Author's copy of

H. Diaz, J.J. Palacios, I. Diaz, C.R. Vela, I. Gonzalez-Rodriguez
Tardiness Minimisation for Job Shop Scheduling with Interval Uncertainty,
Hybrid Artificial Intelligent Systems.

Springer Nature Switzerland (2020)

The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-61705-9 18

Tardiness Minimisation for Job Shop Scheduling
with Interval Uncertainty”*

Hernin Diazl[0000_0003_2615_0042], Juan José Palaciosl[0000—0002—0479—1490]7
Irene])lfazl[0000—0002—3024—6605]7 Camino R. Velal [0000—0001—9271—2360]’ and Inés
Gonzalez-Rodriguez? [0000—0003—3266—009.X]
L Dep. of Computing, University of Oviedo, Spain,
{diazhernan,palaciosjuan, crvela, sirene}@uniovi .es
2 Dep. of Maths, Stats and Computing, University of Cantabria, Spain
gonzalezriQunican.es

Abstract. This paper considers the interval job shop scheduling prob-
lem, a variant of the deterministic problem where task durations and
due dates are uncertain and modelled as intervals. With the objective
of minimising the total tardiness with respect to due dates, we propose
a genetic algorithm. Experimental results are reported to assess its be-
haviour and compare it with the state-of-the-art algorithms, showing
its competitiveness. Additional results in terms of solution robustness
are given to illustrate the relevance of the interval ranking method used
to compare schedules as well as the benefits of taking uncertainty into
account during the search process.

Keywords: Job shop scheduling - Total tardiness - Interval uncertainty
- Genetic algorithms - Robustness

1 Introduction

Scheduling consists in allocating a set of limited existing resources to perform
a set of tasks with specific performance measures. It plays an important role
in manufacturing systems because, if properly done, it can reduce material-
handling costs and times as well as improving efficiency [16]. The job shop is
one of the most relevant scheduling problems, since it has been considered to
be a good model for many practical applications as well as a challenge to the
research community due to its complexity. This complexity is the reason why
metaheuristic search techniques are especially suited for solving the job shop
problem [19].

A majority of contributions to the family of job shop scheduling problems
concentrate on minimising the execution time span of the project (known as
makespan). However, in recent years there has been a growing interest in due-
date related criteria [5,8, 14]. On-time fulfilment becomes especially relevant in

* Supported by the Spanish Government under research grants TIN2016-79190-R
and TIN2017-87600-P and by the Principality of Asturias Government under grant
ID1/2018/000176

2 H. Diaz et al.

modern pull-oriented supply chain systems concerned with meeting customer’s
demand in terms of due dates; a tardy job may result in delay-compensation
cost, customer dissatisfaction or loss of reputation among others. It is also rel-
evant in complex supply chain or manufacturing systems integrating planning
and scheduling; tardy jobs in one of the scheduling stages may cause serious
disruptions and delays in subsequent stages, with the associated costs.

Traditionally, it has been assumed in scheduling that design variables such
as task processing times or due dates are deterministic. However, this assump-
tion may seem naive in real industrial settings because in real-world production
scheduling problems such variables are quite often characterised vaguely due to
the available information being incomplete or imprecise. Fuzzy sets have been
used by many researchers to model uncertain durations in scheduling problems
[2]. Regarding due dates, fuzzy sets are mostly used in the literature to model
flexibility; there are however some cases where fuzzy due dates model uncer-
tainty [4]. An alternative to fuzzy sets for dealing with uncertainty are intervals.
Interval uncertainty is present as soon as information is incomplete. An expert
working on a project may be reluctant or unable to provide point values for
the duration of each task, while estimating a minimal and a maximal duration
may be felt as more realistic. Also, the end of the job may depend on several
uncertain events such as changing customer orders or dependencies on other
components of a larger manufacturing system. Interval scheduling provides us
with the possibility of focussing on significant scheduling decisions and give quite
robust solutions, with little sensitivity to uncertainties.

Interval uncertainty is not new in scheduling, although contributions in the
literature are still scarce. In [10], a genetic algorithm is proposed for a job shop
problem with interval processing times and interval due dates to minimise the
total tardiness with respect to job due dates. A population-based neighborhood
search for a interval job shop, but with the objective of the makespan is presented
in [9]. A multiobjective interval job shop problem with non-resumable jobs and
flexible maintenance is solved in [11] by means of a multiobjective artificial bee
colony algorithm that minimises both the makespan and the total tardiness.
In [12], a dual-resource constrained job shop with heterogeneous resources is
considered, and a dynamical neighbourhood search is proposed for lexicographic
minimisation of carbon footprint and makespan.

In the following, we consider the job shop scheduling problem with intervals
modelling both uncertain durations and uncertain due dates. With the goal of
minimising total tardiness, an interval in this case, we propose a genetic algo-
rithm that provides the basis for developing more sophisticated search methods
in the future as well as allowing to study the influence of the ranking method
used for comparing the interval objective function. A preliminary experimen-
tal study also highlights the benefits of considering the uncertainty during the
search process in terms of robustness, specially with one of the ranking methods.

Tardiness minimisation in Interval JSP 3

2 Problem definition

The classical job shop scheduling problem, or JSP in short, consists in a set of jobs
J={J1,...,Jn} to be scheduled on a set of physical resources or machines M =
{My,..., M}, subject to a set of constraints. There are precedence constraints,
so each job J;, j = 1,...,n, consists of m; < m tasks (o(j,1),...,0(j,m;))
to be sequentially scheduled. There are also capacity constraints, whereby each
task o(j,1) requires the uninterrupted and exclusive use of a specific machine
Vo(j,1) € M for its whole processing time p,; ;). Additionally, each job J; has a
due date d; by which it is desirable that the job be completed.

A solution to this problem is a schedule s, i.e. an allocation of starting times
So(j,1) for each task o(j,1), which is feasible (in the sense that all constraints
hold) as well as optimal according to some criterion, in our case, minimum total
tardiness with respect to due dates.

A schedule s establishes an order m among tasks requiring the same machine.
Conversely, given a task processing order 7, the schedule s(7) may be computed

as follows. Let us assume w.l.0.g. that tasks are indexed from 1 to N = Z?:l mj,

so we can refer to a task o(j,1) by its index o = 23;11 m; + | and simply write

Do to refer to its processing time. The set of all tasks is denoted O = {1,..., N}.
For every task o € O, let s,(m) and ¢,(m) denote respectively the starting and
completion times of o given 7, let PM,(w) and SM,(r) denote the predecessor
and successor tasks of o in its required machine, and let P.J, and S.J, denote
respectively the predecessor and successor tasks of o in its job. If o is the first
task to be processed in its machine or its job, PM,(w) = 0 or PJ, = 0, where
0 represents a dummy task such that pg = 0 and sy = 0. Then the starting
time s,(7) is given by s,(7) = max(sps, + PP, SPM,(x) + PPM, () and the
completion time is computed as ¢,(7) = so(7) + po. Notice that the completion
time of each job J; for s(m) is the completion time of the last task in that job,
given by Cj(m) = Co(jm,)(x)- The total tardiness of the schedule is given by
Tiot(m) = Z?:l T;(m), where T;(m) is the tardiness of job J; according to m,
T, (r) = max(0, C; (v) — d).

2.1 TUncertain Processing Times and Due Dates

In real-life applications, it is often the case that the time it takes to process a
task is not exactly known in advance; instead, only some uncertain knowledge
about the duration is available. In addition, due dates may not be perfectly
defined, being dependent on external factors such as changing customer orders
or dynamic manufacturing requirements. If only an upper and a lower bound
of each duration and due date are known, uncertainty can be represented as a
closed interval of possible values denoted a = [g,a] = {r e R:a < z < a}.

Let IR denote the set of closed intervals. The job shop problem with to-
tal tadiness mimisation requires three arithmetic operations on IR: addition,
subtraction and maximum. These are defined by extending the corresponding

4 H. Diaz et al.

operations on real numbers [13], so given two intervals a = [a,a], b = [b,b] € IR,

a+b=[a+ba+D], (1)
a—b=I[a—ba—1], (2)
max(a, b) = [max(a, b), max(a, b)]. (3)

Comparisons are a key point when processing times and due dates take the
form of intervals as the “best” schedule should be the one with “minimal” total
tardiness (an interval). However, it is well known that there is no natural total
order in the set of intervals, so an interval ranking method needs to be considered
among those proposed in the literature [7]. Among the multiple existing rankings
in IR, here we consider the following:

a<pe1b&a<bV(a=bAa<b) (4)
a<raebea<bVv(@=bAa<b) (5)
a<yxbeat+a<b+bV(a+a=b+bAa—a<b-—b) (6)
a <up b & m(a) < m(b) with, m(a) = 2=)

(4), (5) and (6) actually define total order relations in IR [3]. Both (4) and (5)
are derived from a lexicographical order of interval extreme points. The ranking
proposed in expression (6) is proposed in [18], and the last one (midpoint order)
is a particular case of the classical Hurwitz criterion and is equivalent to the one
proposed in [9] for interval job shop.

2.2 The JSP with Interval Uncertainty

Given the above, the Interval Job Shop Scheduling Problem or IJSP for total
tardiness minimisation can be formulated as follows:

m]%n Tiot (8)

subject to: Tior = ZTj 9)
j=1

T; = max(0, co(jm,) — dj) (
T;= max(0, Co(jm,) — dJ) (
¢ =58,+p,, YoeO (
Co =30+D,, Vo€ O (
So(4,1) > Co(j,1-1)> 1<1< mj, 1<j<n (14
So(jl) = Co(ji-1), 1 <1 <m;,1<j<n (
8,2 Cy V 8y 2 CpVoF 0 €011, = vy (
5, >Cy V By >Co, VoA 0 €0 : vy =1y (

Tardiness minimisation in Interval JSP 5

where the minimum ming Tyt in (8) is the smallest interval according to a given
ranking R in the set of intervals IR. Constraint (9) defines the total tardiness
as the addition of the tardiness of each job J;. Constraints (10) and (11) define
the tardiness of each job J; as the interval difference between the completion
time of the job and its due date. Constraints (12) and (13) establish the rela-
tionship between the starting and completion time of each task. Constraints (14)
and (15) correspond to precedence relations between tasks within each job, and
constraints (16) and (17) establish that the execution of two tasks requiring the
same machine cannot overlap.

The resulting problem will be denoted J\QO < po < Poyd; < dj < d;|Tyor,
following the three-field notation schema for scheduling problems. Clearly, this
problem is NP-hard, since setting all processing times and due dates to crisp
numbers yields the classical JSP, which is itself NP-hard [16].

3 Robustness on Interval Schedules

A solution to the IJSP provides an interval of possible values for the total tar-
diness computed from the possible values for the starting and completion times
of each task and the due date for each job. As it is impossible at the time of
scheduling to predict what the exact due dates, starting and completion times
will be when the project is actually executed, a solution to a job shop problem
with uncertainty should be understood as an a-priori or predictive solution [6].
Once the project is finished, and tasks have been executed according to the or-
dering 7 provided by the schedule, we shall know real duration of the tasks,
deterministic times p, € [BO,T)O] for all tasks o € O. Specific due dates are also
unknown until an actual instance of the project is tackled. Only at the moment
of executing the project are actual due dates d; € [dj,aj] available for each job
Jj. After execution, when processing times and due dates are exactly known
and the a-posteriori solution is available, delays w.r.t. each job T} € [Ij,Tj] can
be computed as well as the resulting total tardiness, being desirable that the
predictive schedule does not differ much from the executed one.

This coincides with the idea of robust schedule, as one that minimises the
effect of executional uncertainties on its performance [1]. The formalization of
this concept leads to different robustness measures [17]. In this work, the concept
of e-robustness, first proposed for fuzzy scheduling problems in [15], is adapted
to the interval framework.

e-robustness intends to measure the predictive error of the a-priori total tar-
diness, Tiot (an interval), compared to the real total tardiness TF% obtained
after an execution (corresponding to a specific realization of task processing
times P°* = {pi® € [p _,P,|,0 € O} and job due dates dj* € [d;,d;], 1 <j<n).
Assuming that tasks are executed without unnecessary delays at their earliest
possible starting times, it is clear that T;5; € Tiot. Thus, the prediction is always
accurate in terms of bounds for the possible objective values after execution.
On the other hand, in absence of other information it seems straightforward
to estimate the total tardiness as the expected or mean value of the uniform

6 H. Diaz et al.

distribution on Tyet and then measure the error of the prediction made by the
a-priori metric as the (relative) deviation of the executed objective value with
respect to this expected value.

In consequence, a predictive schedule with total tardiness interval value Tyt
is e-robust if the relative error made by E[Tot] with respect to the total tardiness
T of the executed schedule is bounded by €, that is:

T — E[Thotl|

Rew = S € with E[Ttot] = (Ttot - Itot)/2 and € Z 0. (18)
E[Ttot]

Clearly, the smaller the bound €, the more accurate the a-priori prediction is or,
in other words, the more robust the interval schedule is.

When the problem is tested on synthetic benchmark instances for job shop,
real data regarding executions of the project are not available. In this case K
possible scenarios are obtained using Monte-Carlo simulations. Thus, determin-
istic values for due dates and processing times are sampled on their respective
interval using uniform probability distributions. Then, the average e-robustness
of the predictive schedule across the K possible configurations, denoted €, can
be calculated as:

K K
_ 1 1 T}, — E[Ttot]|
=—)Y Rp=—) —tot IO 19
‘TK % FTK ; E[Teot] (19)

with TF, denoting the exact total tardiness obtained after executing tasks ac-
cording to the ordering provided by the predictive schedule s for each scenario
k =1,...,K. This value provides an estimate of how robust is the schedule s
across different processing times configurations. Again, the lower €, the better.

4 A Genetic Algorithm for Tardiness Minimisation

Genetic algorithms, either on their own or combined with other metaheuristics
such as tabu search [19], are a powerful tool for solving scheduling problems. In
brief, a genetic algorithm starts by generating a pool of initial solutions, repre-
senting a population Py of individuals of a species. This population is evaluated
and a fitness value, typically the value of the objective function, is assigned to
each individual. The population is then left to evolve until a stopping criterion is
met, usually for a fixed amount of generations or consecutive iterations without
improvement. At each iteration 7, individuals from population P; are paired for
mating following a selection procedure, and recombination operators of crossover
and mutation are applied to each pair with probability peross and ppq.: respec-
tively, simulating natural evolution. The new population of individuals Of f; is
evaluated and a replacement operator is applied to combine P; and Of f; into
a new population P;;; for the next iteration, rewarding individuals with better
fitness and keeping a constant population size. Once the stopping criterion is
met, the best individual according to the interval ranking is selected from the
last generation and returned.

Tardiness minimisation in Interval JSP 7

In a genetic algorithm, each individual codifies a solution as a chromosome,
typically an array of values. The design of encoding and decoding algorithms pose
the most crucial step in designing the algorithm. To encode solutions, we use
classical permutations with repetition of job’s numbers. These represent linear
orders of the set of tasks, where each task o(j,!) is represented by its job number
j. For example, a linear order (0(3,1), o(1,1), 0(3,2), 0(2,1), 0(2,2), o(1,2)) is
encoded as (313221). The decoding follows an insertion strategy, so we always
obtain a so-called active schedule in the sense that no operation can start earlier
without disrupting the starting time of at least another operation. This strategy
is done by iterating through the chromosome and scheduling each task o(j,1)
at its earliest feasible insertion position. Let 1, be the number of tasks already
scheduled on machine k = v, and let o = (0,0(1,k),...,0(nx, k) denote
the partial processing order of tasks already scheduled in machine k. A feasible
insertion position ¢,0 < g < n for o(7,1) is a position that verifies both:

max{C, (g k) Co(ji—1)} TPy1) S Solg+1.k) (20)
max{Co(q,k); Co(ji—1)} + Po(j1) < So(q+1,k): (21)

being ¢ = n;, if there no feasible insertion position.
The earliest feasible insertion position ¢* is that with smallest g value. There-
fore, operation o(j, 1) is scheduled at starting time:

So(j,l) = MAX{Cx(g+ k)» Co(j,1—1) } (22)

5 Experimental Results

We conduct a series of experiments to study three different aspects: the be-
haviour of the proposed genetic algorithm, the potential advantage of managing
uncertainty during the search process, and the influence of the different interval
rankings. For these tests, we consider the instances proposed in [10], which are,
as far as we know, the only instances available in the literature for interval JSP
with uncertain due dates. The set consists on 7 instances, 4 of them of size 10x 10
(instances 1-4) and the remaining 3 of size 15 x 10. All the experiments reported
in this section have been run on a PC with Intel Xeon Gold 6132 processor at 2.6
Ghz and 128 Gb RAM with Linux (CentOS v6.9), using a C++ implementation.

First, a preliminary study is carried out to find the best setup for the ge-
netic algorithm. An initial base setup is established and then parameters are
tuned sequentially, trying different combinations of operators and probabilities.
Specifically, the considered operators and values are the following:

— Crossover operator: Generalised Order Crossover (GOX), Job-Order Cross-
over (JOX) and Precedence Preservative Crossover (PPX)

— Crossover probability: 0.7, 0.8, 0.9 and 1.0

— Mutation operator: Swap, Inversion and Insertion

— Mutation probability: 0.05, 0.10, 0.15 and 0.30

8 H. Diaz et al.

— Selection operator: Shuffle, Roulette, Stochastic Universal Sampling (SUS)
and Tournament 1/3 on the population

— Replacement operator: Generational replacement with elitism (k=1, 5%,
10%), Tournament 2/4 parents-offspring allowing repetition and Tourna-
ment 2/4 parents-offspring without repetitions

The best setup values obtained are highlighted in bold. In all cases the al-
gorithm is run until 25 consecutive iterations pass without improving the best
found solution. In addition, three different populations sizes are tested: 100, 250
and 500. Since this parameter has a heavy influence on the runtime of the algo-
rithm, it requires a more careful study. When a population size of 250 is used,
the runtime increases 1.8 times w.r.t. using 100, and the average quality of the
obtained solutions improves 2.1%. However, a further increase to 500 multiplies
the runtime by 2, but the obtained results improve only 0.7%. If runtime is of
great importance, a population size of 100 might be the most adequate, but when
it is not the case, a population size of 250 offers a significant improvement in
quality. Further increasing the population size does not seem to improve results
at the same pace, so for this study we choose to use 250 individuals.

To assess the performance of our genetic algorithm (GA in the following), we
compare it with the best-known results in the literature. Different methods for
the IJSP can be found in the literature minimising total tardiness (see Section 1).
Among the published results, the best reported values for total tardiness are
those obtained by the genetic algorithm proposed in [10]. We shall refer to this
GA as GA-L to distinguish it from ours in the comparisons. The authors use
a method equivalent to <p;p to rank different intervals in their GA-L, so we
will also adopt this ranking for the sake of a fair comparison. Table 1 shows,
for each algorithm, the best solution obtained across all runs (20 runs for GA-L
and 30 for GA), the average expected total tardiness across those runs and the
average running time in seconds for each algorithm. A first look at the results
shows that, in average values, the GA proposed in this work outperforms GA-L
in 5 out of the 7 instances, with greater improvement on the large instances. On
average, GA is 5.5% better on instance 5, 12.5% better on instance 6 and 21.4%
on instance 7. On the other hand, for smaller instances, there is no clear winner:
GA is better on instances 2 and 4 (2.0% and 1.2% respectively), but worse on
instances 1 and 3 (1.9% and 3.9% respectively). Furthermore, for instances 1
and 3, the best solution found by GA does not even reach the average results of
GA-L. To have a better understanding of this situation, a basic model of these
instances is designed to be solved with the IBM CPLEX CP Optimizer solver.
Even though CP Optimizer cannot reach the optimal solution for all instances
with the current version of the model, it obtains lower bounds that are actually
higher than the best solutions obtained by GA-L on instances 2, 3 and 4. This
indicates that the published results for those instances are unattainable, and
therefore we must be very cautious when comparing with them. Figure 1 depicts
the best solution found by GA on instance 4, which is optimal according to
CPLEX CP Optimizer. It is a Gantt chart adapted to intervals, so for each task,
instead of a bar, there is a trapezoid where the upper side corresponds to the

Tardiness minimisation in Interval JSP 9

GA-L GA
Instance Best E[Best] Avg. Time Best E[Best] Avg. Time
1 [5, 321] 163.0 166.1 6.5 [3,335] 169.0 169.3 0.4
2 [0,493] 2465 2640 6.6 | [0,497] 2485 258.6 0.5
3 [7,459] 233.0 2434 64| [8,479] 2435 2529 0.6
4 [4,451] 2275 2452 63| [1,458) 2295 2423 0.5
5 [79, 1678] 878.5 943.9 21.5 | [43, 1651] 847.0 891.9 1.4
6 [0, 1048] 524.0 568.8 22.0| [0, 949] 474.5 4974 1.4
7 [69, 1524] 796.5 999.0 21.1 | [68, 1376] 722.0 785.0 1.2

Table 1: Computational results and times of GA-L and GA

19 38 5T 76 95 114 133 1582 171 190

Fig. 1: Gantt diagram of the optimal solution found for Instance 4

earliest possible starting and completion times while the lower side corresponds
to the latest possible starting and completion time; each row in the diagram
shows the task sequence per job, colours determine the machine where each task
needs to be executed, and thick red lines are the due dates. Regarding runtime,
GA is 93.5% faster than GA-L. Notice however, that runtimes for GA-L are
those provided by the authors using their own machine, therefore comparisons
in this sense must be done with caution as well.

Using the intervals during the search process might add some extra difficulty
to the problem: known concepts need to be adapted or redefined and solving
methods redesigned to handle uncertainty, usually with an increased complex-
ity. One may wonder if solving the crisp problem that results from considering
only the midpoint of the interval processing times and due dates would lead to
similar results with the added advantage of having all the available tools for
deterministic JSP. It is also interesting to study the influence of the choice of

10 H. Diaz et al.

1.0
1.0
1.0

0.8

0.8

0.8 K
L

E-robustness

0.4
L

E-robustness
0.6
|
0.6
|
0.6
L

0.4
.
E-robustness

— ‘ =

0.2

|
|
H

—_— e e ———

0.0
0.0
L
0.0

T T T T T T T T T T T T T T T
MP Lexl Lex2 YX Crisp MP Lexl Lex2 YX Crisp MP Lexl Lex2 YX Crisp

(a) Instanceb (b) Instance6 (c) Instance7

Fig. 2: é-robustness of solutions obtained with four different rankings and solving
the associated crisp instance

ranking methods in the interval setting. To shed some light on these questions,
we carry out a new set of experiments. For each of the 7 instances, we run our
algorithm 30 times considering each of the four different ranking methods and
30 times on the instance’s crisp counterpart. Notice that the objective function
is an interval in the first four cases and a crisp value in the last one, so they are
not directly comparable. Instead, we measure the é-robustness of the 30 solutions
obtained by GA in each case using K = 1000 possible realisations, to compare
the resulting solutions in terms of their quality as predictive schedules.

Figure 2 depicts for instances 5, 6 and 7, the boxplots with the € values of the
30 schedules obtained by GA in each case. Results for instances 2 and 4 are very
similar those obtained for instance 6: in all of them the € values obtained from
optimising the crisp instance are significantly worse than those obtained using in-
tervals, independently of the ranking method used. Also, Mann-Whitney-U tests
show that there are no significant differences between the results obtained using
different ranking methods, except on instance 2, where using <pr.,1 yields sig-
nificantly worse results than using <,;p or <y x. On the other hand, results for
instances 1 and 3 are similar to those illustrated for instance 5. Again, the € val-
ues obtained from the solutions to the crisp instance are clearly worse than those
obtained using intervals during the search process. However, in these instances
<Lez2 Obtains solutions that are more robust than those obtained by any other
ranking method. This is confirmed by the statistical tests, showing a significant
difference between the € values of the schedules obtained using <j..2, and those
of the schedules obtained with the other ranking methods. Results obtained on
instance 7 are very different to the previous ones. This is the only instance where
the solutions obtained from solving the crisp problem are not worse that those
obtained from solving the interval JSP. In fact, the statistical tests show that
they are significantly better than using the ranking methods <p;p, <res1 and
<y x, but significantly worse than using <p.,o. Further research is required on
this particular instance for a better understanding on how the structure of the

Tardiness minimisation in Interval JSP 11

problem may affect the choice of a ranking method. A preliminary analysis shows
that even though the size is the same as on instances 5 and 6, task durations
and due dates are larger in instance 7. For instance, the largest due dates are
172 (interval [140, 172]) and 215 (interval [176, 215]) for instances 5 and 6 re-
spectively, while it is 1080 for instance 7 (interval [1033, 1080]). In addition, the
width of the due-date intervals for instance 7 is also larger than for any other
instance, directing us towards the idea that when uncertainty in due dates is
big, a more conservative ranking method like <p.;2 is the most adequate, being
the others less reliable. Finally, it is worth mentioning that, according to the
statistical tests, there is no significant difference between <,;p and <y x on any
instance. This seems natural, since <y x can be understood as a refinement of
<mp, but it also shows that this refinement does not necessarily translate into
more robust schedules.

6 Conclusions

In this work we have tackled the job shop scheduling problem with uncertain
durations and uncertain due dates modelled as intervals (IJSP). We have pro-
posed a first approach to solving the IJSP using a genetic algorithm with an
insertion decoding strategy. The algorithm has been tested on the 7 instances
available in literature, outperforming the best-known results in 5 of them. In
the largest instances, the proposed algorithm is always better, offering an im-
provement of up to 21% w.r.t the best previously-reported results. This is not
the case for the smaller instances, where the results are not always better than
the reported ones. However, we have checked —using IBM ILOG CP Optimizer-
that these published results are infeasible, and therefore, not suitable for mean-
ingful comparisons. A more detailed study has shown that the choice of interval
ranking method plays a very important role in the final solution’s performance,
especially in terms of robustness. In addition, incorporating the interval uncer-
tainty to the search process yields more robust solutions than solving the crisp
problem, specifically with one of the ranking methods. Further work is needed to
obtain more powerful search methods tailored for handling interval uncertainty
and to thoroughly analyse the influence of different ranking methods in order to
make a proper choice for the problem at hand.

References

1. Aytung, H., Lawley, M.A., McKay, K., Shantha, M., Uzsoy, R.: Executing produc-
tion schedules in the face of uncertainties: A review and some future directions.
European Journal of Operational Research 161, 86-110 (2005)

2. Behnamian, J.: Survey on fuzzy shop scheduling. Fuzzy Optimization and Decision
Making 15, 331-366 (2016). https://doi.org/10.1007/s10700-015-9225-5

3. Bustince, H., Fernandez, J., Kolesirovd, A., Mesiar, R.: Generation of linear orders
for intervals by means of aggregation functions. Fuzzy Sets and Systems 220, 69-77
(2013)

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

H. Diaz et al.

Chanas, S., Kasperski, A.: On two single machine scheduling problems with fuzzy
processing times and fuzzy due dates. European Journal of Operational Research
147, 281-296 (2003)

Gonzélez, M., Vela, C.R., Varela, R.: An efficient memetic algorithm for the flexible
job shop with setup times. In: Proceedings of the 23th International Conference
on Automated Planning and Scheduling (ICAPS-2013). pp. 91-99 (2013)
Gonzélez Rodriguez, 1., Puente, J., Vela, C.R., Varela, R.: Semantics of schedules
for the fuzzy job shop problem. IEEE Transactions on Systems, Man and Cyber-
netics, Part A 38(3), 655-666 (2008)

Karmakar, S., Bhunia, A.K.: A comparative study of different order relations of
intervals. Reliable Computing 16, 38-72 (2012)

. Kuhpfahl, J., Bierwirth, C.: A study on local search neighbourhoods for the job

shop scheduling problem with total weighted tardiness objective. Computers &
Operations Research 261, 44-57 (2016)

Lei, D.: Population-based neighborhood search for job shop scheduling with inter-
val processing time. Computers & Industrial Engineering 61, 1200-1208 (2011).
https://doi.org/10.1016/j.cie.2011.07.010

Lei, D.: Interval job shop scheduling problems. International Journal of Advanced
Manufacturing Technology 60, 291-301 (2012). https://doi.org/10.1007/s00170-
011-3600-3

Lei, D.: Multi-objective artificial bee colony for interval job shop scheduling with
flexible maintenance. International Journal of Advanced Manufacturing Technol-
ogy 66, 1835-1843 (2013). https://doi.org/10.1007/s00170-012-4463-y

Lei, D., Guo, X.: An effective neighborhood search for scheduling in
dual-resource constrained interval job shop with environmental objec-
tive. International Journal of Production Economics 159, 296-303 (2015).
https://doi.org/10.1016/j.ijpe.2014.07.026

Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Soci-
ety for Industrial and Applied Mathematics (2009)

Mou, J., Gao, L., Pan, Q., Mu, J.: Multi-objective inverse scheduling optimiza-
tion of single-machine shop system with uncertain due-dates and processing times.
Cluster Computing 20(1), 371-390 (2017)

Palacios, J.J., Gonzélez-Rodriguez, 1., Vela, C.R., Puente, J.: Robust swarm op-
timisation for fuzzy open shop scheduling. Natural Computing 13(2), 145-156
(2014)

Pinedo, M.L.: Scheduling. Theory, Algorithms, and Systems. Springer, fifth edn.
(2016)

Roy, B.: Robustness in operational research and decision aiding: A multi-faceted
issue. European Journal of Operational Research 200, 629638 (2010)

Xu, Z., Yager, R.R.: Some geometric aggregation operators based on intuitionistic
fuzzy sets. International Journal of General Systems 35(4), 417-433 (2006)
Zhang, J., Ding, G., Zou, Y., Qin, S., Fu, J.: Review of job shop scheduling research
and its new perspectives under industry 4.0. Journal of Intelligent Manufacturing
30(4), 1809-1830 (2019). https://doi.org/10.1007/s10845-017-1350-2

