. Explanation-based generalisation of
failures. In ECAI, pages 339–344, 1988.

[Dershowitz et al., 2006] Nachum Dershowitz, Ziyad
Hanna, and Alexander Nadel. A scalable algorithm for
minimal unsatisfiable core extraction. In SAT, pages
36–41, 2006.

[Felfernig et al., 2012] Alexander Felfernig, Monika Schu-
bert, and Christoph Zehentner. An efficient diagnosis algo-
rithm for inconsistent constraint sets. AI EDAM, 26(1):53–
62, 2012.

[Grégoire et al., 2014] Éric Grégoire, Jean-Marie Lagniez,
and Bertrand Mazure. An experimentally efficient method
for (MSS, CoMSS) partitioning. In AAAI, pages 2666–
2673, 2014.

[Grégoire et al., 2018] Éric Grégoire, Yacine Izza, and Jean-
Marie Lagniez. Boosting MCSes enumeration. In IJCAI,
pages 1309–1315, 2018.

[Hemery et al., 2006] Fred Hemery, Christophe Lecoutre,
Lakhdar Sais, and Frédéric Boussemart. Extracting MUCs
from constraint networks. In ECAI, pages 113–117, 2006.

[Ignatiev et al., 2015] Alexey Ignatiev, Alessandro Previti,
Mark H. Liffiton, and Joao Marques-Silva. Smallest MUS
extraction with minimal hitting set dualization. In CP,
pages 173–182, 2015.

[Ignatiev et al., 2019a] Alexey Ignatiev, António Morgado,
Georg Weissenbacher, and Joao Marques-Silva. Model-
based diagnosis with multiple observations. In IJCAI,
pages 1108–1115, 2019.

[Ignatiev et al., 2019b] Alexey Ignatiev, Nina Narodytska,
and Joao Marques-Silva. Abduction-based explanations

for machine learning models. In AAAI, pages 1511–1519,
2019.

[Ignatiev et al., 2019c] Alexey Ignatiev, Nina Narodytska,
and Joao Marques-Silva. On relating explanations and
adversarial examples. In NeurIPS, pages 15857–15867,
2019.

[Ignatiev et al., 2019d] Alexey Ignatiev, Nina Narodytska,
and Joao Marques-Silva. On validating, repairing and re-
fining heuristic ML explanations. CoRR, abs/1907.02509,
2019.

[Junker, 2004] Ulrich Junker. QUICKXPLAIN: preferred
explanations and relaxations for over-constrained prob-
lems. In AAAI, pages 167–172, 2004.

[Kleine Büning and Kullmann, 2009] Hans Kleine Büning
and Oliver Kullmann. Minimal unsatisfiability and au-
tarkies. In Handbook of Satisfiability, pages 339–401.
2009.

[Korovin, 2013] Konstantin Korovin. Inst-Gen - A modu-
lar approach to instantiation-based automated reasoning.
In Programming Logics - Essays in Memory of Harald
Ganzinger, pages 239–270, 2013.

[Koshimura et al., 2012] Miyuki Koshimura, Tong Zhang,
Hiroshi Fujita, and Ryuzo Hasegawa. QMaxSAT: A par-
tial Max-SAT solver. JSAT, 8(1/2):95–100, 2012.

[Kullmann and Marques-Silva, 2015] Oliver Kullmann and
Joao Marques-Silva. Computing maximal autarkies with
few and simple oracle queries. In SAT, pages 138–155,
2015.

[Le Berre and Parrain, 2010] Daniel Le Berre and Anne Par-
rain. The Sat4j library, release 2.2. J. Satisf. Boolean
Model. Comput., 7(2-3):59–6, 2010.

[Lewis, 1980] Harry R. Lewis. Complexity results for
classes of quantificational formulas. J. Comput. Syst. Sci.,
21(3):317–353, 1980.

[Li and Manyà, 2009] Chu Min Li and Felip Manyà.
MaxSAT, hard and soft constraints. In Handbook of Satis-
fiability, pages 613–631. 2009.

[Liberatore, 2005] Paolo Liberatore. Redundancy in logic I:
CNF propositional formulae. Artif. Intell., 163(2):203–
232, 2005.

[Liffiton and Sakallah, 2008] Mark H. Liffiton and Karem A.
Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reasoning, 40(1):1–33,
2008.

[Liffiton et al., 2016] Mark H. Liffiton, Alessandro Previti,
Ammar Malik, and Joao Marques-Silva. Fast, flexible
MUS enumeration. Constraints, 21(2):223–250, 2016.

[Lonsing and Egly, 2015] Florian Lonsing and Uwe Egly.
Incrementally computing minimal unsatisfiable cores of
QBFs via a clause group solver API. In SAT, pages 191–
198, 2015.

[Lynce and Marques-Silva, 2004] Inês Lynce and Joao
Marques-Silva. On computing minimum unsatisfiable
cores. In SAT, 2004.

[Marques-Silva and Previti, 2014] Joao Marques-Silva and
Alessandro Previti. On computing preferred MUSes and
MCSes. In SAT, pages 58–74, 2014.

[Marques-Silva et al., 2013a] Joao Marques-Silva, Federico
Heras, Mikolás Janota, Alessandro Previti, and Anton
Belov. On computing minimal correction subsets. In IJ-
CAI, pages 615–622, 2013.

[Marques-Silva et al., 2013b] Joao Marques-Silva, Mikolás
Janota, and Anton Belov. Minimal sets over monotone
predicates in boolean formulae. In CAV, pages 592–607,
2013.

[Marques-Silva et al., 2015] Joao Marques-Silva, Mikolás
Janota, Alexey Ignatiev, and António Morgado. Efficient
model based diagnosis with maximum satisfiability. In IJ-
CAI, pages 1966–1972, 2015.

[Marques-Silva et al., 2016] Joao Marques-Silva, Alexey Ig-
natiev, Carlos Mencı́a, and Rafael Peñaloza. Efficient rea-
soning for inconsistent Horn formulae. In JELIA, pages
336–352, 2016.

[Marques-Silva et al., 2017] Joao Marques-Silva, Mikolás
Janota, and Carlos Mencı́a. Minimal sets on propositional
formulae. problems and reductions. Artif. Intell., 252:22–
50, 2017.

[Martins et al., 2014] Ruben Martins, Saurabh Joshi,
Vasco M. Manquinho, and Inês Lynce. Incremental car-
dinality constraints for MaxSAT. In CP, pages 531–548,
2014.

[McMillan and Amla, 2003] Kenneth L. McMillan and Nina
Amla. Automatic abstraction without counterexamples. In
TACAS, pages 2–17, 2003.

[Mencı́a et al., 2015] Carlos Mencı́a, Alessandro Previti,
and Joao Marques-Silva. Literal-based MCS extraction.
In IJCAI, pages 1973–1979, 2015.

[Mencı́a et al., 2016] Carlos Mencı́a, Alexey Ignatiev,
Alessandro Previti, and Joao Marques-Silva. MCS
extraction with sublinear oracle queries. In SAT, pages
342–360, 2016.

[Mencı́a et al., 2019] Carlos Mencı́a, Oliver Kullmann,
Alexey Ignatiev, and Joao Marques-Silva. On computing
the union of MUSes. In SAT, pages 211–221, 2019.

[Metodi et al., 2014] Amit Metodi, Roni Stern, Meir Kalech,
and Michael Codish. A novel SAT-based approach to
model based diagnosis. J. Artif. Intell. Res., 51:377–411,
2014.

[Morgado et al., 2013] António Morgado, Federico Heras,
Mark H. Liffiton, Jordi Planes, and Joao Marques-Silva.
Iterative and core-guided MaxSAT solving: A survey and
assessment. Constraints, 18(4):478–534, 2013.

[Morgado et al., 2014] António Morgado, Carmine Dodaro,
and Joao Marques-Silva. Core-guided MaxSAT with soft
cardinality constraints. In CP, pages 564–573, 2014.

[Nadel, 2010] Alexander Nadel. Boosting minimal unsatis-
fiable core extraction. In FMCAD, pages 221–229, 2010.

[Narodytska et al., 2018] Nina Narodytska, Nikolaj Bjørner,
Maria-Cristina V. Marinescu, and Mooly Sagiv. Core-
guided minimal correction set and core enumeration. In
IJCAI, pages 1353–1361, 2018.

[Nilsson and Maluszynski, 1995] Ulf Nilsson and Jan
Maluszynski. Logic, programming and Prolog. Wiley,
1995.

[Peñaloza et al., 2017] Rafael Peñaloza, Carlos Mencı́a,
Alexey Ignatiev, and Joao Marques-Silva. Lean kernels
in description logics. In ESWC, pages 518–533, 2017.

[Polikarpova et al., 2016] Nadia Polikarpova, Ivan Kuraj,
and Armando Solar-Lezama. Program synthesis from
polymorphic refinement types. In PLDI, pages 522–538,
2016.

[Previti et al., 2017] Alessandro Previti, Carlos Mencı́a,
Matti Järvisalo, and Joao Marques-Silva. Improving MCS
enumeration via caching. In SAT, pages 184–194, 2017.

[Previti et al., 2018] Alessandro Previti, Carlos Mencı́a,
Matti Järvisalo, and Joao Marques-Silva. Premise set
caching for enumerating minimal correction subsets. In
AAAI, pages 6633–6640, 2018.

[Reiter, 1987] Raymond Reiter. A theory of diagnosis from
first principles. Artif. Intell., 32(1):57–95, 1987.

[Rosa et al., 2010] Emanuele Di Rosa, Enrico Giunchiglia,
and Marco Maratea. Solving satisfiability problems with
preferences. Constraints, 15(4):485–515, 2010.

[Rothenberg and Grumberg, 2016] Bat-Chen Rothenberg
and Orna Grumberg. Sound and complete mutation-based
program repair. In FM, pages 593–611, 2016.

[Sebastiani and Vescovi, 2009] Roberto Sebastiani and
Michele Vescovi. Axiom pinpointing in lightweight
description logics via Horn-SAT encoding and conflict
analysis. In CADE, pages 84–99, 2009.

[Seidl et al., 2012] Martina Seidl, Florian Lonsing, and
Armin Biere. qbf2epr: A tool for generating EPR formulas
from QBF. In PAAR@IJCAR, pages 139–148, 2012.

[Si et al., 2017] Xujie Si, Xin Zhang, Radu Grigore, and
Mayur Naik. Maximum satisfiability in software analy-
sis: Applications and techniques. In CAV, pages 68–94,
2017.

[Terra-Neves et al., 2017] Miguel Terra-Neves, Inês Lynce,
and Vasco M. Manquinho. Introducing Pareto minimal
correction subsets. In SAT, pages 195–211, 2017.

[Wieringa, 2012] Siert Wieringa. Understanding, improving
and parallelizing MUS finding using model rotation. In
CP, pages 672–687, 2012.

[Xie and Luo, 2016] Huiyuan Xie and Jie Luo. An algorithm
to compute minimal unsatisfiable subsets for a decidable
fragment of first-order formulas. In ICTAI, pages 444–
451, 2016.

	Introduction
	Preliminaries
	Subset-Minimal Sets
	Cardinality- & Preferred Minimal Sets
	Enumeration of Minimal Sets
	Example Applications
	Conclusions & Research Directions

