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The quasiharmonic approach to the ab initio calculation of thermodynamic properties in crystals
is revisited with the improvement of two significant aspects: i) the use of averaged strain polynomials
is proposed to reduce the uncertainty in the fitting of energy vs. volume data, and provide statistical
measure of the errors introduced by the fit and ii) the systematic error of the calculations due to
the approximate nature of the exchange and correlation functional is repaired through an empirical
energy correction scheme that, based only in two experimental parameters, the equilibrium volume
and bulk modulus, brings the calculated thermodynamic properties into agreement with the exper-
imental measurements on a extremely wide range of pressures and temperatures. The proposed
procedure is simple, systematic and applicable to any solid.

PACS numbers: 64.10.+h 65.40.-b 64.30.Jk 63.20.-e 71.15.Nc

I. INTRODUCTION

We present a simple, systematic and general method
to calculate ab initio thermodynamic properties of a solid
at arbitrary pressures and temperatures, with an accu-
racy that rivals experimental measurements. The proce-
dure described is based on the quasiharmonic approxima-
tion (QHA), a mainstream route to access the thermo-
dynamics of a solid, that requires the computation of the
volume-dependent static energy and phonon density of
states (phDOS), either using the direct method1,2 or the
Density Functional Perturbation Theory (DFPT)3. How-
ever, we show in this article that the steps leading from
these basic data to the final thermodynamic properties
require a careful treatment for being able to blindly (i.e.
without experimental confirmation) predict the proper-
ties of a solid. The discussion is structured around two
main ideas.

First, the equations of state (EOS) used to model the
static and free energy versus volume data are adapted
from the experimental field (for instance, Vinet, BM3,...).
While the purpose of those EOS is to extrapolate the
crystal behavior to a range of pressures and tempera-
tures wider than that of the experience, our objective is
the interpolation and calculation of energy derivatives.
We show how averages of strain polynomials provide an
excellent tool for this purpose.

Second, the main source of error in DFT based calcula-
tions is the approximate exchange-correlation functional.
Lacking the correct functional or a systematic way to im-
prove it, we turn to an empirical correction where only
two easily accesible experimental data (room tempera-
ture volume and bulk modulus) are needed. The correc-
tion modifies the static energy, and therefore the calcu-
lated V (p, T ) but not the volume-dependent phDOS. As
a result, the agreement with experimental results is much
improved in a wide range of pressures and temperatures.

Our discussion will be centered on periclase, the rock
salt phase of magnesium oxide. A major component of
the Earth’s mantle, industrially relevant ceramic, stable

in the rock salt phase for a wide pressure and temper-
ature range, MgO has become one of the most studied
materials in this field4–9. Apart from its value as bench-
mark, the detailed knowledge of its p(V, T ) equation of
state (EOS) is of fundamental importance for its role as
a calibration sample in high-pT diffraction studies, and
is still the subject of a lively debate7. We show later
that, using our procedure, a first principles EOS can be
proposed.

II. COMPUTATIONAL DETAILS

The ab initio calculations have been done under
the plane-wave pseudopotentials approach10, using ul-
trasoft pseudopotentials11 for Mg (2s2p63s1) and O
(2s1p5). Exchange and correlation effects have been in-
troduced using the LDA and GGA approximations in
the Perdew and Zunger12 and Perdew-Burke-Erzenhof13

parametrizations, respectively. The energies and the ph-
DOS have been checked for convergence with respect to
the relevant calculation parameters: plane-wave cutoff
energy (80 Ry), electronic k-mesh (Monkhorst-Pack, MP,
4×4×4) and vibrational q-mesh (MP 6×6×6). The tech-
niques described in the next section are implemented in
the gibbs2 program14–16.

III. A PROCEDURE FOR ACCURATE AB
INITIO THERMODYNAMICS

The thermodynamic behavior of solids is determined,
under hydrostatic conditions, by the generalized Gibbs
energy

G?(x, p, T ) = Esta(x) + pV (x) + F ?
vib(x, T ) (1)

where x, the free geometry, is limited in this case to the
cell volume, V , by the symmetry of the rock-salt phase,
the static energy is the direct result of the electronic
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TABLE I. Equilibrium properties of MgO determined from
several fittings to the same GGA theoretical calculations. The
results correspond to the static model. The avX models cor-
respond to an average of polynomials of degree 2 to 12 in the
eulerian (avBM), natural (avPT), lagrangian (avLagr), and
infinitesimal strain (avInf).

V0 (bohr3) B0 (GPa) B′0 B′′0 (GPa−1)
BM3 129.6757 158.70 3.9457 −0.0242
BM4 130.0741 151.23 4.1001 −0.0279

Vinet 130.7726 132.25 4.8306 −0.0584
AP2 130.0648 147.98 4.3026 −0.0367

avBM 130.0792(50) 150.49(26) 4.1284(91) −0.0266(22)
avPT 130.0839(115) 150.34(24) 4.1284(169) −0.0246(35)

avLagr 130.0806(205) 150.20(44) 4.1428(562) −0.0237(139)
avInf 130.0815(49) 150.39(22) 4.1290(94) −0.0255(31)

structure DFT calculation, and the vibrational contri-
bution to the Helmholtz energy is given in the QHA ap-
proach by

F ?
vib =

∫ ∞
0

g(ω,x)

[
~ω
2

+ kBT ln
(

1−e−~ω/kBT
)]

dω

(2)
where g(ω,x), the phDOS, depends on the crystal ge-
ometry. Further contributions to the free energy can be
ignored for the insulating, diamagnetic, ideal MgO crys-
tal.

Fitting analytical EOS to E(V ) and F ∗(V ;T ) data is
a fundamental step in the determination of the equilib-
rium properties at fixed temperature and in obtaining
the derivatives required to model the thermal behavior.
Up to the third or fourth derivative of E(V ) are required,
a strict test on the representation of the discrete set of
theoretical energy values.

At present, the usual way in the literature is to fol-
low experimental practice: an analytical form with a few
parameters is fitted non-linearly5,6. Birch-Murnaghan of
orders 3 and 4, Vinet17,18 and Holzapfel’s AP219,20 forms
are among the most popular representations of the cold
isotherm data. Table I shows that this non linear fit-
ting step introduces a significant uncertainty. Equilib-
rium bulk modulus from 132 to 159 GPa, or B′0 values
from 3.9 to 4.8 can be used on equal footing according to
Table I.

This uncertainty, that is readily transferred into the
thermal calculation, is an artifact of the fitting proce-
dure. The theoretical E(V ) (a 129 point volume grid,
in the range 72–143 bohr3) is smooth enough to produce
a much improved precision under an adequate statisti-
cal treatment of the fitting. Our method, described with
detail in ref. 15 and 21, expands the energy as strain
polynomials of arbitrary order:

En(f) =

n∑
k=0

ckf
k (3)

where f is one of many possible generalized strains22.
For instance, the Birch-Murnaghan (BM)23–25 EOS of

order n would be the result of using an eulerian strain:
f = (x−2/3−1)/2, where x = V/Vr is the cell compression
and Vr is any positive reference volume. Similarly, the
natural (f = (1/3) lnx), lagrangian (f = [x2/3−1]/2) and
infinitesimal (f = (1 − x−1/3)) strains would give rise to
the Poirier-Tarantola (PT)26, Thomson27, and Bardeen28

families of EOS, respectively.
In the traditional treatment the low order EOS are

deduced by imposing V → V0, V d2E/dV 2 → B0,
dB/dP → B′0,... in the limit f → 0, thus giving rise
to complex expressions for the ck coefficients. The equi-
librium properties (V0, B0, B′0,...) are treated as the
fitting parameters. However, it turns out that the direct
non-linear optimization of these quantities is difficult in
the absence of good starting parameters because of their
strong correlation. This makes fits of higher order in the
strain unattainable.

In our approach, the ck coefficients are determined
by a linear fit of the En(f) polynomial to the E(V ) or
F (V ) data. Linear polynomial fits are robust to very
high degress, pose no convergence problems and allow a
straightforward statistical measure of the goodness of the
fit. Furthermore, each polynomial of a given degree n can
be assigned a normalized weight to produce an average
polynomial by convex linear combination. In addition,
error bars obtained as a standard deviation of the calcu-
lated properties can be assigned. After a number of tests,
we have opted for the weights Pn = e−wn/

∑
i e
−wi where

wn = NnSn/(nSmin), Nn is the number of points fitted,
Sn the sums of squares of residuals and Smin = minn Sn.
With these weights, the polynomials that achieve the bet-
ter fits using less coefficients have larger contributions to
the average.

Table I reports the static equilibrium properties of
MgO obtained using the polynomial averaging scheme.
The four strain definitions produce results equivalent
within their respective error bars. In particular, B0,
B′0, and B′′0 are consistent among the different fittings.
The B′′′0 and higher derivatives have error bars similar or
larger that their average values. The BM average is used
for the rest of the article.

A number of numerical experiments15,21 has been un-
dertaken to check the relevance of the error bars: reduc-
ing and enlarging the data set (from 17 to 2049 points)
and the volume range (up to 10–320 bohr3). The pre-
dicted equilibrium properties remained stable in all the
tests. Furthermore, to base the described procedure on a
firmer statistical foundation, we have conducted a boot-
strap analysis29 by sampling from 100 to 106 random
subsets of the 129-point dataset, fitting fixed-order poly-
nomials and doing an statistical analysis of the results.
The error bars proposed in the previous paragraph are
more conservative than those of the bootstrap method,
the latter being usually three or more times smaller than
the former. Therefore, our error bars significantly mea-
sure the precision with which the thermodynamic prop-
erties are calculated.

We now turn to the problem of finding an energy cor-
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TABLE II. Thermodynamic properties of MgO at 298.15 K and 1,000 K. Most experimental values are from the compilation
by Anderson and Zou30. Room temperature V and BT (boldface in the table) are from Li et al.8. The theoretical error bars
within parenthesis are inherited from the EOS fitting error.

Room temperature (0 GPa and 298.15 K) (0 GPa and 1000 K)
PBE LDA PBEcorr LDAcorr expt. PBEcorr expt.

V (bohr3) 132.377(33) 123.155(69) 126.024(19) 126.026(74) 126.025 129.708(84) 129.6
Fvib (kJ/mol) 9.9613(72) 11.227(16) 11.4236(47) 10.554(18) -31.613(59)
S (J/mol K) 29.919(15) 27.343(32) 27.0028(88) 28.670(36) 27.18 82.853(56) 82.24
pth (GPa) 2.534(30) 2.722(29) 2.624(15) 2.701(28) 0.717 6.943(67) 4.96
BT (GPa) 141.30(56) 161.84(70) 161.43(50) 161.31(60) 161.3 141.2(20) 141
BS (GPa) 143.87(56) 164.27(70) 163.72(50) 163.93(60) 163.9 151.6(20) 151.1
α (1× 10−5 K) 3.733(16) 3.237(16) 3.1002(97) 3.361(15) 3.12 4.680(68) 4.47
Cv (J/mol K) 38.1863(71) 36.918(17) 36.6821(50) 37.619(18) 36.9 48.5530(28) 47.61
Cp (J/mol K) 38.8799(97) 37.473(21) 37.2023(57) 38.231(21) 37.409 52.132(55) 50.87
B′T 4.297(42) 4.251(57) 4.173(43) 4.279(71) 4.53(12)
B′′T (GPa−1) -0.054(10) -0.0366(60) -0.0333(28) -0.0390(73) -0.089(24)
γ 1.63186(59) 1.5597(14) 1.53435(24) 1.6209(17) 1.54 1.5751(11) 1.54

rection to rectify the known systematic deviations in
DFT static energies. The need for a correction is widely
acknowledged31–33 but few systematic studies of different
models have been reported31,33. After trying several ex-
pressions, we settled for a correction based on Kunc and
Syassen’s observation32 that static p/B0 vs. V/V0 curves
closely match for LDA, GGA and experimental results.
The proposed empirical energy correction (EEC) modi-
fies the the static energy in eq. 1 according to

Ẽsta(V ) = Esta(V0)+
BexpVexp

B0V0

[
Esta

(
V V0

Vexp

)
−Esta(V0)

]
(4)

where (V0, B0) are calculated static equilibrium proper-
ties, (V 0

exp, B
0
exp) are experimental properties at room

conditions, and (Vexp, Bexp) would correspond to the
experimental properties once corrected for hypothetical
static conditions. To determine the latter we use the
conditions

∂G∗

∂V
(V 0

exp; 0, T 0) = 0, V
∂2F ∗vib
∂V 2

(V 0
exp, T

0) = B0
exp (5)

where T 0 = 298.15 K. This leads to:

Bsta(fV0)

psta(fV0)
=

B0
exp −BT (V 0

exp, T
0) + Bsta(V 0

exp)

pth(V 0
exp, T

0)
(6)

where psta = −dEsta/dV and pth = −∂F ∗/∂V are the
static and thermal contributions to the pressure, and BT

is the isothermal bulk modulus and pth is the thermal
pressure. The scaling factor f = V 0

exp/Vexp > 1 is the
only unknown quantity in eq. 6, and is easily found by
bracketing and bisection. Once f is obtained, we have:

Vexp =
V 0
exp

f
, Bexp = −B0

pth(V 0
exp)

pexp(fV0)
(7)

and the eq. 4 can be applied. An important point is that
the static energy, and therefore the calculated V (p, T )

is modified, but not the phDOS associated to each vol-
ume. As a consequence, other properties (magnetic, elec-
tronic,...) calculated as derivatives of the DFT total en-
ergy and that depend strongly on the volume could ben-
efit from the application of EECs as well.

An important observation is that EECs correct the
Gibbs free energy, G(p, T ), of a solid and, when more
than one phase is considered, also the phase diagram.
Whenever experimental data for the phases involved is
available, the EEC proposed in this article is directly ap-
plicable to each phase. However, in many cases, V 0

exp and

B0
exp are not experimentally accessible for a thermody-

namically metastable phase. In such cases, two general-
izations of the procedure above are possible:

1. Equations 4 to 7 can be easily modified to accept
experimental volume and bulk modulus data at ar-
bitrary pressures and temperatures, rather than
ambient conditions. It is also possible to propose
equations simpler than 4 to correct the static en-
ergy, using only the experimental volume at given
p and T conditions.

2. When even this solution is not feasible, the coeffi-
cients entering equation 4 can be transferred from
the stable phase to the rest of the phases in the
diagram. Although a detailed study is necessary,
it is encouraging that, as shown by van de Walle
and Ceder31, the pressure required to correct the
static equilibrium volume using a simple pV scal-
ing can be expressed as a concentration average of
elemental pressures. This observation points to the
systematic DFT errors being linked primarily to
the atomic composition—not the geometry— of the
phase, thus favoring the transferability of the cor-
rection coefficients.

We are currently exploring both possible generalizations
of the EEC.
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IV. RESULTS

Table II reports the thermodynamic properties pre-
dicted at room temperature by the LDA and PBE cal-
culations before and after the EEC correction has been
applied. As usual, LDA overbinds and PBE underbinds
with respect to the experiment. LDA is, in this crys-
tal, rather close to most of the experimental properties,
that have been obtained from the compilation by Ander-
son and Zou30. This coincidence, that extends to other
similar crystals, explains the popularity of LDA for ionic
compounds. The EEC works as expected, converging
the predictions of both LDAcorr and PBEcorr towards
the experiment. The correction is, in general, highly suc-
cessful, and slightly better in the case of PBEcorr. The
noticeable exception is the thermal pressure, pth, some
2 GPa larger according to our calculations than the val-
ues reported in Ref. 30, where it was indirectly calculated
from other experimental values.

The agreement of PBEcorr results with the experi-
ments extends to high temperatures, and Table II com-
pares the 1000 K properties as an example. Our results
show that the correction of the static energy is enough
to predict excellent thermodynamic properties on a large
range of temperature and pressure conditions, allowing
the corrected QHA results to blindly predict the behav-
ior of the crystals in regions uncharted or off the experi-
mental limits.

To determine how large this range is we have exam-
ined carefully the behavior of the two most critical mag-
nitudes, V and B, with both p and T . The results are
collected in Fig. 1 and compared to the high quality ex-
perimental dataset recommended by Tange et al.7. The
thermal expansion data were obtained by Dubrovinsky
and Saxena36, Fiquet et al.34 and Sinogeikin et al.35 us-
ing X-ray diffraction and wire-heated multi-anvil cells.
Additional BS(T ) data were obtained from a compila-
tion of previous work by Anderson30. The isothermal
data are provided by experiments that avoid the use of
an external pressure calibrant: X-ray diffraction coupled
with Brillouin scattering (DAC, ref. 9) or ultrasonic in-
terferometry (multi-anvil, ref. 8) experiments provide the
isothermal data. For comparison, we include the raw re-
sults by Speziale4, a popular MgO equation of state for
diffraction experiments, obtained using the ruby pressure
scale. Our data has been corrected with the expression
in equation 4, using data from Li et al.8: V 0

exp = 126.025

bohr3 and B0
exp = 161.3 GPa.

The V (p, 300 K) plot shows that LDAcorr, PBEcorr
and the experimental data are indistinguishable up to
the pressure where the experiments are reliable. In addi-
tion, the theoretical results agree up to 250 GPa with
differences smaller than 0.05 bohr3. A similar agree-
ment is obtained for BS(p, 300 K), whose computation is
more involved than the equilibrium volume. In this case,
the uncorrected LDA results also coincide with LDAcorr,
PBEcorr and the experiment. The agreement between
the theoretical BS extends to 250 GPa with differences

TABLE III. Pressure-volume-temperature results for MgO,
using the PBE functional and corrected with the experimen-
tal volume (V0 = 126.025 bohr3) and bulk modulus (161.3
GPa). Each column represents a temperature, given in the
first entry (Kelvin). Pressures (in GPa) are presented against
compression, x = V/V 0.

x 298.15 500 1000 1500 2000 2500 3000
1.000 0.00 1.14 4.33 7.65 11.01 14.37 17.71
0.975 4.31 5.43 8.61 11.92 15.26 18.62 21.93
0.950 9.22 10.32 13.48 16.78 20.12 23.48 26.76
0.925 14.82 15.89 19.03 22.33 25.67 29.02 32.28
0.900 21.20 22.25 25.37 28.66 31.99 35.34 38.59
0.875 28.49 29.52 32.61 35.89 39.22 42.56 45.81
0.850 36.83 37.83 40.90 44.16 47.48 50.82 54.07
0.825 46.38 47.36 50.39 53.65 56.95 60.29 63.55
0.800 57.35 58.30 61.31 64.55 67.85 71.18 74.47
0.775 69.98 70.90 73.88 77.11 80.42 83.75 87.07
0.750 84.54 85.43 88.39 91.63 94.94 98.28 101.65
0.725 101.38 102.25 105.20 108.45 111.78 115.15 118.56
0.700 120.91 121.76 124.71 127.98 131.35 134.76 138.24
0.675 143.64 144.47 147.42 150.74 154.16 157.62 161.18
0.650 170.17 170.98 173.95 177.33 180.81 184.35 187.98
0.625 201.24 202.04 205.03 208.47 212.04 215.66 219.38
0.600 237.81 238.59 241.61 245.11 248.76 252.47 256.28
0.575 281.02 281.77 284.81 288.38 292.12 295.92 299.82
0.550 332.32 333.05 336.08 339.71 343.52 347.41 351.39
0.525 393.60 394.29 397.30 400.97 404.85 408.82 412.86
0.500 467.19 467.84 470.81 474.50 478.44 482.47 486.57

smaller that 2 GPa.
The V (T ) and BS(T ) curves at 0 GPa in fig. 1 should

help us determine when the QHA fails due to anharmonic
effects. Anharmonicity tends to decrease its relative im-
portance as the pressure increases, so the 0 GPa curves
represent a worst-case scenario in this respect. The agree-
ment of the PBEcorr results with the experiment is excel-
lent, even at 2000 K. As a comparison, LDAcorr starts to
differ from the experimental V (T ) curve around 1000 K,
and from the BS(T ) curve even earlier.

Our results compare well with the best available EOS
in the literature, even at very high temperature. As an
example the fig. 2 shows the 3000 K isotherm, just a bit
below the melting temperatute (3125 K). The EOS by
Speziale et al.4 and by Tange et al.7 are built from ex-
perimental measurements and empirical extrapolations.
The EOS by Speziale, in particular, is currently used as
a pressure scale in high pT diffraction experiments. Wu
et al.6 use QHA theoretical results to extrapolate the
data by Speziale et al. to higher pressures. Our PBEcorr
results agree with the three other datasets, even in the
low p and high T region where the intrinsic anharmonic
corrections, not included in our work, should be most
important. The comparison with Wu et al.6 results is
particularly relevant: our fundamental theoretical calcu-
lation is equivalent to theirs but, whereas they extrap-
olate the experimental p(V ) data by Speziale et al., we
use only two experimental data, our procedure can be
applied to an arbitrary crystal, and is at least as effec-
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FIG. 2. 3000 K isotherm of MgO.

tive. An exhaustive tabulation of the calculated p-V -T
equation of state is presented in table III.

As a final result, figure 3 shows the predicted phase
diagram in the low temperature region encompassing the

B1→B2 transition. The B2 phase has not been observed
experimentally37 so there are no data available for the
empirical correction but, as described above, we can use
the correction coefficients of the B1 phase. Even though
we can not compare to experiment, it is encouraging that
the 40 GPa gap in the predicted transition pressures be-
tween LDA and PBE is reduced to 5–10 GPa upon cor-
rection. The result is consistent with previous theoret-
ical studies38,39 that place the static transition pressure
around 500 GPa.

V. CONCLUSION

We have presented a carefully designed procedure to
transform static DFT energies and DFPT phDOS into
thermodynamic properties that is simple, efficient, sys-
tematic and applies to arbitrary crystals. Some points
about the treatment of first principles thermodynamic
data have been clarified: i) using strain polynomials re-
moves the uncertainty in the calculation of equations of
state and their derivatives, and provides an statistical
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measure of the goodness of the fit and ii) a congruent

energy correction is necessary, and we propose one which
uses two experimental data which are easily available.
The combination of the two techniques has allowed us to
formulate an almost fully ab initio equation of state of
MgO that rivals in accuracy with the best p(V, T ) data
propsed in the literature. The performance of our pro-
cedure in other test systems is also excellent, and will
be the subject of further studies. Given the extraordi-
nary agreement with the available experimental data for
MgO, we expect that the corrected QHA results repre-
sent faithfully the behavior of the solid under extreme
conditions, provided the limits of validity of QHA are
not overstepped.
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