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Abstract—Support Vector Regression, a powerful and elegant
framework in the field of Machine Learning, is proposed in a
novel method for Near-Field Focusing using antenna arrays. It
allows creating a model of an antenna array relating accurately
the set of weights required in the elements of an array and
the corresponding near-field distribution, maybe focused on
one or more positions of interest. A previous learning process
concentrates the computational cost so that the already trained
system operates without relevant cost and it is fast enough for
real applications where adaptation must be fast, for example
because moving devices are involved. The learning capabilities
of Support Vector Machines are increased with respect to other
machine learning tools, allowing the use of a reduced number of
training samples that may be generated with an adaptive system
or any full-wave electromagnetic analysis tool, so that realistic
effects such as coupling or non-uniformities can be accounted for.
Illustrative examples are also presented to test the performance
of the proposed approach.

Index Terms—near field, antennas, focusing, multifocusing,
support vector regression.

I. INTRODUCTION

Near-Field Focusing (NFF) [1], [2], [3], [4], [5] is a state-of-
the-art topic in the field of antenna design that is gaining more
attention in the recent years as it is one of the most succesful
approaches to emerging technologies such as RFID [2], [4],
medical hyperthermia [6], Wireless Power (and Information)
Transfer (WPT, WPIT) [7], [8], [9] that support applications
such as Internet of Things (IoT) or 5G mobile telephony. It is
key in scenarios where wireless links between devices located
at short distances are involved. NFF allows concentrating the
radiated field on an assigned position or spot in the Near-Field
(NF) region of an antenna, typically (but not exclusively) an
array. By doing so, the energy directed to positions of the space
where it is not necessary is minimized. The Conjugate-Phase
(CP) method [2], [10], [11] has been proven to be an excellent
technique for calculating the phase-shift that must be applied
to each array element so that all their contributions arrive
in-phase to the so-called focal point, creating a constructive
interference that results in an increased field level. This is
a robust and simple idea that suffices for a wide range of
applications. However, the extended requirements in some of
the emerging applications that make use of NFF, require more
sophisticated methods able to solve situations where the CP
is limited. For example, if the field must be focused on more
than one focal point or on an arbitrary volume, Near-Field
Multi-Focusing (NFMF) has arised as an excellent alternative
[12], [13].

NFMF is based on the minimization of a properly designed
cost function that accounts for all the requirements, using
optimization techniques, to obtain the set of weights on the
elements of an array corresponding to a field distribution ful-
filling the specifications. The resulting method is flexible and
efficient, but it is time consuming due to the iterative nature
of the optimization techniques. For example, fast adaptation in
case of moving devices is not affordable and another approach
is necessary.

In this work we propose the use of Support Vector Regres-
sion (SVR), a powerful Machine Learning (ML) method based
on Support Vector Machines (SVM) [18] to obtain the weights
so that an antenna array is able to focus on some assigned
points or to generate a shaped Near Field (NF) footprint.
SVR requires a strongly reduced set of training patterns with
respect to other ML techniques (for example, Neural Networls
[14]), so that obtaining them becomes much more affordable.
Most of the computing time is concentrated in the previous
training step, being its computational cost high, but providing
solutions almost in real time once trained. The training or
learning of a SVR consists on presenting known pairs of inputs
and outputs (field distributions and the corresponding weights
applied to the array elements to achieve such distributions,
in array synthesis problems), called training patterns, so that
the machine is able to extract the relationship between them
and provide outputs to new inputs. Once trained, SVR is
able to operate fast enough for real time applications without
relevant computational cost. Moreover, if the training patterns
are obtained through measurements or simulations of realistic
models using full-wave electromagnetic analysis tools, able to
account for coupling effects or any non-idealities of the array,
so will do the SVR trained making use of those patterns.

II. SUPPORT VECTOR REGRESSION FOR INVERSE
MODELING AND SYNTHESIS

The field radiated at a certain position ~r by an antenna array
with N elements, independently of its geometry, is obtained
as the superposition of the field radiated by its elements at
such position. A simple formulation able to represent the
superposition is given by

E(~r) =

N∑
n=1

ωn · gn(~r) = gT (~r) ·w (1)

where E(~r) is the value of the considered component of
the field at ~r, ωn is the feeding weight applied to the n-
th element of the array, and gn(~r) is the contribution of



the n-th element to the field at ~r. These values are also
represented in vector form as w = [ω1, ω2, . . . , ωN ]T and
g(~r) = [g1(~r), g2(~r), . . . , gN (~r)]T , with (.)T representing the
transpose operator. If M positions of the near-field region of
the antenna are sampled, ~rm,m = 1 . . .M , equation (1) may
be reformulated as

e = G ·w (2)

where e = [E(~r1), E(~r2), . . . , E(~rM )]T and the matrix model
G = [g(~r1),g(~r2), . . . ,g(~rM )]T . Determining G represents a
proper modeling of the array. However, for synthesis purposes
an inverse model may be more adequate.

In the usual case of M > N (i.e., the number of positions
where the field is evaluated is greater than the number of
elements in the array) equation (2) is an overdetermined
system of linear equations that can be solved using a least-
squares criterion as

minimize
w

||e−G ·w||2 (3)

where ||.|| stands for the Euclidean norm. The solution to (3)
is well known [20] and given by

w = (GH ·G)−1 ·GH · e = G+ · e (4)

where G+ is the pseudoinverse matrix for the overdetermined
problem, and represents an inverse model of the antenna array.
Equation (4) shows that a linear (inverse) model A = G+ may
be obtained to calculate the weights that must be applied to
an antenna array so that it radiates according to a given field
distribution specified by its samples, w = A · e.

The powerful SVR framework is proposed to calculate A
from known training samples. Let us consider that a set of P
pairs {w(p), e(p)}, p = 1 . . . P are available. Each training pair
(or training pattern) consists on a set of weights applied to the
elements of the array and the corresponding field distribution
(for example, power density) represented by its samples.
These patterns may have been obtained by measurements or
simulations, but it is important to recall that they may contain
realistic data (e.g. coupling effects) as far as it is accounted
for in the process of obtaining them.

The structural risk minimization (SRM) principle estab-
lishes that the n-th row of A, an, can be obtained through
regression by minimizing a cost function given by [18]:

J(an) =
1

2
||an||2 + C

P∑
p=1

|ω(p)
n − an · e(p)|ε (5)

where

|ω(p)
n − an · e(p)|ε = max (0, |ω(p)

n − an · e(p)| − ε) (6)

is Vapnik’s ε-insensitive loss function, and C > 0 is a trade-off
parameter used to balance the model complexity (controlled
by the first term of (5)) and the cost of deviations larger than
ε. This minimization problem may be solved introducing a set

of positive slack variables ξp and ξ̃p so that (5) becomes a
constrained minimization problem given by

minimize
an

1

2
||an||2 + C

P∑
p=1

(ξp + ξ̃p) (7)

subject to

an · e(p) − ω(p)
n ≤ ε+ ξp, ∀p = 1 . . . P

ω(p)
n − an · e(p) ≤ ε+ ξ̃p, ∀p = 1 . . . P

ξp, ξ̃p ≥ 0, ∀p = 1 . . . P

This problem is typically solved using the Lagrange multi-
plier technique [18], which leads to a dual problem consisting
on the maximization of:

W (α̃, α) = −
P∑

p=1

ε(α̃p + αp) +

P∑
p=1

ω(p)
n (α̃p + αp) . . .

. . .− 1

2

P∑
p,q=1

(α̃p + αp)(α̃q + αq)〈e(p), e(q)〉 (8)

subject to 0 ≤ α̃, α ≤ C. The expression 〈e(p), e(q)〉 stands for
the inner product between pairs of field distribution training
patterns. The solution of this dual quadratic programming
(QP) problem can be efficiently found taking advantage of
its convexity (for example, using [21], [22]). The resulting
positive Lagrange multipliers α̃p and αp are then applied to:

ân =

P∑
p=1

(α̃p − αp)e
(p) (9)

which is a function of the field distribution training patterns,
linearly combined using α̃p and αp.

The support vector theory states that only a limited set
of training patterns contribute to (9) with non-null Lagrange
multipliers. Those training patterns with non-null multipliers
are referred to as support vectors.

The weight ωn that must be applied to the n-th element of
the array is calculated using (9). Repeating this regression for
n = 1 . . . N leads to the N rows of the estimated model Â.
Hence, the total set of weights to be applied to the elements
of the array so that a given field distribution is radiated can
be estimated as

ŵ = Â · e (10)

The number of training patterns P used to perform the
regression is a critical choice for the accuracy of the model.
Although other machine learning methods may be affected
by the problem of overfitting (for example neural networks
[15]), the SRM principle guarantees both improved learning
capabilities (i.e. a reduced required number of training patterns
for similar performance) and robustness against overfitting
when using Support Vector Regression.

Some previous methods proposed for Near-Field Focusing
aplications are based on the use of models representing the
behavior of the antenna array. For example, the method
presented in [13] makes use of a typical formulation based on



a near-field array factor represented in matrix form. In order
to specify the NF requirements, a target field distribution is
defined as a unitary value for the samples corresponding to the
focal points and null values for the samples corresponding to
any other position. The same procedure for the specification
of the NF was used in [14], where a trained Neural Network
outputs the set of feeding weights to be applied to the array.
It is a very flexible specification procedure as far as it allows
assigning multiple spots, arbitrary focusing volumes, shaped
field distributions, etc. It is obvious that such artificial target
distribution with only 1 and 0 values is not physically feasible,
but it has been shown to be quite effective for NFF purposes.

In the synthesis method proposed in this paper, the SVR-
based inverse model receives as input a target NF distribution
designed according to the NFF requirements: the required
values for the focal points are assigned to the samples cor-
responding to their locations, and null values are assigned
to any other sample. Furthermore, more complicated field
distributions may be specified by assigning the required values
to each location of the NF region. For NFF, the resulting target
distribution is built according to the following formulation:

E(~rm) =

{
Cm, if ~rm is a focal point
0, if ~rm is not a focal point (11)

where Cm is the field value required at the position ~rm pro-
vided that it is a point where non-vanishing field is requested.
Notice that Cm could be any value at any location if a shaped
field distribution is specified, although it is related to the total
radiated power as it represents the assigned amplitude of the
field distribution. Once the target field distribution has been
determined, synthesis is straightforward using (10).

III. EXPERIMENTS AND RESULTS

Some experiments have been carried out to evaluate the
performance of the proposed method. An antenna consisting
on a regular planar array with 12×12 elements is considered.
The aperture is placed in the plane z = 0. The interelement
distance is 0.6λ. The chosen individual radiating elements
are hemispherical dielectric resonator antennas (DRA) [23],
already used in [24], [19], [14] for testing due to their low
losses but relevant mutual coupling effects when included in
an array. The radius of each hemisphere is 12.5 mm, and the
relative permitivity is εr = 9.8. A metallic pin with radius
0.63 mm, height 6.5 mm and offset 6.5 mm is used to feed
the DRA. The working frequency is 3.6 GHz, hence exciting
the TE11 mode. The range of variation of S11 for the elements
is between -10.17 and -13.72 dB, being the maximum of the
rest of S parameters -12.35 dB, so that the coupling effects
are relevant in the resulting field distribution. The Method of
Moments (MoM) [25] has been chosen to obtain the training
patterns from random sets of weights. A tool based on MoM
is able to analyze the array accounting for its real properties
when calculating the resulting NF distribution. The NF region
has been sampled within limits given by x ∈ [−5λ, 5λ],
y ∈ [−5λ, 5λ] and z ∈ [0.5λ, 10λ], with a sampling period
λ/2 resulting in 8820 samples of the field distribution. A set

(a)

Fig. 1. Example #1. Normalized Near Field power density at y = 0 for the
SVR method using a 12 × 12 DRA elements array. The symbols + and ◦
represent the focal and synthesized maximum points respectively.

of 120 training patterns has been generated. The SVR is used
to obtain an inverse model of the array able to relate field
samples and weights applied to the array, setting the trade-off
parameter C = 1 and with ε = 0.001.

Once the model of the antenna array is obtained, it is used to
calculate the weights that must be applied to the array in order
to obtain a simultaneous focus on four focal points located at
positions given by their Cartesian components as {x, y, z} =
{3λ, 0, 8λ}, {−λ, 0, 7λ}, {−4λ, 0, 2λ} and {−4λ, 0, 7λ}. All
the focal points have been chosen at the plane y = 0 to
facilitate the representation of the results. A target distribution
is built using (11), with Cm = {10, 10, 3, 10} respectively for
the assigned focal points so that the difference in distance to
the array is compensated by the required level, and Cm = 0
for any other location, and applied to (10) resulting in a set of
weights used in MoM to analyze the resulting NF distribution.
Fig. 1 shows the normalized NF power density in the plane
y = 0 where all the focal points have been specified for easier
representation.

The proposed method has been able to generate a distribu-
tion with -3dB focal spots containing the four focal points,
and spending only 0.02s. The calculations have been carried
out in a conventional PC with an Intel Core i5-7500 CPU, 3.4
GHz and 8 GB RAM, using MatLab R2019a as programming
tool, and averaging 20 simulations. The assigned focal points
are shown in Fig. 1 along with the resulting power density,
the synthesized spots and the points where the radiated field
power density is actually maximum. The resulting maximum
values of radiated field power density are located at the po-
sitions {2.8λ, 0, 7.2λ}, {−λ, 0, 6.8λ}, {−3.8λ, 0, 1.81λ} and
{−3.6λ, 0, 6.1λ}, what represents a very reasonable accuracy
for an array with 12× 12 elements and four focal points, and
considering that the resulting distribution has been obtained
accounting for coupling effects between the elements of the
array, as they are implicit in the generation of the patterns



(a)

Fig. 2. Example #2. Normalized Near Field power density at y = 0 for the
SVR method using a 32 × 32 DRA element array. The symbols + and ◦
represent the focal and synthesized maximum points respectively.

without requiring complicated formulations.
The experiment has been modified to check the performance

of the method when dealing with larger arrays. The number
of elements has been set to 32 × 132 elements and the
interelement distance has been set to 0.7λ, so that the resulting
aperture is larger than the first structure, increasing the number
of degrees of freedom and hence its focusing capabilities.
All the other properties of the array and its elements remain
unchanged, as well as the focusing requirements. The higher
number of degrees of freedom should lead to better focusing
performance. The number of training patterns used to obtain
the model is now 170 (a larger number is required due to
the higher complexity of the structure), and MoM has also
been used to calculate them. The hyper-parameters of the
regression are set to C = 1 and ε = 0.001 again. The
resulting NF power density at the plane y = 0 is plotted in
Fig.2 along with the assigned focal points and the resulting
maximum-power density points. It can be noticed that the
accuracy in the location of the maximum power density points
is much higher than using the smaller structure due to the
effect of the increased degrees of freedom. The positions
where the maximum power density is found are {3λ, 0, 8λ},
{−λ, 0, 7.1λ}, {−4λ, 0, 1.8λ} and {−4λ, 0, 7λ}, all of them
very close to the positions where the focal points are assigned.
All the assigned focal points lay into -3dB spots where the
power density is much more concentrated than using a smaller
array.

In example #3, a coverage area is requested in front of the
antenna at a distance z = 6λ, in the plane y = 0. To specify it,
a set of focal points representing samples of the coverage area
has been selected at x = [3λ, 2λ, λ, 0,−λ,−2λ,−3λ,−4λ].
In all the cases the corresponding value Cm has been set
to 1. A regular array with 16 × 16 DRA elements separated
0.6λ has been considered, operating again at 3.6 GHz. A set
of 140 training patterns has been obtained using MoM as

(a)

(b)

Fig. 3. Example #3. Normalized Near Field power density at y = 0 for
the SVR method considering a coverage area defined by the assigned focal
points represented by the symbol + (a), and with an additional focal point (b).
The symbols + and ◦ represent the focal and synthesized maximum points
respectively.

analysis tool. The proposed method is used to obtain a set
of weights corresponding to the field distribution shown in
Fig. 3a. It can be observed how a wide region is obtained
over -3dB, with all the assigned focal points on it. To check
a more complicated case, an additional focal point has been
assigned for an isolated device at {2λ, 0, 2λ}, and using the
same structure and methodology leads to the NF power density
plotted in Fig. 3b, where the coverage area is still visible and
a -3dB spot contains the new focal point.

IV. CONCLUSION

A Machine Learning approach to Near Field Focusing based
on the powerful and elegant Support Vector Machines frame-
work is presented. Support Vector Regression is performed to
develop an accurate model of a given antenna array from a
set of training patterns consisting on known pairs of weights
applied to the elements of the array and the corresponding



NF distribution. These patterns may be obtained through
measurements or simulation, requiring a much more reduced
set of patterns that other ML alternatives such as Neural
Networks, due the increased learning capabilities of SVM
techniques.

Once the model has been obtained, it can be used for syn-
thesis of focused distributions by following a simple strategy,
and without relevant computational cost or time, as synthesis
becomes a simple matrix-vector product. The resulting method
is suitable for applications requiring fast synthesis to operate
in scenarios where real-time calculations are required, for
example where moving devices in a near environment are
involved (e.g. 5G femtocells, Internet of Things, etc.). Regard-
ing existing alternative, although the most popular approach
to NFF, Conjugate-Phase, is very fast, simple and accurate,
it cannot deal with multiple specifications; an optimization
method, able to account for multifocus requirements, is not fast
enough to be used in real-time applications due to its iterative
nature; the NN approach is able to be accurate, fast and deal
with multifocus, but requires thousands of training pairs, what
might overflow many applications and make impossible the
use of measured training data. The proposed SVR method
overcomes all these difficulties by reducing the number of
required training patterns, fast operation and ability to deal
with NF distribution specified in different ways, even a shaped
distribution. Additionally, it is able to account for the real
properties of the array (realistic effects, coupling effects,
individual radiation patterns, non-uniformities, etc.) provided
that the method for generating the training patterns accounts
for all of them.

As a future work to be addressed in future developments,
more sophisticated specifications such as a mask or template,
phase-only distributions, or additional constraints to be con-
sidered, may be included in the synthesis scheme so that the
resulting method becomes much more flexible and powerful.
Meanwhile, SVR represents an interesting step for applications
with different devices involved placed in the near-field regions,
even when some of them are moving.
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