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Abstract 

As a tool to characterize the acoustic properties of conventional centrifugal pumps, 

consisting in impeller and vaneless volute casing, a new acoustic lumped parameter 

model has been developed that simulates the acoustic field induced inside the pumps 

when subject to low-frequency sound sources. The model is based on a network of nodes 

distributed through the pump, with local transfer matrices connecting pairs of nodes at 

neighboring regions, and so it is referred to as an internal transfer matrix model. At the 

present stage the model has been implemented in a procedure to determine the pump 

passive acoustic properties, either in terms of a transmission matrix or a scattering matrix, 

though in a future step the model is to be applied for the characterization of the internal 

sound sources in centrifugal machinery. This paper presents the assumptions of the model 

and the resolution approach to calculate transmission or scattering matrices, as well as a 

summary of results for a reference pump that shows the sensitivity of predictions with 

respect to several geometrical pump parameters. Finally, a contrast is carried out between 

experimental data recently reported in the literature on the scattering matrices for five 

pumps of different geometry and the corresponding predictions obtained from i) the new 

lumped parameter model based on internal transfer matrices and ii) a classical pump 

model based on an electrical system analogy. The results show that the predictions of the 

new transfer matrix model are always in reasonable quantitative agreement with 

measurements, and that, as frequency is increased, its prediction capability clearly 

outperforms that of the electrical analogy model regardless the pump specific speed or 

the geometrical features. 
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1. Introduction 

Hydraulic systems with fluid machinery usually exhibit fluid-dynamic pulsations that can 

be transmitted to distant components along the piping and have potential to induce high 

noise and vibration levels [1-4]. Common pulsation sources are the pumps themselves [5-

7]. Even in the absence of cavitation or other abnormal conditions, pumps behave as 

discrete low frequency acoustic sources that radiate sound to the suction and discharge 

ducts, as well as air-borne sound from the pump casing and pipes [7, 8]. In the case of 

centrifugal pumps with vaneless volute, the most common ones, significant excitation can 

be expected at the blade-passing frequency and harmonics even when operating at the 

design flow-rate, because the non-uniform flow that exits the impeller is perceived as 

intermittent at the volute and in particular at the tongue [5, 9]. At off-design conditions 

the magnitude of that blade-passing excitation can increase remarkably [10, 11], while 

other phenomena with different characteristic frequencies may appear, such as rotating 

stall [8, 12]. However, the pressure fluctuations induced at a given frequency and position 

along the pipes also depend on the acoustic response of the system, i.e., on how the 

acoustic pulsations are transmitted or reflected at each element of the system [3, 4, 13, 

14]. That includes the pump itself [2, 15]. 

 

Especially during the last decade there has been a considerable increasing interest in 

analyzing and quantifying the internal sound sources in centrifugal fans and pumps by 

means of computational simulations that assume Lighthill’s acoustic analogy [7]. This 

implies three steps: i) the CFD calculation of the unsteady flow, which can include 

dynamic boundary conditions to account for the impedance of the connected pipes [16]; 

ii) the assignment of acoustic sources, usually as dipoles related to the pressure 

fluctuations on walls [11, 13, 17, 18]; and iii) the computation of the sound field, usually 

by a finite element or a boundary element method [11, 17-20]. Several recent studies were 

aimed to evaluate the effect of different geometrical parameters of some specific pumps 

on the sound generated, including the impeller outlet width [21, 22], the blade outlet angle 

[23, 24], the number of blades [25] or even a combination of parameters [26].  

 

However, the predictions so obtained are very sensitive to the details of the computational 

mesh and the turbulence model, especially when the pump operates at off-design 

conditions, and experimental contrast is always necessary. To characterize pumps or other 

fluid machinery as sources that radiate sound to the connected pipes, the usual 
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experimental procedures require a previous characterization of the transmission and 

reflection properties of the machine [2, 27, 28]. In the case of pumping systems, the 

frequencies of interest are usually low enough for the wave-lengths to be at least one order 

of magnitude greater than the diameters of piping or pump impeller, so that effective 

acoustic propagation is restricted to the plane wave mode. Because of that, the passive 

acoustic properties of a pump can be condensed in a transmission matrix 𝐓 [4, 29] that 

relates linearly two acoustic variables, e.g. the acoustic pressure 𝑝 and the acoustic mass 

velocity 𝑣, at the suction and discharge ports of the pump when there is no internal sound 

generation at the frequency of interest:  

 
 𝑝
𝑣 𝐓

 𝑝
𝑣

𝑇 𝑇
𝑇 𝑇

 𝑝
𝑣   (1) 

Another convenient formulation often used to describe the passive acoustic properties of 

two-port elements can be obtained by choosing the incoming and exiting pressure waves 

as the state variables at each port [4, 27] (Fig. 1). Considering again the pump as a purely 

passive element, this formulation allows to express the exiting pressure waves from the 

pump ports as a linear function of the entering pressure waves, through the so-called 

scattering matrix 𝐒: 

 
𝑝
𝑝 𝐒 𝑝

𝑝
𝑆 𝑆
𝑆 𝑆

𝑝
𝑝

  (2) 

where superscripts ‘+’ and ‘-‘ represent propagation in the positive (streamwise) and 

negative direction respectively, and: 

 
 𝑝 𝑝 𝑝
 𝑝 𝑝 𝑝

  (3) 

 

 

 

 

Fig. 1. Incoming and exiting pressure waves at the pump ports. 
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The transmission matrix and the scattering matrix are interrelated, so that the elements of 

𝐓 can be obtained from the elements of 𝐒 and vice versa [2, 30] (see Eq. 21). 

 

In order to estimate the transmission matrix, Stirnemann et al. [29] used an electrical 

analogy to represent the pump as a series impedance 𝑍 , which connects the suction and 

discharge ports of the pump, plus two parallel admittances,  𝑌  and  𝑌 , one at each port 

(Fig. 2).  

 

 

Fig. 2. Electrical analogy for pumps [29]. 

 

 

According to that analogy, the transmission matrix 𝐓 results to be: 

 𝐓
1 𝑍  𝑌 𝑍

 𝑌  𝑌  𝑌  𝑍  𝑌 1 𝑍  𝑌   (4) 

Equation (4) gained some general use though the choice for the equivalent electrical 

parameters was not clear and varied among researchers. Rzentkowski and Zbroja [2, 15] 

suggested the following estimates for  𝑌 , 𝑍  and  𝑌 : 

 

⎩
⎨

⎧𝑍 𝑔
𝜕𝐻
𝜕𝑄

𝑖 𝜔
𝑉
𝐴

 𝑌  𝑌 𝑖 𝜔
𝑉

2𝑐

  (5) 

where 𝜕𝐻/𝜕𝑄 represents the slope of the pump characteristic curve, 𝑉  and 𝑉  are 

the volumes of the impeller and pump respectively and 𝐴  is the average of the pump eye 

section and the throat section. However, they only recommended the application of that 

model for a low range of frequency. In general the order of magnitude of the entries 𝑇  

and  𝑇  is 1, 𝑇  is very large and  𝑇  is very low. Despite this, Bardeleben and Weaver 

[30], who conducted extensive tests on a laboratory pump, remarked the importance of 

not neglecting the entry 𝑇  in order to improve the predictions of the scattering matrix. 
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However, their experimental data exhibited a large dispersion and the study was not 

conclusive. 

 

Indeed, obtaining reliable experimental data for the transmission or scattering matrices of 

pumps has proved to be a difficult task, due to the distorting effects of the pump induced 

noise, flow turbulence and pipe vibration. They can be partially circumvented by taking 

measurements with redundant sensors [30-33], but even at pump-off conditions the results 

can be affected by trapped air bubbles or casing compliance [28,30]. Probably the most 

complete and reliable set of experimental data on pump scattering matrices is the one 

recently reported by Lehr et al. [34] and Brümmer et al. [35], who tested a group of pumps 

with different features and non-dimensional specific speed ωS ranging from 0.46 to 0.99. 

 

Parrondo et al. [36] proposed an alternative approach to characterize the acoustic 

transmission properties and the internal sound generation sources of centrifugal pumps, 

which was based on combining a simple acoustic model with pressure fluctuation 

measurements on the pump volute. The acoustic model was designed to reproduce the 

internal sound field radiated from arbitrary ideal harmonic sources, by considering 

multiple sound circulations along the volute and partial reflections at the throttle while 

continuously exchanging sound with the impeller channels. That acoustic model was 

implemented in a hill-climbing algorithm that progressively varied the properties of the 

ideal sound sources until identifying the set of sources whose predictions best reproduced 

the available experimental data based on a least square error criterion. Keller et al. [13] 

applied that procedure on a test pump for different operating points, resulting in the 

identification of two ideal sources located in the tongue region of the volute: for flow-

rates below nominal they were two monopoles that behaved as a dipole, whereas for 

nominal and higher flow rates they were two dipoles that resembled a linear quadrupole.  

 

Under the perspective of a strategy similar to that of references [13, 36], this paper 

presents a novel acoustic model aimed to determine the internal sound distribution in 

centrifugal pumps under the presence of internal or external sources. The model is based 

on a special network of internal nodes and local frequency dependent transfer matrices 

that relate the acoustic variables of nearby nodes. Compared to the sound recirculation 

model of [36], the new model is not restricted to anechoic suction, it is not subject to 

convergence issues and, overall, allows for much shorter calculation times. The latter is 
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of particular interest because, in a future step, the model is expected to be repeatedly used 

in an iterative hill-climbing procedure analogous to [13] in order to quantify the properties 

of the sound sources that best reproduce the pressure fluctuation measurements available 

for a given pump, as a means to analyze the excitation mechanisms depending on the 

operating point. Prior to that objective, the scope of the present work has focused on the 

application of the new model to determine the transmission matrix and the scattering 

matrix of a given pump as a function of frequency, by imposing auxiliary sources at the 

suction and discharge ports. 

 

This paper exposes the assumptions of the new model, the resolution approach to 

calculate transmission or scattering matrices and the effect of several model parameters 

on the predictions for a test pump. Finally, a contrast is performed between the scattering 

matrix data reported by Brümmer et al. [34, 35] for five different pumps and the 

corresponding predictions obtained from the new transfer matrix model as well as from 

Stirnemann et al´s electrical analogy [29].  

 

 

2. Acoustic Model 

This research focuses on conventional centrifugal pumps with a shrouded impeller that 

can rotate in a vaneless volute casing (Fig. 3). The impeller takes the fluid in the axial 

direction from the suction port of the pump and drives it to the radial direction through 

passage channels defined by blades and shrouds. Around the impeller, the exiting fluid is 

collected by the volute, which has an increasing cross-section from a minimum (at 

tongue) until the throat. Then flow continues along a curved diffuser, until the discharge 

port of the pump. 

 

There is substantial evidence from a number of previous experimental studies that the 

passive acoustic properties at low frequency noise for non-cavitating centrifugal pumps 

are little affected by the operating point [30] or the rotation speed, up to the point of 

advising to conduct tests with pumps off [28, 31, 32]. Hence, for the present study it was 

considered a non-rotating impeller with no flow across the pump. 

 

For this pump model, the volute casing is represented as a chamber that is short in the 

axial direction, with most of the central part being occupied by the impeller. In that 
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chamber, sound is assumed to propagate in plane wave mode along the volute (i.e. in the 

circumferential direction), while receiving and transmitting sound to the impeller 

channels. The exit of each impeller channel plus the throttle are considered as side ports 

of the volute chamber, allocated along the circular direction. The model assumes that the 

internal sound field can be reasonably described by establishing a network with a few 

nodes and transfer matrices that connect nodes of neighboring regions. In particular, the 

sound exchange between impeller channels and volute is assumed to take place only at 

one specific location or region for each impeller channel. 

 

 

Fig. 3. Pump reference regions to characterize the internal sound transmission. 

 

 

The regions considered inside the pump are (Fig. 3): pump inlet, impeller eye, volute 

sections next to the exit of each impeller channel, tongue-throttle zone and pump outlet. 

For instance, a pump with a 7-blade impeller would have 11 regions, labelled R0 to R10 in 

Fig. 3. In case of assuming internal sound sources in the pump, another region should be 

assigned to each of them. The latter, however, is beyond the scope of this study, since at 

present the purpose is to check the capability of the model to estimate the passive acoustic 
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properties in terms of transmission or scattering matrices. In consequence any sound 

source shall be external and sound is assumed to enter the pump only through the suction 

and discharge ports. 

 

In this system, each region Ri contains one or more nodes nim, which are positions with 

some local value of acoustic pressure 𝑝  and acoustic mass flow velocity  𝑣 . In 

particular, each region contains one node for every other connected region, as follows: 

‐ Pump inlet region (R0 in Fig. 3): one single node n00, facing the impeller eye. 

‐ Impeller eye region (R1): one central node n10 facing the pump inlet, plus another 

zB nodes, each at the inlet of an impeller channel (Fig. 4(a)).  

‐ Regions along the volute: one node at the outlet of the corresponding impeller 

channel plus two other nodes facing the previous and subsequent volute regions 

(Fig. 4(b)).  

‐ Tongue-throttle region (R9 in Fig. 3): it has three nodes as well, two of them at 

both sides of the impeller-tongue gap facing the volute neighboring regions and 

the third one at the pump throttle facing the impeller outlet region (Fig. 4(c)). 

‐ Pump outlet region (R10): one single node (n100 for zB =7) facing the throttle. 

 

 

(a) (b) (c) 

Fig. 4. Nodes at the impeller eye region (a), volute region (b) and tongue region (c). 

 

 

Together, there would be 34 nodes for a pump with zB= 7 blades, like the one shown in 

Fig. 3. The acoustic pressure 𝑝  and mass flow velocity  𝑣  at the nodes nim of any 

internal region Ri are considered to verify: 

‐ Uniform acoustic pressure: 
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  𝑝 𝑝     𝑝  (6) 

‐ Mass flow continuity: 

  𝑣 0 (7) 

In the case of the pump inlet and outlet regions, special boundary conditions are to be 

imposed depending on the external acoustic load applied on the pump. 

 

Every node nim in the domain, located in region Ri, must be connected to another node njn 

of a neighboring region Rj by means of a specific transfer matrix 𝐓𝒊𝒋 so that: 

 
 𝑝
𝑣 𝐓𝒊𝒋

 𝑝
𝑣

𝑇 𝑇
𝑇 𝑇

 𝑝
𝑣   (8) 

In order to determine these transfer matrices, it was assumed that the respective sound 

paths between connected nodes are equivalent to ducts with a cross-section that varies 

linearly from one end to the other. Each transfer matrix was calculated by means of a 

segmentation method with the matrizant approach [37], which consists in (Fig. 5): 

‐ i) divide each duct in N thin slices, 

‐ ii) assign the transfer matrix to each slice as would correspond to an exponentially 

shaped duct with appropriate values of cross-section at the two sides depending on 

the slice position, and 

‐ iii) multiply sequentially the transfer matrices of the N slices. 

 

 

 

Fig. 5. Passage between two nodes nim and njn as a succession of slices with cross-
section varying exponentially.  
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For a slice of thickness Δ𝑥 that starts at the longitudinal coordinate 𝑥 and has an 

exponential shape between the known cross-sections 𝐴 𝑥  and 𝐴 𝑥 Δ𝑥 , the transfer 

matrix can be defined as [38]: 

 

 𝑝
𝑣 𝐓𝑺

 𝑝
𝑣

⎣
⎢
⎢
⎡𝑒 cos𝛼

𝑠
𝑘

 sin𝛼 𝑗 𝑦  𝑒  
𝑘
𝑘

 sin𝛼

𝑗
𝑦

 𝑒  
𝑘
𝑘

 sin𝛼 𝑒 cos𝛼
𝑠
𝑘

 sin𝛼
⎦
⎥
⎥
⎤  𝑝
𝑣  

(9) 

where 𝑘  is the wave number at position 𝑥, 𝑦 𝑐 𝐴 𝑥⁄  is the characteristic impedance 

and: 

 ℎ
1
Δ𝑥

ln
𝐴 𝑥 Δ𝑥
𝐴 𝑥

 (10) 

 𝑘 𝑘 ℎ  (11) 

 𝛼 𝑘 Δ𝑥 (12) 

In consequence, the transfer matrix 𝐓𝒊𝒋 between the nodes that connect regions Ri and Rj 

is calculated as: 

 𝐓𝒊𝒋 𝐓𝑺 𝐓𝑺  (13) 

 

Some other special considerations were taken into account as follows: 

i) End corrections were included for the transfer matrices that represent the impeller 

channels (both sides) and also the pump diffuser (only throttle side), by adding 

short pipes with equivalent lengths of 60% of the associated hydraulic radius [38]. 

 

ii) At the outlet of the impeller channels, sound is considered to expand abruptly to 

a cross-surface that covers an arc of a cylinder with the radius of the impeller 

outlet, the axial width of the volute and a peripheral extension that is proportional 

to that of the impeller channel by a factor kP≥1 (Fig. 6(a)). Once in the volute, 

those curved sound waves are assumed to progress in the direction β2 of the 

impeller blades (Fig. 6(a)) up to a medium position M between impeller and volute 

surface (Fig. 6(b)). A new transfer matrix was determined for that short path 

across a fraction of the volute by means of the segmentation method described 
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above. Then the previous transfer matrix of each impeller channel was multiplied 

by that new matrix. 

 

iii) The transition between the exit area of the impeller channels (β2 direction) and the 

volute (peripheral direction) is affected by sound reflection from the volute wall, 

in a fashion comparable to an extended-tube resonator of the reversal type (Fig. 

6(b)). In order to take this effect into account, the transfer matrix of each impeller 

channel was multiplied by the matrix of a lumped shunt element [38], as defined 

in Eq. (14): 

 𝐓𝑺𝒉
1 0

1/𝑍 1  (14) 

In Eq. (14), 𝑍  represents the impedance of a branch resonator. If 𝐓𝑹 is the transfer 

matrix associated to the radial path between the central position in the volute (M 

in Fig. 6(b)) and the volute internal surface, which can be estimated by using the 

segmentation method again, the corresponding resonator impedance 𝑍  results to 

be: 

 𝑍
𝑇
𝑇

 (15) 

 

iv) Subsequent sound propagation along the volute also covers the lateral cavities 

between impeller and casing, assuming that both front and rear casing surfaces are 

flat and perpendicular to the axis (Fig. 6(b)), with radial extensions from the 

impeller inlet seal and the shaft ring respectively up to the volute. 

 

(a) 

 

(b) 

 

Fig. 6. Transition from an impeller channel to volute: a) frontal view; b) meridional 
view. 
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The transfer matrices that relate nodes along the volute depend on the local cross-section 

and so they are different for every pair of connected nodes. Moreover, they depend 

somewhat on the relative position of the impeller with respect to the tongue, as the latter 

determines the precise position of all the nodes in the volute. A similar dependence occurs 

for the transfer matrices of the impeller channels, because the transition effects from 

impeller to volute depend too on the magnitude of the volute cross-section.  

 

 

3. System resolution 

In the acoustic model for centrifugal pumps described above, the acoustic pressure and 

mass velocity at all the nodes in the system constitute a finite number of unknown 

complex variables. They are to be determined according to the relationships established 

for the nodes in a given region (Eqs. 6 and 7) and by the transfer matrices between nodes 

of neighboring regions.  

 

The number of nodes depends on zB, the number of blades of the impeller, and so does 

the number of variables and equations. For the case of zB=7 (Fig. 7) there are 34 nodes, 

i.e. 68 unknowns. Besides there are 17 transfer matrices each producing 2 equations, plus 

23 pressure identity equations and 9 continuity equations by virtue of Eqs. (6) and (7) 

respectively. This makes a total of 66 linear equations and hence two more equations are 

needed to obtain a closed system. These two additional equations correspond to boundary 

conditions at the suction and discharge ports of the pump, which, for zB=7, are represented 

by nodes nS = n00 and nD = n100 respectively (Fig. 7). And those boundary conditions 

depend on the external acoustic load applied on the pump.  
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Fig. 7. Network of nodes and transfer matrices for a pump with a seven-blade impeller. 

 

 

In order to determine the overall transmission matrix of a given pump, it is necessary to 

consider two situations with independent acoustic loads, hence with independent sets of 

boundary conditions. A convenient choice is summarized in Table 1. Once the system of 

equations is closed it can be solved by any method suitable for linear equation systems 

[39]. Direct methods are preferable since the expected number of variables and equations 

is low (68 complex unknowns and equations for zB=7 blades). For the calculations 

reported below the classical method of Gaussian elimination proved to be very effective 

when used with complete pivoting during the process. 
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Table 1. Acoustic loads and boundary conditions to determine the pump transmission 
matrix. S=node at suction port (nS=n00 in Fig. 7); D=node at discharge port 
(nD=n100 in Fig. 7). 

Load 
Boundary 
condition 

Description Equation 

I 
BC-I-1 

External source at suction pipe, inducing an 
incoming unitary pressure wave. 

𝑝 𝑦  𝑣 2 (16) 

BC-I-2 Discharge piping with anechoic end. 𝑝 𝑦  𝑣 0 (17) 

II 

BC-II-1 Suction piping with anechoic end. 𝑝 𝑦  𝑣 0 (18) 

BC-II-2 
External source at discharge pipe, inducing 
an incoming unitary pressure wave. 

𝑝 𝑦  𝑣 2 (19) 

 

 

The application of the whole procedure to form and solve the equation system results in 

the values of all the unknown variables, for each of the two acoustic loads considered. In 

particular, the overall transmission matrix of the pump 𝐓 has to relate the acoustic 

pressure and mass velocity at the suction and discharge ports of the pump, i.e. at nodes nS 

and nD (Fig. 7), so that for both acoustic loads I and II it must be verified: 

 
 𝑝
𝑣 𝐓

 𝑝
𝑣

𝑇 𝑇
𝑇 𝑇

 𝑝
𝑣   (20) 

Eq. (20) constitutes two pairs of equations, with each pair involving only the two entries 

of either the first or the second row of 𝐓. In consequence all the elements of 𝐓 can be 

obtained easily.  

 

Finally, the scattering matrix of the pump, 𝐒, can also be obtained from the elements of 

the transmission matrix, by using the following relationships [30]: 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝑆

1
𝐷𝑒𝑛

𝑇 𝑦  𝑇
 𝑇
𝑦

 𝑦  𝑇
𝑦

𝑆
2
𝐷𝑒𝑛

𝑆
2
𝐷𝑒𝑛

𝑇  𝑇  𝑇  𝑇

𝑆
1
𝐷𝑒𝑛

𝑇 𝑦  𝑇
 𝑇
𝑦

 𝑦  𝑇
𝑦

𝐷𝑒𝑛 𝑇 𝑦  𝑇
 𝑇
𝑦

 𝑦  𝑇
𝑦

  (21) 
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No acoustic dissipation has been included in the internal transfer matrices, as well as no 

effect of fluid velocity on the effective sound speed. In consequence the elements 𝑇  and 

 𝑇  of the pump transmission matrix only have real part, the elements 𝑇  and  𝑇  only 

have imaginary part and the determinant of 𝐓 is equal to 1 (real part only), as corresponds 

to a reciprocal system [40]. This would be also the case of the electrical model by 

Stirnemann et al. [29] (Eq. 4) if the real part of the impedance 𝑍  as given in Eq. (5) is 

negligible. Regarding the pump scattering matrix 𝐒, reciprocity brings about the same 

modulus for 𝑆  and  𝑆 , and the same argument for 𝑆  and  𝑆 , whereas the modulus 

of the determinant of 𝐒 is equal to 1.  

 

All this procedure to determine the transmission and the scattering matrices of pumps was 

conveniently implemented in a special calculation program developed with Delphi 

software. The resulting time of computation of the scattering matrix at 200 different 

frequencies for a pump with a seven blade impeller was less than 4 s with a conventional 

Intel Core i5 processor. This is about 40 times faster than with the acoustic model 

proposed in [36].  

 

 

4. Effect of model parameters on predictions 

The acoustic model was first put into practice on a reference pump with the main data 

shown in Table 2.  

 

Table 2. Main input data for the reference pump:  

Pump geometry: 

Diameter of suction port, dS  (mm) 100 

Diameter of discharge port, dD (mm) 65 

Number of blades, zB 7 

Radius at impeller outlet, r2 (mm) 105 

Outlet angle relative to tangent, β2 (deg) 26 

Radius at tongue tip, r3 (mm) 116 

Width at impeller outlet, b2 (mm) 16 

Volute width, b3 (mm) 40 

Throttle cross-section, AT (cm2) 20 

Length suction port to impeller eye, LSE (mm) 90 

Length throttle to discharge port, LTD (mm) 240 
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Other model parameters:  

Angular position of first blade (trailing edge) 
relative to tongue, 𝜑  (deg) 30 

Number of segments for passages with 
variable cross-section, N  

 

25 

Peripheral expansion factor at impeller outlet, kP 2 

Sound speed, c (m/s) 1400 
 

 

As described in Section 3, the sound field in the pump has to be computed twice, each 

under a different acoustic load, before determining the transmission matrix. An example 

of those computations is given in Fig. 8, which shows the modulus and phase of the 

pressure so obtained at four nodes, when the reference pump is subject to the acoustic 

load named II in Table 1. Calculations have covered a wide range of frequencies, from 0 

to 400 Hz. The nodes selected are located at the suction and discharge ports of the pump 

(nS and nD), at the tongue region (n90) and in the volute at the opposite side to the tongue 

(n50). It is observed that, though differences between nodes increase with frequency, the 

three nodes from suction to tongue region exhibit a similar behavior, i.e. the acoustic 

pressure is relatively uniform in the chamber defined by the volute casing. Node nD, 

however, shows a rather distinct trend, as corresponds to a position in a duct (the diffuser) 

at significant distance from the pump chamber.  

 

 

(a) 

 

(b) 

 

Fig. 8. Modulus (a) and phase (b) of the acoustic pressure at four nodes of the reference 
pump for the acoustic load II (Table 1). Nodes as in Fig. 7. 
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Appropriate processing according to Eq. 20 of the acoustic pressure and mass velocity at 

nodes nS and nD for the two acoustic loads of Table 1 results in the transmission matrix 

for the reference pump. This is shown in Fig. 9, as well as the predictions from 

Stirnemann’s electrical analogy [29] as given by Eqs. (4-5) with Re 𝑍 =0.  

 

 

 

  

  

Fig. 9. Transmission matrix calculated for the reference pump. ITM= current internal 
transfer matrix model; SEA= Stirnemann’s electrical analogy model, Eqs. (4-5). 

 

 

The two models predict that elements 𝑇  and  𝑇  only have real part whereas 𝑇  and 

 𝑇  only have imaginary part, as expected. Also, increasing the frequency makes the 

modulus of 𝑇  and  𝑇  decay from unity with both models, but according to Eqs. (4-5) 

the slope of the decay is very smooth whereas the current transfer matrix model gives a 

quick reduction of magnitude, up to the point of reaching   𝑇 =0 and then reversing phase 

and growing above 215 Hz. Besides, the magnitudes of 𝑇  and  𝑇  as predicted with 

Eqs. (4-5) are significantly lower than the values obtained from the transfer matrix model. 

All this suggests that, compared to the model now proposed, the values estimated with 



18 

Eq. (5) for the equivalent impedance and admittances are too low. This is in line with the 

observations by other researchers [30] and it is further discussed in next section. 

 

Once the transmission matrix is known the scattering matrix can be obtained by using Eq. 

(21). A selection of results on the reference pump is given below to show the effect of 

some parameters of the acoustic model and also some pump parameters. Since no flow 

effects are considered in the model, the Helmholtz number is constant for a given pump 

geometry, and so the sound speed scales with frequency and pump size. In consequence, 

increasing the sound speed by, say, 5%, (or shrinking the pump lengths by 5%) results in 

a 5% stretching of each spectra data towards higher frequencies. 

 

Among the acoustic parameters, the most influential one is the peripheral expansion factor 

kP, which accounts for the effect of the abrupt change in cross-section at the outlet of the 

impeller channels (see section 2). The least possible value for kP is 1, which actually 

means no peripheral expansion. As illustrated in Fig. 10 on element 𝑆 , varying kP from 

1 to 2 and then to 3 accelerates the deviation of the variables when increasing frequency 

with respect to the values at 0 Hz. In particular, changing kP from 1 to 2 gives a maximum 

relative change in the modulus of 𝑆  of the order of 14% at about 200 Hz, whereas the 

argument reduces in 15°. Other model parameters have much less impact on the 

predictions. For instance, the number of segments N considered to estimate the transfer 

matrix of channels with variable cross-section (Fig. 5) proved to have virtually no 

influence on the results as far as it is higher than about 15. All the computations presented 

in this section and in the next one correspond to N=25.  

 

(a) 

 

(b) 

 

Fig. 10. Element 𝑆  of the scattering matrix for the reference pump with peripheral 
expansion factors kP=1, 2 and 3; (a) modulus; (b) argument. 
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With respect to the pump geometric parameters, the predictions of the scattering matrix 

show little dependence unless they are closely related to the global pump shape, i.e. to the 

pump specific speed. One example of parameters not dependent on specific speed is the 

angular position of the impeller, which is characterized by the angle 𝜑  of the first blade 

(trailing edge) relative to tongue tip. In this case (Fig. 11), the maximum variation of the 

modulus of 𝑆  for a range of 𝜑  covering 360°/zB (zB=number of blades) is about 2% of 

the average value, whereas the phase varies in 2.5° as highest. This little variation is 

consistent with the measurements reported by Carta et al. [31] and supports dismissing 

the measure of that angle and even the rotation of the impeller for practical applications.  

 

(a) 

 

(b) 

 

Fig. 11. Element 𝑆  of the scattering matrix for the reference pump with impeller at 
angular positions 𝜑 = 0°, 17° and 34° (𝜑 = angle of first blade relative to tongue); (a) 
modulus; (b) argument. 

 

 

Fig. 12 shows the effect of cutting the impeller to a smaller outlet radius r2 while keeping 

the same volute casing, which is a common practice of pump manufacturers to extend the 

performance range of the pumps. Again, its effect on the acoustic properties is small: a 

reduction of r2 from 105 to 80 mm (24%) just leads to an increment of 3 % in the modulus 

of 𝑆  and a reduction of 8° in the argument at 200 Hz.  
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(a) 

 

(b) 

 

Fig. 12. Element 𝑆  of the scattering matrix for the reference pump, with impeller 
outlet radius r2 = 80, 95 and 105 mm; (a) modulus; (b) argument. 

 

 

Another parameter with potential interest is the number of blades of the impeller, zB, since 

it determines the number of nodes and internal transfer matrices involved in the pump 

acoustic model. However, Fig. 13 shows that varying zB between 6 and 8 has little effect 

on the predicted modulus, and virtually no effect on the argument.  

 

 

(a) 

 

(b) 

 

Fig. 13. Element 𝑆  of the scattering matrix for the reference pump and impeller with 
zB=6, 7 and 8 blades; (a) modulus; (b) argument. 

 

 

5. Predictions vs experimental data 

In order to evaluate the prediction capacity of the internal transfer matrix model, it was 

applied on a set of five pumps tested by Brümmer et al. [34, 35], who conducted 

laboratory measurements in standstill conditions to determine their scattering matrices. 
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The specific speed and main geometrical data reported (or easily derivable from the data 

reported) for those pumps are shown in Table 3. Pumps #1, #2 and #3 have the same inlet 

and outlet diameters, but their specific speed increases by a factor above 2. This indicates 

that the nominal flow-rate at a given rotational speed is in the same range for the three 

pumps, while the nominal head reduces to almost half. In consequence the size of the 

internal cross-section passages should be similar for the three pumps, whereas the external 

diameter of the impeller as well as the radial size of the casing reduce progressively from 

pump #1 to pump #3. Pump #4 has the same specific speed of pump #1 but its size is 

larger. Since the optimal geometry of fluid machinery depends basically on the specific 

speed, it is to be expected that pumps #1 and #4 are geometrically similar, with an 

approximate length scale factor of 100/65. Finally, pump #5 is identical to pump #1 

except that the impeller was trimmed to an outside radius r2 = 82.5 mm.  

 

Table 3. Main data reported for the pumps tested by Brümmer et al. [34-35]. 

Pump designation #1 (#5) #2 #3 #4 

Specific speed (non-dimensional), ωS 0.46 0.70 0.99 0.46 

Diameter of suction port, dS  (mm) 80 80 80 125 

Diameter of discharge port, dD (mm) 65 65 65 100 

Number of blades, zB 6 6 6 6 

Radius at impeller outlet, r2 (mm) 109.5 (82.5) 87.0 70.5 168.0 

Radius at tongue tip, r3 (mm) 117.6 96.6 78.8 180.5 
 

Table 4. Additional geometric data used in the acoustic model. 

Pump designation #1 (#5) #2 #3 #4 

Width at impeller outlet, b2 (mm) 7.5 9.5 13 12 

Outlet blade angle relative to tangent, β2 (deg) 32 35 38 22 

Volute width, b3 (mm) 50 45 40 85 

Throttle cross-section, AT (cm2) 18 18 18 40 

Length suction port to impeller eye, LSE (mm) 80 80 80 150 

Length throttle to discharge port, LTD (mm) 200 135 100 300 

 

The acoustic model operates with other non-reported input data, so they were estimated 

according to the pump specific speeds and the corresponding general shapes that 

manufactures use for each specific speed. Table 4 lists the main data assumed. Other 

model parameters were taken as constant for the five pump models, including: sound 
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speed c=1350 m/s (indicated in [34]), peripheral expansion factor kP =2 and first blade 

angular position 𝜑 =30°. 

 

Brümmer et al. [35] reported the scattering matrix data at seven specific frequencies 

between 150 Hz and 290 Hz for all the pumps but pump #4, for which data refers to 10 

eleven frequencies between 95 and 190 Hz. As an example, Fig. 14 shows the 

experimental data corresponding to pump #4 together with the predictions derived from 

the new internal transfer matrix model (ITM) as well as from Stirnemann’s electrical 

analogy (SEA) as formulated in Eqs. (4) and (5). Though the experimental data exhibit 

some dispersion, the ITM predictions can be considered in reasonable agreement with the 

measurements, especially regarding the argument. On the other hand, the trends of the 

parameters predicted with the SEA model for increasing frequency are similar to those of 

the experimental data, but the rate of variation of both modulus and argument with 

frequency is clearly too slow. This is consistent with the comparison in Fig. 9 between 

the modulus of the transmission matrix elements predicted from both models.  

 

 

 

   

   

Fig. 14. Elements of the scattering matrix determined for Pump #4. ITM= internal 
transfer matrix model, SEA= Stirnemann’s electrical analogy, Exp= data by Brümmer 
et al. [34, 35]. 
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Pump #1: 

  
Pump #2: 

  
Pump #3: 

  
Pump #5: 

  

Fig. 15. Elements 𝑆  and 𝑆  of the scattering matrix determined for several pumps. 
ITM= internal transfer matrix model, SEA= Stirnemann’s electrical analogy, Exp= data 
by Brümmer et al. [34, 35]. 

 

Reciprocity relationships are readily apparent when comparing the data for the four 

elements of the scattering matrix in Fig. 14. For instance, the predicted moduli of the 
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elements 𝑆  and 𝑆  at any given frequency are identical, and the corresponding 

experimental values are also very similar. The same happens regarding the argument of 

elements 𝑆  and 𝑆 . 

 

Fig. 15 presents the experimental data and predictions corresponding to elements 𝑆  and 

𝑆  for the rest of the pumps. Again, accordance with measurements can in general be 

considered fairly satisfactory with respect to the ITM predictions, whereas the SEA 

predictions diverge significantly from measurements when increasing the frequency.  

 

Comparing the results for pumps #1, #2 and #3, it is readily observed that all of them 

present the same values at very low frequency, as correspond to machines that have input 

and output ports with the same cross-sections. On the other hand, the effect of frequency 

is qualitatively similar to that of an intermediate expansion chamber, whose volume 

changes from one pump to another. Among the three of them, pump #1 appears as the 

most sensitive one with respect to frequency, which is to be attributed to the larger size 

of its volute casing in the radial direction in order to allocate the impeller with the highest 

diameter. However the internal geometry of the pumps is indeed more complex than just 

having an expansion chamber with the volume of the pump casing. In fact, that volume 

is explicitly assumed in the SEA model (Eq. (5)), but the predictions are poorly correlated 

with the experimental data, as further discussed below. 

 

The sensitivity to frequency still augments somewhat when considering pump #5 instead 

of pump #1, because the trimming of the impeller brings about a slight increment in the 

effective volume of the casing chamber. Nonetheless, the impact of impeller trimming on 

the pump scattering matrix is very small, as already observed for the reference pump in 

Fig. 12. 

 

Finally, it is interesting to compare the data for pumps #1 (Fig. 15) and #4 (Fig. 14). As 

expected for geometrically similar pumps with different size, the respective curves of the 

scattering parameters appear to be shifted in the frequency scale by an amount 

approximately equal to the length scale factor. This has already been shown by Brümmer 

et al. [35] by using a Helmholtz number to scale the frequency axis. 

 



25 

An especial quality parameter was defined in order to quantify how close or far are 

predictions from the available experimental data, while taking into account that the 

experimental data can present some dispersion. The parameter used has been a variance 

ratio, VR, defined as the variance of the predictions relative to the experimental data (i.e., 

the mean squared error) divided by the variance of the experimental data relative to their 

average value. In particular, the variance ratio VR that corresponds to any of the four 

elements 𝑠 of the pump scattering matrix has been calculated by means of Eq. (22): 

 VR 𝑠
∑ 𝑠 𝑠 𝑠 𝑠
∑ 𝑠 𝑠 𝑠 𝑠

 (22) 

where 𝑠 is any of the four elements of the pump scattering matrix, 𝑛 is the number of 

experimental data available, subscripts 𝐸 and 𝑃 denote experimental or predicted values 

at the same frequency and subscripts 𝑅 and 𝐼 denote real or imaginary components. 

According to the definition, this variance ratio parameter can only take positive values, 

the closer VR to zero, the better the predictions. 

 
 

(a) 

 

(b) 

 

Fig. 16. Variance ratio parameter for the elements of the scattering matrix of five 
pumps. Predictions from (a) internal transfer matrix model and (b) Stirnemann’s 
electrical analogy. 

 

 

Fig. 16 shows the VR parameters so obtained for each element of the scattering matrix 

and for the five pumps tested. The predictions derived from the new internal transfer 

matrix model (ITM) give VR parameters always below 0.85, the lowest one usually 

associated to the suction reflection element 𝑆 . The average VR for each pump lies in the 

range 0.5-0.6 except for pump #4, which takes a somewhat lower value, about 0.35, 
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possibly because of having more experimental data available for that pump. Therefore, it 

may be concluded that the ITM model performs similarly and reasonably well regardless 

the pump specific speed, i.e., it does not really show a shape dependence. And the results 

for pump #4 suggest that there is no size dependence either. All that leads to conclude 

that the new ITM model can be considered adequate for its future use in a tool to explore 

the properties of internal sound sources in pumps, following the approach of references 

[13, 36]. 

 

In comparison, the VR values corresponding to the predictions from Stirnemann´s 

electrical analogy (SEA) with Eqs. (4-5) are at least one order of magnitude larger. 

Predictions are especially poor for pump #4 and even worse for pump #5. Considering 

that discrepancies between measurements and SEA predictions arise because the latter 

change too little with frequency (as seen in Figs. 14 and 15), it may be concluded that Eq. 

(5) systematically underpredicts the equivalent impedance and admittances of the pump. 

That becomes more evident when the volume of the volute casing increases in the radial 

direction with respect to the impeller, either because the entire pump is bigger (pump #4) 

or because the impeller is shorter (pump #5). The latter is also supported by the slight 

reduction of the average VR that exhibits Fig. 16(b) when going from pump #1 to #2 and 

#3, i.e., when increasing the specific speed. 

 

 

6. Conclusions 

In order to simulate the internal sound field in centrifugal pumps at low frequency (plane 

wave mode), a new model has been developed based on a selection of internal nodes 

connected by means of local transfer matrices, which are dependent on the pump 

geometry. In general, these local transfer matrices correspond to passages with variable 

cross-section, and so they were estimated by means of segmentation with the matrizant 

approach. As a first application, the proposed internal transfer matrix model has been 

used in a procedure to estimate either the global transmission matrix or the scattering 

matrix of a given pump as a function of frequency. Sensitivity tests conducted on a 

reference pump show that, in general, the results are little affected by changes in the 

acoustic parameters except the periphery expansion factor, which characterizes the abrupt 

change in cross-section for the acoustic waves in the transition region between impeller 
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channels and volute. Besides, the predictions happen to be little dependent on geometry 

parameters that are not closely related to the pump specific speed or size.  

 

The predictions of the new internal transfer matrix model, as well as from Stirnemann’s 

classical model [29] based on an electrical analogy, have been contrasted against the 

experimental data reported by Lehr et al. [34] and Brümmel et al. [35] on the scattering 

matrices for five pumps with different specific speeds and features. 

 

The results from Stirnemann’s electrical analogy show trends of frequency dependence 

that are qualitatively in line with the experimental data, but predictions diverge quickly 

from measurements for increasing frequencies. It has been inferred that the values of the 

equivalent impedance and admittances considered in that model are systematically under-

estimated, especially for pumps with large volute casing.  

 

On the contrary, the new internal transfer matrix model has given predictions of the four 

elements of the scattering matrix, both in modulus and phase, that are in reasonable 

quantitative agreement with the experimental data for the five pumps tested. According 

to a variance ratio parameter determined for each case, the degree of goodness of the 

predictions is similar for all the pumps tested regardless the specific speed.  

 

All this supports the possible future use of this new model complemented with internal 

acoustic sources in order to characterize pump noise excitation mechanisms at low 

frequency, such as the excitation associated with blade passing in front of the volute 

tongue. First, that will require to modify the pump acoustic model so that it can 

incorporate additional nodes that allocate sound sources with arbitrary properties for a 

given frequency (magnitude, phase and position). Then the acoustic model is to be 

implemented in an iterative approach that contrasts predictions against experimental data, 

analogous to that of Parrondo et al. [36] and Keller et al. [13]. This is intended as the next 

step of this research.  
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