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Cooperative Zinc/Catalytic Indium System for the Stereoselective 
Sequential Synthesis of (E)-1,3-Dienes from Carbonyl Compounds 
Jorge González-Rodríguez,a Raquel G. Soengas,a,* Humberto Rodríguez-Sollaa,*

Herein we describe a cooperative zinc/indium system for the stereoselective synthesis of highly functionalized (E)-1,3-dienes 
through the sequential allylation/elimination reaction of aldehydes and ketones with 1,3-dichloropropene. This 
methodology has as the main advantages a broad substrate scope, mild conditions an operationally easy and simple 
procedure.

Introduction
1,3-Diene motif is one of the most important structural units in 
organic chemistry,1 on account of its ubiquitous presence in 
natural products of biological relevance such as arachidonic 
acids,2 retinoids,3 antibiotics,4 and marine natural products.5 In 
addition, 1,3-dienes are valuable intermediates in the synthesis 
of diverse functionalities, such as carbacycles and 
heterocycles,6 cyclopropanes7 or -lactams.8 As a consequence, 
considerable efforts has been made in the past few years in the 
development of methods for their stereoselective synthesis.9 
Many of the existing methods for the synthesis of dienes are 
based on transition metal catalyzed reactions, including bond 
reorganization of enyne substrates,10 olefin methatesis,11 sp2-
sp2 cross-coupling of two suitably functionalized olefinic 
moieties,12 rearrangement of allenes13 and diene 
isomerization.14 However, the use of expensive metal catalysts, 
multiple prefunctionalization steps and harsh reaction 
conditions, limit their applicability. 
For total synthesis, the ideal scenario would be the installation 
of the 1,3-diene moiety in a single step with high 
stereoselectivity. In this regard, the direct synthesis of the 1,3-
diene via olefination of carbonyl groups is a very attractive 
alternative, which have enjoyed considerable attention. Diene 
formation through Wittig,15 Wittig-Horner,16 Horner–
Wadsworth–Emmons (HWE),17 and Julia−Kocienski18 
olefination reactions reportedly produce dienes in moderate to 
good yields albeit with moderate and substrate-dependant 
(E/Z)-selectivity. Moreover, the use of -silyl-substituted 
allylmetal reagents, under Peterson conditions, afforded dienes 
in high E-selectivity but usually lack generality and require strict 

reaction conditions and/or the use of highly toxic and complex 
reagents, so there is still much room for improvement.19-25

In the search for a simple and economical protocol for the 
stereoselective synthesis of 1,3-dienes, we have recently 
reported the indium-based preparation of (E)-1,3-dienes by the 
means of the chloroallylation of aldehydes followed by -
elimination of the resulting chlorohydrines.26

Indium-mediated organic reactions have elicited considerable 
interest in the past few years.27 The usefulness of indium in 
chemistry is related to its very low first ionization energy (5.79 
eV), which makes it an ideal candidate to promote single-
electron transfer (SET) processes. 28 This property, together with 
its relatively low toxicity, easy handling and stability to oxygen 
and water, prompted exhaustive studies focused on various 
indium-mediated organic transformations, including C-C 
forming reactions, such as allylations,29 propargylations,30 
alkynylations,31 Reformatsky reactions32 cyclopropanation 
reactions,33 Henry-type nitronate additions,34 -eliminations35 
and dehalogenations.36

Despite its low toxicity, environmental benefits and favourable 
effects on chemical transformations, the use of indium as 
reagent for synthetic transformations have diminished in the 
past few years, mainly due to its increased cost. In nature 
indium is quite rare, and nearly always found as a trace element. 
However, indium is vital to the world's economy, as it is widely 
used for LCD's (liquid crystal displays) in touch screens, flat 
screen TVs and solar panels. The growing demand had pushed 
indium into the endangered elements list and increased the 
prices considerably in recent years. In this context, the use of 
stoichiometric amounts of indium for chemical reactions is 
highly discouraged.
In recent years, an important effort has been made to reduce 
the amount of indium used in indium-promoted reactions. In 
those processes, most of the indium was substituted by other 
cheaper metals such as aluminium, zinc or manganese, proving 
that the electroreductive regeneration of low-valent indium 
could be achieved and thus drastically reducing the costs.37
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Herein we report a simple, straightforward, cost-efficient 
procedure for the stereoselective preparation of (E)-1,3-dienes 
from different carbonyl compounds in a single step using 
catalytic indium in the presence of zinc.

Results and Discussion
In order to determine the feasibility of the sequential 
allylation/reductive elimination process, the reaction of 
benzaldehyde 1a and 1,3-dichloropropene was used as the 
model under various conditions. 

Table 1. Studies on the synthesis of (E)-1-phenyl-1,3-butadiene.a

Ph H Cl Cl

O
Zn (5.0 equiv.)
[In] (mol%)
NaI (2.0 equiv.)

THF:H2O (3:1)
reflux, 12 h

Ph

1a 2 4a

2 Ph

3a

+

OH

Cl

+

Entry [In] (mol%) 3a/4a E/Zb Yield (%)c

1d In (25) 87/13 n.d. 12

2 In (25) 14/86 >98/2 83

3e In (25) 30/70 96/4 62

4f In (25) 32/68 n.d. 38

5 - 24/76 >98/2 59

6g In (100) >98/2 - -

7h In (25) 25/75 >98/2 62

8 In (10) 26/74 >98/2 51

9i In (25) 29/71 n.d. 36

10 InCl3 (25) 14/86 >98/2 83

11 InCl3 (10) 15/85 >98/2 81

12 InCl3 (5.0) 21/79 >98/2 70

a Unless otherwise noted, all reactions were conducted at 5.0 mmol Zn, 2.0 mmol 
NaI, THF:H2O (3:1), and reflux. b Determined by 1H NMR (300 MHz) analysis of the 
crude reaction mixtures. c Isolated yield of compound 4a after flash column 
chromatography based on compounds 1a. d Reaction carried out at r.t. e Reaction 
carried out in neat THF. f Reaction carried out in THF:H2O (1:3). g Reaction carried 
out in the absence of Zn. h Reaction carried out in the absence of NaI. i 2.5 mmol 
of Zn were used.

As shown in table 1, treatment of aldehyde 1a (1.0 mmol) with 
dichloropropene (2.0 mmol), substoichiometric indium powder 
(25% mol) and zinc dust (5.0 mmol) in the presence of sodium 
iodide (2.0 mmol) in a mixture of THF and H2O (3:1) at room 
temperature for 12 hours the major product of the reaction was 
the chlorohydrin 3a (Table 1, entry 1) On contrary, when the 
reaction was performed at reflux for 12 hours led to the 
formation of (E)-1,3-diene 4a in good yield and excellent E-
stereoselectivity (Table 1, entry 2).

Changing the solvent to neat THF as solvent led to poorer 
results, both in terms of yield and selectivity (Table 1, entry 3). 
Moreover, the use of a mixture of THF:H2O (1:3), the yield of the 
desired diene 4a was considerably lower (Table 1, entry 4) when 
compared with the result showed in entry 1. On the other hand, 
in the absence of indium the yield of the diene is moderate 
(Table 1, entry 5) and, the presence of stoichiometric indium 
and absence of zinc, afforded the chlorohydrine 3a as the major 
product (Table 1, entry 6).The presence of sodium iodide as 
additive is also essential; in its absence, the reaction was found 
to proceed sluggishly (Table 1, entry 7). It is evident that the 
iodide plays the role of activating the allyl chloride by converting 
it to more reactive allyl iodide via Finkelstein-type reaction 
pathway.38

It is also noteworthy that lowering the amounts of either indium 
or zinc resulted in decreased yields of the diene product (Table 
1, entries 8 and 9).
The use of substoichiometric indium is in agreement with a 
catalytic cycle in which In0 would be regenerated from In+3 by 
zinc metal, which possess a higher standard reduction 
potential.39 If such catalytic cycle were operative, it is expected 
that indium salts would perform as effectively as indium metal. 
In order to verify this hypothesis, we replaced the indium 
powder for indium trichloride, the cheapest In+3 salt. Thus, a 
mixture of benzaldehyde 1a (1.0 mmol), dichloropropene (2.0 
mmol), zinc powder (5.0 mmol), indium trichloride (25 mol%), 
and sodium iodide (2.0 mmol) in THF:H2O (3:1) was refluxed for 
12 h. We were delighted to find that InCl3 conducted to the 
formation of the corresponding diene 4a with good yield 
similarly to indium metal, thus confirming that In+3 is reduced in 
situ to In0 (Table 1, entry 10). Interestingly, the reaction 
performs better in the presence of InCl3, allowing the use of a 

10 mol% of catalyst (Table 1, entry 11). This result can be 
explained by the in situ formation of a more reactive form of In0 
than commercially available indium metal.40 Lowering the 
catalyst loading to 5% resulted in a decrease of the yield of 
desired diene 4a (Table 1, entry 12).
Based on the above results, the optimal reaction conditions 
were used to explore the scope of this protocol for synthesis of 
1,3-dienes 4. Thus, a mixture of diverse aldehydes 1 (1.0 mmol), 
zinc dust (5.0 mmol), indium trichloride (10 mol%) and sodium 
iodide (2.0 mmol) in THF:H2O (3:1) was refluxed for 12 h (Table 
2).
Under these conditions, aliphatic aldehydes (linear, cyclic, 
branched, and functionalized) 1b-f, aromatic 1a,g-j (electron 
rich or deficient), and conjugated 1k were efficiently converted 
into the corresponding 1,3-dienes 4a-k in good yields and 
excellent E-selectivity. The reaction was extended to the case of 
highly functionalized aldehydes, such as 3-formylchromone 4l 
and sugar aldehyde 4m. In both cases, the corresponding dienes 
were obtained in good yields and E-selectivity. In the case of 
sugar aldehyde 1m, is noteworthy that the reaction occurred in 
absence of epimerization of any chiral centre. In general terms, 
several functional groups such as alkene, enone, alkoxy, halide, 
and ester were tolerated and remained unaffected under the 
present reaction conditions.
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Dienes 4a-d,f-m were previously synthetized and all the 
spectroscopic data match with those previously reported in the 
literature.25,26,41,42 Diene 4e was fully characterized through 
HRMS, IR and 1H (300 MHz), and 13C (75 MHz) NMR, analysis.
The satisfactory results obtained in the synthesis of 1-
substituted-1,3-dienes from aldehydes prompted further 
studies on the usefulness of this methodology for the synthesis 
of (E)-1,1-substituted-1,3-dienes from ketones.

Table 2. Synthesis of (E)-1,3-dienes 4 derived from aldehydes 1

R1 H
Cl Cl

O
+

Zn (5.0 equiv.)
InCl3 (10 mol%)
NaI (2.0 equiv.)

THF:H2O (3:1)
reflux, 12 h

R1

1 2 4

2

Entry 1 R1 4 E/Za Yield (%)b

1 1a Ph 4a >98/2 83

2 1b n-C7H15 4b 95/5 80

3 1c c-C6H11 4c >98/2 79

4 1d 4d 91/9 61

5 1e CH3CH2CH=CH(CH2)5 4e 94/6 82

6 1f PhCH2 4f 85/15 63

7 1g p-MeC6H4 4g >98/2 90

8 1h p-MeOC6H4 4h >98/2 75

9 1i p-ClC6H4 4i >98/2 86

10 1j p-MeO2CMeC6H4 4j >98/2 62

11 1k (E)-PhCH=CH 4k 90/10 78

12 1l

O

O

4l >98/2 85

13 1m

O

O O

BnO

4m 93/7 63

a Determined by 1H NMR (300 MHz) analysis of the crude reaction mixtures. b 

Isolated yield after flash column chromatography based on compounds 1.

Thus, ketone 5a was submitted to the above conditions; 
however, the corresponding 1,3-diene 6a was isolated in very 
poor yield (Table 3, entry 1). Attempts to improve the yield by 
increasing the reaction time were unsuccessful (Table 3, entry 
2). However, as a the main difference with the same process 
performed on aldehydes, when the reaction was carried out in 
anhydrous THF, 1,1-substituted-1,3-diene 6a was isolated in 
good yield and E-selectivity (Table 3, entry 3). These reaction 

conditions were then applied to a series of ketones including 
aliphatic ketones (linear and cyclic) 5b,c, benzylic ketone 5d, 
aromatic ketones 5a,e-g (electron rich or deficient), and with 
the conjugated chalcone 5h. In all cases the corresponding 
dienes 6a-h were obtained in moderate yields from moderate 
to good E-selectivity. In the case of 6d (Table 3, entry 6) and 
analogously to that observed in the case of phenylacetaldehyde 
(Table 2, entry 6), a slight decrease on both, stereoselectivity 
and yield was observed which was attribute to the presence of 
acid benzylic protons. A similar trend was observed for ketone 
5f containing an electron-rich substituent.
Configuration of dienes 6a-g were determined by comparison 
with the spectroscopic data reported in the literature.12e,43-46 

Diene 6h was fully characterized through HRMS, IR, and 1H (300 
MHz), and 13C (75 MHz) NMR analysis. The E-configuration was 
also confirmed and/or determined by using selective 1D NOE 1H 
NMR experiments. 

Table 3. Synthesis of (E)-1,3-dienes 6 derived from ketones 5.

R1 R2 Cl Cl
O

+

Zn (5.0 equiv.)
InCl3 (10 mol%)
NaI (2.0 equiv.)

THF, reflux, 12 h R1

5 2 6

2
R2

Entry 5 R1 R2 6 E/Za Yield (%)b

1c 5a Ph Me 6a n.d. 5

2d 5a Ph Me 6a n.d. 7

3 5a Ph Me 6a 92/8 64

4 5b n-C4H9 n-C4H9 6b - 60

5 5c -(CH2)5- 6c - 67

6 5d PhCH2 Me 6d 72/28 56

7 5e p-MeC6H4 Me 6e 82/18 57

8 5f p-MeOC6H4 Me 6f 70/30 38

9 5g p-ClC6H4 Me 6g 81/19 51

10 5h (E)-PhCH=CH Ph 6h 82/18 45

a Determined by 1H NMR (300 MHz) analysis of the crude reaction mixtures. b 

Isolated yield after flash column chromatography based on compounds 5. c 
Reaction in THF:H2O (3:1). d Reaction time 36 h.

To explain this transformation, we propose a sequential process 
in which a two step-wise metal-promoted transformation is 
involved. Concerning the first step, it is widely assumed that 
indium is the metal of choice for allylation protocols in aqueous 
media since the reaction usually proceed without the need of 
activation or addition of protic media, and the amount of side 
products due to reduction or coupling of carbonyl compounds 
is often minimal.47 In this sense, the indium-promoted addition 
of dichloropropene to aldehydes 1 or ketones 5 would generate 
chloro alcoholates 8 (Scheme 1) via 1,2-addition of the anionic 
specie 738,48 to the corresponding carbonyl compound.
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In the second step of this process we propose a Zn-mediated 
metalation of the C-Cl bond on indium alcoholate 8. This 
metalation would generate the metalotropic equilibrium 9-9’ 
which would be displaced to the 9-form due to the chelation of 
the oxophilic ZnII center with the oxygen atom.49 This proposed 
six-membered ring could adopt two different half-chair 
conformations 9A and 9B (Figure 1). The most stabilized one 
would be 9A in which R1, as the group with the higher steric 
hindrance, adopts the equatorial position. We surmise an 
elimination process from intermediate 9A (as depicted in 
Scheme 1) through an E1cB-type mechanism that would also 
explain the observed E-stereoselectivity.

Zn0

R1 R2

O

Cl X

InX2

Cl

R1

O
X2In

ClZn0

Zn+2

1 or 5

7

O
ZnL

R1

X2In

8

R1

O
X2In

ZnL

R2

R2

R2

R1

R2

4 or 6

[In+3]

[In0]

9'

9

2

Scheme 1. Proposed mechanism.

Once dienes 4 and 6 are generated, indium(III) species are then 
reduced in the presence of Zn to regenerate indium(0) that is 
again involved in the catalytic cycle to promote the above-
mentioned indium-promoted addition of dichloropropene to 
carbonyl compounds.

H

Zn

O

R2

R1
H

L

InX2

O

ZnH H

R2

R1

L

InX2

9A 9B

Figure 1. Proposed transition states.

In regard to the mechanism, the fact that the reaction promoted 
by stoichiometric indium (Table 1, entry 6) afforded only 
chlorohydrine 3a rules out a mechanism based on the 
participation of the indium reactive species during the 
elimination process. Thus, zinc acts as both, as a secondary 
reductant and as the metalation agent in the sequential 
process. Related to this, the need of the indium salts is based on 
the yield of diene 4a when compared with the same process in 
absence the indium. In this sense, the yield is moderate in the 

absence of indium as it is shown in Table 1 (entry 5). This fact is 
in accordance with the previous results described by Li.50

Stereospecificity of this reaction was also studied. Thus, syn- 
and anti-chlorohydrines 3a were prepared38 and separated by 
flash chromatography on silica gel (only enriched fractions 
could be isolated) and treated at reflux of THF:H2O (3:1) with 
InCl3/Zn/NaI in (Scheme 2). In both cases, diene 4a was 
stereoselectively obtained (E/Z >98/2) whether derived from 
syn-3a or anti-3a chlorohydrines. This experimental result 
suggested that this process took place in absence of 
stereospecificity but in a stereoselective manner. Moreover, a 
possible isomerization to the most stable E-diene under the 
reaction conditions has been discarded. Thus, when a E/Z 50/50 
ratio of diene 4a was treated under the reaction conditions, this 
mixture was recovered unaltered.

Ph
Cl

OH

syn-3a
d.r. >98/2

THF:H2O (3:1)
reflux

Ph
4a

Zn (5.0 mmol)
InCl3 (10 mol%)
NaI (2.0 mmol)

Ph
Cl

OH

anti-3a
d.r. 70/30

THF:H2O (3:1)
reflux

Zn (5.0 mmol)
InCl3 (10 mol%)
NaI (2.0 mmol)

E/Z >98/297% yield 96% yield

Scheme 2. Elimination from syn- or anti-3a

In conclusion, we have described a simple and general method 
for the stereoselective synthesis of highly functionalized and 
differently substituted terminal (E)-1,3-dienes from carbonyl 
compounds based on a cooperative catalytic indium/zinc 
system. The process is carried out through a sequential process 
involving an indium-promoted zinc-assisted chloroallylation 
followed by a zinc-mediated -elimination. Both indium and 
zinc metalating agents are essential to efficiently afford the 
dienes from moderate to good yields and with good 
stereoselectivities. Studies aimed towards fully delineating the 
factors involved in this transformation and other synthetic 
applications of the products obtained are currently under 
investigation in our laboratory.

Experimental Section
All reagents were purchased in the highest quality available and 
were used without further purification. Column 
chromatography was carried out on silica gel 230-400 mesh. 
Compounds were visualized on analytical thin layer 
chromatograms (TLC) by UV light (254 nm) and potassium 
permanganate stain. NMR experiments were registered in an 
AV-Bruker spectrometer (1H-NMR, 300 MHz, 13C-NMR and 
DEPT-135, 75 MHz). Chemical shifts are given in ppm relative to 
the residual non deuterated solvent, which is used as an internal 
standard, and coupling constants (J) are reported in Hz. 
Diastereoisomeric ratios were obtained using 1H-NMR (300 
MHz) analysis of crude products. HRMS were measured at 70 eV 
using electrospray ionization in positive mode (ESI+).

General procedure for the synthesis of 1-substituted-1,3-dienes 4 
from aldehydes 1

Indium trichloride (22 mg, 0.10 mmol), zinc dust (327 mg, 5.0 
mmol) and sodium iodide (300 mg, 2.0 mmol) were added to a 
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solution of the aldehyde 1 (1.0 mmol) and 1,3-dichloropropene 
(0.18 mL, 2.0 mmol) in THF:H2O (3:1, 10 mL). After refluxing the 
reaction mixture 12 h, it was filtered through celite, diluted with 
water (25 mL) and extracted with diethyl ether (3 x 25 mL). The 
combined organic layers were washed with brine (25 mL) and 
saturated aqueous sodium thiosulphate (25 mL), dried over 
Na2SO4 and the solvent was removed under reduced pressure. 
The residue was then purified by flash column chromatography 
eluting with hexane except for 4h,j,l-m where hexane/EtOAc 
9/1 was used. The physical data of known dienes 4a-d,f-m were 
comparable to those previously reported in the literature.25-

26,41-42 The physical data of the new diene 4e are shown below.

(3E,10Z)-Trideca-1,3,10-triene 4e: 147 mg, Yield 82%. 
Colourless oil. Rf = 0.70 (hexane). 1H NMR (300 MHz, CDCl3): δ 
6.34 (dt, J = 17.0, 10.2 Hz, 1 H), 6.08 (dd, J = 15.3, 10.5 Hz, 1 H), 
5.73 (dt, J = 14.6, 6.9 Hz, 1 H), 5.37 (q, J = 6.1 Hz, 2 H, H10, H11), 
5.11 (dd, J = 16.9, 1.8 Hz, 1 H), 4.98 (dd, J = 9.8, 1.9 Hz, 1 H), 2.08 
(dtd, J = 13.1, 6.8, 3.8 Hz, 6 H), 1.48–1.30 (m, 6 H), 0.99 (t, J = 7.5 
Hz, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ 137.3, 135.4, 131.6, 
130.9, 129.2, 114.6, 32.5, 29.6, 29.1, 28.8, 27.0, 20.5, 14.4 ppm. 
HRMS (ESI+) [M+H]+ calcd. for C13H23, 179.1794; found, 
179.1793. IR (KBr, ν cm−1): 1602, 1650 (-C=C-C=C-).

General procedure for the synthesis of 1,1-disubstituted-1,3-
dienes 6 from ketones 5
Indium trichloride (22 mg, 0.10 mmol) (29 mg, 0.25 mmol), zinc 
dust (327 mg, 5.0 mmol) and sodium iodide (300 mg, 2.0 mmol) 
were added to a solution of the ketone 5 (1.0 mmol) and 1,3-
dichloropropene (0.18 mL, 2.0 mmol) in dry THF (10 mL). After 
refluxing the reaction mixture 12 h, it was quenched with HCl (3 
mL, 0.1 M), diluted with water (25 mL) and extracted with 
diethyl ether (3 x 25 mL). The organic material was then dried 
over anhydrous Na2SO4 and the solvent was removed under 
reduced pressure. The residue was purified by flash column 
chromatography eluting with hexane to afford dienes 6a-j. The 
physical data of known dienes 6a-e,g-j were comparable to 
those previously reported in the literature.12e,43-46 The physical 
data of the new diene 6f are shown below.
[(1E,3E)-1,3-Diphenyl-hexa-1,3,5-triene 6f: 105 mg, Yield: 45%. 
Colourless oil. Rf = 0.45 (hexane). 1H NMR (300 MHz, CDCl3): δ 
7.57–7.18 (m, 10H), 7.08 (d, J = 15.8 Hz, 1H, H1), 6.45 (d, J = 11.2 
Hz, 1H, H4), 6.35–6.23 (m, 1H, H5), 6.20 (d, J = 16.1 Hz, 1H, H2), 
5.34 (J = 17.9 Hz, 1H, H6) ppm. 13C NMR (75 MHz, CDCl3): δ = 
142.8, 137.6, 137.4, 134.5, 132.7, 132.6, 131.7, 129.9, 128.9, 
128.6, 128.2, 127.5, 127.4, 126.4, 125.1, 118.4 ppm. HRMS 
(ESI+) [M+H]+ calcd. for C18H17, 233.1325; found, 233.1323. IR 
(KBr, ν cm−1): 1598, 1650 (-C=C-C=C-).
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